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Abstract

This paper is concerned with the existence of a consumption sequence that implies
wealth to grow at a given rate. It is shown that under reasonable assumptions such a

sequence exists and can be determined by solving a fixed-point problem.



THE CREATION OF WEALTH

1. INTRODUCTION

Wealth is created by generating future consumption through the use of capital. Thus

the creation of wealth can be understood as a problem of planning consumption.

Assuming uncertainty the standard approach to solve this problem is to determine a con-
sumption stream that maximizes expected utility. However, the approach has a number
of deficiencies that limit its applicability considerably. First, an intertemporal utility
function respresenting the time and risk preferences of the decision maker is assumed to
exist and to be derivable. Second, a probability distribution of the future consequences
of every feasible decision is assumed to exist and to be derivable. Third, as emphasized
by Sen (1997), the utility function in particular is assumed not to depend upon the menu
over which choice is being made. As a consequence, Sen argues that “the regularities
of choice behavior assumed in standard models of rational choice will need significant
modification” (Sen, 1997, p. 745). Finally, expected utility maximization can lead to
an inefficient consumption sequence. That is, there may exist a feasible consumption
sequence that guarantees an equally high consumption in all instances and for at least

one instance a higher consumption (see, for example, Copeland et al, 2005, pp 66).

The deficiencies of the expected utility maximizing approach necessitate the develop-

ment of alternative approaches with less disadvantages.



Such an approach has been analysed by Hellwig (1996, 1998, 2004), Hellwig, Speckbacher
and Wentges (2000), Korn (1997, 1998, 2000), Korn and Schél (1999) and Speckbacher
(1998). Instead of maximizing utility they propose a two step procedure. In the first
step all solutions are elimininated that are (intertemporal) inefficient. Every remain-
ing solution can be associated with a certain growth pattern of the associated initial
present, value. In the second step all solutions among these that are incompatible with

the growth preference of the decision maker are eliminated.

The procedure can be applied by defining the present value either cum or ex present
consumption. In the articles cited above the present value is defined ex present con-
sumption. This requires to fix present consumption a priori. Furthermore, even value

preservation can not guarantee consumption to be non-negative.

Recently, Hellwig (2002a) analysed the approach more generally and in particular con-
sidered the case where the present value is defined cum present consumption. However,
the underlying model is linear and therefore of limited applicability. Moreover the paper
focuses on computational aspects and does not provide economic meaningful conditions

for the existence of a solution satisfying given growth requirements.

The aim of this paper is to fill this gap. In section two the choice problem is formulated.
In section three some applications are discussed. In section four it is shown that a
desired growth pattern of wealth can be realized under reasonable assumptions. Finally,

in section five two modifications of the approach are analysed.



2. THE CHOICE PROBLEM

We assume a finite-state, discrete-time standard approach (e.g. Magill/Quinzii, 1996)
where uncertainty is modelled by an event-tree with a finite set of events (nodes). The

following notation will be used:

S ={0,...,n}: Set of nodes

Sy : Set of nodes at time ¢, t =0,...,T where Sy = {0}

N(s) : Set of nodes succeeding s

F(s): Set of nodes, immediately following s

s Immediate predecessor of s. It will be assumed that s~ is uniquely
given.

¢ = (co,...,cy): Consumption sequence

C: Set of feasible consumption sequences. C' will be assumed

to be non void, convex and compact.

Assume ¢ € C and let p = (pg,...,p,) > 0 be a vector of node prices (price vector).

Then wealth in node s will be defined as

Vi=Vile,p) =cs+ > —ck—cs+ > —Vk (1)

keN(s) Ps keF(s) Ps

But how should ¢ and p be chosen?

Suppose that a suitable price vector p > 0 is given. Under this assumption the desired



consumption sequence ¢ € C' should clearly maximize present wealth:

(C1) ¢ is an optimal solution of V;(¢, p) = max{Vy(c,p) | ¢ € C'}. (2)

Now suppose on the contrary that a suitable consumption sequence ¢ € C' is given.
Under this assumption the valuation of ¢ should be consistent with the desired increase

of wealth. Thus the price vector p > 0 should satisfy

(C2) Vi(e,p) = (1+g5)Vs-(c,p),s=1,...,n. (3)

where g, is the required growth rate of wealth between nodes s~ and s.

Definition: ¢ is called growth-oriented (with respect to g1, ..., g,), if a price vector p > 0

exists such that (C1) and (C2) are satisfied.

Contrary to the expected utility maximizing approach the concept of a growth-oriented
consumption sequence neither requires a utility function nor a probability distribution.
Furthermore, efficiency is guaranteed by (C1). Finally, the concept is not independent
of the menu over which the choice is made. A growth-oriented consumption sequence
in principle may be found by expected utility maximization. However - contrary to the
standard approach - if C' is changed, then expected utility maximization with the same
utility function may not lead to a growth-oriented consumption sequence with respect

to the same growth rates (Hellwig, 2002b).



3. APPLICATIONS

The growth model developed in the last section can be applied to a variety of intertem-

poral choice problems. These include:

Multiperiod portfolio selection. Assume that an investor can choose among m invest-

ment and financing activities. Let b = (by,...,b,)" be the vector of initial endow-
ments, A € IRM™D*™ the payoff matrix, ¢ = (co,...,¢,)" the consumption vector,
x = (x1,...,T,)" the vector characterizing the activity levels chosen by the investor and

X the set of restrictions (such as short selling restrictions or upper bounds) that have

to be taken into account. Then the set of feasible consumption sequences is given by

C={clc=Ax+bxe X}

Economic growth. In models of optimal economic growth (e.g. Arrow, 1968, Koop-

mans, 1967) it is generally assumed that an optimal growth path for an economy can

be determined by maximizing the discounted utility of consumption.

However, discounting utility has been questioned. Sen (1961) and Rawls (1971, p. 294)
argue that there is no ethical justification to discount the utility of our descendants while
Koopmans (1960) and Koopmans, Diamond and Williamson (1964) show that a utility
function of all consumption sequences, which exhibits time neutrality and satisfies other

reasonable postulates on utility functions, does not exist.

The concept presented in the last section provides a possible solution to such problems.



Sustainable development. Intergenerational equity is also of interest in models of sus-

tainable development. Following the well known Brundtland report of the WCED,
sustainable development can be defined as “development that meets the needs of the

present without comprising the ability of future generations to meet their own needs”.

Clearly this means that present generation should restrict their decisions such that ini-

tial wealth does not decline.

Although the concept of growth oriented consumption sequences and utility maximiza-
tion are incompatible in the sense outlined above, utility considerations may make sense.
As an example assume that a decision is sought where the growth rates are required to
be bounded from below. In this case generally more than one consumption sequence

satisfying these growth requirements exists and one may be chosen that maximizes util-

ity.

4. EXISTENCE
Assume ¢ € C' and p > 0. Combining (1) with the growth requirements yields

p
e ={1— 3 1+ g) Meros (1 +g.)Volc,p) (4)
keF(s) &3

where T'(0, s) denotes the set of nodes between 0 and s (excluding 0 and including s).
Let p > 0 be an arbitrary price vector. Then the optimal solution ¢**(p) of (2) can be

understood as the consumption sequence that is supplied by p and ¢?(p) given by



c2(p) = {1 — Shers) %’: (14 g1) Mz ero,6) (1 + g-) Vo (¢, D)

as the consumption sequence that is demanded by p. Clearly, if excess demand

2(p) := c(p) — c**(p) is zero, c?(p) = c**(p) is a growth-oriented consumption sequence.

Suppose that z(p) # 0. Then a new price vector may be chosen, for example, as an
optimal solution p(z) of max{>" ,z;(p)ps | p € P} where P is a suitable set of price
vectors. This means that prices should be increased if demand exceeds supply and
decreased if supply exceeds demand. Performing z(p) : P — Z where Z denotes the
image of z und thereafter p(z) : Z — P leads to a multivalued mapping ¢ = p(z(p)) :
P — P. As shown in the appendix (Lemma 1), P can be chosen such that ¢ has a
fixed point p. Furthermore, it is shown (Lemmas 2 and 3) that z(p) = 0 if the following

assumptions hold:

(A1) (Deferred consumption). By reducing consumption in any node s ¢ Sy by Ac,
consumption in every node k € F(s) can be increased by (1 + ri)Acs where

ri > —1.

(A2) (Anticipated consumption). Let s and k& € F'(s) be two arbitrary succeeding nodes.
By reducing consumption in node k by (1+179;)Ac, (where o > 71;) consumption

in node s can be increased by Ac,.
(A3) There exists a consumption vector ¢* € C' with ¢* > 0.

(A4) —1 < gr <7 (kzl,,n)



(Because C' is assumed to be compact, the opportunities in (A1) and (A2) have to be
upper bounded. These bounds are chosen such that they never become active. See also

the proof of Lemma 3 in the appendix).

This establishes the main result of the paper which is proved in the appendix.

Theorem 1: Given (Al) - (A4) a growth-oriented consumption sequence ¢ > 0 exists.

5. MODIFICATIONS

Additional insights can be obtained by modifying assumptions (A1) - (A4).

As a first modification (A1) and (A2) are substituted by the following assumption:

(A5) (Perfectly transferable consumption). Let s and k& € F'(s) be two arbitrary succeed-
ing nodes. By reducing (increasing) consumption in node & by (1 +r,)Ac,s consumption
in node s can be increased (decreased) by Ac, where Acg can be chosen arbitrary.

(This assumption, for example, underlies the well known Cox-Ross-Rubinstein formula

for the valuation of a European call option.)

Given (A3), (A4) and (A5) —ps- + (1+75) ps =0 (s =1,...,n) for every price vector

p > 0 is a necessary condition for (1) to have a finite optimum. Recursive application



yields

B Miero,s) (1+75) " =:d,.
Po

Thus a growth oriented consumption vector ¢ can be determined in two steps. First, 1
is determined by Vj = max{>."_, dsc; | c € C}.

Second, ¢ is determined by

_ 14 gg
Cs = {1 - Z m} HTET(O,S) (1 + gT) ‘/E)
keF(s) k

As a second modification in addition to (Al) - (A4) the following assumption is made:

(A6) For every node s a probability m; > 0 (where Y 5, 7, =1, t =0,...,T) is given.
Given (A6) every price vector p% can be decomposed into 7, and a discount factor ¢, :
g—; =Ts (gs where qs = HTET(O,S)(1 + ir)_l-

Let 7(s/s~) be the conditional probability of s given s~. Then (4) can be written as

_ Ik — Gk
= (% wk/s9) T Moeru (1+97) Vi (5)
keF(s) k

Assume that C'is given by
(A7) C ={c|cs=es(x) +bs, s=0,...,n, v € X}

where x € IR™ is a decision vector and by € IR. Then the following theorem holds:

Theorem 2: Let (Al)-(A4), (A6) and (A7) hold. ¢ is growth-oriented with respect
to the growth rates g = i; (s = 1,...,n) if and only if ¢ is an optimal solution of

(P) max{} g, mslnc, | c€ C}.

10



Proof: Assume that ¢ is growth-oriented with respect to the growth rates g; = is (s =
1,...,n). Let p, ¢, T satisfy (C1) and (C2) where Z is optimal for (2). By (5) ;=0 (s &

St) and by assumption é; = % (s € Sr).

Deﬁneﬁb}’ﬁoz Vo(lﬁ@y ﬁs:ﬁo Ts qs :ﬁO g_; (S: 17"'7”)‘

(s=1,...,n) and ¢, = Yo = 20T |\ — T (5 ¢ G,

Then 2: =
p qs Ps Ps

0

=i |’B\
[ ()

It follows that ¢ and ¥ maximize the Lagrangean

L=Ycs, mslne, — Y0y ps(cs — es(x) — by)

and therefore (Everett, 1963, p. 401) are optimal for (P).

Now assume that ¢ is optimal for (P). Let p = (po,...,pn) denote the vector of
shadow prices of the first m + 1 restrictions of (P). p > 0 by (Al). Furthermore

Ty =Ps Cs (s € Sr). Thus Vo = Y g, €5 B = pio. Let N*(s) := N(s) NSy. Then

Po
Vs = Yken=(s) Ck ;?—’; = YkeN*(s) 3 = LkeN*(s) jorg = ,%qs = %
Thus Vs = (1+75)Vs- (s=1,...,n). 0
APPENDIX

Lemma 1: Let P := {p | py = 1,p} < p’:i (s € Sp),1 — pLSZkEF(s)pk(]. +gr) >0 (s ¢

Sr)} where g, > —1 for all k and p’ > 0 are chosen such that P # (). Then ¢ has a

fixed-point.

Proof: P is compact, non-void and convex where p > 0 for every p € P. ¢*(p) is

11



upper-semicontinuous and Vy = Vy(c(p),p) (and consequently Vi for s = 1,...,n) con-
tinuous (e.g., Luenberger, 1995, pp. 467). c¢?(p) is continuous. Therefore z(p) is upper-
semicontinuous. Because P is compact and non-void, p(z) is upper-semicontinuous
(Luenberger, 1995, p. 468). This implies that ¢ (as a combination of two upper-
semicontinuous mappings) is upper-semicontinuous. ¢ is convex, because the set of
optimal solutions of a convex optimization problem is convex. Therefore (applying

Kakutani‘s fixed point theorem, Kakutani, 1948), a fixed point exists.

Lemma 2: z(p) = 0 for every fixed point p of ¢ if the following conditions hold:

(Bl) pe P, 1— IiEkeF(s)pk(l +gr) =0=2z,(p) >0 (s¢&Sr).

(B2) pe P, P~ =pl = 2(p) >0 (s ¢ So).

? p—

Proof: Since p is a fixed point of ¢, max{}, z:(p)ps | p € P} = ¥, 2zs(p)ps. Fur-
thermore 0o cf(Ds)ps = Yoo Vibs — Lagor Lher(s) Pe(l + g1)Vs = oo Vibs —

Y szsy 2ker(s) ViPe = Vo. Because 30 cg"(ps)ps = Vo this implies 3¢ 2,(p)ps = 0.

The dual of max{>"_, zs(p)ps | p € P} is

min ¥
s.t. > pPhvk — wo + Yo > 20(p) (6)
kEF(0)
—Vs + . %:( )picvk — Ws + (1 + 98)ws— > 28(15) (S Z So, ST) (7)
cr(s
—vg + (1 + gs)ws- > 2z5(p) (s € Sy) (8)
vs >0 (s¢So),ws>0 (s¢&Sr),y€R. 9)

12



Since p > 0, (6), (7) and (8) hold as equalities for every optimal solution 75 (s ¢
So), ws (s & Str), 9o where g = 0. Therefore z;(p) < 0 implies o3 > 0 and/or w, > 0.
By complementary slackness If—i = pl and/or Yyep(s) Pe(1+ gr) = Ps which contradicts

(B1) and (B2). Thus z,(p) > 0. Noting >, z5(ps)ps = 0 and p > 0 completes the proof.

[
Lemma 3: (B1) and (B2) hold if (A1) and (A2) are met.
Proof: Assume, that (A1) holds. Choose p € P such that Ycpe) Pe(l + gr) =
1. Then the net present value of deferring one unit of consumption in ¢ = 0 is

—1+ Yper@) Pl +718) > =1+ Xpep@) Pr(l + gr) = 0. Value maximization there-
fore requires to defer consumption as much as possible. As a result cy(p) strictly
decreases with the amount of consumption that is deferred. On the other hand
(p) = (1 = Crer) Pe(1 + gx))Vo = 0. Thus z(p) > 0 if the amount of consump-
tion that is deferred is increased sufficiently. A similar argumentation applies to all

nodes s € S; and subsequently to all nodes s € Sy, t =2,...,T — 1. This proves (B1).

Now assume that (A2) holds. For k € F(0) choose p., such that pt < (147y,)"! and p €
P such that %’; = pl.. Then the time zero value of anticipating one unit of consumption
between nodes s = 0 and k is 1 —py,(1+79:) = 1—pk(1+7ra) > 0. Therefore consumption
should be anticipated as much as possible and ¢ (p) strictly decreases with the amount

of anticipated consumption. On the other hand ¢f(p) = (1— [S—Ik >rer) Pr(14+97))Vo >0
since p € P and Vi > 0 by (A3). Thus z(p) > 0 if the upper bound for anticipating
consumption is chosen sufficiently high. A similar argumentation subsequently applies

to the succeeding nodes s and k € F(s) where s € Sy, t = 1,...,T — 1. This proves

13



(B2).

i

Lemma 4: Given (Al) - (A4). Then ¢ > 0 for every growth-oriented consumption
sequence c.
Proof: (A3) and (A4) imply Vi > 0 for s = 1,...,n. The assertion then follows from

1= - Zrers (1 + gx) > 0 for every p € P and s ¢ Sr.
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