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Abstract

Theoretically superior investing performance should not be possible
in the efficient asset markets. In other words, there should not exist a
trading rule that is systematically beating the market. Using a wider
concept, an efficient market is a market in which predictability of asset
returns, after adjusting for time-varying risk-premia and transaction
costs, can still exist but only ’locally in time.’ But once predictable
patterns are discovered by a wide group of investors, they will rapidly
disappear through these investors’ transactions. We propose a price-
trend model as an alternative to the random walk hypothesis. We find
that a trading rule based on the model and applied to the S&P 500
index from 1940 to 2005 beats the buy-and-hold strategy during the 20-
year period from the early 60s to the late 70s or early 80s. Thereafter
it is possible that the forecastable pattern has become widely known
or the market has experienced structural changes that the model was
unable to take into account. The poor performance of the trading rule
during the first 20 years may be attributed to the estimation method
applied.
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1 Introduction

Theoretically superior investing performance should not be possible in the
efficient asset markets. In other words, there should not exist a trading rule
that is systematically beating the market. Paul Samuelson [9] is probably
the pioneer, who analytically argues that randomness is achieved through
the active participation of many investors seeking greater wealth. The idea
is summarized in the title of the article: ”Proof that Properly Anticipated
Prices Fluctuate Randomly.” In an informationally efficient market price
changes must be unforecastable if they are properly anticipated. In other
words, they are unforecastable if they fully incorporate the expectations and
information of all market participants. Later, the key idea was modified as
“prices fully reflect all available information.”

The Random Walk Hypothesis (RWH) and its close relative the Efficient
Market Hypothesis (EMH) have become icons in modern financial economic.
Before Samuelson, connected to the birth and development of probability
theory, the RWH has remarkable intellectual forbears such as Bachelier,
Einstein, Lévy, Kolmogorov and Wiener. The early papers in this area
are contained in the collection of Cootner [3]. A study by Granger and
Morgenstern [4] provides a detailed development and empirical examination
of the random walk model and its various refinements. For practitioners,
Malkiel’s [8] “A Random Walk Down Wall Street” Malkiel shows why a
broad portfolio of stocks selected at random will match the performance of
one carefully chosen by financial experts.

The RWH and the EMH continue to fire imagination of academics and
investment professionals alike. Lo and MacKinlay [7] is a classic text in
the theory of finance, where using sophisticated econometric and statistical
techniques, the authors show that the market is not completely random at
all. Lo and MacKinlay note that their study to reject the RWH was not the
first one, but earlier studies were largely ignored by the academic community
and they were unknown to the authors until after their own papers were
published.1 Lo and MacKinlay note that mainstream economists are trained
to study the data through filtered lenses of classical market efficiency. Many
financial economist would still agree with Jensen’s [6] belief that “there is
no other proposition in economics which has more solid empirical evidence
supporting it than the Efficient Market Hypothesis.”

Timmermann and Granger [12] define a market as being efficient lo-

cally in time with respect to information set Ωt and the forecasting model
mit(zt, θ̂) drawn from a set of available models Mt, if

E
[
ft

{
R∗

t+1, mit(zt; θ̂t), ct

}]
= 0, (1)

1Lo and MacKinlay [7] refer a few earlier studies in their book “A Non-Random Walk
Down Wall Street.”

2



where ft embody the set of possible transactions at time t, R∗
t+1 is the risk-

adjusted return, θ̂ is the vector of parameters estimated using data up to
time t, zt ∈ Ω, and ct is the vector of transaction cost parameters. E [·|Ωt]
is the mathematical expectation operator, or population expectation, condi-
tional on the information set Ωt. Timmerman and Granger intend ’model’
to be interpreted in the broadest sense to incorporate both the functional
form, prediction variables, estimation method and choice of sample period.
The latter can be, e.g. an expanding window, rolling window or based on
exponential discounting.

Timmermann and Granger allow that some models have predictive power
before their discovery. This does not, however, violate the EMH, since
such models would not be elements in the relevant set of available models,
Mt. This means that the definition of the EMH does not rule out profits
from new forecasting techniques. These techniques may have a ’honeymoon’
period before they become widely known and they cease to generate profits.
Thus, individual forecasting models are likely to go through stages of success,
declining value, and finally disappear.

Three forms of market efficiency are commonly defined in terms of vari-
ables contained in the information set Ωt. First, when Ωt only comprises
past and current asset prices, the EMH in its weak form is being tested.
Second, when Ωt is expanded to include all publicly available information
gives rise to the EMH in its semi-strong form. Third, if all public and pri-
vate information is included in Ωt, market efficiency in the strong form is
being tested. A private model is like private information. Most of the tests
of EMH are designed to rule out private information that is hard to measure
and perhaps also more expensive to acquire.

Timmermann and Granger argue (p. 16) that forecasting experiments
testing the EMH have to specify at least five factors:

1. the set of forecasting models available at any given point in time,
including estimation methods;

2. the search technology used to select the best, or a combination of best,
forecasting model(s);

3. the available ’real time’ information set, including public versus private
information and ideally the cost of acquiring such information;

4. an economic model for the risk premium reflecting economic agents’
trade-off between current and future payoffs;

5. the size of transaction costs and the available trading technologies and
any restrictions on holdings of the asset in question.

In this framework, Timmermann and Granger define that an efficient
market is thus a market in which predictability of asset returns, after ad-
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justing for time-varying risk-premia and transaction costs, can still exist but
only ’locally in time’. This means that once predictable patterns are discov-
ered by a wide group of investors, they will rapidly disappear through these
investors’ transactions.

Timmermann and Granger argue that consideration needs to be turned
to quickly changing models that can detect and utilize any instances of
temporary forecastability that might arise and quickly disappear as learning
opportunities arise and close down.

Any model is, however, only an approximation to the rules which con-
vert relevant information and numerous beliefs and actions into markets.
Taylor [11] (p. 14) argues that plausible models should satisfy five crite-
ria. First, models should be consistent with past prices. Second, the model
should be feasible. In other words, hypotheses implied by a model ought to
amenable to rigorous testing. Third, model should be as simple as possible:
we prefer parsimonious models. Fourth, a model should provide forecasts
of future returns and prices, which are statistically optimal assuming the
model is correct. Fifth, it is beneficial if a model can be used to aid rational
decision making.

One traditional way to test the RWH is to examine the autocorrelation
properties of price changes. A more general perspective has been to view
the price process as a particular model within the class of ARIMA models
popularized in the 70s. Martingale processes lead naturally on to non-linear
stochastic processes that are capable of modeling higher order conditional
moments, such as the ARCH model introduced in the 80s. At least these
popular models have been in the set of available models for a few decades.

When forecasters constantly search for predictable patterns, their behav-
ior affects market prices when they attempt to exploit trading opportunities
in a large scale. These patterns are unlikely to persist for long periods when
discovered by a large number of investors. This gives rise to nonstationarities
in the time series of asset returns.

Bossaerts [2] (p. 43) distills the following two components to the tradi-
tional concept of EMH. Firstly, market beliefs are correct: ex ante expec-
tations coincide with true expectations, and ex ante covariances correspond
to true covariances. Secondly, return distributions are time-invariant, i.e.,
stationary. The latter implies that the law of large numbers holds such that
the sample moments estimate the population moments, if they exist. Test to
verify asset-pricing theory require even stronger assumptions that the data
exhibit the right ’mixing’ conditions: the memory cannot be too long, so
that central limit theorems obtain.

In this paper we propose a price-trend model that is assumed to offer the
best chance to find improvements upon random walk forecasts. Trends will
only occur if some information is reflected in several consecutive returns. It
is assumed that each item of information is reflected either quickly or slowly
into prices.
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The existence of trends can be explained by the theories of behavioral
finance. Trends will occur if information is used imperfectly. This can
occur if enough people are irrational or rational but unable to interpret all
information quickly and correctly. If trends truly exist, trends and trend
reversals may occur at all time scales. We examine if it is possible to find
predictable structures in daily data.

The paper is organized as follows. Section 2 describes the price-trend
hypothesis. In Section 3 the model is estimated. The model is applied to
the daily returns of the S&P 500 index. In Section 4 a simple trading rule
is applied to test the hypothesis. Section 5 concludes.

2 The price-trend hypothesis

The price-trend hypothesis is an alternative to the RWH. The professional
analysts commonly operate in the belief that there exist certain trend gen-
erating facts that will guide a speculator to profit if only the facts can
be interpreted correctly. The two main schools of professional analysts;
the ’fundamentalists,’ represented by financial economists, and the ’techni-
cians,’ represented by ’financial alchemists;’ agree on the basic assumption
but differ in the methods used to gain knowledge.

Both schools of analysts assume the existence of trends that represent
the gradual recognition by the agents of emergent factual situations. If
trends exist, they must reflect a lagged response of the market prices to the
underlying factors governing the price process. Thus, the existence of trends
imply that prices do not adjust fully and instantaneously when new infor-
mation becomes available. Instead, some new information is incorporated
only gradually into prices.

In recent years, research in behavioral finance has shed some important
light on the causes and implications of the presence of trends. Firstly, trends
will occur if information is used imperfectly, for example if enough investors
are irrational. A feed back loop is a typical case. In the most popular ver-
sion of the theory, feedback takes place because past price changes generate
expectations of further price changes. This explanation relies on adaptive
expectations.

Andreassen and Krauss [1] report psychological experiments, in which
subjects are shown real stock prices from the past and asked to forecast
subsequent changes. It was found that subjects track the past averages,
when the stock prices are stable. However, as prices began to show consistent
trends, the subjects began to switch to a trend-chasing strategy. ’Technical
analysis’ is even more compelling evidence of the presence of trend-chasing.
These techniques try to spot trends and trend reversals by using technical
indicators associated with past price movements.

Another version of the theory states that feedback takes place because of
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increased (decreased) investor confidence in response to past price increases
(decreases).

Secondly, the investors may well be rational but unable to interpret all
information quickly and correctly.

Thirdly, there are limits of arbitrage dedicated to exploiting noise traders’
misperceptions. Arbitrageurs are likely to be risk averse and have reasonable
short horizons. As a result their willingness to take positions against noise
traders is limited. The power of arbitrage is limited by fundamental risk.
Another source of risk borne by short-horizon investors engaged in arbitrage
against noise traders is the risk that noise traders’ beliefs will not revert to
their mean for a long time and might in the meantime become even more
extreme. An arbitrageur faces the risk that he has to liquidate before the
price change occurs. Fear of this loss tends to limit the original arbitrage
position.

Slow interpretation of information will cause consecutive returns to be
partially determined by the same information. This causes positive autocor-
relation such that several returns are all influenced in the same way towards
a conditional mean. The impact of the current information, however, dimin-
ishes as time goes on. Hence, the autocorrelations should decrease as the
lag length increase.

The alternative hypothesis requires a theoretical autocorrelation function
that is consistent with the estimated sample autocorrelations. Taylor [10]
defines the autocorrelation function of the price-trend hypothesis as

H1 : ρτ = Apτ , A, p, τ > 0. (2)

Here H1 refers to the alternative hypothesis to the random walk hypothe-
sis H0. Parameter A measures the proportion of information not reflected
by prices within one day, while parameter p measures the speed at which
imperfectly reflected information is incorporated into prices. The limiting
cases are A → 0 or p → 0, when information is used perfectly. The mean
trend duration is defined by m = 1/(1 − p).

We follow Taylor [11] and assume that returns Xt have stationary mean
µ such that

Xt = µ + (µt − µ) + et. (3)

In the return process et is the response to quickly reflected information and
µt − µ is the response to slowly reflected information. By definition et is a
zero mean uncorrelated irregular component, the error or disturbance. The
µt have mean µ and they are autocorrelated such that {µt} is an AR(1)
process

µt − µ = p(µt−1 − µ) + ζt (4)

having autocorrelations pτ . The error term ζt represents the effect of all the
slowly reflected news first available on day t.
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The return process {Xt} is a state-price process such that (3) is the
measurement equation with an unobserved state variable µt that has a tran-
sition equation given by (4). We may interpret that the smart money forms
optimal forecasts of the future price on the basis of the transition equation
(4). Assuming {et} is stationary, the returns have autocorrelations given by
(2).

The state µs and the et are uncorrelated. Hence, noise traders may
respond to et that is uncorrelated with the unobserved state µs, but not
necessarily independent, for all s and t. Using the standard formula for
uncorrelated processes V (Xt) = V (µt) + V (et) and since {et} is stationary,
we obtain for A in (2): A = V (µt)/V (Xt). The latter is a measure of the
proportion of slowly reflected information. In the trend hypothesis it is
assumed that slowly reflected information has influence to several returns in
the same way.

Financial returns often exhibit time-varying conditional variance. We
define the standardized return by

Ut = (Xt − µ)/
√

Vt, (5)

that have mean zero and variance equal to one.
To obtain optimal linear forecasts for returns, we have to estimate the

trend parameters A and p. An ARMA(1,1) process is a parsimonious model
that has autocorrelations Apτ . Assuming {ξt} is white noise and {Yt} can
be defined by

Yt − pYt = ξt − qξt−1, (6)

then the corresponding autocorrelations are Apτ such that

A = (p − q)(1 − pq)/[p(1 − 2pq + q2)]. (7)

Thus, in our case the return process {Xt} is described by the ARMA(1,1)
model

Xt − µ = p(Xt−1 − µ) + ξt − qξt−1. (8)

The optimal linear forecast is given by

Ft,1 = µ + (p − q)
∞∑

i=0

qi(Xt−i − µ) (9)

= µ + (p − q)(Xt − µ) + q(Ft−1,1 − µ). (10)

The variance of the forecast error is

V (ξt+1) = MSE(Ft,1) = (1 − p2)σ2/(1 − 2pq + q2) (11)

and thus the variance of the forecast is

V (Ft,1) = (p − q)2σ2/(1 − 2pq + q2) (12)

= Ap(p − q)σ2/(1 − pq). (13)
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The random walk forecast for Xt is µ and it has MSE equal to σ2. The
proportional reduction in MSE obtained using the optimal linear forecast is
given by

W =
σ2 − MSE(Ft,1)

σ2
=

V (Ft,1)

σ2
=

Ap(p − q)

1 − pq
. (14)

Once the parameters are estimated an appropriate forecast of xt+1 is
defined by

ft,1 =

(√
v̂t+1/

√
v̂t

)
[(p̂ − q̂)xt + q̂ft−1,1] , (15)

where v̂t+1 is the forecast of the conditional variance.
Using the properties of the variance of the forecast Ft,1

V (Ft,1) = Cov(Ft,1, Xt+1) = Cov(Ft,1, µt+1), (16)

we obtain the correlation between the forecast Ft,1 and the unobservable
trend component µt+1 that is denoted by λ:

λ =
√

V (Ft,1)/V (µt+1) (17)

=
√

[p(p − q)/(1 − pq)] . (18)

The optimal linear forecasts are unbiased. Using standard statistical calcu-
lus, if the forecast ft,1 is k standard deviations from its mean µ, the expected
return over the next period is µ+kσF , i.e. the expected change in the price
logarithm over h periods is

hµ + kσF (1 − ph)/(1 − p), (19)

where
σF = λσµ = λσX

√
A. (20)

Our main interest is to forecast the sign of the price change correctly.
Assuming that µt+1 and Ft,1 has a bivariate normal distribution

µt+1|ft,1 ∼ N(ft,1, (1 − λ2)σ2
µ (21)

we can estimate the probability of correctly forecasting the direction: up or
down.

Assuming µ = 0 and that the forecast ft,1 is a positive number kσF , the
estimated probability that the trend is positive can be obtained by comput-
ing

P
{
N

[
kλσµ, (1 − λ2)σ2

µ

]
> 0

}
= Ω

(
kλ/

√
1 − λ2

)
, (22)

where Ω (·) is the cumulative distribution of the standard normal distribu-
tion.
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3 Data and Estimation

We apply the model to the daily observations of Standard and Poor’s S&P
500 index. The data set is from December 30, 1927 to December 31, 2005.
The period ending December 29, 1939 is used for the first estimation period,
having 3024 observations, approximately a 12 year’s history. Thereafter an
observation is added one by one and the model is re-estimated. In other
words, we apply an expanding window. Thus, the information set grows by
one observation on each trading day.

In the case of a linear returns process the parameters can be estimated by
maximum likelihood. This is not, however, possible for non-linear processes.
The parameters A and p can be estimated by matching theoretical autocor-
relations Apτand estimated autocorrelations rτ :

min
{A,p}

F (A, p) = n
K∑

τ=1

(rτ − Apτ )2 , (23)

where n is the number of returns and K is the number of estimated auto-
correlations. Given Â and p̂, q̂ is the solution of

q2 − q[1 + (1 − 2A)p2]/[(1 − A)p] + 1 = 0. (24)

The model is fitted to rescaled returns, obtained by dividing the log
return by its estimated conditional standard deviation. It is obtained by
fitting a GARCH(1,1) model to the return series before estimating the pa-
rameters of the return process. The lag length is set K = 50. The object
function (23) is optimized for each value of m = 1/(1− p), m = 1, 2, ..., 40;
and the estimates (Â, p̂) are selected that correspond to the minimum value
of the object function (23). Thereafter q̂ is obtained by solving (24). Figure
1 displays the estimation results.

[Figure 1 about here]

Both p̂ and q̂ exhibit similar behavior. Both parameter estimates are
close to 0.9 till the mid 80s, in fact till the year 1984. Thereafter, the
parameter estimates experience a sudden jump down, followed by a jump
up and back down, again. The behavior of Â is their mirror image. The
average trend duration decreases gradually from 24 days in the early 40s
into 11 days in the beginning of 1984, jumping into only two days in the
middle of 1984, the minimum accepted value for the trend duration.

The hit ratio displays the relative frequency of forecasting next day’s
direction, up or down, correctly. The time t hit ratio refers to the parameter
estimates Â, p̂ and q̂ estimated at time t, using history from the end of
1939 up to t, which are used to calculate the ex post performance since the
beginning of the data. Interestingly, the hit ratio experiences a sudden jump
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upwards that coincides with the jumps in the parameter estimates. After
the jump, the hit ratio starts to decrease gradually. Before the jump, the
hit ratio varies between 57 and 60 percent, but when the estimated average
trend duration drops to two days, the corresponding hit ratio jumps to 72
percent.

We find two plausible explanations to these observations. Firstly, the
model may well be correct, but the estimation method can be unstable and it
may provide biased parameter estimates. Since standard econometric theory
assumes asymptotic efficiency, it is surprising that one single observation
can cause a sudden jump in the parameter estimates. In this case a better
estimation method should be applied.

Secondly, it is very likely that the underlying return process experiences
structural changes as time goes by. This may occur through learning. The
agents may well be ’rational’, but unlike under the rational expectations
hypothesis, they do not know the true parameters, e.g. of the equations for
dividends or returns, and have to estimate them from limited data. If this
is the case, agents optimally update their estimates of the true population
parameters as more data arrives. The agents may apply a rational valuation
formula and produce weakly rational forecasts based on the limited informa-
tion set. Thus, the agents’ price estimates are obtained under learning. In
this case the model should be amended to take into account the structural
changes in the parameters.

Questions of model stability relate to the properties of a process with a
specific generating mechanism after it has been running for a long period.
Granger and Teräsvirta [5] examine various forms of process instability. For
example the underlying probability distribution Ft(x) can be explosive in
mean or variance, or in higher order moments; or it can be periodic, such
that for example

Ft+p(x) = Ft(x) 6= Ft+j(x), j = 1, ..., p − 1.

In this example the mean and/or some of the moments will be periodic, and
the process is said to contain a limit cycle. Other plausible explanations
are state-dependent or regime-switching behavior and various forms of long-
memory dependence.

In order to have a second look at the data, we run an AR(1) model with
an intercept on the data using a moving 252-day window. Figure 2 displays
the behavior of the parameter estimates. The solid lines correspond to the
original return data and the dotted line corresponds to the standardized
returns.

[Figure 2 about here]

The estimates φ̂ and µ̂ correspond to the AR(1) and the constant term,
respectively. Both parameter estimates exhibit unstable behavior suggesting
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that the risk premium may well be time-varying. Thus, either the quantity
of risk or the price of risk, or both, are not constant.

4 A Test based on a trading rule

The price-trend model can be used to construct a fictitious trading rule.
The behavior of the hit ratio suggests that a profitable trading rule can be
found. A market is said to use information efficiently if there is no way to
use the information to increase expected wealth by frequent trading. The
efficient market hypothesis is said to be true if the risk adjusted return, net
of all costs, from the best trading rule is not more than the comparable
figure when assets are traded infrequently, as stated by Jensen [6]. We do
not, however, consider the costs and the risks, but instead, use the trading
rule to examine, if the series exhibits a predictable pattern.

Using the procedure described in the previous Section, on each day, start-
ing on December 29, 1939; we estimate the model and provide a forecast
(15) for the next day’s return. The trading decision depends on a standard-
ized forecast calculated by assuming the non-linear trend model is correct,
computed as

k = ft,1/σ̂F (25)

σ̂F =
√

v̂t [Ap(p − q)/ (1 − pq)]1/2 . (26)

The value of k (25) is inserted into (22) and a value for the probability
of an up direction is obtained. If the value exceeds 0.5 a long position is
opened. If the value is less than 0.5, a short position is opened. It is assumed
that the trades can be transacted at published closing prices. The trades
are closed at the following day’s closing prices.2

Figure 3 displays the time series of cumulative S&P 500 log returns, cu-
mulative log returns of the trading rule and their difference. The cumulative
log return, following the trading rule, is 546.8 percent; while the buy-and-
hold strategy yields a 458.2 percent cumulative log return. However, when
looking at their difference, it can be noticed that the trading rule under-
performs the market during the 20-year period from 1940 to the early 60s.
Thereafter the trading rule beats the buy–and-hold strategy during the next
20-year period, ending in the late 70s or early 80s. Thereafter the trading
rule loses the edge and it does not work any better than the benchmark ran-
dom walk model. During the 1982-1999 bull market the trading rule even
underperforms the buy-and-hold strategy.

[Figure 3 about here]

2The trade can be transformed into a binary option, betting the sign of the market
move. For example London based spread betting companies quote S&P 500 binary bets.
The bid-ask spread is their transaction cost.
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Figure 3 carries the same message as Figures 1 and 2. Either the market
experiences structural changes in the late 70s/early 80s so that it can not
be explained by a constant parameter model and/or the agents have learned
the process. The poor performance of the trading rule during the first 20
years can be attributed to the poor performance of the estimation algorithm.
When the parameter estimates exhibit sudden jumps in the early 80s, the
ex post hit ratio experiences a large jump upwards. The estimated values
of p, q were far too high and the value of A was far to low to fit the data
properly.

Interestingly, Lo and MacKinlay [7] note that in a recent update of their
original variance ratio test for random walk for weekly US stock market
indexes, they discover that the most current data (1986-1996) conforms
more closely to the random walk than their original 1962-1985 sample pe-
riod. They also report that several investment houses, most notably Morgan
Stanley and D.E. Shaw, have been engaged in high-frequency equity trading
strategies based on ’financial engineering.’ These strategies were specifically
designed to take advantage of the patterns the authors uncovered in 1988.

Statistical arbitrage strategies have fared reasonable well until recently,
when it is regarded as a very competitive and thin-margin business con-
ducted by hedge funds. The conclusion obtained by Lo and MacKinlay and
our findings provide a plausible explanation for the trend towards random-
ness in recent data.

Samuelson [9] argues that randomness is achieved through the active
participation of many investors seeking greater wealth. It is also achieved
through and active search for new models. The discovery of a new forecasting
model that enjoys its ’honeymoon’ is not, however, inconsistent with the
practical version of the EMH. Market opportunities need not mean market
inefficiencies.

5 Conclusions

A price-trend model is a natural alternative hypothesis for random walk.
We find that a trading rule based on the price-trend model beats the buy-
and-hold strategy during the 20-year period from 1940 to the early 70s or
late 80s. Thereafter it is possible that the predictive pattern has been dis-
covered by a wide group of investors, such that it has disappeared through
investors’ transactions. The alternative is that the pattern still exists, but
it does not stay constant. Thus, forecasting techniques may exist even if
the EMH is correct. The process may well experience structural changes
that should be modeled by a varying parameter model that takes into ac-
count regime shifts and state dependencies. It quite obvious that standard
constant-parameter models are not up to the task since simple specifications,
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such as the ARMA models, assume stationarity. There is also strong evi-
dence that the estimation method used is unstable. Advances in simulation
based estimation, especially in the Monte Carlo Markov Chain (MCMC)
techniques may provide a better solution to the estimation problem. It can
be applied in estimating the parameters of the autocorrelation function or
directly the parameters of the underlying, more realistic state-space model.
While stable forecasting patterns are unlikely to persist for long periods of
time and they will be self-destructing when discovered by a large number of
investors, it may pay off to search for these patterns. This search needs to be
turned to quickly changing models that can detect and utilize any instances
of temporary forecastability. However, this arising property is expected to
be of short duration and quickly disappear as learning opportunities arise
and close down.
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Figure 1: Parameter estimates and the hit ratio
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Figure 2: Parameter estimates in a moving 252-day window
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