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Abstract

We study the role of consumer expectations, as measured by consumer
behavior (departures from an intertemporal budget constraint) and the
University of Michigan’s Index of Consumer Sentiment, in modeling time
variation of expected equity returns over short horizons. We find strong
evidence of return predictability based on estimates of short term departures
from the budget constraint, and the predictability is evident after accounting
for various sources of estimation risk. However, the apparent predictability
does not necessarily give rise to useful signals based on shifts in aggregate
consumption and and the components of aggregate wealth due to estimation risk
associated with the budget constraint. We find that the survey based measure
of expectations complements the behavioral measure but has no apparent
stand-alone predictive value in forecasting equity returns.
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1 Introduction

A degree of systematic, unexploited equity return predictability is consistent with
modern asset pricing theory. Evidence of return predictability is not necessarily
evidence of an anomaly, market inefficiency or investor irrationality. However, there
is little apparent consensus of opinion on the degree of return predictability and its
economic implications - though the evidence favoring some degree of predictability -
particularly over long horizons - is arguably gaining wider acceptance.1

A recent study by Lettau and Ludvigson (2001) (henceforth LL) breaks with
the tradition of most previous studies of predictability in two important ways.
First, while existing evidence of predictability using ‘known’ predictors (such as
dividend yield) tends to arise at longer horizons, LL provide empirical evidence of
predictability over short (quarterly) horizons. Second, LL’s predictive variable has
sound ex-ante theoretical foundations, suggesting strong links between variation in
consumer expectations, as captured by the predictive variable ˆcay, and subsequent
equity returns.

LL model a long-run dynamic equilibrium relation between the log of consumption
growth (c), asset returns (a) and labour income (y), with deviations from the
cointegrating relation named cay. Fluctuations in cay can be shown to reflect
expectations of return on the true market portfolio in a general, multiperiod
consumption-based framework. While cay is not directly observable, LL construct
an empirical estimate - denoted by ˆcay - and argue that the important predictive
components of cay are captured by ˆcay. As such, ˆcay can be expected to forecast
equity returns by virtue of the Granger Representation Theorem (GRT). Their
findings suggest that ˆcay does indeed have significant ability to forecast the quarterly
market returns in-sample.

Such findings are controversial and subsequent works - such as Brennan and Xia
(2002), Hahn and Lee (2002) and Rudd and Whelan (2002) - have critiqued the LL
methodology and questioned their assumptions and findings. This study presents
empirical evidence related to two particular avenues of criticism.

First, we examine whether findings of predictability are robust to the assumption that
cointegrating parameters are fixed and known. Whilst Lettau and Ludvigson argue
this assumption is reasonable - given that it’s an implication of the theory, and given
the convergence properties of parameter estimates if the series are cointegrated - their
argument rests on a several assumptions and approximations of un-tested empirical
validity. Our results suggest that, conditional on model specification, the economic
significance of short-horizon return predictability is not driven by the assumption that
cointegrating parameters are fixed and known - even though we do find substantial
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uncertainty associated with the parameters of cointegration.2

Second, we examine whether an alternative survey-based measure of consumer
expectations supplants or complements ˆcay as a predictor of return. Measures of
consumer confidence, such as the Index of Consumer Sentiment constructed by the
University of Michigan, represent an alternative source of information about aggregate
expectations of economic fundamentals underlying consumption and investment
choices. Further, in the presence of ‘strategic complementarities’ the sentiments
themselves may drive economic outcomes. The information Lettau and Ludvigson
suggest is embodied in ˆcay may be accessible in survey based measures of sentiment
- without making the unreasonable assumptions about consumers’ decision processes
noted by Brennan and Xia (2002).

We examine the economic implications of our findings in the context of a simple,
stylized asset allocation decision, and by studying the long horizon predictive
properties of predictive parameters estimated over quarterly horizons. In so doing
we find that evidence of predictability does not necessarily mean that shifts in the
aggregate consumption, asset wealth and income provide economically significant
signals about expected returns to a risk averse investor who does not have non-sample
information about the cointegration parameters.

To re-emphasize LL’s main finding, consider regressing quarterly S&P500 excess index
returns (rt) on lagged ˆcay over the period 1951 Q4 through 2003 Q1. The estimated
predictive regression (t−statistics in parentheses) using this extension of LL’s sample
is:

rt = 0.018 + 2.0494 ˆcayt−1 + et

(3.23) (4.60) (R2 = 0.0939)

The most striking finding is the in-sample predictability of ˆcay as summarized by the
regression R2 of 9.39%. This level of short-horizon predictability is significantly higher
than that which obtains using common alternatives. For example, if we substitute the
lagged dividend yield (DY ) for ˆcay, the regression R2 over the corresponding sample
is a mere 1.86%.3

The apparently strong predictive properties of ˆcay have been questioned by
researchers on several fronts. First, Brennan and Xia (2002) and Hahn and Lee
(2002) question the use of a predictor constructed using in-sample data. That
is, the parameters used to construct ˆcay are estimated over the period used to
test predictability. Second, Brennan and Xia (2002) question the underlying
behavioral assumptions. Specifically, cointegration of c, a and y requires that the
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representative agent whose consumption behavior is captured by ˆcay is able to solve
an extremely difficult dynamic consumption-investment plan so that his current
consumption-wealth ratio depends on his expectations of future risky investment
opportunities. Third, Rudd and Whelan (2002) question the validity of the empirical
assumptions underlying construction of ˆcay.

Lettau and Ludvigson (2002) respond to Brennan and Xia (2002) and Hahn and
Lee (2002) with reference to economic theory and the GRT. First, they note that
knowledge of ˆcay parameters (wealth shares) is an implication of the theory and
argue that out of sample testing does not safe-guard against spurious findings of
in-sample predictability. Second, if if c, a, and y are cointegrated, the GRT implies
that lagged ˆcay must forecast growth in the stock-market component of a, given that
it has no apparent ability to forecast, c, y or non-stock market wealth.4

The current paper contributes to the debate over the predictive power of cay by
extending the LL analysis in several new directions. First, we assess the economic
importance of return predictability by examining the impact of cay on simple asset
allocation choices. There is a growing literature that emphasizes the importance of
studying predictability in terms of its impact on economic choices - not just statistical
significance. Like Kandel and Stambaugh (1996) and Barberis (2000), we utilize a
Bayesian econometric approach. We formally account for estimation risk in both the
predictive regression and the cointegrating model used to construct ˆcay. In doing
so, the methodology proposed in the current paper mitigates some of the concerns
raised by Brennan and Xia (2002) and Hahn and Lee (2002). By adopting a Bayesian
perspective we need not treat the parameters governing the joint dynamics of c, a
and y as fixed and known. Rather, we characterize and account for the uncertainty
in modeling cay and conditional expectations of the return premium based on cay.
This is the second general contribution of the paper.

Finally, we propose and investigate the use of a consumer sentiment measure as
a predictor of short-horizon equity returns. LL’s consumption-to-wealth ratio can
be thought of as a behavioral summary of expectations about future investment
opportunities assuming the representative, rational agent solves a difficult dynamic
consumption-investment plan. Whether the plausibility of this assumption affects the
credibility of tests of its implications is an example of a more fundamental debate over
whether rationality can be defined in terms of the choices it produces or the process
that is used to make the choices.5 A pragmatic response to this line of questioning
(in this particular instance) is to shift focus from the behavioral implications of the
model to a direct measure of the expectations that influence agents’ behavior.

In the consumption based framework underlying the use of ˆcayt−1 as a measure
of expectations, departures from the steady state ratio of consumption to wealth
occur during times of optimism (characterized by higher consumption and lower risk
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aversion) and pessimism (lower consumption and higher risk aversion). An alternative
to measuring departures of consumption from its steady state relationship with asset
wealth is to use a measure that attempts to quantify agents optimism or pessimism
directly - without explicit reference to optimizing behavior based on an intertemporal
budget constraint.

The Index of Consumer Sentiment (ICS), devised in the 1940’s by George Katona
and published since 1966 by the University of Michigan, provides a composite measure
of consumers’ perceptions of their ‘ability and willingness to buy’. Specifically, the
index seeks to capture consumers’ ability and willingness to undertake discretionary
expenditures.6

To the extent that the optimism or pessimism captured by the ICS is an alternative
measure of the expectations driving fluctuations in ˆcayt in a rational consumption
based framework, the ICS should also forecast equity returns. Further, if fluctuations
in ˆcayt are driven by factors other than changes in consumer expectations of asset
returns, the ICS may complement, supplant or augment ˆcayt as a predictor of return.

Alternatively, returns may be predicted by shifts in consumers sentiment because
the expectations are self-fulfilling. We need not appeal to the consumption based
framework if we admit the possibility of strategic complementarities or coordination
failures. In these circumstances, observed economic outcomes can reflect expectations
themselves rather than economic fundamentals that give rise to (or presage) such
outcomes. At a macro-level, Matsusaka and Sbordone (1995) provide evidence
consistent with the existence of strategic complementarities using the ICS as a
measure of expectations. Upon controlling for a wide range of economic conditions
(fundamentals), they consistently reject the null hypothesis that consumer sentiment
does not Ganger cause GNP.

We argue that the ICS may provide an alternative (or complementary) source of
information about the expectations captured by ˆcay. As such, we examine whether
this survey-based measure of consumer sentiment is of stand alone or incremental
value in forecasting equity returns.

2 Expected Returns and ˆcay: A Review of the

Argument

This section provides a brief overview of the theoretical framework linking
consumption, aggregate wealth and expected returns, as well as describing how the
predictive components of the consumption-to-wealth ratio can be expressed in terms
of observables. The reader is referred to LL for a full exposition.
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In a representative agent economy, agents’ intertemporal budget constraint implies:

ct − wt = Et

∞∑

i=1

ρi
w(rw,t+i −∆ct+i), (1)

where c is log of aggregate consumption, w is log of aggregate wealth, rw is the
return on the portfolio of aggregate wealth, and ρw is the steady-state ratio of new
investment to aggregate wealth. The budget constraint (1) implies that changes in
the consumption-to-wealth ratio (ct−wt) forecast market returns (rw,t+i) or changing
consumption growth (∆ct+i).

The consumption-to-wealth ratio, however, cannot be used directly to forecast.
Aggregate wealth (Wt) comprises asset holdings (At) and human capital (Ht), the
latter being unobservable.

To circumvent this problem, LL assume that the non-stationary components of human
capital Ht are well described by aggregate labour income Yt, such that:

ht = κ + yt + zt, (2)

where zt is a mean-zero stationary random variable and lower case variables denote
logs. LL suggest a number of possible rationalisations for the approximation (2).

Consequently, aggregate wealth can be approximated by:

wt ≈ ξat + (1− ξ)ht, (3)

with ξ equal to the mean of asset wealth as a proportion of total wealth. The return
on aggregate wealth is decomposed accordingly:

rw,t ≈ ξra,t + (1− ξ)rh,t, (4)

where ra,t and rh,t are time t log returns on asset wealth and human capital
respectively. Substituting (2) and (4) into (1) yields the following re-statement of
the (log) consumption-to-wealth ratio:
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ˆcayt ≡ ct − ξat − (1− ξ)yt

= Et

∞∑

i=1

ρi
w {[ξra,t+i + (1− ξ)rh,t+i]−∆ct+i}+ (1− ξ)zt. (5)

Equation (5) is the consumption-to-wealth ratio expressed in terms of observables – a
linear combination of ct, at and yt Lettau and Ludvigson refer to as ˆcayt. From (5), it
is clear that the residual ˆcayt reflects expectations of returns on asset wealth (ra,t+i)
as long as the returns on human capital (rh,t+i) and consumption growth (∆ct+i) are
relatively stable (or as LL note, highly correlated with ra,t+i). Importantly, if each
component of the right-hand side of (5) is stationary and each of ct, at and yt are
unit root processes, then log consumption, aggregate wealth and labour income are
cointegrated, and ˆcayt is a cointegrating residual. Henceforth, ˆcay or ˆcayt will be
used to denote an empirical point estimate of the cointegrating residual. Henceforth,
unless stated otherwise, ˆcay refers to ˆcayt−1.

3 Econometric Approach

Two steps are required to use ˆcay in a predictive regression. First, to compute trend
deviations ( ˆcay), the cointegrating parameters must be estimated. LL follow Stock
and Watson (1993) in using dynamic least squares to obtain consistent estimates of
the cointegrating parmaters. Second, the time-series of ˆcay can then be used as the
independent variable in the predictive regression.

In this paper we adopt a Bayesian approach and thereby estimate posterior densities
of the parameters of both the predictive and cointegrating regressions to account for
estimation risk in measures of return predictability. Kandel and Stambaugh (1996)
and Barberis (2000) show that conclusions regarding the degree of predictability can
change significantly when estimation risk is taken into account. An added advantage
of the Bayesian approach is that, rather than assuming knowledge of fixed wealth
shares, the posterior distribution of the cointegrating parameters can be utilized to
assess the evidence of predictability conditional on c, a and y only (as opposed to
conditioning on ˆcay and ignoring the uncertainty surrounding parameter estimates in
the cointegrating regression). This goes some way towards alleviating the concerns
of Brennan and Xia (2002) over LL’s in-sample estimate of ˆcay that’s assumed fixed
and known.

In the following section, we characterize the posterior distributions of the
cointegrating weights and the adjustment coefficients, conditional on model
specification.
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3.1 Asset-Allocation Framework and Predictive Regression

One approach to assessing the economic significance of return predictability using
ˆcay is to document the horizon effects (if any) in optimal asset-allocation decisions

made by a utility-maximizing investor. The investor chooses weightings in a portfolio
comprising one risky asset (a stock portfolio) and one riskless asset, then holds this
portfolio for K periods. Portfolio weights are chosen to maximize the expected power
utility of terminal wealth. Since the optimal allocation to risky stocks is horizon
dependent if stock returns are predictable, horizon effects can be viewed as a measure
of the economic significance of return predictability.

The key input to the optimization problem is the distribution of forecasted cumulative
returns to the risky asset over the K-period investment horizon, which is estimated
using a predictive regression. In this paper, we follow Kandel and Stambaugh (1996)
and Barberis (2000) who use a vector autoregression (VAR) to model the joint
dynamics of returns and the predictor variable(s). Consider a predictive regression
with ˆcay as the sole predictor. The system of equations estimated is:

rt = b10 + b11 ˆcayt−1 + e1t

ˆcayt = b20 + b21 ˆcayt−1 + e2t. (6)

The equations in (6) can be viewed as a VAR with the coefficient on lagged returns
rt−1 restricted to zero in the first equation. For purposes of the current discussion,
the variance-covariance matrix of the innovations is Σ, with elements σij.

The results of Kandel and Stambaugh (1996) and Barberis (2000) demonstrate
that naive inferences about the economic significance of predictability based on
simple regression R2 may be misleading, as it is important to account for the
correlation between innovations in returns and the predictor(s). Barberis provides
a particularly striking example of how very modest predictability over short horizons
may dramatically alter the risk-return tradeoff, and consequently, the asset allocation
of risk averse investors over longer horizons.

In particular, stocks are more appealing over longer horizons if the conditional
variance of stock returns grow less than linearly with horizon. Barberis uses a simple
two-period example to illustrate the mathematics and explain the intuition in terms of
negative correlation between innovations in returns and the (dividend yield) predictor.
That is, a negative shock to dividend yields is likely to be associated with a positive
shock to expected return if σ12 < 0. A lower dividend yield implies a lower expected
return. This sequence of a high (low) realized return followed by a low (high) expected
return implies that realized returns will exhibit a degree of negative serial correlation,
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and the conditional variance of cumulative returns does not scale with horizon.7

3.2 Parameters and Uncertainty

Having estimated both the cointegrating regression and predictive VAR, the Bayesian
posterior densities capture relevant information relating to the parameters of each
model.

This information allows the analysis of return predictability to proceed in one of
two ways. First, point estimates of θ0 can be used to construct estimates of ˆcay.
Conditioning on ˆcay, the estimation risk associated with the parameters of the
predictive vector autoregression θv can be accounted for in optimal asset-allocation
decisions.

Specifically:

p(rt+j|rt, ˆcayt−1) =
∫

p(rt+j|rt, θv, ˆcayt−1)p(θv|D, ˆcayt−1)dθv,

where we condition on ˆcayt−1, or equivalently, c, a, y and the cointegrating parameters
θ0.

An alternative approach is to incorporate the uncertainty surrounding both θ0 and
θv. In doing so, the optimal asset-allocation decision is conditioned only on the data
D ≡ (c, a, y, r) and model specification.

Using the numerical posterior estimates based on the approach described in section I,
we consider in section 5.2.2 return predictability conditional on the data only. That
is,

p(rt+j|rt, c, a, y) =
∫ ∫

p(rt+j|D, θv, θ0)p(θv, θ0|D)dθvdθ0.

4 Data

4.1 Consumption, Asset Wealth and Income

The data employed in this study are drawn from a number of sources. The
construction of variables and macroeconomic time-series data for c, a and y are
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identical to LL, albeit over an extended time period extending from Q1 1951 to
Q1 2003.8

4.2 Equity Return Data

In empirical applications we investigate the predictive properties of cay using
quarterly returns on the S&P500 index. We use the quarterly dividend yield on
the S&P500 as a predictive benchmark.

To approximate the risk-free rate we calculate the quarterly return on an investment
in 1-month U.S. Treasury bills.

All returns are continuously compounded.

4.3 The Index of Consumer Sentiment

The Index of Consumer Sentiment (ICS), devised in the 1940’s by George Katona
and published since 1960 by the University of Michigan, provides a composite measure
of consumers’ perceptions of their ‘ability and willingness to buy’. Specifically, the
index seeks to capture consumers’ ability and willingness to undertake discretionary
expenditures.9

The ICS is constructed based on responses to the following questions:

1. We are interested in how people are getting along financially these days. Would
you say that you feel that you (and your family living there) are better off or
worse off financially than you were a year ago? Why do you say so?

2. Now looking ahead - do you think that a year from now you (and your family
living there) will be better off financially, or worse off, or just about the same
as now?

3. Now turning to business conditions in the country as a whole - do you think
that during the next 12 months we’ll have good times financially, or bad times,
or what?

4. Looking ahead, which would you say is more likely - that in the country as a
whole we’ll have continuous good times during the next five years or so, or that
we’ll have periods of widespread unemployment or depression, or what?
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5. About the big things people buy for their homes - such as a refrigerator, a stove,
television and things like that. Generally speaking, do you think that now is a
good or a bad time for people to buy major household items? Why do you say
so?

The index is calculated as follows:

ICSt =
5∑

j=1

[P f
jt − P u

jt]100 + 100,

where P f
jt is the proportion of the sample giving favourable responses to question j

at time t and P u
jt is the proportion of the sample giving unfavorable responses to

question j at time t.

The University of Michigan surveys a representative sample of at least 500 US
households on a monthly basis by telephone. An independent sample of households
is drawn each month, hence, the quarterly surveys are based on a minimum survey
sample size of 1500.

Time series of the sentiment index and its components are made freely available on
the web by the University of Michigan.

5 Results

Figure 1 presents a standardized plot of the ICS and ˆcay - based on point estimates
of the cointegrating parameters. The most striking feature of the data is the
strong negative (-27%) contemporaneous correlation between the measured sentiment
and consumer behavior as summarized by trend deviation, ˆcayt. Stronger still is
the negative (-67%) contemporaneous correlation between the dividend yield10 and
consumer sentiment evident in figure 2.

Negative correlation between consumer confidence and the dividend yield (or ˆcayt)
is consistent with time varying risk aversion as per Campbell and Cochrane (1999).
Consumption rises above habit and risk aversion declines during consumption booms.
The decline in risk aversion leads to a greater demand for risky assets and a decline
in expected returns (risk premia). Hence, booms are times of rising consumption, but
declining ratios of consumption to wealth.
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5.1 Predictive Regressions

Table 1 reports predictive regressions estimated over the interval from the first quarter
of 1960 to the first quarter of 2003. As noted earlier, ˆcay is a highly significant
predictor of returns with a raw regression R2 of 8.5% and DY is a marginally
significant predictor of return with a regression R2 of 1.78%. As a stand-alone
predictor of the quarterly equity return premium, the ICS appears useless - a
regression R2 that’s indistinguishable from zero, and there is no value in adding
the ICS to a predictive regression containing ˆcay or DY .

Whilst the ICS does not seem to have any stand-alone predictive value, the second
last regression in table 1 reveals a significant interaction with ˆcay. The ratio
of consumption to wealth scaled by measured consumer sentiment is statistically
significant when added to ˆcay - and the adjusted R2 of the predictive regression
jumps from 7.87% to 10.8%. In economic terms, point estimates of the (standardized)
raw regression coefficients imply that the predictive implications of ˆcay are heavily
influenced by the level of measured sentiment.

Ignoring consumer sentiment, based on the shorter estimation interval for the
predictive regression, a standard deviation shift in ˆcay implies a 261 basis point
change in the expected quarterly return premium. If consumer sentiment is neutral,
the same standard deviation shift in ˆcay implies a 329 basis point change in the
expected quarterly return premium. If the ICS is a standard deviation above its
historical mean, the standard deviation change in ˆcay implies a 169 basis point change
in the quarterly return premium. Clearly, the regression results imply that the level
of ˆcay should be interpreted in light of the ICS during the same period.

Based on the regression evidence in table 1, we observe no corresponding interaction
between sentiment and the dividend yield.11

5.2 Vector Autoregressions and Parameter Uncertainty

An alternative approach to studying the predictive properties of ˆcay and DY is to
model the joint dynamics of returns and the predictor(s), assuming they are well
described by a VAR. To consider the impact of parameter uncertainty we adopt a
Bayesian perspective along the lines of Kandel and Stambaugh (1996) and Barberis
(2000).

Table 2 reports the posterior mean of the predictive VAR parameters for quarterly
returns using ˆcay and the lagged quarterly dividend yield as predictors.12 The most
significant points of contrast between the quarterly VAR results in table 2 and the

13



monthly VAR results reported by Barberis are the correlations between innovations
in returns and the predictors. At -58% and -69% respectively, the mean correlations
between innovations in quarterly returns and ˆcay, and innovations in quarterly returns
and the dividend yield are substantially smaller in magnitude than the -94% for
monthly returns and the dividend yield reported in Barberis (2000) over a somewhat
shorter sample period.13

5.2.1 Predictive VAR Parameters Conditional on cay

The economic implications of the quarterly parameter values can be illustrated
in terms of the buy and hold asset allocation problem Barberis (2000) uses to
demonstrate horizon effects. Figures 4 - 5 graph the optimal allocations employing
both predictive variables using two different levels of risk aversion for a constant
relative risk aversion investor.14

The solid line with pentagrams in panel A of figure 4 shows that a power utility
investor with risk aversion of A = 5 and an investment horizon of one quarter allocates
just over 60% of wealth to equity (and the remainder to the short term riskless asset)
when using the lagged quarterly dividend yield to predict returns. The same investor
with a 10-year horizon allocates over 72% of wealth to equity, conditional on the
posterior mean of the VAR parameters. The importance of this horizon effect weakens
significantly if risk aversion is higher. For example, in panel B of figure 4 reveals that
an investor with A = 20 invests allocates 15% of wealth to equity over a 1-quarter
horizon, and approximately 17% over a 10-year horizon.

The corresponding results for an investor using ˆcay as the predictor can be seen in
figure 5. The solid line with pentagrams in panel A of figure 5 shows that an investor
with A = 5 invests approximately 65% of wealth in equity for a 1-quarter horizon,
and 76% for a 10-year horizon. Whilst (again) the horizon effect is small relative to
Barberis’s, the notable aspect of the result is the initial climb and subsequent decline
in the allocation to equity. When ˆcay is used in the predictive VAR, the optimal
allocation of a buy and hold investor does not increase monotonically with horizon
(conditional on the posterior mean of the VAR parameters). The allocation to equity
peaks at 85% (for 10- and 11-quarter horizons) and then declines to 76% as horizon
increases to 10 years. A similar pattern (on a smaller scale) is true when A = 20.

The pattern of asset allocation conditional on ˆcay can be explained in terms of the
implied variation in annualized Sharpe ratio by investment horizon. Consistent with
the pattern in annualized volatility in figure 3 and equity allocation, the Sharpe ratio
initially rises and then falls as investment horizon grows.

The dotted lines with pentagrams in figures 4 - 5 plot optimal allocations conditioned
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on time t (initial) values of each predictive variable a standard deviation above their
historical mean. In terms of incremental impact on asset allocation, the initial value
of each predictor has similar properties. For example, in panel B of figure 4, it can be
seen that when A = 20 the initial allocation to equity increases by almost two thirds
when the dividend yield is a standard deviation above its historical average relative
to the benchmark historical average case (solid line with pentagrams).

As can be seen in panel B figure 5, when A = 20 and ˆcay is one standard deviation
above its historical mean, the initial impact on equity allocation is even more
dramatic. Relative to the historical mean (benchmark) case, the allocation to equity
more than doubles. However, the time variation in periodic volatility implies that
the long term allocation to equity falls below the initial 1-quarter allocation. That
is, an investor with a 1-quarter horizon allocates 36% of wealth to equity, but less
than 23% over a 10-year horizon - again, after an initial increase in weighting with
horizon, and a subsequent decline.

By contrast, when ˆcay is set to a value one standard deviation below its mean, the
optimal allocation for the same A = 20 investor increases with horizon from a value
of zero for a 1-quarter horizon, to over 12% for a 10-year horizon (dashed line with
pentagrams in figure 5). Negative standard deviation shocks to the inital value of the
dividend yield have significant but less dramatic effects on the initial allocation to
equity relative to the benchmark case. Further, the horizon effects are still present
but very weak.

A common theme to the results in figures 4 - 5 is that estimation risk lowers the
allocation to equity - regardless of predictor or level of risk aversion. Horizon
effects associated with the dividend yield are eliminated. In fact, the plots without
pentagrams in both panels of figure 4 suggest that estimation risk dominates, and
all else being equal, the optimal static allocation to equity declines with investment
horizon. However, it is also evident, that even after allowing for estimation error
in VAR parameters, a standard deviation shock to the dividend yield retains an
economically substantial effect on optimal allocation to equity.

Whilst the horizon effects associated with ˆcay are weakened when we allow for
estimation risk in VAR parameters, optimal equity allocations remain sensitive to
ˆcay shocks - particularly over horizons of 1 to 20 quarters.

In summary, the combined effects of estimation error and VAR parameter values lead
to a similar conclusion for both DY and ˆcay over longer horizons. That is, in this
simple stylized setting, long horizon investment weights are quite similar to short
horizon weights at a given level of risk aversion, given equivalent DY or ˆcay signals,
though for different reasons. The mean predictability associated with DY is swamped
by estimation risk, whilst the horizon effects associated with ˆcay are dampened by the
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combined effects of estimation risk and the correlation structure of VAR innovations.

5.2.2 Accommodating Uncertainty Associated with Cointegrating
Parameters

Posterior Distribution of Cointegrating Parameters

In the cointegrating regression (I.6), there are two primary sources of uncertainty
affecting the long-run dynamics of the relation between (log) consumption, asset
wealth and income: (i) the cointegrating vector β and (ii) the adjustment coefficients
α. Figures 6 and 7 provide a graphical summary of the uncertainty in parameters
governing the long-run dynamics, and table 3 provides basic summary statistics.15 As
may be expected, the standard deviation of the cointegrating vector components are
small relative to the means. Also consistent with expectations, the posterior standard
deviation of the adjustment coefficients for consumption and income are large - of the
same order of magnitude or larger than their expected values - whilst the dispersion
of the adjustment coefficient on asset wealth is relatively small.

LL use dynamic least squares based point estimates of the cointegrating parameters to
document departures from the steady state ratios of income to wealth. Their estimates
(based on a slightly shorter sample period) suggest that asset wealth accounts for 34%
of aggregate wealth. The posterior shown in figure 6 suggests a mean value of 31%
with a standard deviation of 5.5%. Before we turn to the question of whether this
translates to an economically significant risk in forecasting returns, we can summarize
this uncertainty in terms of ˆcay.

Figure 8 illustrates the posterior mean and 90% highest posterior density (HPD)
interval of the ˆcay posterior implied by β and α. In terms of the posterior mean, the
90% HPD interval ranges from 0.35 to over 2.95 standardized units. For example,
the most recent 90% HPD interval is bounded by standardized ˆcay values of 0.096
and 1.58. This is a wide dispersion in terms of the predictability documented in LL
- suggesting that a single (time series) standard deviation shift in ˆcay corresponds to
a 220 basis point change in quarterly real returns on the S&P 500. The histogram in
figure 9 summarizes the posterior distribution of cay based on p(θ0|D) at the end of
the sample (2003, Q1). In the absence of non-sample information, there is substantial
uncertainty about cay: its posterior mean 0.65 and its posterior standard deviation
is 0.4 (standardized units). We now examine the effects of this uncertainty on cay’s
predictive properties.

Revisiting the Predictive Regression

To get a sense of how the uncertainty captured in figures 8 and 9 alters the most basic
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measure of predictability we estimate a predictive regression of the return premium
conditional on the ˆcay series implied by each draw from p(θ0|D):

rt = 0.018 + 0.0243 ˆcayt−1 + et.

(0.0031) (R2 = 0.087, σR2 = 0.018) (7)

The point estimates reported in equation (7) are the mean regression coefficients
obtained from 100,000 regressions.16 The standard deviation of 0.0031 for the
coefficient of ˆcayt−1 and 0.018 for the R2 reflects the variability attributable to
uncertainty in ˆcay parameters. Given the often large dispersion in the posterior values
of cay at various points in time, the simple regression estimates of predictability are
remarkably robust: neither the size of the predictive regression slope coefficient nor
the R2 appear sensitive to the uncertainty in cay. The variability of cay does not
translate to significant variation in the predictive regression results.

We now turn to the question of whether this holds true for longer horizon inference
based on a predictive vector autoregression.

Implied Long Horizon R2 Conditional on DY and ˆcay

The long horizon R2 suggested by Hodrick (1992) summarizes the impact of
short horizon predictability based on a VAR. In the current application, the long
horizon R2 is implied by a first order VAR. LL report the implied long horizon
R2 statistics based on point estimates of the VAR parameters, conditional on the
cointegration parameters using multiple predictors. Here, we focus on the long
horizon predictability associated with cay and the impact of uncertainty associated
with the VAR and cointegrating parameters. We benchmark our findings against the
corresponding metric computed with respect to DY .

Figures 10 and 11 graph the 90% highest posterior density (HPD) intervals of the
long horizon R2s associated with predictive VARs employing DY and cay respectively.
Since Hodrick’s R2 is a function of the VAR parameters, we obtain its posterior using
the draws from p(θv|θ0,D) and p(θv|D) as a measure of the incremental impact of
uncertainty associated with the cointegrating parameters.

The uncertainty associated with the predictability implied by a VAR based on DY,
as measured by the 90% HPD of the implied R2, is large. As can be seen in figure
10, at a two year horizon the spread of the implied R2 exceeds 30%, at a five year
horizon the corresponding dispersion exceeds 50% and at a horizon of ten years the
range of the HPD exceeds 70%.

The shaded area in figure 11 corresponds to the region covered by the 90% HPD of
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the long horizon R2 implied by the VAR based on ˆcay. The dispersion of the long
horizon R2 based on ˆcay is much smaller than the dispersion associated with DY .
The widest HPD is less than 30%, and it occurs at a horizon of two years. After two
years, the posterior median of the implied R2 and the associated uncertainty decline.
At a horizon of ten years, the posterior median is 10% and the 90% HPD has a range
of approximately 15%.

Implied Long Horizon R2 Conditional on Data Only

Instead of conditioning predictions on point estimates of the cointegrating parameters,
we utilize the sampling scheme described in appendix I and extend the simple VAR
analysis to account for the fact that ˆcay is itself estimated. The shaded area in figure
11 is based on p(θv|D, θ0), but we now require draws from p(θv, θ0|D).

To draw from p(θv, θ0|D) we sample as follows.

1. Draw from:

p(B|Σ, θ0,D, ct,pred, at,pred, yt,pred)

and

p(Σ|B, θ0,D, ct,pred, at,pred, yt,pred)

as per the sampling scheme in Barberis (2000). This yields a draw from
p(B, Σ|θ0,D, ct,pred, at,pred, yt,pred). The first draw is conditioned on an arbitrary

θ0, and each subsequent draw [i + 1] is conditioned θ
[i]
0 .

2. Draw from p(θ0|B, Σ,D, ct,pred, at,pred, yt,pred) = p(θ0|D) as described in appendix
I conditioning on B[i+1] and Σ[i+1].17

The dashed lines in figure 11 trace out the 90% HPD of the implied R2 upon
accounting for the uncertainty associated with both the cointegrating parameters
and the VAR parameters. In terms of the HPD, the incremental effect of this
uncertainty widens the HPD by 2-8%, increasing with horizon. However, even after
accounting for the uncertainty in both the VAR and cointegrating parameters, the
uncertainty associated with the predictive properties of cay is much smaller than the
corresponding uncertainty associated with predictions based on DY .

Whilst the evidence of in-sample return predictability based on cay appears robust to
the uncertainty in the cointegration parameters, the dispersion of the cay posterior at
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a given point in time has implications for the usefulness of cay as a predictive signal.
Returning to the stylized asset allocation problem, the asset allocation decision is
no longer conditioned on ˆcay, as the investor must now account for the noise in
cointegration parameters and the attendant uncertainty about the departure from
equilibrium. As shown in figures 8 and 9, given values of c, a, and y are consistent with
a wide range of residuals associated with plausible cointegrating parameter draws.

For the sake of our example we condition our estimates of the predictive distributions
on historical values of c, a and y that correspond most closely to a standard deviation
shift in ˆcay, conditional on the posterior mean of the cointegration parameters.
Specifically, treating the posterior mean of the cointegration parameters as fixed,
an investor in the third quarter of 1953 would have been confronted with a value
of ˆcay approximately one standardized unit above its mean. In the third quarter of
2002 the same investor would have been confronted with ˆcay one standardized unit
below its mean. Accordingly, in figure 12 we present asset allocations conditional on
observations of c, a and y as at Q3 1953 and Q3 2002 to analyze the case where an
investor relying on point estimates of the cointegration parameters would consider
ˆcay to be “high” and “low” respectively.

In strong contrast to the results in figure 5, equity allocations now appear relatively
insensitive to signals in the data on consumption, asset wealth and income. When
the coefficient of risk aversion is low, the difference between allocation to equity given
a high signal (solid line) and a low signal (solid line with pentagrams) is observable,
but only a small fraction of what we observed in panel A of figure 5. When the
coefficient of risk aversion is relatively high, asset allocation is basically independent
of the signal. These result suggest that even in light of apparently robust historical
evidence of short horizon predictability based on ˆcay, data on c, a and y do not
necessarily contain economically significant signals once we account for the combined
effects of estimation risk in modeling the predictive and cointegrating relations.

5.2.3 The Impact of Sentiment

The regression estimates in table 1 suggest a statistically and economically significant
interaction between sentiment and ˆcay. To better understand the importance of this
result, we consider the joint dynamics of the return premium, ˆcay and the interaction
between ˆcay and sentiment modeled as a first order VAR.

Figure 13 illustrates the impact of sentiment in the context of the investment decision
considered earlier.

A shock to ˆcay has very different implications for short to medium term asset
allocation when we allow for effect of sentiment. Defining optimism (pessimism)
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as a positive (negative) standard deviation from mean sentiment we can see that
a pessimistic investor’s short term allocation to equity is almost double that of
an optimistic investor’s in response to a positive standard deviation shock to ˆcay.
Negative shocks to ˆcay have a slightly larger effect on the asset allocation of a
pessimistic investor than the corresponding optimistic investor. These results suggest
that the findings of significant interaction between the ICS and ˆcay are robust. Shifts
in ˆcay should be considered in light of sentiment, as measured by the ICS.

These findings are conditional on a point estimate of ˆcay and must of course be
interpreted in light of the results in section 5.2.2.18

5.3 A Note on Sentiment, cay and Causality

Preliminary investigations of Granger causality using the components of the ICS
reveal evidence of bi-directional causality.

Consumers beliefs about current buying conditions (as measured by the index based
on responses to question 5) appear to Granger cause ˆcay. That is we reject the null of
no causality in a predictive VAR using all ICS components across all specifications
of lag length considered (models with 1-6 predictor lags were estimated). There
is some evidence of ˆcay Granger causing business conditions - however this result
is sensitive to the specification of VAR lag length. The same is true of 12 month
business conditions (based on responses to question 3) - the result is sensitive to VAR
lag length specification.

Overall, we reject the null of no causality when we use ˆcay to forecast the ICS at
all specifications of lag length considered. There is no evidence of the ICS Granger
causing ˆcay at any conventional level of statistical significance at any specification of
lag length.19

6 Conclusions

We’ve studied the implications of consumer expectations as measured by LL’s ˆcay
and the University of Michigan’s ICS for expected equity returns.

Consistent with LL, we find strong evidence of return predictability based on
departures from an intertemporal budget constraint, as measured by ˆcay. The finding
is robust in the sense that the predictability is evident after accounting for various
sources of estimation risk. However, the apparent predictability does not necessarily
give rise to useful signals based on shifts in aggregate consumption, income and asset
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wealth due to estimation risk associated with ˆcay at a given point in time.

We find that the survey based measure of expectations complements the behavioral
measure, but has no apparent stand-alone predictive value in forecasting equity
returns.
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Notes

1See for example Cochrane (1999).

2This is true even though we use the full span of he sample to estimate them.

3The estimated predictive regressions is:

rt = 0.018 + 0.0282 DYt−1 + et

(3.10) (1.96) (R2 = 0.0186)

4Lettau and Ludvigson (2002), page 4: ‘We conclude that, while the explanation
for why ˆcay forecasts stock returns is open to interpretation, the findings of
predictability per-se are not.’

5Refer to Curtin (2000) for further discussion this dichotomous view of rationality
in the social sciences and references to further readings.

6Refer to Curtin (2002) for detailed discussion of interpretation and performance of
the expectation measures. It is interesting to note that the discretionary expenditures
captured by the consumer sentiment surveys are excluded from the consumption
figures used to construct ˆcayt−1 on the grounds that expenditures on durable goods
are replacements and additions to a stock rather than a ‘service flow’ from the existing
stock (LL, page 822).

7The solid line plot in figure 3 illustrates the effect using the posterior mean
of the parameter estimates reported by Barberis (2000) (reproduced in Table 2 for
comparative purposes) employing the monthly dividend yield as a predictive variable
over the 1952-1995 interval. The conditional periodic volatility of return declines
monotonically with investment horizons ranging from a quarter to ten years. If
expected returns are positive and grow linearly with horizon, the implied Sharpe
ratio of equity increases with horizon and becomes more attractive to risk averse
investors.

8The data is available on Martin Lettau’s web page:

http://pages.stern.nyu.edu/∼mlettau/index.htm.

These data are quarterly, seasonally adjusted, per capita variables measured in
1992 chain weighted dollars. The reader is referred to the appendix in Lettau and
Ludvigson (2001) for details on variable construction and data sources.

9Refer to Curtin (2002) for detailed discussion of interpretation and performance of
the expectation measures. It is interesting to note that the discretionary expenditures
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captured by the consumer sentiment surveys are excluded from the consumption
figures used to construct ˆcay on the grounds that expenditures on durable goods are
replacements and additions to a stock rather than a ‘service flow’ from the existing
stock (LL, page 822).

10The dividend yield is the quarterly mean dividend yield on the S&P500.

11Estimates of the predictive regressions in table 1 using real returns on the S&P
500 yield almost identical results.

12The sampling scheme to estimate the predictive VAR is described in Barberis
(2000). The conditional posteriors are based on diffuse priors.

13This is important in in the context of the asset allocation problem considered
in this paper, as the result on page 245 of Barberis (2000) is not as general as he
suggests. The dashed graph on 3 plots the periodic volatility when the covariance
between innovations is halved, and all other parameters are fixed at their original
values. Whilst periodic volatility initially falls with horizon, it flattens out, turns,
and begins to increase with horizon when the correlation between innovations in
returns and the predictor is lowered.

Additionally, note that the quarterly dividend yield exhibits a very high level of
persistence - similar to the monthly result and substantially higher than that of ˆcay.

14The investor is assumed to have power utility over terminal wealth W at each
horizon: U(W ) = W 1−A

1−A
. To facilitate comparison of the current results with those

reported in Barberis (2000) we consider: A = 5 & 20.

15The reported results do not seem sensitive to the specification of k.

16One regression for each draw of the cointegrating parameter set.

17To sample from p(rt+1|D, ct,pred, at,pred, yt,pred), an additional step is added: Draw

from p(rt+1|B, Σ, θ0,D, ct,pred, at,pred, yt,pred) conditioning on B[i+1], Σ[i+1] and θ
[i+1]
0 .

The r
[i]
t+1 from this sampler are draws from the marginal (predictive) posterior

p(rt+1|D, B, Σ, θ0, ct,pred, at,pred, yt,pred).

18We have estimated the analog of (7) and confirmed that the finding of
predictability is not particular to the point estimate ˆcay.

19These results are available on request. Including the quarterly S&P500 return
premium in the predictive VAR is interesting. The return premium Granger causes
everything - ˆcay and the ICS. Once we account for the market premium, there is no
evidence of ˆcay Granger causing ICS at conventional levels of significance.

25



I Estimating the Cointegrating Regression

There are several recent Bayesian studies of cointegration, including Bauwens and
Giot (1998), Bauwens and Lubrano (1996), Geweke (1996), Kleibergen and Paap
(2002), Kleibergen and van Dijk (1998), Luukkonen, Ripatti, and Saikkonen (1999),
Strachan (2003), Villani (2001b) and Villani (2001a). In this paper, our analysis
of cointegration between c, a and y adopts the estimation approach presented in
Strachan (2003) which ensures valid Bayesian estimation of cointegrating parameters.

The Strachan (2003) approach can be thought of as the Bayesian analogue of the
Johansen (1988) and Johansen (1991) approach to identification in a classical setting.
Strachan provides a particularly clear exposition of why certain identifying restrictions
on the cointegrating vector may not be innocuous. Linear identifying restrictions
restrict the length of one coefficient such that the directions of the cointegration space
are restricted. Strachan’s estimation procedure achieves identification by restricting
the length of the cointegrating vector without placing arbitrary restrictions on the
angle of the space spanned by it.20 The framework also provides the foundations of
finite sample inference on the validity of identifying restrictions and the rank of the
long-run impact matrix.

Consider the p-dimensional vector-valued process xt=1...T :

xt =
K∑

i=1

Πixt−i + Φdt + εt. (I.1)

Writing (I.1) as an Error Correction model (ECM), we get:

∆xt = Πxt−1 +
k−1∑

i=1

Γi∆xt−i + Φdt + εt, (I.2)

where ∆xt−i = xt−i − xt−i−1, Π =
∑K

i=1 Πi − Ip is a p × p long-run impact matrix,
and Γi = −∑K

j=1+1 Πj for i = 1, . . . , k − 1 is a p× p matrix of coefficients governing
the short-run dynamics, dt is a w× 1 vector of deterministic variables, Φ is the p×w
coefficient matrix and εt is a zero-mean vector of errors with covariance Ω.

If all p time series comprising xt are I(1) (integrated of order 1) and rank(Π) = r < p,
then r linear combinations of the series are stationary and the time-series are said to
be cointegrated. Further, if rank(Π) = r, then Π can be written as the product of
two p× r full rank matrices α and β:
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∆xt = αβ′xt−1 +
k−1∑

i=1

Γi∆xt−i + Φdt + εt. (I.3)

We can interpret β′xt−1 − E(β′xt−1) as deviations from the r equilibria and α as a
matrix of coefficients governing the adjustment to equilibrium after a disturbance.
Each column of the matrix β is a cointegrating vector and the matrix is determined
up to an arbitrary linear combination of its columns. To overcome the indeterminacy,
the following normalization is commonly applied:

β =

[
Ir

β∗

]
, (I.4)

such that β∗ is (p− r)× r and fully identified. The normalization can only be applied
if each of the r first components of xt enter at least one of the cointegrating relations.

Strachan (2003) achieves identification by nesting a reduced rank model within a
general full rank model with a well-behaved posterior distribution. The full rank
model is transformed and the restriction is paramaterized conditional on the rank r.
Estimation involves taking a singular value decomposition of Π with respect to its
estimated variance-covariance matrix:

Π = βα + S−1
11 β⊥λα⊥Σ̃, (I.5)

where Σ̃ = S00−S01S
−1
11 S10, Sij are moment matrices when a diffuse prior is used, β⊥

and α′⊥ are p× (p− r) matrices orthogonal to β and α′ respectively.21

By re-writing (I.2) in terms of the singular value decomposition:

∆xt = βαxt−1 + S−1
11 β⊥λα⊥Σ̃xt−1 +

k−1∑

i=1

Γi∆xt−i + Φdt + εt, (I.6)

it can be seen that cointegration occurs when λ = 0. Letting D denote the sample
data, we can write our focus of interest, the (joint) posterior of model parameters
p(θ|D), conditional on r < p with λ = 0 in general terms:
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p(θ0|D) = p(θ|D)|λ=0. (I.7)

With a view to ‘letting the data speak’, we choose diffuse priors for all model
parameters. As a result, a Metropolis-Hastings (M-H) sampling scheme is required to
estimate (I.7) since the conditional posteriors of α and β are not standard (known)
densities. The M-H algorithm generates samples from the reduced rank model using
a candidate generating density based on the approximating full rank model.

We impose the linear restriction (I.4) within the identifying restrictions of Strachan
(2003) and implement the M-H sampling scheme using the approach detailed in
Kleibergen and Paap (2002) as follows:22

1. Draw Ω−1. As in the standard multivariate regression model (see,
for example, Zellner (1971)), a non-informative conjugate prior implies
p(Ω−1|α, β, Γ∗, r,D) = W [(ε′ε + A)−1, t + q], where ε = (ε1 ε2 . . . εT )′, Γ∗ =
(Γ Φ)′, and W(A, q) is the Wishart prior. To keep the prior non-informative,
we set q = 3, and A = 0p.

2. Draw Γ∗. If p(Γ|α, β, Ω, r) ∝ C, we know from the standard multivariate
regression model that:

p(Γ|α, β, Ω, r,D) = N
[
vec((Z ′Z)−1Z ′(∆Xt − βαXt−1)), Ω⊗ (Z ′Z)−1

]
,

where Z = [∆Xt−1 . . . ∆Xt−k Dt]
′, ∆Xt = (∆x1 . . . ∆xt)

′, Xt−1 =
(x0 x1 . . . xt−1)

′, and Dt = (d1 d2 . . . dt)
′.

3. Draw Π, or equivalently, α, β and λ. Since λ = 0 in the case of a reduced rank
error correction model, it may seem odd that it arises in the sampling scheme.
This occurs because the candidate generating function used in the following
M-H step is based on the full rank (or unrestricted) error correction model.

(a) Assuming a constant prior, a candidate Π[i+1] is drawn from
N [vec((X ′

tXt)
−1X ′

t(∆Xt − ZΓ∗)), Ω⊗ (X ′
tXt)

−1]. The index i references
the draw number; that is, we are at the [i + 1]-th iteration of the sampler.

(b) Compute α[i+1], β[i+1] and λ[i+1] based on the following singular value
decomposition: Π[i+1] = U [i+1]S[i+1]V [i+1]. Refer to pp 188-189 of Strachan
(Strachan 2003) for calculation details.
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(c) Compute the acceptance probability for draw [i + 1] using the weight
calculations detailed on pp 234-235 of Kleibergen and Paap (Kleibergen
and Paap 2002). The rejection probability is based on the ratio of the
augmented posterior of the restricted error correction model and the
posterior of the unrestricted error correction model.23 If the current draw
is rejected, all parameters are set equal to their previously drawn values,
that is, θ[i+1] = θ[i].

4. Go to step 1 and repeat the loop many times.

This algorithm generates draws from p(λ, θ0|D), and hence, the draws of [α, β, Ω, Γ]
are draws from p(θ0|D).
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Figure 1: Consumer Sentiment and ˆcay: Q1 1966-Q1 2003
The solid line plots the path of the posterior mean value of cay. The dashed line plots the
(standardized) Quarterly Consumer Sentiment Index as reported by the University of Michigan.
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Figure 2: Consumer Sentiment and DY : Q1 1966-Q1 2003
The solid line plots the path of DY . The dashed line plots the (standardized) Quarterly Consumer
Sentiment Index as reported by the University of Michigan.
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Figure 3: Monthly Return Volatility by Investment Horizon with DY Predictor

The solid line plots the monthly return volatility by investment horizon using the posterior mean of
VAR parameters from Barberis (2000) - as reproduced in 2. The correlation between innovations
in dividend yield and return is -93.5%. The dashed line plots the same monthly return volatility
by investment horizon when the correlation between innovations in returns and dividend yields is
-43.5%, all else being equal.
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Figure 4: Sensitivity of Buy and Hold Allocation to Initial Dividend Yield

Buy and hold asset allocation by investment horizon: in each chart the solid line with pentagrams
plots, by investment horizon, the equity allocation of a power utility investor. In panel A the risk
aversion parameter is 5, in panel B the parameter is 20. In each case the investor uses a predictor
(quarterly dividend in figure 4, and ˆcay in figure 5) to forecast return. The current value of the
predictor is set equal to its historical mean and the investor ignores estimation risk in the predictive
VAR parameters. The solid line plots the equity allocation of the same investor who accounts for
estimation risk in VAR parameters. In figure 5 the values of ˆcay are taken as given. The dotted
line (dashed) with pentagrams plots the equity allocation by horizon for the case where the current
value of the predictor is a standard deviation above (below) its historical mean and estimation risk
is ignored. The corresponding plots without pentagrams account for estimation risk in predictive
VAR parameters. All results are based on the Q4 1951-Q1 2003 estimation interval and 100,000
draws of the Gibbs sampler. NOTE: scale differs between the panels.
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Figure 5: Sensitivity of Buy and Hold Allocation to Initial ˆcay Given Wealth Shares
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Figure 6: Joint Posterior Distribution of Normalized Cointegrating Coefficients

The posterior p(βa, βy|c, a, y) estimates are based on 100,000 draws of a Metropolis-Hastings
sampling scheme with a rejection rate of 20.8%. Parameter settings and priors are described in
the caption to table 3.

−0.65
−0.6

−0.55
−0.5

−0.45
−0.4 −0.8

−0.7
−0.6

−0.5
−0.4

−0.3
−0.2

0

100

200

300

400

500

600

700

Cointegration Parameter: 
(log) Asset Wealth

Cointegration Parameter: 
(log) Income                   

P
os

te
rio

r 
F

re
qu

en
cy

Figure 7: Posterior Draws of Adjustment Parameters

The marginal posterior p(αc|c, a, y) estimate: sampler, parameter settings and priors are described
in the caption to table 3.
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Figure 8: 90% HPD of cay Posterior: Q4 1951-Q1 2003

The solid line plots the path of the posterior median value of cay. The shaded area is the 90% HPD
of the cay posterior.
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Figure 9: Posterior Distribution of cay in Q1 of 2003

The histogram is based on the complete set of the posterior draws obtained from the sampler
described in the caption to table 3.
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Figure 10: 90% HPD of VAR Implied R-Squared Based on DY , Q4 1951-Q1 2003

The solid line plots the posterior mean of the long horizon R2 computed using draws from p(θv|D)
when DY is used to forecast the quarterly S&P500 return premium. The shaded area denotes the
region covered by the 90% HPD interval of the long horizon R2 implied by the VAR parameters.
These results are based on 100,000 sampler draws.
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Figure 11: 90% HPD of VAR Implied R-Squared Based on cay

The solid line plots the posterior mean of the long horizon R2 computed using draws from p(θv|θ0,D)
when ˆcay is used to forecast the quarterly S&P500 return premium. The shaded area denotes the
region covered by the 90% HPD interval of the long horizon R2 implied by the VAR parameters. The
dashed lines map the limits of the 90% HPD interval based on p(θv|D) when cay is used to predict
the premium. The sampling scheme used to compute p(θv|D) in this case is detailed in Appendix I.
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Figure 12: Equity Allocation, Conditional on c, a and y.

The solid line plots equity allocation by horizon conditional on ct−1, at−1, and yt−1 being set equal
to their values observed by an investor in Q3, 1953. The investor’s risk aversion parameter is 5. The
solid line with pentagrams plots the corresponding allocations of a power utility investor with a risk
aversion parameter of 20. The dashed line plots equity allocation by horizon conditional on ct−1,
at−1, and yt−1 being set equal to their values observed by an investor in Q3, 2002. The investor’s
risk aversion parameter is 5. The dashed line with pentagrams plots the corresponding allocations
of a power utility investor with a risk aversion parameter of 20.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Quarter

A
llo

ca
tio

n 
to

 E
qu

ity

36



Figure 13: Consumer Sentiment, Predictability and Equity Allocation

The solid line plots equity allocation when the current level of ˆcay is one standard deviation above its
historical mean, and the ICS is one standard deviation above its historical mean. The dashed line
plots equity allocation when the current value of ˆcay is one standard deviation above its historical
mean, and the ICS is one standard deviation below its historical mean. The dotted line plots
equity allocation when the current value of both ˆcay and the ICS are set to one standard deviation
below historical means. Dash-dots plot equity allocation when the current value of ˆcay is a standard
deviation down and ICS is a standard deviation up. In each case, the investor’s preferences are
described by a power utility function with a risk aversion coefficient of 10. All results are based on
100,000 sampler draws. The results in this figure condition on the posterior mean of the cointegrating
parameters but account for estimation risk in the (tri-variate) VAR parameters.
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Table 1: Predictive Regressions: S&P 500 Excess Return, Q1 1960-Q1 2003

This table reports predictive regressions of the form rt = λ̂0 + λ̂1pred1,t−1 + . . .+ λ̂kpredk,t−1, where
predj,t−1 are lagged predictors. In the ˆcay regression: ˆcay = c− 0.2769a− 0.6116y. Point estimates
are based on the posterior mean of the cointegrating vector. For details of ˆcay estimation refer
to section I. A single star indicates significance of t-statistic at the 5% level, two stars indicate
significance at the 2% level, three stars indicate significance at 1%.

Predictor(s) λ̂0 λ̂1 λ̂2 λ̂3 R2, (R̄2)
ˆcay 0.0132 0.0261 0.085, (0.0787)

(1.85) (3.67***)
DY -0.019 0.012 0.0178, (0.011)

(-0.89) (1.62)
ICS 0.0132 -0.008 0.0086, (0.0017)

(1.78) (-1.12)
ˆcay [1], DY [2] 0.005 0.025 0.0031 0.086, (0.0734)

(0.231) (3.28***) (0.4)
ˆcay [1], ICS [2] 0.0222 0.0258 0.0013 0.085, (0.0725)

(0.417) (3.47) (-0.171)
ˆcay [1], ICS [2], ICS× ˆcay [3] 0.0087 0.032 -0.0043 -0.0167 0.0167, (0.104)

(1.197) (4.144***) (-0.58) (-2.46**)
DY [1], ICS [2], ICS×DY [3] -0.025 0.0125 0.0196 -0.0066 0.025, (0.0049)

(-0.8599) (1.223) (0.919) (-1.05)
ˆcay [1], ICS× ˆcay [2] 0.0088 0.0329 -0.016 0.12, (0.108)

(1.22) (4.36***) (-2.4**)
DY [1], ICS×DY [2] -0.0118 0.0089 -0.0015 0.0196, (0.006)

(-0.4687) (0.9443) (-0.5105)
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Table 2: Predictive VAR Parameter Estimates, Q4 1951-Q1 2003

This table reports the posterior mean of VAR parameters, as per equation (6). The σij elements of
the residual covariance matrix Σ are reported as correlations for all i 6= j. All results pertaining to
p(bij , Σ|data) are based on 100,000 draws from the Gibbs sampler.

Equation Predictor bi0 bi1 σi1 σi2

[rt − rft] ˆcayt−1 0.0175 2.0251 0.0063 -0.5784
ˆcayt ˆcayt−1 0 0.835 0.4805e-005

[rt − rft] [DYt−1] 0.0854 0.03 0.0068 -0.6925
[DYt] [DYt−1] -0.0325 0.9883 0.004

Monthly Estimates fromBarberis (2000)
[rt − rft] [DYt−1] -0.0143 0.5118 0.0017 -0.9351

[DYt] [DYt−1] 0.0008 0.9774 3.0e-006
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Table 3: Descriptive Statistics based on Joint Posterior of Cointegrating Parameters
and Adjustment Coeffcients, Q4 1951-Q1 2003

The posterior p(α, β, Γ, Φ, Ω|c, a, y) estimates are based on 100,000 draws of a Metropolis-Hastings
sampling scheme with a rejection rate of 20.8%. The cointegrating vector β = [ βc βa βy ]′, and
adjustment coefficient vector α = [ αc αa αy ]′ component subscripts denote coefficients for (log):
consumption, asset wealth and income. The cointegrating vector β incorporates the normalization
βc = 1. In terms of equation (I.3) k = 4 and w = 1, that is, each equation in the system (I.3)
includes 5 lagged differences of the dependent variable and an intercept. The posterior results are
based on diffuse priors as detailed in section I. The reported results are conditional on k = 6 and
r = 1.

Cointegrating Vector Adjustment Coefficients

Parameter βa βy αc αa αy

mean -0.2766 -0.6119 -0.0344 0.4671 -0.0529
median -0.2727 -0.616 -0.0325 0.476 -0.0563
St. Dev. 0.0481 0.0526 0.0342 0.167 0.0728
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