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1 Introduction 

The seminal studies by Grubel (1968), Levy and Sarnat (1970), Lessard (1973) and Solnik 

(1974) laid the ground for considerable academic research advocating the benefits of 

international diversification on the basis of the low correlation between national stock 

markets. However, the recent empirical evidence indicates that over the last decade the 

correlations of the major security markets have increased significantly, by this strongly 

reducing the benefits of diversification among these markets. On the other hand a range of 

new markets has emerged, expanding the opportunity set of investors, and thereby offering 

new sources for the diversification of portfolio risk. 

A strand of literature on international portfolio diversification has investigated the question 

whether the benefits of diversification are present when they are needed most, i.e. in times of 

extreme market volatility, often associated with bear markets.1 Evidence from capital market 

history suggests that poor market performance was associated with an increase in international 

correlations. Goetzmann, Li and Rouwenhorst (2002) cite the chairman of the Alliance Trust 

Company, reflecting on the Crash of 1929: 

"Trust companies...have reckoned that by a wide spreading of their investment risk, a stable 

revenue position could be maintained, as it was not to be expected that all the world would go 

wrong at the same time. But the unexpected has happened, and every part of the civilized 

world is in trouble..." 

A range of studies has interpreted covariance asymmetry within the framework of a particular 

generalized autoregressive conditional heteroscedasticity model, where the asymmetry is 

defined to be an increase in conditional covariance or correlation resulting from past negative 

shocks to return processes. Specifically, Cho and Engle (2000), Bekaert and Wu (2000), 

                                                
1 See e.g. Lin, Engle and Ito (1994), Erb, Harvey and Viskanta (1994), Longin and Solnik (1995), Karolyi and 

Stulz (1996), Solnik, Bourcrelle, and Le Fur (1996), De Santis and Gerard (1997), Ramchmand and Susmel 
(1998), Ang and Bekaert (1999), Das and Uppal (1999), Longin and Solnik (2001), and Ang and Chen (2002). 
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Kroner and Ng (1998), and Conrad et al. (1991) examine the covariance asymmetry of 

domestic stock portfolios, and Capiello, Engle and Sheppard (2004) investigate the correlation 

asymmetry of international equity and bond returns, using multivariate asymmetric GARCH 

models.  

In this paper we extend the multivariate GARCH Dynamic Conditional Correlation (DCC) 

model of Engle (2002) and its generalization by Capiello, Engle and Sheppard (2004) to 

investigate the relationship between the correlation and the volatilities of the underlying 

assets. The hypothesis the extended model tests for is whether high volatility values 

(exceeding some prespecified threshold) of the assets, implied by the model, are associated 

with an increase in their correlation values. The resulting specification could be interpreted as 

asymmetric in the level of volatility. The identification of asset pairs the correlations of which 

do not increase in volatile markets associated with bear markets, under ceteris paribus 

conditions, could be useful for leveraging the benefits of portfolio diversification. 

To demonstrate practical relevance of our model we employ a sample of national stock 

indices from markets heterogeneous in the level of their development and integration into 

international securities markets. While there is a considerable body of research investigating 

the Asian and Latin American emerging stock markets, the transition markets of Central 

Europe have seen much less attention so far. Our sample includes the stock indices from the 

three largest transition stock markets of Central Europe: Hungary, Poland and the Czech 

Republic. We conduct two separate analysis, international and regional European. In the 

international part we consider the mixed sample of the transition indices with the U.S. and 

European composite indices, while for the regional part we analyse a sample of the transition 

indices with the major European market indices. 

We start from investigation of the volatility and correlation dynamics of the considered 

markets over the last decade. Some interesting patterns in their reaction to global events 

appear. The response of the transition markets to these events, as expected, is not always 
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similar to that of the developed markets. The empirical results of the application of the 

extended DCC model to our sample delivers strong evidence that over the considered time 

period the turbulent markets were associated with increases in the correlations of the 

developed markets. For the cross-correlations of the transition markets with the rest of the 

markets we do not observe a similar pattern. This potentially makes them attractive targets for 

the portfolio diversification of international investors. 

The paper is organized as follows. Section 2 starts from the description of the data employed 

in this study. Section 3 presents the base multivariate GARCH models and analyses the 

empirical results. Section 4 proposes an extension of the base models considered in section 3 

and presents the corresponding empirical results. Section 5 summarises our findings. 

 

2 Data description 

The empirical part of this paper concentrates on the investigation of the time-varying correlation 

dynamics of international stock markets over the last decade. To make our analysis richer, our 

sample includes markets heterogeneous in the level of their development, both mature and 

emerging stock markets. This allows us to test hypothesis for different market environments. The 

emerging markets chosen for this study are the three largest transition stock markets of Central 

Europe: Hungary, Poland and the Czech Republic. In the regional European part of the analysis, 

the following six stock market indices are considered: German DAX30, French CAC40, British 

FTSE100, Hungarian BUX30, Polish WIG20 and Czech PX50. For the international part, we 

consider S&P500 and the European blue chip stock composite STOXX50 from the developed 

world, as well as the same transition markets indices employed for the regional analysis. The 

choice of the specific transition indices among other indices available for these markets is 

primarily based on the fact that those are the national blue chip indices available for the longest 

time period. These indices are published by the national stock exchanges of the considered 

countries. All indices are observed at weekly frequency and are US dollar-denominated. The 
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employed sample covers the period from the last week of April 1994 to the first week of June 

2004, constituting the total of 528 return observations. The use of weekly data is preferred 

because daily data could suffer from frictions in the markets especially in the case of transition 

markets. Additionally, for the international analysis, the use of daily data would induce noise due 

to time-zone differences in the countries analysed. All data is obtained from Datastream. Table 1 

presents some descriptive statistics for the indices.  

Insert Table 1 here 

All series show the typical non-normality of financial time series. Excess kurtosis and negative 

skewness are especially pronounced in the case of the Hungarian BUX. All series with exception 

of STOXX50 display negative skewness. The Ljung-Box statistics suggest autocorrelation in the 

return levels of S&P500 and BUX only. The squared returns, on the other hand, are highly 

autocorrelated, which can be taken as evidence of ARCH effects in the considered series.  

Insert Table 2 here 

Table 2 shows unconditional correlations of the returns. The correlations of DAX30, CAC40 and 

FTSE100 with STOXX50 are, non-surprisingly, very high, partially explained by the fact that a 

part of the component stocks of the German, French and British indices are also the components 

of STOXX50. These are followed by the correlation between DAX30 with CAC40 (0.80), 

FTSE100 with CAC40 (0.73), and STOXX50 with S&P500 (0.70). The correlations of the 

considered individual developed European market indices with the U.S. market are somewhat 

lower (around 0.64). The regional European impact on the transition stock markets is clearly 

stronger than that from the U.S., as the correlations of these markets with S&P500 is 

significantly lower than with the European indices. Finally, the correlations between the 

transition markets range from 0.41 for the Polish and Czech indices to 0.53 for the Hungarian 

and Polish indices. It is also interesting to note that the correlations between the transition indices 

are higher than the correlation of these indices with the rest of the markets considered. 
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3 Dynamic Conditional Correlations 

 

3.1 The models 

Multivariate modeling of the second moments of asset returns plays an important role in many 

different areas of financial management, like the assessment of Value-at-Risk and other risk 

measures estimates, portfolio allocation and asset pricing. It is now widely accepted that with 

the changes in market conditions the volatilities and correlations of assets change over time as 

well. The last two decades have produced a range of studies modeling the time-varying 

behavior of correlations and covariances between financial assets.  

The problems associated with the estimation of the multivariate GARCH models, related to 

the tradeoff between their generality and the number of parameters to be estimated as well as 

the considerable restrictions on the parameters necessary for positive definiteness of the 

covariance matrix, are well known.2 Bollerslev (1990) introduced a new class of multivariate 

GARCH models, the so-called Conditional Correlation models. The specification of the 

conditional covariance matrix for this class of models is implemented in a hierarchical way. 

First, volatility for each individual series is estimated using a univariate GARCH 

specification, then, based on the resulting standardized residuals, one models the conditional 

correlation matrix. The Constant Conditional Correlation (CCC) model by Bollerslev (1990) 

ensures the feasibility of the model estimation also in large dimensions and positive 

definiteness of the covariance matrix simply requiring each univariate conditional variance to 

be positive and the constant matrix of conditional correlations to be positive definite. Due to 

its computational simplicity, the CCC model is widely used in empirical applications. A range 

of studies (like e.g. Bera and Kim (1996), Tsui and Yu (1999) and Tse (2000)) find, however, 

that the assumption of constant conditional correlation can be too restrictive.  

                                                
2 For the recent review of the existing multivariate GARCH models see e.g. Bauwens et al. (2003). 
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Engle (2002) proposed a generalisation of the CCC model of Bollerslev, the Dynamic 

Conditional Correlation (DCC) model.3 The new specification preserves the ease of the 

estimation of the Bollerslev's model, but allows time variation of the conditional correlation 

matrix. In Engle's model one fits to each asset return an appropriate univariate GARCH model 

(the models can differ from asset to asset) and then standardizes the returns by the estimated 

GARCH conditional standard deviations. The standardized return vector is then used to model 

the correlation dynamics. The model estimation is performed through 1n +  numerical 

optimizations, each involving only a few parameters, regardless of the size of n  (number of 

assets in the system). 

Consider an n -variate conditionally normal return process tr  with mean zero4 and covariance 

matrix tH : 

1| (0, )t t tr F N H− ∼           (1) 

t t t tH D R D=            (2) 

{ },t ii tD diag h=           (3) 

1
t t tD rε −=            (4) 

where ,ii th s could e.g. be thought of as univariate GARCH models, itε s are standardized 

residuals with mean zero and variance one, and { },t ij tR ρ=  is the time-varying conditional 

correlation matrix of returns. tR  corresponds to the conditional covariance matrix of the 

standardized residuals5, i.e. , 1( , )ij t t it jtEρ ε ε−= . 

                                                
3 For an alternative generalization of the CCC model see Tse and Tsui (2002). Additionally, Pelletier (2004) 

proposed a regime switching model for dynamic correlations, which can be seen as a midpoint between the 
CCC model of Bollerslev (1990) and the DCC model of Engle (2002), where the correlations change every 
period. 

4 itr s can be either mean zero or the residuals of a filtered time series. In the empirical part of this paper the data 
were not filtered other than simple demeaning.  

5 
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The DCC model of Engle (2002) specifies the dynamics of the correlation matrix as follows: 

1 1
2 2( ( )) ( ( ))t t t tR diag Q Q diag Q− −=         (5) 

'
1(1 ) ( )t t t tQ Q Qα β α ε ε β −= − − + +         (6) 

where Q  is the unconditional correlation matrix of tε . As a result, the typical element of tR  

is of the form ,
,

, ,

ij t
ij t

ii t jj t

q
q q

ρ = . This normalization ensures that all correlation estimates fall in 

the [-1;1] interval. The model is estimated subject to the unconditional correlation targeting 

constraint by which the long run correlation matrix is the sample correlation matrix. The 

specification is mean reverting as long as 1α β+ < . Note, in case α  and β  are zero, one 

obtains the CCC model by Bollerslev (1990).6 

A drawback of this specification is that all the elements of the conditional correlation matrix 

are restricted to have the same dynamics. Cappiello, Engle and Sheppard (2004) propose the 

following generalization of the model7, which allows the individual series specific news 

impact parameters: 

'
1 1 1( ' ') ( ) ' 't t t tQ Q AQA BQB A A BQ Bε ε− − −= − − + +       (7) 

where A  and B  are n n×  diagonal matrices. As a result, the dynamics of the individual 

elements of the covariance matrix tQ  is specified as follows: 

, , 1 , 1 , 1(1 )ij t i j i j ij i j i t j t i j ij tq q qαα β β αα ε ε β β− − −= − − + +       (8) 

Sufficient condition for the covariance matrix to be positive definite is that 

( ' ')Q AQA BQB− −  in (7) is positive definite. Although this generalized model undoubtly 

adds flexibility to Engle's specification, the number of parameters to be estimated increases 

                                                
6 Testing for dynamic versus constant correlation for the data that have time-varying volatilities has proven in the 

literature to be a difficult problem. Some examples of such kind of tests are in Bera (1996) and Tse(1998). 
7 The full Asymmetric Generalized DCC in Cappiello, Engle and Sheppard (2004) includes additionally a 

variable matrix accounting for the asymmetric impact of the past negative shocks on the correlation 
processes.  
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considerably. Alternative attempts to generalize the standard scalar DCC by Engle (2002) can 

be found e.g. in Frances and Hafner (2003) and Billio, Caporin and Gobbo (2003). 

A nice feature of conditional correlation multivariate GARCH models is that they allow for 

two-stage estimation. Specifically, the likelihood function of the DCC models outlined above 

can be written as a sum of a volatility part and a correlation part. Let the parameters of the 

volatility part be denoted φ , and the additional parameters of the correlation part ψ . The 

estimates of volatility parameters can be found by replacing tR  in (2) by an identity matrix of 

size n . The resulting first stage log-likelihood function gives the sum of the log-likelihoods of 

individual volatility equations of n  series in the system: 

' 1 1

1

1( ) log(2 ) log(| |) 2 log(| |)
2

T

v n t t t n t t
t

L n I D r D I D rφ π − −

=

⎡ ⎤= − + + +⎣ ⎦∑  

 ' 2

1

1 log(2 ) 2 log(| |)
2

T

t t t t
t

n D r D rπ −

=

⎡ ⎤= − + +⎣ ⎦∑  

 
2

1 1

1 log(2 ) log( )
2

T n
it

it
t i it

rn h
h

π
= =

⎡ ⎤⎛ ⎞
= − + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑  

 
2

1 1

1 log(2 ) log( )
2

n T
it

it
i t it

rT h
h

π
= =

⎡ ⎤⎛ ⎞
= − + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑       (9) 

The second stage log-likelihood is: 

' 1 1 1

1

|
1ˆ( ) log(2 ) 2 log(| |) log(| |)
2

T

c t t t t t t t
t

L n D R r D R D rψ φ π − − −

=

⎡ ⎤= − + + +⎣ ⎦∑  

 ' 1

1

1 log(2 ) 2 log(| |) log(| |)
2

T

t t t t t
t

n D R Rπ ε ε−

=

⎡ ⎤= − + + +⎣ ⎦∑     (10) 

Given the estimates of the volatility parameters, φ̂ , the relevant part of cL , that will influence 

the selection of the correlation parameters, ψ , is: 

* ' 1

1

|
1ˆ( ) log(| |)
2

T

c t t t t
t

L R Rψ φ ε ε−
=

⎡ ⎤= − +⎣ ⎦∑        (11) 
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Engle and Sheppard (2001), based on the results in Newey and McFadden (1994), 

demonstrate that the two-step estimation approach provides consistent, although not efficient, 

estimates of the parameters of the model. We use this two-step estimation procedure in the 

empirical part of the paper. 

 

3.2 Univariate volatility model choice and estimates 

We start from fitting the univariate volatility models for each of the eight series considered in 

this study.8 The alternative specifications employed are the following GARCH models: 

 
Model 
name 
 

Specification  

GARCH 
 

2
0 1 1 1 1t t th r hα α β− −= + +  

NARCH 
 

2

0 1 1 1 1t t th r hαα α β− −= + +  

EGARCH 
 1 1

0 1 2 1 1
1 1

ln( ) 2 / ln( )t t
t t

t t

r rh h
h h

α α π α β− −
−

− −

⎛ ⎞ ⎛ ⎞
= + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

GJR 
 

2 2
0 1 1 2 1 1 1 1t t t t th r S r hα α α β−

− − − −= + + +  with 1
1

1 0
0

t
t

if r
S

otherwise
−−

−

<⎧
= ⎨
⎩

 

AGARCH 
 

( )2
0 1 1 2 1 1t t th r hα α α β− −= + + +  

NGARCH 
 ( )2

0 1 1 2 1 1 1t t t th r h hα α α β− − −= + + +  

VGARCH 
 ( )2

0 1 1 1 2 1 1/t t t th r h hα α α β− − −= + + +  

 

While GARCH and NARCH are symmetric9, the rest of the models allow for an asymmetric 

impact of the positive and negative news on the volatility process. The asymmetry is achieved 

either by allowing the slopes of negative and positive sides of the news impact curve, with a 

                                                
8 A similar approach is also employed in Cappiello, Engle and Sheppard (2004). 
9 Note, as compared to GARCH, NARCH would imply a reduced response of volatility to news if a2 2< . 
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minimum at 1 0tr− = , to differ (EGARCH and GJR), or the minimum of the news impact curve 

to be located at 1 0tr− ≠  (AGARCH, NGARCH and VGARCH).10 

The results of the estimation of the univariate volatility models outlined above indicate 

evidence of an asymmetric impact of news on volatility for all series in our study. For each of 

the series we select a univariate volatility specification based on the Schwarz Information 

Criterion. The selected models and the corresponding parameter estimates are presented in 

Table 3. As we see, while three of employed indices prefer a model (NGARCH), implying 

recentering of the news impact curve at a positive 1tr− , for the rest we select models 

(EGARCH and GJR), capturing the asymmetry by allowing a steeper slope of the negative 

side of the news impact curve compared to its positive side. 

Insert Table 3 here 

Table 4 presents the cross-correlations of the fitted volatility series, while figure 1 shows the 

development of the volatilities over the considered sample period. As expected, the 

correlations of the transition market volatilities with the developed market series are much 

lower than those between the developed markets. From figure 1 it is clear that the volatilities 

of the major markets comove, and react to significant international events in a similar 

manner.11 It is interesting to note that while the reaction of the transition markets to the 

Russian default in August-September 1998 was very strong, other major international events 

like September 11 or the new economy bubble burst did not have such a strong impact on 

these markets. 

Insert Table 4 and Figure 1 here 

                                                
10 For further details on the employed models and their news impact curves see Engle and Ng (1993). 
11 For the formal analysis of the cross country volatility comovements, particularly focusing on the periods of 

high volatility, see e.g. Edwards and Susmel (2001). 
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3.3 Conditional correlation estimates  

On the basis of the individual standardized residual series, obtained as a result of the 

estimation of the univariate volatility models, the dynamics of the conditional correlation 

matrix is parameterised as a scalar DCC in (6) and as a generalized DCC (GDCC) in (7) 

above. We conduct two types of analysis, international and regional European. In the 

international part we model the correlation dynamics of three transition market indices with 

the S&P500 and STOXX50, while in the regional part with three European indices, DAX30, 

CAC40 and FTSE100. The estimation results are presented in table 5 for the international and 

in table 6 for the regional analysis. 

Insert Tables 5 and 6 here 

The last rows of tables 5 and 6 provide likelihood ratio tests between the standard DCC and 

its generalized version.12 The test statistic for the international analysis cannot reject the null 

hypothesis of the scalar DCC. In the regional case the scalar DCC is rejected in favour of the 

GDCC. The plots of the resulting conditional correlation series are presented in Figure 2.13 

The first important feature we observe is that correlations of all developed market indices 

have increased since mid-nineties. It is especially pronounced for the correlation between 

French and German indices, which is obviously influenced by the fixing of the exchange rates 

in 1999. We observe a sharp drop of the correlations of FTSE100 with DAX30 and CAC40 in 

the first part of 2000. This drop is present for some other market pairs as well. Another 

regularility is that Asian-Russian crisis around 1998 has lead to a swing in the international 

correlations for almost all country pairs, including transition markets. Some other interesting 

thing to note is that the last part of our sample is characterized by a steady increase in the 

                                                
12 The t-statistics of the parameter functions for the GDCC model are calculated using the delta method. 
13 Given that for the regional European results the rejection rate of the scalar DCC against GDCC is not very 

high, and the shapes of the charts of conditional correlations for these two specifications differ only 
marginally, Figure 2 presents regional correlations implied by the scalar DCC (similar to the international 
case). 
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correlations of transition markets with the rest of the indices. This may be due to an 

anticipation of the accession of these countries to the European Union in May 2004.  

Insert Figure 2 here 

 

3.4 Volatility versus correlation: Some empirical regularities 

Figure 3 presents the scatter plots of the conditional correlation series against the volatility of 

the underlying markets. The interesting regularity we note is that for the correlations between 

developed markets extreme volatility values are associated with high correlation values as 

well, while for the transition markets this pattern is not as pronounced (both for the 

correlations between transition markets and their correlations with developed markets). The 

high correlation values associated with the extreme volatility in the underlying markets would 

make international diversification benefits disappear, at least partially, in times when they are 

required most. For the investors who diversify internationally, it would be beneficial to 

identify markets the correlations of which are less sensitive to extreme values of the 

volatilities in these markets. This, ceteris paribus, could provide some protection in turbulent 

market times. 

Insert Figure 3 here 

 

4 Volatility Threshold Dynamic Conditional Correlations 

 

4.1 The models 

The varying relationship between high volatility and correlation values of the different asset 

pairs in the portfolio, if present but ignored, could have serious consequences for portfolio 

hedging effectiveness. The empirical regularities identified by observing the scatter plots 

suggest an extension of the DCC model considered in the previous section. Given the 

historical data for the assets under interest up to time period 1t − , within the two-step 



 14 

estimation framework, the investor produces a volatility estimate for time period t  for each of 

the series in the system. Because the parameters of the volatility models are determined 

exclusively in the first-step, the fitted volatility series could be considered as given for the 

second correlation step of estimation. The extension of the DCC model we propose tests the 

hypothesis whether high volatility values (exceeding a specific threshold) of the underlying 

assets are associated with an increase in their correlation values. An investor rearranging his 

portfolio would be grateful to identify assets for which this association does not hold, as, other 

things being equal, one could consider those assets as potentially attractive targets for 

portfolio diversification. 

Let tV  be a dummy variables matrix with elements defined as: 

, ,
,

1 ( ) ( )
0

i t i j t j
ij t

if h fh k or h fh k
v

otherwise
> >⎧

= ⎨
⎩

       (12) 

where ( )ifh k  is the k -th fractile of the volatility series ih . 

One could now extend the DCC and GDCC models in (6) and (7) in the following way: 

'
1 1 1(1 ) ( )t t t t tQ Q V Q Vα β γ α ε ε β γ− − −= − − − + + +       (13) 

'
1 1 1( ' ' ') ( ) ' ' 't t t t tQ Q AQA BQB V A A BQ B Vε ε− − −= − − − Γ Γ + + + Γ Γ     (14) 

where [ ]tV E V= , and A , B  and Γ  are n n×  diagonal matrices.  

For the GDCC specification the dynamics of the individual elements of the covariance matrix 

tQ  would then be specified as: 

, , 1 , 1 , 1 ,(1 )ij t i j i j ij i j ij i j i t j t i j ij t i j ij tq q v q vαα β β γ γ α α ε ε β β γ γ− − −= − − − + + +    (15) 

Sufficient condition for the covariance matrix, tQ , to be positive definite is that 

( ' ' ')Q AQA BQB V− − − Γ Γ  in (14) is positive definite.  

In case the aim of the empirical analysis is to identify heterogeneity in the response of the 

markets to the volatility values exceeding some thresholds, it is more suitable to consider a 
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version of the model where the diagonal elements of matrix Γ  are allowed to vary. On the 

other hand, the restrictions on the GARCH dynamics of the conditional correlations (the 

scalar version) in some cases could be well justifiable, leading to a more parsimonious 

specification and/or making the model estimation feasible also in large dimensions.14 The 

version of the model in (14), which restricts the GARCH dynamics but allows different 

volatility impacts on the correlations of different asset pairs, could be specified by restricting 

the diagonal elements of the parameter matrix A  and B , for each of the matrices, to be 

identical. The expression in (15) then becomes: 

2 2 2 2
, , 1 , 1 , 1 ,(1 )ij t ij i j ij i t j t ij t i j ij tq q v q vα β γ γ α ε ε β γ γ− − −= − − − + + +     (16) 

In the rest we refer to the specification in (15) as the Volatility Threshold GDCC (VT-GDCC), 

and to the specification in (16) as the Volatility Threshold DCC (VT-DCC). 

As emphasized in the introduction to this paper, a range of studies have identified that the 

correlations between assets increase for downside moves, especially for extreme downside 

moves, rather than for upside moves. Below we propose a modification of the model in (14) 

which would consider the case of “extreme” volatility associated with bear markets.15 In the 

framework of the DCC model this could e.g. be defined as the case when the fitted volatility 

for the period t  exceeds the pre-specified threshold and at the same time the observed return 

at time 1t −  is negative (which is equivalent to the corresponding standardized residual being 

negative). To integrate this feature in our specification, one could redefine the dummy 

variables matrix, tV , as follows: 

( ) ( ), , 1 , , 1
,

( ) 0 ( ) 01
0

i t i i t j t j j t
ij t

if h fh k and or h fh k and
v

otherwise

ε ε− −
⎧ > < > <⎪= ⎨
⎪⎩

   (17) 

                                                
14 As is shown in Engle and Sheppard (2001), the scalar DCC model leads to sub-optimal portfolio selection in 

case of many assets (like 20 or 30) as it assumes the same type GARCH dynamics for all the asset-specific 
conditional correlations. This assumption becomes, however, increasingly more likely to be satisfied in case 
of small number of assets. 

15 In this context, see Capiello, Engle and Sheppard (2004), who provide an extension of the GDCC model in (7), 
the Asymmetric Generalized DCC, to account for the asymmetric impact of the sign of the past innovations 
on the current correlation values. 
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In the rest we refer to the specifications in (15) and (16), with the elements of the matrix tV  

defined as in (17), the Volatility Threshold Asymmetric GDCC (VT-AGDCC) and Volatility 

Threshold Asymmetric DCC (VT-ADCC), respectively. 

All the models described in this section could be modified in such a way that the correlation 

values are conditioned on the observed past return series only (but not on the fitted volatility 

values). The idea similar to the specification with the matrix tV  defined in (12) would be to 

condition the correlation values on the past squared returns exceeding a pre-specified 

threshold. To test the hypothesis similar to the specification with the matrix tV  defined in (17) 

one would condition the correlation values on the large (exceeding some threshold) past 

negative returns.  

 

4.2. Estimation results 

Tables 7 - 10 present the results of the estimation of the Volatility Threshold DCC models 

specified above. The models are estimated for different predefined volatility threshold levels: 

50 percent, 75 percent, 90 percent and 95 percent fractiles. As we were interested in the 

analysis of the heterogeneous impact of volatilities on correlations of different asset pairs in 

our sample, we did not consider the scalar model in (13), and estimated two versions of the 

model in (14), specified in (15) and (16), respectively. The last rows in the tables report the 

likelihood ratio statistics, testing the restrictions of the specification in (16) against the 

unrestricted model in (15). For most of the cases the restricted specification is preferred to the 

unrestricted one (perhaps with exception of VT-ADCC for the regional analysis in table 10, 

where, however, the rejection rate is not very high). Therefore, for the sake of parsimony, we 

report parameter estimates for the specification in (16) only. 

Insert Tables 7 and 8 here 
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The results in tables 7 and 8, which are based on the model with the elements of the matrix tV  

defined in (12), deliver strong evidence that the correlations of the developed market indices 

are significantly affected by the volatility in one of the markets or both exceeding a predefined 

threshold (the exception is the 50 percent threshold for the pair S&P500 and STOXX50). 

Different to that, the high volatility values seem not to affect the correlations of the transition 

markets with their developed counterparts on the one side, and the transition markets among 

each other on the other side. The exception is the correlation of the Polish WIG20 with 

S&P500 for the volatility threshold of 95 percent for the international analysis, and the 

correlation of the Czech PX50 with the European developed market indices for the volatility 

threshold of 75 percent for the regional analysis.  

Insert Tables 9 and 10 here 

Tables 9 and 10 are based on the specification with the matrix tV  defined as in (17). The 

general tendency of the estimates for the specifications in tables 7 and 8, on the one side, and 

tables 9 and 10, on the other, to be similar most probably indicates that the high volatility 

values are predominantly associated with negative returns. 

The results in this section reflect the general picture illustrated by the scatter plots in figure 3, 

and indicate that transition markets, under ceteris paribus conditions, could potentially 

provide some protection for international investors in turbulent market periods. 

 

5 Conclusions 

In this paper we investigate the volatility and correlation dynamics of national stock indices 

from markets heterogeneous in the level of their development. We extend the multivariate 

GARCH Dynamic Conditional Correlation of Engle (2002) to analyse the relationship 

between the correlations on the one side and the volatility of the underlying assets exceeding a 

predefined threshold on the other side. The empirical results indicate that the correlations of 
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the developed markets are significantly affected by high volatility levels (associated with bear 

markets), while high volatility seems not to have a direct impact on the correlations of the 

transition blue chip indices with the rest of the markets. This feature could be potentially 

relevant for the international portfolio diversification considerations. 
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Table 1. Summary Statistics 
 

 SP500 STOXX50 
 

DAX30 CAC40 FT100 BUX30 WIG20 PX50 

Mean 0.0017 0.0014 
 

0.0012 0.0012 0.0011 0.0023 -0.0005 1.93e-05 

Max 0.0749 0.1302 
 

0.1261 0.1046 0.1091 0.1470 0.1621 0.1285 

Min -0.1233 -0.0894 
 

-0.1203 -0.1024 -0.0879 -0.3324 -0.2180 -0.1308 

Standard Dev. 
 

0.0236 0.0249 
 

0.0322 0.0282 0.0224 0.0432 0.0516 0.0332 

Skewness -0.5171 0.1001 
 

-0.2182 -0.0579 -0.1780 -1.0083 -0.2862 -0.2156 

Kurtosis 5.6542 5.4404 
 

4.7200 3.9712 4.5893 11.1765 4.4393 4.1465 

JB 178.5171 131.9019 
 

69.2796 21.0469 58.3539 1560.2840 52.7840 33.0084 

LB(6) 16.400 
 

8.247 8.686 7.8417 4.368 19.983 9.374 13.338 

LBS(6) 34.770 
 

52.729 104.980 58.758 43.186 22.213 64.759 62.396 

Notes: JB is Jarque-Bera test statistic, distributed 2
2χ . LB(6) and LBS(6) are Ljung-Box test statistics with 6 lags for 

return levels and return squares, respectively, distributed 2
6χ . The upper 1 and 5 percentile points of the 2

2χ  distribution 

are 9.21 and 5.99, respectively. The upper 1 and 5 percentile points of the 2
6χ  distribution are 16.81 and 12.59, 

respectively. 

Table 2. Unconditional cross-correlations 

 
 STOXX50 DAX30 CAC40 FTSE100 BUX30 WIG20 PX50 

SP500 0.7041 
 

0.6374 0.6462 0.6359 0.3125 0.3133 0.1421 

STOXX50  
 

0.8767 0.8895 0.8747 0.4308 0.3676 0.3075 

DAX30   0.8009 
 

0.6986 0.4360 0.3954 0.3143 

CAC40    0.7343 
 

0.3779 0.3654 0.2994 

FTSE100     0.3701 
 

0.3043 0.2385 

BUX      0.5253 
 

0.4908 

WIG20       
 

0.4091 
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Table 3. Univariate volatility model choice 
 

Parameter estimates Index Model 

0α  1α  1β  2α  

SP500 EGARCH -0.3731 
(-2.4975) 

 

0.1590 
(3.9988) 

0.9516 
(49.1006) 

-0.9692 
(-2.3413) 

STOXX50 EGARCH -0.2765 
(-2.3893) 

 

0.2248 
(4.2825) 

0.9622 
(60.7172) 

-0.4204 
(-3.9370) 

DAX30 EGARCH -0.4921 
(-2.6399) 

 

0.2841 
(4.3492) 

0.9301 
(35.0480) 

-0.4804 
(-3.3761) 

CAC40 GJR 8.86e-04 
(1.7334) 

 

0.0037 
(0.1087) 

0.8053 
(10.4896) 

0.1500 
(2.4389) 

FTSE100 NGARCH 6.51e-04 
(3.3940) 

 

0.0756 
(5.4103) 

0.7033 
(96.8463) 

-1.1036 
(-5.2405) 

BUX30 NGARCH 0.0004 
(2.4748) 

 

0.2312 
(2.0873) 

0.4765 
(2.6514) 

-0.6002 
(-2.4854) 

WIG20 NGARCH 9.26e-04 
(2.5461) 

 

0.0902 
(2.9765) 

0.8545 
(24.0095) 

-0.4540 
(-2.1263) 

PX50 EGARCH -0.6899 
(-1.8099) 

 

0.2873 
(3.2353) 

0.9004 
(16.4156) 

-0.2513 
(-1.8665) 

 
Notes: This table gives the quasi-maximum likelihood estimates of the selected univariate volatility models.  
t-statistics are given in parentheses. 
 
Table 4. GARCH volatility correlations 
 

 STOXX50 DAX30 CAC40 FTSE100 BUX30 WIG20 PX50 
SP500 0.7084 0.7535 0.7413 0.8088 0.2365 0.1079 0.2053 

 
STOXX50 

 
 0.8426 0.7450 0.6799 0.1576 0.1521 0.2295 

DAX30   0.8606 0.7302 0.2068 0.1667 0.2374 
 

CAC40    0.7672 0.1452 0.1101 0.1837 
 

FTSE100     0.2753 0.1890 0.3046 
 

BUX30      0.4459 0.5391 
 

WIG20       
 

0.6788 
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Figure 1. GARCH volatility 
 
 
 
 
 
 

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

94 95 96 97 98 99 00 01 02 03

VSP500

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

94 95 96 97 98 99 00 01 02 03

VSTOXX50

.000

.001

.002

.003

.004

.005

.006

.007

94 95 96 97 98 99 00 01 02 03

VDAX30

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

.0036

94 95 96 97 98 99 00 01 02 03

VCAC40

.0000

.0004

.0008

.0012

.0016

.0020

.0024

94 95 96 97 98 99 00 01 02 03

VFTSE100

.000

.004

.008

.012

.016

.020

.024

.028

.032

.036

94 95 96 97 98 99 00 01 02 03

VBUX30

.000

.002

.004

.006

.008

.010

94 95 96 97 98 99 00 01 02 03

VWIG20

.000

.001

.002

.003

.004

.005

94 95 96 97 98 99 00 01 02 03

VPX50

Sept. 11 Sept. 11

Sept. 11 Sept. 11
Sept. 11

Asian-Russ. crisis

Asian-Russ. crisis

Asian-Russ. crisis

Asian-Russ. crisis
Asian-Russ. crisis

Asian-Russ. crisis Asian-Russ. crisis Asian-Russ. crisis

New economy
 bubble burst New economy

 bubble burst

New economy
 bubble burst New economy

 bubble burst New economy
 bubble burst

 



 25 

Table 5. DCC conditional correlation estimates: international analysis 
 

 
DCC 

 

α  0.0269 
(3.1183) β  0.8702 

(15.9396) 
 

GDCC 
 

SP STOXXα α  0.0581 
(3.2819) SP STOXXβ β  0.8772 

(18.3055) 

SP BUXα α  0.0335 
(1.9021) SP BUXβ β  0.5614 

(1.6476) 

SP WIGα α  0.0141 
(1.9569) SP WIGβ β  0.9630 

(44.9918) 

SP PXα α  0.0254 
(1.8205) SP PXβ β  0.8531 

(6.4270) 

STOXX BUXα α  0.0524 
(1.9408) STOXX BUXβ β  0.5249 

(1.6471) 

STOXX WIGα α  0.0220 
(1.9256) STOXX WIGβ β  0.5249 

(19.4970) 

STOXX PXα α  0.0398 
(1.8675) STOXX PXβ β  0.5249 

(6.2290) 

BUX WIGα α  0.0127 
(1.3994) BUX WIGβ β  0.5761 

(1.6480) 

BUX PXα α  0.0229 
(1.3770) BUX PXβ β  0.5761 

(1.6038) 

WIG PXα α  0.0096 
(1.4379) WIG PXβ β  0.8755 

(6.1848) 
 
 

DCCL  -3317.4947 

GDCCL  -3313.3326 

LR  8.3242 
 
Notes: This table gives the quasi-maximum likelihood estimates of DCC model in (6) and GDCC model 
in (7) for the international part of analysis. t-statistics are given in parentheses. t-statistics of the parameter 
functions for GDCC model are calculated using the delta method. LR  is likelihood ratio test statistic of 
GDCC against DCC specification, distributed 2

8χ . The upper 1 and 5 percentile points of the 2
8χ  

distribution are 20.09 and 15.51, respectively.  
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Table 6. DCC conditional correlation estimates: regional analysis 
 

 
DCC 

 

α  0.0129 
(7.7099) β  0.9723 

(216.9331) 
 

GDCC 
 

DAX CACα α  0.0302 
(3.6231) DAX CACβ β  0.9599 

(21.1992) 

DAX FTSEα α  0.0169 
(2.8775) DAX FTSEβ β  0.9724 

(21.8428) 

DAX BUXα α  0.0079 
(1.6855) DAX BUXβ β  0.9734 

(22.7236) 

DAX WIGα α  0.0112 
(1.4986) DAX WIGβ β  0.9487 

(16.7792) 

DAX PXα α  0.0168 
(1.8745) DAX PXβ β  0.9317 

(14.8427) 

CAC FTSEα α  0.0244 
(3.3854) CAC FTSEβ β  0.9675 

(23.2672) 

CAC BUXα α  0.0114 
(1.7486) CAC BUXβ β  0.9685 

(24.5071) 

CAC WIGα α  0.0162 
(1.6210) CAC WIGβ β  0.9440 

(18.4610) 

CAC PXα α  0.0243 
(1.9606) CAC PXβ β  0.9270 

(15.3251) 

FTSE BUXα α  0.0064 
(1.8903) FTSE BUXβ β  0.9811 

(28.7756) 

FTSE WIGα α  0.0090 
(1.4443) FTSE WIGβ β  0.9563 

(17.1280) 

FTSE PXα α  0.0136 
(1.9331) FTSE PXβ β  0.9391 

(15.8112) 

BUX WIGα α  0.0042 
(1.1135) BUX WIGβ β  0.9572 

(15.8165) 

BUX PXα α  0.0064 
(1.2306) BUX PXβ β  0.9400 

(13.1607) 

WIG PXα α  0.0090 
(1.1599) WIG PXβ β  0.9162 

(11.5623) 
 
 

DCCL  -3759.3417 

GDCCL  -3744.3135 

LR  30.0563 
 
Notes: This table gives the quasi-maximum likelihood estimates of DCC model in (6) and GDCC model 
in (7) for the regional part of analysis. t-statistics are given in parentheses. t-statistics of the parameter 
functions for GDCC model are calculated using the delta method. LR  is likelihood ratio test statistic of 
GDCC against DCC specification, distributed 2

10χ . The upper 1 and 5 percentile points of the 2
10χ  

distribution are 23.21 and 18.31, respectively. 
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Figure 2. Conditional correlations 
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Figure 3. Volatility versus correlations 

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

.48 .52 .56 .60 .64 .68

CORR_SP_STOXX

VS
P

.000

.001

.002

.003

.004

.48 .52 .56 .60 .64 .68

CORR_SP_STOXX

VS
T

O
XX

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

.2 .3 .4 .5

CORR_SP_BUX

VS
P

.000

.004

.008

.012

.016

.020

.024

.028

.032

.036

.2 .3 .4 .5

CORR_SP_BUX

V
B

U
X

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

.1 .2 .3 .4 .5

CORR_SP_WIG

V
S

P

.000

.002

.004

.006

.008

.010

.1 .2 .3 .4 .5

CORR_SP_WIG

VW
IG

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

-.1 .0 .1 .2 .3

CORR_SP_PX

VS
P

.000

.001

.002

.003

.004

.005

-.1 .0 .1 .2 .3

CORR_SP_PX

VP
X

.000

.001

.002

.003

.004

.2 .3 .4 .5

CORR_STOXX_BUX

VS
TO

XX

.000

.004

.008

.012

.016

.020

.024

.028

.032

.036

.2 .3 .4 .5

CORR_STOXX_BUX

VB
U

X

.000

.001

.002

.003

.004

.1 .2 .3 .4 .5

CORR_STOXX_WIG

VS
T

O
XX

.000

.002

.004

.006

.008

.010

.1 .2 .3 .4 .5

CORR_STOXX_WIG

VW
IG

.000

.001

.002

.003

.004

.04 .08 .12 .16 .20 .24 .28 .32 .36 .40

CORR_STOXX_PX

VS
TO

X
X

.000

.001

.002

.003

.004

.005

.04 .08 .12 .16 .20 .24 .28 .32 .36 .40

CORR_STOXX_PX

VP
X

.000

.004

.008

.012

.016

.020

.024

.028

.032

.036

.4 .5 .6 .7

CORR_BUX_WIG

VB
U

X

 



 31 

 

.000

.002

.004

.006

.008

.010

.4 .5 .6 .7

CORR_BUX_WIG

VW
IG

.000

.004

.008

.012

.016

.020

.024

.028

.032

.036

.3 .4 .5 .6

CORR_BUX_PX

VB
U

X

.000

.001

.002

.003

.004

.005

.3 .4 .5 .6

CORR_BUX_PX

VP
X

.000

.002

.004

.006

.008

.010

.3 .4 .5 .6

CORR_WIG_PX

VW
IG

.000

.001

.002

.003

.004

.005

.3 .4 .5 .6

CORR_WIG_PX

VP
X

.000

.001

.002

.003

.004

.005

.006

.007

.6 .7 .8 .9

CORR_DAX_CAC

VD
A

X

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

.0036

.6 .7 .8 .9

CORR_DAX_CAC

VC
AC

.000

.001

.002

.003

.004

.005

.006

.007

.5 .6 .7 .8

CORR_DAX_FTSE

VD
A

X

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.5 .6 .7 .8

CORR_DAX_FTSE

VF
TS

E

.000

.001

.002

.003

.004

.005

.006

.007

.2 .3 .4 .5 .6

CORR_DAX_BUX

VD
A

X

.000

.004

.008

.012

.016

.020

.024

.028

.032

.036

.2 .3 .4 .5 .6

CORR_DAX_BUX

VB
U

X

.000

.001

.002

.003

.004

.005

.006

.007

.24 .28 .32 .36 .40 .44 .48 .52 .56

CORR_DAX_WIG

VD
A

X

.000

.002

.004

.006

.008

.010

.24 .28 .32 .36 .40 .44 .48 .52 .56

CORR_DAX_WIG

VW
IG

.000

.001

.002

.003

.004

.005

.006

.007

.0 .1 .2 .3 .4 .5

CORR_DAX_PX

VD
A

X

.000

.001

.002

.003

.004

.005

.0 .1 .2 .3 .4 .5

CORR_DAX_PX

VP
X

 



 32 

 

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

.0036

.5 .6 .7 .8 .9

CORR_CAC_FTSE

VC
AC

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.5 .6 .7 .8 .9

CORR_CAC_FTSE

VF
TS

E

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

.0036

.2 .3 .4 .5

CORR_CAC_BUX

VC
AC

.000

.004

.008

.012

.016

.020

.024

.028

.032

.036

.2 .3 .4 .5

CORR_CAC_BUX

VB
U

X

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

.0036

.2 .3 .4 .5 .6

CORR_CAC_WIG

VC
AC

.000

.002

.004

.006

.008

.010

.2 .3 .4 .5 .6

CORR_CAC_WIG

VW
IG

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

.0036

.08 .12 .16 .20 .24 .28 .32 .36 .40 .44

CORR_CAC_PX

VC
AC

.000

.001

.002

.003

.004

.005

.08 .12 .16 .20 .24 .28 .32 .36 .40 .44

CORR_CAC_PX

VP
X

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.1 .2 .3 .4 .5

CORR_FTSE_BUX

VF
TS

E

.000

.004

.008

.012

.016

.020

.024

.028

.032

.036

.1 .2 .3 .4 .5

CORR_FTSE_BUX

VB
U

X

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.1 .2 .3 .4 .5

CORR_FTSE_WIG

VF
TS

E

.000

.002

.004

.006

.008

.010

.1 .2 .3 .4 .5

CORR_FTSE_WIG

VW
IG

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.00 .05 .10 .15 .20 .25 .30 .35 .40

CORR_FTSE_PX

VF
TS

E

.000

.001

.002

.003

.004

.005

.00 .05 .10 .15 .20 .25 .30 .35 .40

CORR_FTSE_PX

VP
X

 



 33 

Table 7. Volatility Threshold DCC: international analysis 
 
 50% 75% 90% 95% 
2α  0.0250 

(5.9788) 
0.0214 

(5.8023) 
0.0172 

(5.6149) 
0.0145 

(5.4494) 
2β  0.8554 

(27.1674) 
0.8945 

(41.9447) 
0.9270 

(69.4995) 
0.9338 

(88.5245) 

SP STOXXγ γ  
0.0022 

(0.8597) 
0.0249 

(1.9621) 
0.0238 

(2.4799) 
0.0592 

(3.6293) 

SP BUXγ γ  
0.0037 

(1.1350) 
-0.0054 

(-0.5213) 
-0.0087 

(-0.7652) 
-0.0083 

(-0.5421) 

SP WIGγ γ  
0.0187 

(1.4032) 
0.0062 

(0.6814) 
0.0159 

(1.4902) 
0.0411 

(2.0263) 

SP PXγ γ  
0.0036 

(1.1075) 
-0.0073 

(-0.5924) 
-0.0189 

(-1.3258) 
-0.0313 

(-1.5231) 

STOXX BUXγ γ  
0.0027 

(1.0123) 
-0.0037 

(-0.5031) 
-0.0058 

(-0.7753) 
-0.0061 

(-0.5499) 

STOXX WIGγ γ  
0.0138 

(1.2213) 
0.0042 

(0.6711) 
0.0106 

(1.3134) 
0.0299 

(1.8090) 

STOXX PXγ γ  
0.0027 

(1.0495) 
-0.0050 

(-0.6323) 
-0.0126 

(-1.4008) 
-0.0228 

(-1.6185) 

BUX WIGγ γ  
0.0231 

(1.3677) 
-0.0009 

(-0.4989) 
-0.0038 

(-0.8369) 
-0.0042 

(-0.5873) 

BUX PXγ γ  
0.0045 

(1.1102) 
0.0011 

(0.3598) 
0.0046 

(0.6579) 
0.0032 

(0.4942) 

WIG PXγ γ  
0.0226 

(1.4453) 
-0.0012 

(-0.5155) 
-0.0084 

(-1.3152) 
-0.0158 

(-1.5154) 
 

VT DCCL −  -3314.163 -3314.053 -3314.244 -3310.933 

VT GDCCL −  -3297.788 -3305.210 -3309.883 -3309.066 

LR  32.750 17.686 8.722 3.734 
 

Notes: This table gives the quasi-maximum likelihood estimates of VT-DCC model in (14) with the 
restrictions on the GARCH dynamics of the conditional correlations, and the matrix tV  defined as in 
(12). t-statistics are given in parentheses. t-statistics are calculated using the delta method. LR  is 
likelihood ratio test statistic of VT-GDCC against VT-DCC specification, distributed 2

8χ . The upper 1 

and 5 percentile points of the 2
8χ  distribution are 20.09 and 15.51, respectively.  
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Table 8. Volatility Threshold DCC: regional analysis 
 
 50% 75% 90% 95% 
2α  0.0058 

(5.8697) 
0.0043 

(5.0309) 
0.0053 

(6.2938) 
0.0090 

(6.8836) 
2β  0.9836 

(440.8916) 
0.9867 

(593.0920) 
0.9855 

(436.0248) 
0.9731 

(260.9315) 

DAX CACγ γ  
0.0125 

(3.4165) 
0.0129 

(3.8353) 
0.0181 

(3.9205) 
0.0421 

(2.7911) 

DAX FTSEγ γ  
0.0094 

(3.3095) 
0.0104 

(3.9613) 
0.0150 

(3.7319) 
0.0287 

(2.8360) 

DAX BUXγ γ  
0.0035 

(1.4627) 
0.0044 

(1.6508) 
0.0061 

(1.3424) 
0.0072 

(0.8045) 

DAX WIGγ γ  
0.0009 

(0.4572) 
-0.0003 

(-0.1596v 
-0.0011 

(-0.3168) 
0.0073 

(0.7782) 

DAX PXγ γ  
0.0041 

(1.6058) 
0.0052 

(2.1164) 
0.0072 

(1.4531) 
0.0077 

(0.7396) 

CAC FTSEγ γ  
0.0112 

(2.8114) 
0.0111 

(3.3691) 
0.0128 

(3.1801) 
0.0293 

(2.3748) 

CAC BUXγ γ  
0.0042 

(1.5312) 
0.0047 
1.5957) 

0.0052 
(1.3000) 

0.0073 
(0.7853) 

CAC WIGγ γ  
0.0011 

(0.4779) 
-0.0003 

(-0.1587) 
-0.0009 

(-0.3106) 
0.0074 

(0.7721) 

CAC PXγ γ  
0.0049 

(1.6639) 
0.0055 

(2.0895) 
0.0061 

(1.4263) 
0.0078 

(0.7183) 

FTSE BUXγ γ  
0.0032 

(1.5514) 
0.0037 

(1.6979) 
0.0043 

(1.3386) 
0.0050 

(0.8155) 

FTSE WIGγ γ  
0.0008 

(0.4649) 
-0.0003 

(-0.1595) 
-0.0007 

(-0.3128) 
0.0050 

(0.7713) 

FTSE PXγ γ  
0.0037 

(1.5253) 
0.0044 

(1.9764) 
0.0051 

(1.4296) 
0.0053 

(0.7444) 

BUX WIGγ γ  
0.0003 

(0.4154) 
-0.0001 

(-0.1633) 
-0.0003 

(-0.3233) 
0.0013 

(0.5198) 

BUX PXγ γ  
0.0014 

(1.0223) 
0.0019 

(1.2052) 
0.0021 

(0.9425) 
0.0013 

(0.5361) 

WIG PXγ γ  
0.0004 

(0.4312) 
-0.0001 

(-0.1608) 
-0.0004 

(-0.3167) 
0.0014 

(0.5048) 
 

VT DCCL −  -3751.576 -3750.113 -3751.727 -3753.884 

VT GDCCL −  -3738.453 -3739.610 -3742.214 -3742.657 
 

LR  26.246 21.006 19.026 22.454 
 

Notes: This table gives the quasi-maximum likelihood estimates of VT-DCC model in (14) with the 
restrictions on the GARCH dynamics of the conditional correlations, and the matrix tV  defined as in 
(12). t-statistics are given in parentheses. t-statistics are calculated using the delta method. LR  is 
likelihood ratio test statistic of VT-GDCC against VT-DCC specification, distributed 2

10χ . The upper 1 

and 5 percentile points of the 2
10χ  distribution are 23.21 and 18.31, respectively. 
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Table 9. Volatility Threshold Asymmetric DCC: international analysis 
 
 50% 75% 90% 95% 
2α  0.0241 

(5.8548) 
0.0267 

(6.1420) 
0.0103 

(4.8527) 
0.0078 

(4.5522) 
2β  0.8594 

(29.6925) 
0.8446 

(26.1097) 
0.9569 

(119.7003) 
0.9658 

(167.0667) 

SP STOXXγ γ  
0.0088 

(1.3886) 
0.0037 

(0.9844) 
0.0510 

(2.6939) 
0.0826 

(3.1205) 

SP BUXγ γ  
0.0077 

(1.5626) 
0.0055 

(1.3539) 
-0.0077 

(-0.6377) 
-0.0050 

(-0.3465) 

SP WIGγ γ  
0.0456 

(2.0795) 
0.0359 

(1.6569) 
0.0167 

(1.5216) 
0.0375 

(1.7796) 

SP PXγ γ  
0.0082 

(1.5206) 
0.0060 

(1.2907) 
-0.0241 

(-1.5173) 
-0.0521 

(-2.2039) 

STOXX BUXγ γ  
0.0066 

(1.4384) 
0.0044 

(1.1497) 
-0.0059 

(-0.6271) 
-0.0035 

(-0.3451) 

STOXX WIGγ γ  
0.0392 

(1.8807) 
0.0289 

(1.3374) 
0.0129 

(1.4787) 
0.0265 

(1.7875) 

STOXX PXγ γ  
0.0070 

(1.4712) 
0.0048 

(1.1538) 
-0.0186 

(-1.5629) 
-0.0369 

(-2.3375) 

BUX WIGγ γ  
0.0346 

(1.6168) 
0.0434 

(1.6443) 
-0.0019 

(-0.6576) 
-0.0016 

(-0.3588) 

BUX PXγ γ  
0.0062 

(1.3200) 
0.0072 

(1.3036) 
0.0028 

(0.5731) 
0.0022 

(0.3302) 

WIG PXγ γ  
0.0366 

(1.6854) 
0.0473 

(1.6164) 
-0.0061 

(-1.3294) 
-0.0167 

(-1.7372) 
 

VT DCCL −  -3311.5123 -3312.9189 -3312.3696 -3310.3283 

VT GDCCL −  -3304.8729 -3302.3611 -3308.7538 -3309.3240 

LR  13.2788 21.1156 7.2316 2.0086 
 

Notes: This table gives the quasi-maximum likelihood estimates of VT-ADCC model in (14) with the 
restrictions on the GARCH dynamics of the conditional correlations, and the matrix tV  defined as in 
(17). t-statistics are given in parentheses. t-statistics are calculated using the delta method. LR  is 
likelihood ratio test statistic of VT-GDCC against VT-DCC specification, distributed 2

8χ . The upper 1 

and 5 percentile points of the 2
8χ  distribution are 20.09 and 15.51, respectively.  
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Table 10. Volatility Threshold Asymmetric DCC: regional analysis 
 
 50% 75% 90% 95% 
2α  0.0055 

(5.7776) 
0.0049 

(5.5377) 
0.0057 

(6.5093) 
0.0081 

(7.5531) 
2β  0.9835 

(429.3885) 
0.9849 

(535.1780) 
0.9846 

(425.7374) 
0.9799 

(315.1847) 

DAX CACγ γ  
0.0167 

(3.3683) 
0.0165 

(3.5847) 
0.0182 

(3.1927) 
0.0222 

(1.9090) 

DAX FTSEγ γ  
0.0130 

(3.0191) 
0.0156 

(3.3344) 
0.0197 

(3.3256) 
0.0237 

(2.3488) 

DAX BUXγ γ  
0.0045 

(1.3315) 
0.0066 

(1.7667) 
0.0085 

(1.4954) 
0.0015 

(0.3402) 

DAX WIGγ γ  
0.0013 

(0.4379) 
6.78e-04 
(0.2271) 

-0.0037 
(-0.8916) 

0.0042 
(0.6645) 

DAX PXγ γ  
0.0051 

(1.3800) 
0.0051 

(1.4802) 
0.0048 

(0.8612) 
-0.0108 

(-1.2343) 

CAC FTSEγ γ  
0.0175 

(2.6473) 
0.0203 

(3.1061) 
0.0243 

(3.3160) 
0.0438 

(2.9305) 

CAC BUXγ γ  
0.0060 

(1.3879) 
0.0086 

(1.7340) 
0.0104 

(1.4146) 
0.0028 

(0.3394) 

CAC WIGγ γ  
0.0017 

(0.4484) 
0.0001 

(0.2274) 
-0.0046 

(-0.8791) 
0.0077 

(0.6694) 

CAC PXγ γ  
0.0069 

(1.4334) 
0.0067 

(1.4924) 
0.0059 

(0.8604) 
-0.0200 

(-1.2677) 

FTSE BUXγ γ  
0.0047 

(1.3537) 
0.0081 

(1.8237) 
0.0113 

(1.5288) 
0.0030 

(0.3434) 

FTSE WIGγ γ  
0.0013 

(0.4371) 
0.0008 

(0.2257) 
-0.0050 

(-0.8921) 
0.0082 

(0.6693) 

FTSE PXγ γ  
0.0053 

(1.3214) 
0.0063 

(1.4180) 
0.0064 

(0.8648) 
-0.0213 

(-1.2078) 

BUX WIGγ γ  
0.0004 

(0.3894) 
0.0004 

(0.2164) 
-0.0021 

(-0.9260) 
0.0005 

(0.2930) 

BUX PXγ γ  
0.0018 

(0.8878) 
0.0027 

(1.0562) 
0.0027 

(0.7131) 
-0.0014 

(-0.3494) 

WIG PXγ γ  
0.0005 

(0.4018) 
0.0003 

(0.2212) 
-0.0012 

(-0.6653) 
-0.0037 

(-0.6809) 
 

VT DCCL −  -3752.4975 -3751.5902 -3752.7170 -3754.8699 

VT GDCCL −  -3739.0166 -3736.6451 -3740.8362 -3741.8587 

LR  26.9618 29.8902 23.7616 26.0224 
 

Notes: This table gives the quasi-maximum likelihood estimates of VT-ADCC model in (14) with the 
restrictions on the GARCH dynamics of the conditional correlations, and the matrix tV  defined as in 
(17). t-statistics are given in parentheses. t-statistics are calculated using the delta method. LR  is 
likelihood ratio test statistic of VT-GDCC against VT-DCC specification, distributed 2

10χ . The upper 1 

and 5 percentile points of the 2
10χ  distribution are 23.21 and 18.31, respectively. 

 
 
 


