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Abstract 

We develop a dynamic model of limit order in an order-driven market, where 

traders differ in their share valuations. Taking into consideration traders learning 

process and allowing the conditional probability of limit order execution to vary, we 

can analyze the dynamics of order execution. Our results have interesting empirical 

implications that are closely related to existing literature on order sequences and order 

execution, and yield further insight into the dynamic process of order execution. 

Furthermore, the paper complements the literature on the transaction costs of limit 

orders: we show that the intraday pattern of the cost of limit order submitted by 

uninformed traders is U-shaped. 
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1. Introduction  

The successful development of electronic limit order trading platforms in almost 

all major stock markets around the world has drawn increasing attention to the 

academic research on the order driven market. Among the growing body of theoretical 

literature on order driven markets, there are models that describe the price formation 

process of limit orders (e.g., Glosten(1989,1994), Foucault(1999), Parlour(1998), 

Sandas(2001), and Seppi(1997)), models that explore the probability of limit order 

execution(e.g., Angel(1994)), and trader’s choice models of limit vs. market orders 

(e.g., Holden and Chakravarty, 1995). In this paper we address the following 

questions: (1) What is the dynamic behavior of order execution when uninformed 

traders can learn? (2) What is the intraday pattern of the execution cost of limit 

orders?  

Traders in the order-driven markets face a dilemma in choosing the type of order 

to submit. A market order is executed with certainty at the quoted price. With a limit 

order, a trader has the possibility to improve the price of execution, but she runs the 

risk of non-execution and faces the adverse selection risk if the order is executed. The 

cost of non-execution and the adverse selection cost of execution have been well 

discussed in the literature; however, little has been said about the intraday behavior of 

the costs1. By analyzing the variation of the conditional probabilities of limit order 

execution, we are able to explore the intraday behavior of the non-execution cost and 

adverse selection risk of limit orders, thereby explain the intraday pattern of the 

liquidity and price volatility in an order-driven market.  

                                                 
1 Although there are many empirical studies focus on the trading cost of limit order, none has 
discussed the intraday pattern. Some focuse on the costs and determinants of order aggressiveness (e.g., 
Keim and Madhavan (1997), and Giffiths, Smith, Turnbull, White (2000)), others on the comparison of 
trading costs for different stocks (e.g., Barclay, Christies, Harris, Kandel and Schultz (1997), 
Bessembinder and Kaufman (1997), Jones and Lipaon (1997)), and others on the survival analysis of 
limit order execution times and it’s determinants (e.g., Lo, MacKinlay, Zhang (2002)). 
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Glosten (1994) derives the equilibrium price schedule in an open limit order 

book. He shows that limit order traders profit from liquidity driven traders but lose 

from information driven price changes. Handa and Schwartz (1996) analyze the 

rationale for limit order trading. They posit that those traders who have minimal 

non-execution costs have an incentive to submit limit orders, while those who have 

high non-execution costs prefer to submit market orders, though they do not explicitly 

model the trader’s decision. Earlier theories of limit orders trading such as the studies 

mentioned above are mostly static models.  

More recently, Parlour (1998) and Foucault (1999) develop dynamic models of 

limit order trading. In Parlour (1998) the endogenous probability of limit order 

execution depends on the state of the book as well as the agent’s belief regarding 

further order arrivals. Foucault (1999) provides a game theoretic model of price 

formation and order placement decisions. Foucault, Kadan, Kandel (2001) develop a 

dynamic model of an order driven market populated by discretionary liquidity traders. 

They find that equilibrium pattern is determined by the degree of impatience of the 

patient traders, their proportion in the population, and the tick size.  

However, while information asymmetry plays an important role in the real world, 

none of these dynamic models account for private information in their analysis. Hence, 

their predictions may not always be consistent with empirical findings. For example, 

Parlour (1998) predicts that the conditional probability of a limit buy order followed 

by the same type order should be less than the conditional probability of a limit sell 

order followed by a limit buy order. But Ranaldo (2003) finds the opposite empirical 

evidence on the Swiss Stock Exchange, and he points out the reason for the opposite 

finding may be that information asymmetry was ruled out from Parlour’s model. 

Handa, Schwartz, Tiwari (2003) highlight the issue of information asymmetry by 



 4

extending the ideas of Foucault (1999) in a more general model in which the traders 

not only differ in share valuation but also in information availability. They show that 

the size of the spread in an order driven market is a function of adverse selection and 

the differences in valuation among investors. But their model mainly focuses on the 

determinants of bid-ask spread, and does not deal with the issue of order sequences 

and the dynamic behavior of order execution2. Although Foucault (1999) and Handa, 

Schwartz, Tiwari (2003) improve the previous models with respect to information 

asymmetry, the probability of order arrival or order execution is non-dynamic in their 

models, which contradicts to what many empirical papers have found. 

Empirical evidences tell us that the probability of order arrival is not random, for 

example, orders are often followed by similar orders, which are referred to as the 

diagonal effect in Biais, Hillion and Spatt (1995) study on limit orders in Paris Bourse. 

Later, Al-Suhaibani and Kryznowski (2001) also find similar result in Saudi stock 

market. However, there is much less theoretical analysis on this issue. What is the 

dynamic behavior of order execution? Is there any intraday pattern in the execution 

cost of limit orders? Surprisingly, these questions have not been adequately 

addressed3. The objective of this study is to develop a dynamic order execution model. 

Our model is an extension of Foucault (1999) and Handa, Schwartz, Tiwari (2003), in 

                                                 
2 Handa, Schwartz and Tiwari (2003) describe the unconditional probabilities of the arrival of 
uninformed traders and the limit order execution, but not the conditional dynamics of order execution.      
3 The foregoing researches examined the traders’ choice between limit and market orders, they did not 
discuss the intraday pattern. And in the last few years, several empirical studies have devoted to the 
issue of the determinants of trader’s order choice and the probabilities and times of limit order 
execution, for examples: using data from the Paris Bourse, Biais, Hillion and Spatt (1995) find 
evidence that traders submit more market orders when the order book is relatively full and more limit 
orders when the order book is relatively empty. Harris and Hasbrouck (1996) analyze the profitability 
of alternative order placement strategies in different market conditions. Hollifield, Miller and Sandas 
(2001) analyze order placement strategies in a limit order market, using data on the order flow from the 
Stockholm Stock Exchange. Lo, MacKinlay, Zhang (2002) develop econometric models of limit order 
execution times using survival analysis, and estimate them with actual limit order data. Bae, Jang, Park 
(2003) examine a trader’s order choice between market and limit orders using a sample of orders 
submitted through NYSE SuperDot. Harris (1998) develops a dynamic model, in which separate 
solutions are obtained for quoted and order-driven markets.  
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addition to take into consideration the information asymmetry as Handa, et al., we 

further model the dynamics of the conditional probability of order execution and 

analyze the dynamics of the cost of limit orders in the order driven market. In short, 

this paper differs from previous studies in two aspects; first, unlike previous studies 

where the probability of limit order execution is invariant to time, the conditional 

probability of limit order execution in our model is free to vary; second, we explore 

the intraday patterns of the transaction cost of limit orders. While the price formation 

process and the intraday patterns of the spread and trading activities in the specialist 

and dealer markets have been extensively studied, this paper complements the 

literature on the intraday transaction costs in the order driven market.   

As in Handa, Schwartz, Tiwari (2003), traders differ in their share valuation and 

the advent of information, in static equilibrium, the determinants of price and spread 

are obtained. The static equilibrium results conform to other studies on the 

determinants of bid ask spreads. Our results imply that the bid ask spread in the order 

driven market increases as the volatility of the asset increases, and it decreases as the 

number of uninformed traders increases. The result is similar to the positive relation 

found between bid ask spread and adverse selection in many studies on quote driven 

markets.4 In addition, the result suggests that the relation between the difference in 

share valuation and the bid ask spread is positive when there is no serious order 

imbalance, however, if there is order imbalance, the greater the difference in share 

valuation among agents, the smaller is the bid ask spread.     

The results of the dynamic analysis show that: First, the probability of order 

execution is influenced by the structure of traders, the expected value of the risky 

asset, and the expected aggressiveness of the other traders. Our result supports the 

                                                 
4 For example, Copeland and Galai(1983), Glosten and Milgrom(1985), and Easley and O’Hara(1987) 
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empirical findings of Hollifield, Miller, Sandas (2001)5, and Hollifield, Miller, Sandas 

and Slive (2002)6. Second, contrary to Parlour(1998), we show that following the 

execution of a buy(sell) order, the conditional probability of a buy(sell) order 

execution increases.  Finally, the result suggests that the intraday pattern of the cost 

of limit order submitted by uninformed traders is U-shaped.  

The findings and implications of the model are closely related to other empirical 

and theoretical studies, for example, the implication about order sequences helps to 

explain the empirical findings of Hamao and Hasbrouck (1995), Biais, Hillion, and 

Spatt (1995) and Ranaldo (2003)7; the implication about bid-ask spread and adverse 

selection is similar to the theories of bid-ask spread in the quote-driven market8, and 

the determinants of the probabilities of execution are closely related to Foucault 

(1999), Foucault, Kadan, Kandel (2001), and Handa, Schwartz, Tiwari (2003).  

The rest of the paper is organized as follows. Section 2 presents a model of a 

pure order driven market and discusses the static equilibrium and the determinants of 

price and bid-ask spread, followed by the dynamic analysis. Section 3 discusses the 

implications of the model. Section 4 concludes the paper.  

 

                                                 
5 Their findings imply that variation in the composition of the order flow can be explained by variation 
in the relative profitability of alternative order choices and the movements in the common value of the 
asset.    
6 Hollifield, Miller, Sandas and Slive (2002) find that a trader’s optimal order submission changes with 
market conditions.    
7 Hamao and Hasbrouck (1995) find order persistence and suggest that the order continuation may 
depend on information motives. Biais et al. (1995) explain in more details, they report that the most 
likely incoming order type would be the same order type that just arrived, this phenomenon may be a 
result of order splitting, trading imitation, and the same response to the information. Ranaldo (2003) 
finds the sequence of a trade and a subsequent order in the same direction on the Swiss Stock 
Exchange. 
8 This informational source of the spread has been first suggested by Bagehot (1971) and formally 
analyzed by Copeland and Galai (1983). Glosten and Milgrom (1985) use a formal model to show how 
the spread arises from adverse selection. Easley and O’Hara (1987), focusing on the learning process of 
market makers in dealer markets, find that the bid ask spread is positive related with the adverse 
selection risk.   
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2. Theoretical Model  

2.1 Model assumptions 

Assumption 1: Asset Valuation 

There is a single risky asset in the order driven market, the true value of the asset 

is a random variable, v~ .  There are N traders who buy or sell this asset during the 

trading periods. Traders differ in their information about the asset value. The 

uninformed traders can observe the public information of asset value, and their trades 

are driven by liquidity demand or influenced by noise. The other traders are the 

informed traders, who possess private information about the asset value. Their trades 

are information-driven. Assume uninformed traders believe the value of the asset is 

uniformly distributed as v~ ~ ),( HL VVU , and the expected asset value is 

u
HL

u V
VV

vE =
+

=
2

]~[ . The informed believe the value of the asset is distributed as 

v~ ~ ),( hl VVU , and the expected asset value is i
hl

i V
VV

vE =
+

=
2

]~[ . Due to the 

superiority of the private information, the precision of evaluation is higher for the 

informed, that is,  ( lh VV − ) < ( LH VV − ). The volatility of the asset value based on 

public information, 
12

)( 2
LH VV −

, is greater than that based on private information, 

12
)( 2

lh VV −
. The true value of the asset becomes public by the end of the trading 

period. 

Assumption 2: Trading periods  

The time horizon is one normal trading day. The trading day is divided into 

discrete time intervals denoted by t, t=1,2,3,…,T~ . We assume that the payoff time T~  

is random. At time t, the probability that the trader’s expected trading process stops  

and the payoff of the asset is realized is (1- tρ ) >0, where tρ  is the probability that 
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the trading process continues. Furthermore, (1- tρ ) is an increasing function of t; that 

is, 
t

t

∂
−∂ )1( ρ

>0.  

Assumption 3: Order placement strategies 

Traders arrive sequentially to trade one share of the asset. Upon arrival, an 

uninformed trader can choose to place a limit order or to place a market order. A limit 

order is held until the next trader arrives, at which point it is either executed or 

expired.  

Assumption 4: Trading behavior 

The behavior of the two types of traders is described in more detail as follows:   

1.Uninformed trader: Suppose there are U uninformed traders out of the N traders. In 

addition to public information, these traders may be influenced by noise, so they have 

different reservation prices of the asset. Assume that there are bU  uninformed 

traders who think the asset value is equal to 
bUV = vdvfvH

u

V

V
~)~(~∫ = uV +ε, ε>0 and 

they are buyers, while there are sU  uninformed traders who think the asset value is 

equal to 
sUV = vdvfvu

L

V

V
~)~(~∫ = uV -ε, and they are sellers. If the noiseεonly influences 

the range of the volatility of asset value, but not the distribution of the value, then 

4
1

=ε ( LH VV − ). 

2.Informed traders: Suppose there are I informed traders out of N traders. They profit 

by their superior information. When ii VvE =]~[ > uu VvE =]~[ , they will choose to buy 

the asset; when iV < uV , they sell the asset. If iV = uV , they will not enter the market. 

Since private information is short-lived when there is competition among informed 

traders, we assume informed trader submit only market orders.  
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Assume traders are risk-neutral expected utility maximizers. For a specified price 

P, the expected utility of a buy order is )()( PVUE i −= λ , bUIi ,= , the expected 

utility of a sell order is )()( iVPUE −= λ , sUIi ,= , where λ  is the probability of 

execution of the order, I and U denote informed traders and uninformed traders, 

respectively.            

2.2 Equilibrium of bid-ask prices and spread  

Once a trader submits an order, the probability of limit order execution depends 

on the information they owned. There are three possible relations between public and 

private information, i.e., iV > uV , iV = uV , iV < uV , probability of each is 1/3. Since a 

limit order can only be executed when a market order arrives, trader’s placement 

strategies are interrelated. Assume the expected probability of a buy limit order placed 

by other uninformed traders is 1π , and the expected probability of a sell limit order 

placed by other uninformed traders is 2π . 1π  and 2π  can describe the 

aggressiveness of the orders. For example, if there are more aggressive traders in the 

market, 1π  or 2π  would be small.  

It is straightforward to see that:   

1.If iV > uV , there are I+ bU buyers and sU sellers,  the probability of buyer arrival 

is 1p =
UI
UI b

+
+

, so the probability of sellers entering the market is (1- 1p ). The 

proportion of informed buyers to total buyers is 1k =
bUI

I
+

, and there are no 

informed sellers in this case. 

2.If iV = uV , there are bU  buyers and sU sellers, the probability of buyer arrival is 

2p =
U
U b , and the probability of sellers entering the market is (1- 2p ). Informed 

traders do not trade in this case. 
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3.If iV < uV , there are bU  buyers and I+ sU  sellers, the probability of buyers 

entering the market is 3p =
UI

U b

+
, and the probability of sellers entering the market is 

(1- 3p ). The proportion of informed sellers to total sellers is 2k =
sUI

I
+

, and there 

are no informed buyers in this case.  

Figure 1 summarizes the order paths faced by an uninformed trader.  

Figure 1. The order path faced by uninformed traders. 
 
                                 Informed ( 1k )     Market order(1) 

                    Buyers entry( 1p ) 

          iV > uV                       uninformed (1- 1k )      Market order (1- 1π ) 

                  Sellers entry(1- 1p )     Market order(1- 2π )     Limit order( 1π ) 

                                       Limit order( 2π ) 

                  Buyers entry( 2p )      Market order(1- 1π ) 

        iV = uV                         Limit order( 1π ) 

                  Sellers entry(1- 2p )     Market order(1- 2π ) 

                                       Limit order( 2π )  

                    Buyers entry( 3p )     Market order(1- 1π ) 

         iV < uV                         Limit order( 1π ) 

                                       Informed ( 2k )     Market order(1) 

                   Sellers entry (1- 3p ) 

                                         Uninformed (1- 2k )      Market order(1- 2π ) 

                                                               Limit order ( 2π ) 

 

This tree describe the possible paths faced by uninformed traders. iV indicates the expected asset 

value of informed traders, and uV  indicates the expected asset value of uninformed traders. 1p , 2p , 

3p are the probabilities of buyers enter the market. 1k , 2k are the probabilities of informed trading. 

1π and 2π are the expected probability of a limit buy and limit sell orders placed by other uninformed 

traders.    

 

Upon arrival, an uninformed trader can choose to submit a limit or a market 

order. Based on the order path in Figure 1, the expected utility of the uninformed 
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trader is analyzed as follows.  

First, consider an uninformed buyer who arrives at time t and places a limit order. 

Let tB  be the bid price. The order will be executed if (1) the trading interval does 

not stop before the arrival of the next trader, (2) the next trader is a seller, and (3) the 

next trader submit a market order. The expected utility of this buyer is: 

})]}{()(3)[1{(
3

)( 233212 tu
t BVkppppUE −++++−−= επ

ρ
               (1) 

Let 1−tA  be the ask price of an uninformed seller arrives at time t-1. The 

expected utility of an uninformed buyer who arrives at time t and submits a market 

buy order: 

−+= )()( εuVUE 1−tA                                                 (2) 

For a buyer to be indifferent between a market order and a limit order, tB  must 

satisfy the following equality:  

−+ )( εuV 1−tA = tρ })]}{()(3)[1{(
3
1

233212 tu BVkpppp −++++−− επ         (3) 

Similarly, let tA  be the ask price of a limit sell. The expected utility of this 

seller is: 

)}(}{])1()[1{(
3

)( 1132111 επ
ρ

−−+++−−= ut
t VAkpppkpUE                (4) 

Let 1−tB  be the bid price of a buyer arriving at time t-1. Hence, the expected 

utility of a seller who arrives at time t and submits a market sell order is: 

)()( 1 ε−−= − ut VBUE                                                 (5) 

For a seller to be indifferent between a market and a limit order, tA  satisfies: 
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)(1 ε−−− ut VB = tρ }])1()[1{(
3
1

1132111 kpppkp +++−−π )}({ ε−− ut VA        (6) 

Stationary solution can be derived from Equations (5) and (6), and it does not 

depend on time9. The equilibrium is characterized by the optimal bid and ask prices 

{ *A , *B } as established in Proposition 1.  

Proposition 1.  

Given the values for ,,,,, LHsb VVUUI 1π  and 2π , the equilibrium bid and ask 

prices can be expressed as 

*B =
)1(

)1(2
xy

xyy
Vu −

+−
+

εε                                           (7) 

*A =
)1(
2)1(

xy
xxy

Vu −
−+

+
εε                                        (8)  

  Bid ask spread: s = *A - *B = }
)1(

)1)(1(
{2

xy
yx

−
−−

ε ≥ 0                      (9) 

Where 1p =
UI
UI b

+
+

, 2p =
U
U b , 3p =

UI
U b

+
, 1k =

bUI
I
+

, 2k =
sUI

I
+

 

x= ρ ]})(3)[1{(
3
1

233212 kpppp +++−−π , 10 ≤≤ x                  (10) 

y= ρ }])1()[1{(
3
1

1132111 kpppkp +++−−π , 10 ≤≤ y 且 10 ≤+≤ yx    (11) 

Proof. See the Appendix 1. 

x is the average probability of execution of a limit buy order, and y is the 

average probability of execution of a limit sell order. In equilibrium, the relationships 

between the limit price and the unconditional expected value of asset are as follows:  

                                                 
9 The structure of this model is similar to that in Foucault (1999) where the order placement strategy is 
endogenous, hence there is no point in time from which we can start solving recursively for the 
equilibrium.  
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1. When 012 ≥−− xyy , then uVBA ≥≥ ** .                      (12a) 

2. When 021 ≥−+ xxy  and 012 ≤−− xyy , then ** BVA u ≥≥ .     (12b) 

3. When 021 ≤−+ xxy , then ** BAVu ≥≥ .                      (12c) 

Equations 12a, 12b and 12c delineate how the level of limit prices is affected by the 

execution probabilities x and y. The three conditions of x and y are illustrated in 

Figure 2.   

Figure 2. The space of x and y  

 

y 

1 A 

        C                 012 =−− xyy      

0.5 B                      021 =−+ xxy  

               D          x+y=1 

 0         0.5          1              x      
            E          F              

The horizontal axis x is the average probability of execution of a limit buy order, and the vertical 

axis y is the average probability of execution of a limit sell order 

 

Figure 2 shows that, when the values of x and y are in the area of △ABC (y is 

far greater than x), then uVBA ≥≥ ** ; when the values of x and y are in the area of 

□BCDE (x is close to y), then ** BVA u ≥≥ ; when the values of x and y are in the 
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area of △DEF (x is far greater than y), then ** BAVu ≥≥ .  

From Equations (10) and (11), we know x is the average probability of execution 

of a limit buy order, and y is the average probability of execution of a limit sell order. 

The intuition of the relationship between the value of x, y and the limit prices is 

straightforward: When x is high, indicating the numbers of sellers is larger or sellers 

are more aggressive, hence the bid and ask prices will be lower. When y is high, 

indicating the number of buyers is larger or buyers are more aggressive, hence the bid 

and ask prices will be higher. Although the intuition of this relationship is 

straightforward, the conditions in (12) are helpful in the following discussion for the 

determinants of equilibrium bid-ask prices.      

2.3 The determinants of the equilibrium bid-ask prices   

We analyze the determinants of equilibrium bid-ask prices in three cases. 

Case 1. 021 ≥−+ xxy , 012 ≤−− xyy  ( ** BVA u ≥≥ ) 

Proposition 2  

When 021 ≥−+ xxy  and 012 ≤−− xyy , it can be shown that 
ε∂

∂ *A
≥ 0, 

x
A
∂
∂ *

≤0, 
y

A
∂
∂ *

≥ 0, 
ε∂

∂ *B
≤0, 

x
B
∂
∂ *

≤0, 
y

B
∂
∂ *

≥0. 

Proof. See the Appendix 2. 

The size of ε  indicates the noise in public information. When the 

volatility of asset value ε  rises, the risk of adverse selection born by 

uninformed traders increases. The uninformed require larger premium in this 

case, consequently, ask price increases and bid price decreases.       
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When the average probability of execution for a limit buy order is large, the 

non-execution risk of the buyers is lower than that of the sellers. Consequently, 

the bid price decreases as the buyers require higher premium, while the ask price 

decreases as the sellers seek to lower the risk of execution.  

When the average probability of execution for a limit sell order is large, the 

non-execution risk of buyers are higher then that of the sellers, Consequently, 

the ask price increases as the sellers require higher premium, while the bid price 

increases as the buyers seek to reduce the risk of execution.  

Case 2. 012 ≥−− xyy  ( uVBA ≥≥ ** ) 

Proposition 3 

If 012 ≥−− xyy , then 
ε∂

∂ *A
≥0，

x
A
∂
∂ *

≤0，
y

A
∂
∂ *

≥ 0 及
ε∂

∂ *B
≥0，

x
B
∂
∂ *

≤ 0，

y
B
∂
∂ *

≥0。 

Proof. See the Appendix 3. 

  In this case, the probability of execution of limit sell order y is far greater than 

x10, and the non-execution risk is very high for the uninformed traders with high 

valuations. As ε  increases, buyer’s valuation rises, to reduce the risk of 

non-execution they need to increase the bid price. Except for the relation 

between ε  and *B , all relationships hold as in Proposition 2.      

Case 3. 021 ≤−+ xxy  ( ** BAVu ≥≥ ) 

Proposition 4  

                                                 
10 See the figure 2. 
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If 021 ≤−+ xxy , then 
ε∂

∂ *A
≤0，

x
A
∂
∂ *

≤ 0，
y

A
∂
∂ *

≥0, and
ε∂

∂ *B
≤0，

x
B
∂
∂ *

≤0，

y
B
∂
∂ *

≥0。 

Proof. See the Appendix 4. 

In this case, x, the probability of execution of limit buy order, is far greater than 

y11, and the non-execution risk is very high for the uninformed traders with low 

valuations. So when ε  rises, the seller’s valuation of asset falls, to reduce the risk of 

non-execution they need to lower the ask price. Except for the relationship between 

ε  and *A , all relationships hold as in the proposition 2. 

The following comparative statics show the relations between the bid-ask spread and 

its determinants.  

Proposition 5.  

The relationships between the bid-ask spread and ε , x, y, are  

 
ε∂
∂s

≥0,  
x
s
∂
∂

≤0,  
y
s
∂
∂

≤0.  

Proof. See the Appendix 5. 

As the volatility of asset value rises, ε  rises, the risk of adverse selection 

perceived by uninformed traders also increases. Traders require higher premium, 

consequently, ask price increases and bid price decreases and the bid-ask spread 

widens. 

When the number of uninformed traders increases, both x and y increase, the risk 

of adverse selection perceived by uninformed traders decreases, traders require less 

premium, consequently, ask price decreases and bid price increases, causing the 
                                                 
11 See Figure 2. 
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bid-ask spread to narrow.  

2.4 Dynamic Analysis   

In the pervious static equilibrium analysis, we find that, consistent with other 

studies12, the levels of x and y affect the equilibrium price and bid-ask spread. But in 

the real world, the probability of order execution is not constant. In this section, we 

proceed to the dynamic analysis.  

In the above analysis, we assume there are three equally possible conditions 

between public and private information: iV > uV , iV = uV , iV < uV . However, as trading 

progresses, the expectation of the uninformed traders will adjust according to the 

order flow. For example, if only sell limit orders are executed, the uninformed traders 

would not perceive equal probability for the three situations. We will relax the equal 

probability assumption in the following analysis.  

If the last executed limit order is a sell order, the conditional probabilities of the 

three market situations are:  

11 −tt Iδ = )(Pr 1 SOELVVob tuit => − =
1

1111111 )]1)(1([

−

− −−+

t

t

y
kpkp πδ

          (13) 

12 −tt Iδ = )(Pr 1 SOELVVob tuit == − =
1

1212 )]1([

−

− −

t

t

y
p πδ

                     (14) 

13 −tt Iδ = )(Pr 1 SOELVVob tuit =< − =
1

1313 )]1([

−

− −

t

t

y
p πδ

                     (15) 

If the last executed limit order is a buy order, then the conditional probabilities of 

the three market situations are:   

11 −tt Iλ = )(Pr 1 BOELVVob tuit => − =
1

2111 )]1)(1[(

−

− −−

t

t

x
p πλ

                 (16) 

                                                 
12 Foucault (1999) and Handa, Schwartz and Tiwari (2003) also find the probability of order execution 
affect the equilibrium price and bid-ask spread.  . 
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12 −tt Iλ = )(Pr 1 BOELVVob tuit == − =
1

2212 )]1)(1[(

−

− −−
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x
p πλ

                 (17) 

13 −tt Iλ = )(Pr 1 BOELVVob tuit =< − =
1

2323213 )]1)(1)(1()1([

−

− −−−+−

t

t

x
pkpk πλ

 (18) 

Where 1−tI  denotes the information set at time t-1, Prob denotes probability, 1−tEL  

is the executed limit order at time t-1, SO is sell order, BO is buy order. 

Given that the last executed limit order is a sell order, the conditional probability 

of execution of a limit sell order is: 

E( SOELy tt =−1 )= tρ { 11 −tt Iδ × )]1)(1([ 11111 π−−+ kpkp  

+ 12 −tt Iδ × )1( 12 π−p + 13 −tt Iδ × )1( 13 π−p }                   (19) 

Given that the last executed limit order is a buy order, the conditional probability 

of execution of a limit sell order is: 

E( BOELy tt =−1 )= tρ { 11 −tt Iλ × )]1)(1([ 11111 π−−+ kpkp  

+ 12 −tt Iλ × )1( 12 π−p + 13 −tt Iλ × )1( 13 π−p }                   (20) 

Given that the last executed limit order is a sell order, the conditional probability 

of execution of a limit buy order is: 

E( SOELx tt =−1 )= tρ { 11 −tt Iδ × )]1)(1[( 21 π−− p + 12 −tt Iδ × )]1)(1[( 22 π−− p  

+ 13 −tt Iδ × )]1)(1)(1()1([ 23232 π−−−+− pkpk }              (21) 

Given that the last executed limit order is a buy order, the conditional probability 

of execution of a limit buy order is: 
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E( BOELx tt =−1 )= tρ { 11 −tt Iλ × )]1)(1[( 21 π−− p + 12 −tt Iλ × )]1)(1[( 22 π−− p  

+ 13 −tt Iλ × )]1)(1)(1()1([ 23232 π−−−+− pkpk }                  (22) 

From equations (13) to (22), we find that the average probability of execution is 

influenced by the probability of the stop of trading process (1- tρ ), the structure of 

traders ( sb UUI ,, ), the expected value of asset ( itit λδ , ), and the aggressiveness of 

traders ( 21 ,ππ ). Hence, the optimal limit price is also influenced by these factors.   

2.5 Order Sequences  

Previous studies have found a conditional order flow pattern, for instance, after 

the arrival of a limit buy order at the best bid price, the incoming order is most likely 

to be the same order type, this is called the diagonal effects. This result is first 

documented in Biais, Hillion and Spatt (1995) in Paris Bourse, followed by 

Al-Suhaibani and Kryznowski (2000) on the Saudi Stock Market. Biais, Hillion and 

Spatt (1995) offered three explanations to the diagonal effect: strategic order splitting, 

trade imitation, or similar reaction to information event.  

The finding on order sequences of this model is consistent with the documented 

diagonal effect. From equations (19) to (22), we can see that the conditional 

probability of order execution followed by the same type order is higher than the 

conditional probability of order execution followed by the different type order. If the 

last executed order is a sell order, then the conditional expected probability of iV > uV  

increases, as a result, the probability of execution of limit sell order increases. If the 

last executed order is a buy order, then the conditional expected probability of iV > uV  

decreases, as a result, the probability of execution of limit buy order increases. The 

following equations define the “diagonal effect”:    
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E( SOELy tt =−1 )>E( BOELy tt =−1 )                                   (23) 

E( SOELx tt =−1 )<E( BOELx tt =−1 )                                   (24) 

2.6 The cost of limit order trading  

The cost of limit order trading has two components. One is the cost of 

non-execution risk, the other is the cost of adverse selection risk. Conditional on the 

private information, the non-execution cost of a limit buy order of the uninformed 

trader is:  

1-{ tρ × 11 −tt Iθ × )]1)(1[( 21 π−− p }( ti BV − )                            (25) 

The cost of adverse selection risk of a limit buy order is:  

tρ { 13 −tt Iθ × )]1)(1)(1()1([ 23232 π−−−+− pkpk } ( ti BV − )                (26) 

Conditional on the private information, the non-execution cost of a limit sell 

order of the uninformed trader is: 

1-{ tρ ×1- 13 −tt Iθ × )1( 13 π−p } )( it VA −                                (27) 

The cost of adverse selection risk of a limit sell order is: 

tρ { 11 −tt Iθ × )]1)(1([ 11111 π−−+ kpkp } )( it VA −                         (28) 

θ are the conditional probabilities of the three market situations. If the last executed 

limit order is a buy order, 1−tit Iθ = 1−tit Iλ , if the last executed limit order is a sell 

order, 1−tit Iθ = 1−tit Iδ , i=1,3. 

From equations (25) and (27), we find that the cost of non-execution risk is an 
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increasing function of t, because (1- tρ ) is an increasing function of t. On the other 

hand, from equations (26) and (28), we find that the cost of adverse selection risk is a 

decreasing function of t. Since as trading proceeds the information is disclosed, the 

expectation and the limit price of the uninformed traders will adjust to the order flow 

accordingly to reduce the risk of adverse selection. Then limit price of uninformed 

will be more efficient, i.e., ( ti BV − ( 13 −tt Iθ )) ≤  ( τBVi − ( 13 −ττθ I )) and 

( tA ( 11 −tt Iθ )- iV )≤  ( τA ( 11 −ττθ I )- iV ) where τ <t. Therefore, the intraday pattern of 

the cost of limit order submitted by uninformed traders is U-shaped.  

3. Model Implications and relations to the literature  

Implication 1: The equilibrium limit buy and sell prices of liquidity traders are equal 

to the unconditional expected value of the asset.   

If the uninformed traders are not different in terms of share valuation, i.e., the 

noise of the expected asset value (ε ) is zero, then from equations (7) and (8), the 

equilibrium limit buy and sell prices are equal to uV . Hence, if trades are driven by 

liquidity demand then the optimal limit price is equal to the unconditional expected 

value of the asset.  

Implication 2: The bid-ask spread is an increasing function of the volatility of the 

unconditional expected value of the asset. 

Implication 2 is consistent with theoretical models of the bid-ask spread in dealer 

markets (see, for example, Copeland and Galai, 1983; Easley and O’Hara, 1987) and 

in order-driven markets (see, for example, Handa et al., 2003). They all find that the 

bid-ask spread is increasing in information asymmetry and in the degree of asset value 

uncertainty.        
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Implication 3: The bid-ask spread is a decreasing function of the number of 

uninformed traders.  

By proposition 5, when the number of uninformed traders increases, both x and y 

increase, the risk of adverse selection perceived by uninformed traders decreases, the 

traders will require less premium, consequently, ask price decreases and bid price 

increases, causing the bid-ask spread to narrow.      

Glosten and Milgrom (1985) suggest that the bid-ask spread in dealer markets 

contains an informational component, while the market maker loses to informed 

traders on average, but recoups these losses on noise trades. The market maker must 

trade off the reduction in losses to the informed from a wider spread against the 

opportunity cost in terms of profits from trading with uniformed traders with 

reservation prices inside the spread. The situation faced by uninformed limit order 

traders is similar to the market maker, therefore when the number of uninformed 

traders increases, the risk of adverse selection decreases, then the bid-ask spread of 

limit prices is narrow.     

Implication 4: When there is no order imbalance in the market, greater asset value 

noise leads to lower bid price and higher ask price. If there are far more sellers than 

buyers, then increasing asset noise will lead to lower ask price; and if there are far 

more buyers than sellers, the greater noise will lead to higher bid price  

Handa et al. (2003) show that the spread in an order driven market is highest 

when the buy and sell orders are balanced, and the spread is minimized when there is 

large order imbalance. In their model, only the risk of adverse selection is considered. 

In our model, the cost of limit order includes adverse selection as well as 

non-execution risk. We show that the structure of traders not only influences the size 
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of spread, but also influences the relation between noise and limit prices.     

Implication 5: The probabilities of limit order execution are influenced by the 

probability of the trading process stops, the structure of traders, the expected value of 

asset, and the expected aggressiveness of the other traders. 

From equations (13) to (22), we find that the average probability of execution is 

influenced by the probability of the trading process stops (1- tρ ), the structure of 

traders ( sb UUI ,, ), the expected value of asset ( itit λδ , ), and the aggressiveness of 

traders ( 21 ,ππ ). Hence, the optimal limit price is also influenced by the above factors. 

    The determinants of the probabilities of execution in this paper are closely 

related to Foucault (1999), Foucault, Kadan, Kandel (2001), and Handa, Schwartz, 

Tiwari (2003); supports the empirical findings of Hollifield, Miller, Sandas (2001), 

and Hollifield, Miller, Sandas and Slive (2002).  

Implication 6: The conditional probability of limit order execution followed by the 

same type order should be higher than the conditional probability of limit order 

execution followed by different type order.    

    Previous studies have found a conditional order flow pattern, for instance, after 

the arrival of a limit buy order at the best bid price, the incoming order is most likely 

to be the same order type, this is called the diagonal effects (see, Biais, Hillion and 

Spatt, 1995; and Kryznowski, 2000). The finding on conditional “execution” order 

flow pattern of this model is consistent with the previous studies. Furthermore, the 

implication supports the empirical findings of Ranaldo (2003) that is contrary to 

Parlour (1998).      

Implication 7: The intraday pattern of the cost of limit order submitted by uninformed 

traders is U-shaped.  
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Admati and Pfleiderer (1988) develop a theory to explain the concentration of 

trading at the open and the close of a day. They propose that discretionary liquidity 

trading and informed trading will concentrate at the open and the close, due to higher 

liquidity trading in these periods. Following their thought, suppose that the 

discretionary liquidity traders choose trading time to minimize the trading cost, then 

the commonly observed U-shaped pattern of trading activities13 should suggest an 

inverse U-shaped pattern of trading cost, contrary to our finding. But studies have also 

found that the variance of price and the variance of returns follow a U-shaped 

pattern14. Glosten (1994) argues that limit order traders profit from liquidity driven 

traders but lose from information driven price changes. Therefore, if the large price 

changes in the beginning and the end of the trading day are attributed to informed 

trading, then the trading cost of the uninformed limit order traders will be large in the 

beginning and the end of the trading day, as predicted by our model.  

Foster and Viswanathan (1990) develop an adverse selection model and examine 

the interday variations in volume, variance and adverse selection costs. They find that 

on Monday the trading costs and the variance of price changes are highest. Our 

finding on adverse selection costs is similar in that the adverse selection costs of the 

uninformed limit order traders is large in the beginning of the trading periods. In 

addition to intraday patterns of volume and volatility, many empirical studies have 

documented the intraday U-shaped behavior of the bid-ask spread15. Our model helps 

to explain this phenomenon by exploring changes in the total trading costs of the 

                                                 
13 The U-shaped pattern of the average volume of shares traded has been documented in a number of 
studies, for example: Jain and Joh (1986).    
14 For example, see Wood, McInish and Ord (1985). 
15 Declerck (2000) used the data of the Paris Bourse to show the relative spread intraday pattern is 
U-shaped. Ranaldo (2003) find that the spread in the Swiss Stock Exchange shows a intraday U-shaped  
pattern. McInish and Wood (1992), Brock and Kleidon (1992), Lee, Mucklow, and Ready (1993), and 
Chan, Chung, and Johnson (1995) show that the spread of NYSE stocks is widest at the open, drops 
during the first hour of trading, and increases slightly before the market close.          
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uninformed traders during a trading day.   

4. Conclusion 

    We develop an information asymmetric model, in which the conditional 

probability of order execution and the cost of limit orders are dynamic.  

    There are several interesting implications of this model that are closely related to 

existing empirical and theoretical studies, for example, the implication about order 

sequences is consistent with the empirical evidences in Hamao and Hasbrouck (1995), 

Biais, Hillion, and Spatt (1995) and Ranaldo (2003); the implication about bid-ask 

spread in the order driven market is similar to the theories of the bid-ask spread in the 

dealer market. Furthermore, our result complements the literature on the trading costs 

of limit order: We show that the intraday pattern of the cost of limit order submitted 

by uninformed traders is U-shaped. Our findings may shed more light on the 

dynamics of order execution and the intraday pattern of market performances in the 

order driven market. 

    

Appendix 1 

Proof of proposition 1.  

Given our framework, consider the optimal order placement decision of uninformed 

buyers. The price that they are indifferent between a buy market order or a buy limit 

order will satisfies: 

−+ )( εuV *A = ρ ]})(3)[1{(
3
1

233212 kpppp +++−−π }){( *BVu −+ ε        (A1)  

The uninformed sells face exactly the same type of problem, so we can write:  
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)(* ε−− uVB = ρ }])1()[1{(
3
1

1132111 kpppkp +++−−π )}({ * ε−− uVA       (A2) 

Let x= ρ ]})(3)[1{(
3
1

233212 kpppp +++−−π                           (A3) 

y= ρ }])1()[1{(
3
1

1132111 kpppkp +++−−π                              (A4) 

The Eqs. (A1) and (A2) become: 

−+ )( εuV *A = }){( *BVx u −+ε                                        (A5) 

)(* ε−− uVB = )}({ * ε−− uVAy                                        (A6) 

Solving Eqs. (A5) and (A6), we obtain: 
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And x= ρ ]})(3)[1{(
3
1

233212 kpppp +++−−π                          (A10)  

Because x is the average execution probability of a limit buy order so 10 ≤≤ x 。  

y= ρ }])1()[1{(
3
1

1132111 kpppkp +++−−π                             (A11) 

Because y is the average execution probability of a limit sell order so 10 ≤≤ y , and 

1≤xy 。 

And adding Eqs. (A10) and (A11), we obtain:  

≤+ yx ])(3[
3
1

23321 kpppp +++− + 113211 ])1([
3
1 kpppkp +++− =1       (A12) 
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Appendix 2 

Proof of proposition 2. 

Using Eqs. (A7)(A8), we obtain: 
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Appendix 3 

Proof of proposition 3.  

By the condition: 012 ≥−− xyy  and equations from (A13) to (A18)，we obtain: 
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Appendix 4 

Proof of proposition 4. 

By the condition: 021 ≤−+ xxy  and equations from (A13) to (A18)，we obtain: 
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Appendix 5 

Proof of proposition 5. 
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