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Abstract. Market participants with large orders to execute are often reluctant to
expose these to an open order book in their entirety in order to avoid a potential
adverse market impact. Therefore, investors often split large orders into smaller
tranches. Iceberg orders facilitate these trading practices by executing such business
automatically in the order book. This paper analyzes the rationale for the use of
iceberg orders in continuous trading by assessing the costs and benefits of this trading
instrument. We present a parsimonious framework that allows the determination of
the optimal limit and the optimal peak size of an iceberg order for a static liquidation
strategy. Examples with real world order book data demonstrate how the setup can
be implemented numerically and provide a deeper insight into relevant properties of
the model.
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1. Introduction

The rapid development in technology over the last couple of years has
permitted many stock exchanges to transfer trading from open outcry
markets, where market makers or specialists act as intermediaries, to
screen-based electronic markets. Typically, electronic trading platforms
provide market participants with information on an anonymous open
order book during continuous trading in real time. Usually the limits,
the accumulated order volumes of each limit, and the number of orders
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in the book at each limit are displayed, so that traders can assess the
altering order flow and the market liquidity.

What does the existence of an open order book imply for investment
firms who want to submit limit orders, the total volume of which is large
relative to others in the market? No doubt, exposing large limit orders
in an open order book may reveal the investor’s motives for trading and
may raise suspicion that the originator of the large order has access to
private information about the true value of the security under con-
sideration. Consequently, other market participants change their own
order submission strategy, which in turn lowers the probability that the
large order will be executed at the prespecified limit. The investment
firm then has to choose a less favorable limit if it wants to increase
the probability of execution and thus suffers losses from the indirect

adverse price impact of its large exposure in the order book. A possible
solution is not to submit one large limit order but to split the order
into several smaller limit orders, which are submitted over time. For
this reason many electronic trading platforms introduced so-called ice-
berg orders. Euronext, the Toronto Stock Exchange, the London Stock
Exchange (with its order driven services SETS, SETSmm, and IOB),
and XETRA are just some prominent examples. Iceberg orders allow
market participants to submit orders with only a certain portion of
the order publicly disclosed. The metaphor alludes to the fact that in
nature an iceberg’s biggest part floats unobservable under the water.
Only one-ninth of the mass of ice is seen above the water surface.

An iceberg order is specified by its mandatory limit, its overall vol-
ume, and a peak volume. The peak is the visible part of the iceberg
order and is introduced into the order book with the original time
stamp of the iceberg order according to price/time priority. As soon
as the disclosed volume of an iceberg order has received a complete fill
and a hidden volume is still available, a new peak is entered into the
book with a new time stamp. The new peak behaves in an identical
manner to a conventional limit order. From this point of view a pure
limit order is basically a special case of an iceberg order where the peak
volume coincides with the total order volume.

However, it is important to note that iceberg orders exhibit a less
favorable time priority compared with pure limit orders. After the peak
of an iceberg order is completely matched, all visible limit orders at
the same limit that were entered before the new peak is displayed take
priority, i.e. they must have received a complete fill before the new peak
comes to execution.

When submitting an iceberg order to the market, several issues have
to be considered. Imagine, for example, that the management of a mu-
tual fund has to close a large position in a single stock within one
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trading day. Using an iceberg order with only a small peak size allows
it to minimize the adverse informational impact of disclosing the actual
order volume. However, the smaller the peak size the less favorable the
time priority of the overall order. Thus, choosing a peak size that is too
small seems suboptimal. Such a strategy would significantly lengthen
the time to complete execution or would make a complete fill unlikely.
Moreover, the fund managers have to choose a reasonable limit for the
order. If the limit is too low, one may miss some trade opportunities, i.e.
one would give away the chance to participate in raising stock prices.
Otherwise, if the limit is too ambitious, the order is unlikely to receive
a complete fill.

In the present paper this tradeoff is modeled analytically in a con-
tinuous time setup where a large position in a single stock is to be liq-
uidated within a finite trading window.1 We assume that the investor
uses an iceberg order and follows a static strategy, i.e. once the limit
and the peak size of the iceberg order are chosen, the trader sticks to
this strategy over a fixed period. We then determine the optimal peak
size and the optimal order limit by maximizing the expected payoff
of the liquidation strategy under certain assumptions concerning the
execution risk of the iceberg order. Note that a pure limit order would
be also an admissible solution to our optimization problem.

Unless an iceberg sell order is immediately executable, i.e. the limit
is so low that it is actually a market sell order, the probability of receiv-
ing a complete fill within a finite time horizon is strictly smaller than
one. In principle at least two alternative approaches would be able to
incorporate execution risk into a liquidation model.

First, one may assume that the investor is forced to trade the remain-
ing shares with a market order if the iceberg order fails to receive com-
plete execution. We call this setup the self-contained approach. Market
orders are executed immediately. They use liquidity from the book un-
til they are completely filled. Consequently the investor has to bear a
liquidity discount, so that he or she gets penalized for every share that
could not be sold via the iceberg order. However, in our opinion such a
rigorous assumption may not always be justified in practice, especially
if the remaining order volume under consideration cannot be absorbed
by the market without a significant price change.

In this case, investors typically follow an adaptive strategy, i.e. they
review their orders frequently and adjust them if the market moves
away from the prespecified order limit. For this reason we also pro-
pose a different approach that considers the execution probability as a
boundary condition, i.e. only those combinations of peak size and limit

1 The analysis for a purchasing strategy is symmetric.
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are admissible that assure a certain execution probability within a pre-
specified time horizon. We call this model the open approach. Compared
with the first one the latter framework is rather flexible and does not
require any assumption concerning the liquidation of the unexecuted
part of the iceberg order. To get a flavor of the concept, imagine, for
example an investor who wants to liquidate a large position, say, within
one week. At the end of each trading day the investor inspects the state
of the iceberg order and, if necessary, adjusts the limit or the peak size
to reach the target.2 The open approach can assist the investor in this
procedure. It deals with the optimal combination of order limit and
peak size that maximizes the expected liquidation revenues in the case
of complete execution, given that the probability to receive a complete
fill exceeds a certain level, for example 40% within one trading day.
If the order remains partially or completely unexecuted by the end of
the first day, the investor may wish to rerun the optimization at the
second day and thereby increase the execution probability, let’s say, to
60% and so on. If a substantial part of the order is still unexecuted
on the last day of the week, the investor will probably choose a min-
imum execution probability that is close to one. In principle one can
also specify a utility function for the investor to model the trade-off be-
tween expected payoffs and execution risk. However, in order to keep
the problem tractable for exposition we will not address this issue in
this paper.

We present a theoretical framework for both the open and the self-

contained approach. Although the underlying assumptions of the latter
model are certainly questionable from an empirical point of view we be-
lieve that its basic structure may serve as a guideline to build more so-
phisticated models, for example by implementing an individual penalty
function for the unexecuted part of the iceberg order that meets the
specific requirements of the investor under consideration. The numeri-
cal analysis that illustrates the theoretical part will focus on the open

approach.
The technical design of the model can be summarized as follows:

During continuous trading a transaction takes place if an order becomes
executable against orders on the other side of the book. Thus, for an
iceberg sell order that is stored on the ask side of the book the dynamics
of the best bid price are of special interest. We model the best bid price
as a stochastic process in continuous time and assume a constant best
bid size. If the stochastic process hits the limit of the iceberg order a

2 Note that at some exchanges unexecuted iceberg orders are deleted automat-
ically by the system on the end of each trading day and must be resubmitted if
desired by the investor at the next trading day. In this case a daily adjustment of
order limit and peak size seems very plausible.
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transaction is executed and the stochastic process jumps back to the
next lower limit. Whether the peak of the iceberg order or another
sell order at the same limit is processed at this event depends on the
relative time priority of the orders. If new orders with the same limit
as the iceberg order are submitted continuously to the book the time
priority of the iceberg order deteriorates compared with a pure limit
order. The smaller the peak size of the iceberg order, the more often
the limit must be hit such that the iceberg order receives a complete
fill.

On the other hand, a smaller peak size lowers the adverse informa-
tional impact of showing the actual order volume in an open book. We
model the drift of the stock price process as a function of the visible or-
der imbalance. When the peak size of an iceberg order enters the book
the visible order imbalance changes. We define the order imbalance as
the total visible order volume (in number of shares) stored on the bid
side of the order book divided by the total visible order volume stored
on the bid side and on the ask side of the order book. We exemplify
empirically, using order book data, that current variations in the visi-
ble order book imbalance are positively correlated with future returns.
Thus, the higher the peak size of an iceberg sell order, the smaller the
order imbalance and the smaller the expected returns in the next time
intervals. Consequently, a higher peak size results in a smaller probabil-
ity that the stock price process will reach the prespecified limit within
the given time horizon.

In total, one can observe two opposite effects if the peak size of an
iceberg sell order is reduced in our model:

− The drift of the stochastic process is reduced to a smaller extent
when the order enters the book.

− The number of times the limit must be hit in order to process the
iceberg order completely increases.

While the first effect is beneficial for the originator of the iceberg order,
the latter is not. The proposed framework weights these effects and
identifies the optimal combination of peak size and order limit.

The rest of the paper is organized as follows: Section 2 briefly re-
views the related literature. The dataset used to exemplify the theo-
retical ideas throughout this paper is described in Section 3. Section
4 introduces the theoretical setup for both the self-contained and the
open approach. In Section 5 we explicitly model the drift as a function
of the order imbalance. The open approach to determine the optimal
combination of order limit and peak size is calibrated with a clinical
order book data sample in Section 6 so that one can get an impression
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of the optimal strategies for different scenarios. The paper concludes in
Section 7 with a brief summary and a discussion of issues for further
research.

2. Related Literature

A number of empirical studies shed light upon the use of hidden orders3

and the associated motives of traders.
Aitken, Brown, and Walter (1996) state that approximately 6% of

orders accounting for 28% of shares traded at the Australian Stock Au-
tomated Trading System (SEATS) were undisclosed in 1993. Aitken,
Berkman, and Mak (2001) find that undisclosed limit orders are used
to reduce the option value of limit orders. This follows the intuition
that limit orders can become mispriced when new public information
arrives. Some authors, for example Copeland and Galai (1983), there-
fore characterize limit buy (sell) orders as free put (call) options to
other market participants. Pardo and Pascual (2003) use six months of
limit order book and transaction data on 36 stocks from the Spanish
Stock Exchange (SSE) and report that 26% of all trades (20% of all
non-aggressive trades and 42% of all aggressive trades)4 involve hidden
volume. They provide evidence that liquidity suppliers use iceberg or-
ders to mitigate adverse selection costs if new information is released to
the market, and that hidden orders temporarily increase the aggressive-
ness of traders when revealed to the public. D’Hondt, De Winne, and
François-Heude (2003) investigate data for six CAC40 stocks traded at
Euronext and show that 30% of the depth is hidden in the whole book.
The authors highlight that hidden orders are more frequently canceled
than usual orders, that iceberg orders are less likely to be totally filled
and that the limit of hidden orders is modified more often than that of
pure limit orders.

The modeling of optimal liquidation strategies attracts more and
more attention by researchers. Bertsimas and Lo (1998), Almgren and
Chriss (2000), Hisata and Yamai (2000), Dubil (2002), and Mönch
(2003) investigate liquidation strategies for large security positions if
market orders are employed as trading instruments. The papers differ
from each other mainly in the definition of the stock price dynamics,

3 Note that at some exchanges the expression “hidden order” is reserved exclu-
sively for orders that are completely invisible to other market participants. However,
as it is common practice in the literature that is related to our paper we use it as a
synonym for an iceberg order.

4 A buyer- or seller-initiated trade is defined as aggressive if it consumes, at least,
the best quote on the opposite side of the book.
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the modeling of the price impact function, and whether the final time
horizon is given exogenously or modeled endogenously.

Compared with market orders, the analysis of optimal liquidation
strategies for limit orders is more complex. While the former are
matched immediately (provided a sufficient market depth) the
execution probability of the latter order type depends critically on the
respective limit. Wald and Horrigan (2001) estimate a probit model
that characterizes the execution probability depending on a number
of variables as the order limit, subsequent realized returns, the
bid–ask spread and so on. Lo, MacKinlay, and Zhang (2002) compare
empirically three different approaches to determine the execution
probability of limit orders using order book data for the 100 largest
stocks in the S&P 500 from August 1994 to August 1995. First, they
model the execution of a limit order as the first passage time of a
geometric Brownian motion to the limit price and find that the
predictive power of this setup is only moderate. The first passage time
model suffers from important shortcomings. It neither considers the
time priority, the order size, a potential adverse impact of revealing
large limit orders in the book nor does it distinguish between
time-to-first-fill and time-to-completion. As mentioned above, these
limitations are eased in the framework proposed in our paper. Second,
the authors consider first-passage times determined by historical time
series of transaction data. As this approach also ignores the time
priority and current market conditions it is not able to represent
actual limit order execution times adequately. Finally, the article
proposes an econometric model of limit order execution times based
on survival analysis and actual limit order data. This empirical
approach is a reduced form model as it leaves open which mechanism
actually causes the execution of a limit order. The model uses eight
explanatory variables that are updated in real time to capture current
market conditions and three explanatory variables that are updated
monthly to model differences across stocks. The authors make some
assumptions that may not always be justified empirically to keep the
framework tractable. For example the authors assume
time-independent covariates. Nevertheless, the empirical framework is
able to predict actual limit order executions very well. However, the
model requires a continuous update with order book data. Thus, it
may be only of limited use if such data are not available in real time.

The intention of our framework is closely related to that of Lo,
MacKinlay, and Zhang (2002) although we use a structural approach
to model explicitly the functionality of the order book. Both approaches
focus on the modeling of the execution probability of limit or, in our
case, more generally, iceberg orders. In our approach this probability is
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obtained endogenously and in the parametric model of Lo, MacKinlay,
and Zhang (2002) the form of the probability density function is speci-
fied exogenously. While Lo, MacKinlay, and Zhang (2002) just present
a framework to estimate the time-to-first-fill and the time-to-complete
execution of a limit order, our approach is more flexible as it is able
to capture every state of partial execution. Furthermore, we extend
the analysis to the identification of optimal liquidation strategies for
different scenarios.

Cho and Nelling (2000) estimate the execution probability of a limit
order conditional on order-specific variables and other variables that
capture general market conditions using quote data for 144 NYSE
stocks from November 1990 to January 1991. The authors observe that
the longer a limit order is outstanding, the less likely it is to receive a
complete fill. Furthermore, they find that the execution probability is
low when the limit price is far away from the current quote, when the
order volume is high, when spreads are narrow, and when volatility is
low.

The hypothesis that the order imbalance is a proxy for the execution
probability of limit orders and influences the order submission strat-
egy of investors is supported by many authors. Chordia and Subrah-
manyam (2002) analyze time series of daily order imbalances and indi-
vidual stock returns for the period 1988–98 using a comprehensive sam-
ple of NYSE stocks. They find that lagged imbalances bear a positive
predictive relation to current day returns. Furthermore, they observe
that daily imbalances are positively autocorrelated. Ranaldo (2004)
uses data of 15 stocks quoted on the Swiss Stock Exchange. He finds
that orders are submitted more (less) aggressively when the outstand-
ing order volume on the same (opposite) side of the book is large.
Furthermore, he observes that buyers are more concerned about the
opposite side of the book, while sellers are more concerned about their
own side. Parlour (1998) presents a dynamic setup of an order book,
where investors anticipate that the own order placement strategy in-
fluences the following order flow and where the execution probability
of limit orders is modeled endogenously.

3. Description of the Market and Dataset

The functionality of the liquidation model proposed in this paper will be
illustrated by using a clinical order book data sample from the German
automated trading system XETRA.

XETRA is an order driven market where investors, by placing limit
orders, establish prices at which other participants can buy or sell
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shares. A trade takes place whenever a counterpart order hits the
quotes. The system was introduced in 1997 by the German Stock Ex-
change. At the time the data were collected, XETRA was open for
trading from 9:00 a.m. to 8:00 p.m. The trading day starts with an
opening auction, followed by continuous trading, which can be inter-
rupted by one or several intraday auction(s). At the end of the day
there is either a closing or an end-of-day auction. On XETRA, all of
approximately 6,000 equities listed on the Frankfurt Stock Exchange
are tradable. The minimum trading volume is one share. Market partic-
ipants can see all non-hidden entries on each side of the order book, but
trading in XETRA is anonymous, i.e. market participants cannot iden-
tify the counterparts. On XETRA there are no dedicated providers of
liquidity for blue chips stocks. For small and mid cap stocks, designated
sponsors (banks and security firms) are given incentives to provide suf-
ficient liquidity by responding to a quote request within a fixed period
of time. Floor trading with market makers on the Frankfurt Stock Ex-
change still takes place but loses more and more market share. In the
blue chip segment merely every tenth share is still traded on the floor.

Based on event histories for 61 trading days (January 03 – March 28,
2002), which were provided by the Trading Surveillance Office of the
Deutsche Börse AG, order book sequences were reconstructed. By start-
ing from an initial state, each change in the order book depth caused
by entry, filling, cancelation or expiration of orders was considered as
prescribed by the market model of XETRA. Due to the huge amount
of data only the blue chip share MAN is considered as a representa-
tive example of the stocks that are traded in XETRA. MAN is one of
Europes leading suppliers of capital goods and systems in the fields of
commercial vehicle construction, and mechanical and plant engineer-
ing. Over the sample period the daily turnover in MAN on XETRA
ranged from 500,000 to 1,000,000 shares, and the order book depth
from 80,000 to 150,000 shares. In our dataset we counted 786 iceberg
sell orders, 140,948 pure limit sell orders, and 4,130 market sell orders.
At first sight the hidden part of the order book seems tiny. However,
analyzing the average volume of each trading instrument more deeply
changes this impression slightly. Iceberg orders exhibit an average vol-
ume of 16,037 shares, whereas pure limit and market orders just have
an average order volume of 964 and 1,069 shares. Due to this fact, hid-
den orders represent a remarkable proportion of 8.24% of the overall
volume on the ask side of our sample order book. Pure limit sell or-
ders and market sell orders provide 88.87% and 2.89% of the liquidity
on the ask side. Figure 1 shows the spectrum of the observed initial
volumes of all hidden sell orders. In Figures 2 and 3 we address the
issue of how market participants choose the limit and the peak size in
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Figure 1. Absolute frequencies of order volumes of all observed iceberg sell orders
in the sample.
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practice. Obviously there exists a strong preference to specify a peak
size that corresponds to a tenth of the overall order volume, as one can
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bid price at time of entry of all observed iceberg sell orders in the sample entered
during continuous trading.

see in Figure 2. Roughly 37% of all market participants follow such a
strategy. To investigate the difference between the chosen limit and the
current best bid price at the time of submission we consider only the
702 iceberg sell orders that entered the book during continuous trading.
Figure 3 shows that the majority of market participants set the limit
between 5 and 15 cents above the best bid price. Note that the aver-
age bid–ask spread in our sample is 7 cents and the average midprice
e 26.91. With respect to the success of the observed trading strategies,
Table I delivers an insight into the empirical execution probability of
hidden orders. Less than 18% of all iceberg sell orders were executed
completely. Almost 30% of all iceberg orders received a partial fill before
expiry or cancelation by the investor. The majority (52%) of all hidden
sell orders were canceled or expired completely unexecuted. Looking at
the median of the observed time between entry and complete execution
or deletion one can state that market participants check the state of
their orders frequently and cancel them if prices move away from the
limit.
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Table I. Execution or deletion of iceberg sell orders in the order book sample.

Number of
iceberg sell
orders

Average ratio of
executed to initial
volume; median in
parentheses

Average time between
entry and complete
execution or deletion
(hh:mm:ss); median in
parentheses

Completely
executed

139 100.00% (100.00%) 00:40:48 (00:10:46)

Partially
executed

231 32.44% (28.00%) 00:50:04 (00:09:29)

Completely
unexecuted

416 0.00% (0.00%) 03:32:43 (00:09:45)

4. The Basic Setup

4.1. General Idea and Dynamics

This section introduces the basic concepts and provides the motiva-
tion for the assumptions that have been made. Assume that the large
investor holds φ0 shares that should be liquidated before time T . For
this purpose the trader submits an iceberg sell order that is stored on
the ask side of the order book. The investor assigns a peak size φp and
a limit S̄ to the iceberg order. The latter is strictly higher than the
initial best bid price S0 such that the first proportion of the order is
not immediately executable.

The best bid price St is modeled by a kind of jump-diffusion process.
For St < S̄ it follows a geometric Brownian motion:

dSt = µSt dt + σSt dWt with S0 < S̄. (1)

Throughout this section the drift µ is assumed to be a constant. In
Section 5 we ease this restriction and model the drift as a function of
the chosen peak size.

When the process hits the limit of the iceberg order, i.e. St− = S̄,
a small downward jump to the next order book entry on the bid side
occurs such that St = (1 − ε) S̄. For sake of simplicity the jump size is
modeled as a constant throughout the paper. Figure 4 illustrates the
general setting described so far.

Each time the limit S̄ is hit by the best bid price a transaction
is executed. The transaction size φs is assumed to be constant over
time. Furthermore, we assume that whenever a new tranche of the
iceberg order enters the book a fixed volume φa of other sell orders
that exhibit a better time priority is already stored at the same limit.
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Figure 4. If the best bid price St hits the limit of the iceberg order S̄, a small
downward jump to the next limit on the bid side, i.e. to (1 − ε) S̄, occurs.

These orders must be matched before the current peak of the iceberg
order becomes executable. Thus, one can observe the following sequence
of newly displayed order quantities over time: φa, φp, φa, φp, and so on.
Table II summarizes the notation that is used throughout the rest of
the paper.

Table II. Notation used in the proposed liquidation model.

Variable Meaning

φ0 Total number of shares that have to be liquidated by the
large investor before time T

φp(≤ φ0) Assigned peak size to the iceberg order

φa Volume of other sell orders at limit S̄ that is already
stored on the ask side when a fresh peak enters the order
book

φs Total transaction volume that is processed each time the
limit is hit

The objective of the investor is the identification of the optimal com-
bination of peak size φp and limit S̄. The time horizon is T , and the
investor is interested in the expected payoff of his or her liquidation
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strategy. To deal with execution risk, we consider two alternative ap-
proaches. In the open approach, the investor chooses a lower bound P∗

for the probability that the submitted iceberg order receives a complete
fill up to time T . For the self-contained approach we assume that if the
iceberg order is not completely executed before time T , the large in-
vestor submits a market order to sell the remaining part of the shares.
Consequently, the trader has to bear a significant liquidity discount, de-
noted by Ψ·ST , where Ψ ≫ ε. Thus, the investor will receive (1 − Ψ) ST

for each of the remaining shares. It seems reasonable to model Ψ as a
function of the number of shares that are sold by submitting a market
order at T .

The remaining part of this section is dedicated to the derivation of
the formulas necessary to implement the open and the self-contained

approach. Obviously, the liquidation value depends on the actual num-
ber of times the best bid price hits the prespecified limit of the iceberg
order, which in turn is a random variable in the proposed setup. Thus,
in Subsection 4.2 we introduce formulas to compute the executed vol-
ume of the iceberg order conditional on the event that the limit is hit a
certain number of times. In Subsection 4.3 we calculate the probability
that the limit is hit a certain number of times. Furthermore, in this
subsection we present the objective function of the investor for both
the open and the self-contained approach.

4.2. Execution of the Iceberg Order

The number of times n∗ the limit S̄ must be hit by the best bid price
such that the iceberg order is completely satisfied is given by

n∗ =

⌈

(φ0/φp)φa + φ0

φs

⌉

=

⌈

φ0(1 + φa/φp)

φs

⌉

.

The brackets ⌈.⌉ are called upper Gaussian brackets, with
⌈x⌉ = min {z ∈ Z : z ≥ x} and Z as the set of integers. Note that
n∗ · φs corresponds to the total order volume that is matched after n∗

transactions, whereas φ0 shares originate from the iceberg order and
(φ0/φp)φa shares from other orders.

After the limit is hit n times the number of executed shares of the
iceberg order is given by

h (n) := min

{

max

[

φp

⌊

nφS

φa + φp

⌋

,

nφS − φa

(

1 +

⌊

nφS

φa + φp

⌋) ]

, φ0

}

,
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where ⌊x⌋ = max {z ∈ Z : z ≤ x}. As long as n ≤ n∗ the first element
of the max-expression is larger than the second if other sell orders at
the same limit exhibit a better time priority than the current peak of
the iceberg order. If the current peak of the iceberg order takes time
priority over other sell orders at the same limit, the second term in the
max-expression is larger than the first.

The outstanding order volume of the iceberg order after the n-th hit
of the limit is then equal to

φ0 − h (n) .

4.3. Liquidation Value

Armed with the results of the previous section one can now calculate
the liquidation value conditional on the event that the limit is hit a
certain number of times. Let M denote the number of times the limit
is hit before time T . If M ≥ n∗, the liquidation value G is given by
G = φ0S̄, since the iceberg order is completely executed at time T .
The open approach simply maximizes this expression by solving the
following optimization problem:

max
{φp,S̄}

φ0 S̄

s.t. P∗ ≤ P(M ≥ n∗)

S0 < S̄

φp ≤ φ0.

In contrast to the open approach, which focuses on the case of full
execution, the self-contained approach considers also those states of
the world where M < n∗. In this setup, if M = n, the trader receives
h (n) S̄ for the executed part of the iceberg order and
[φ0 − h (n)] ST [1 − Ψ (φ0 − h (n))] for the remaining part that is
liquidated using a market order at time T . Given the realizations of
M and ST the liquidation value can be calculated by

GM=n = h (n) S̄ + [φ0 − h (n)] [1 − Ψ (φ0 − h (n))]ST .

However, at time t0, both M and ST are random variables. Thus, in
order to derive the expected liquidation value one has to weight all
possible realizations of the liquidation value GM by their probabili-
ties, whereas ST depends on the realization of M . Thus, the expected
liquidation value can be written as

IEG =
∞
∑

n=0

P(M = n) ×
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{

h (n) S̄ + [φ0 − h (n)] [1 − Ψ (φ0 − h (n))] ×

IE (ST |M = n)

}

= P(M = 0)φ0 · [1 − Ψ(φ0)] IE (ST |M = 0)

+
n∗−1
∑

n=1

P(M = n)

{

h (n) S̄ + [φ0 − h (n)] ×

[1 − Ψ (φ0 − h (n))] IE (ST |M = n)

}

+ P(M ≥ n∗)
(

φ0 S̄
)

.

For the self-contained approach we need to solve the following opti-
mization problem:

max
{φp,S̄}

IEG

s.t. S0 < S̄

φp ≤ φ0.

It remains to calculate the following quantities:

− P(M = 0)

− P(M = n), for n = 1, . . . , n∗ − 1

− P(M ≥ n∗)

− IE (ST |M = 0)

− IE (ST |M = n), for n = 1, . . . , n∗ − 1.

For this purpose we must compute the distributions of the hitting times,
denoted by ti, i = 1, . . . , n. The time periods between two successive
hitting times will be denoted by τi := ti− ti−1, i = 2, . . . , n and we will
let τ1 = t1.

The distribution of τ1 can be calculated as follows: Since the process
for the best bid price St up to τ1 follows a geometric Brownian motion,
see equation (1), the logarithm of the process is an arithmetic Brownian
motion

d (lnSt) =
(

µ − σ2
/

2
)

dt + σdWt.

Note that if an arithmetic Brownian motion has a negative drift, i.e.
when µ < σ2

/

2 in our model, then τ1 has a defective density function
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whose integral over [0,∞) is less than one, see, e.g., Karlin and Tay-
lor (1975), p. 362. Thus, the probability that the limit will never(!) be
reached is positive. Specifically, the probability for the event {τ1 < ∞}
is given by

P (τ1 < ∞) =







1 for µ ≥ σ2
/

2

exp
[

−2 ln
(

S̄
/

S0
) ∣

∣µ − σ2
/

2
∣

∣

/

σ2
]

for µ < σ2
/

2.
(2)

The distribution of the first hitting time of ln S̄, starting at lnS0 < ln S̄,
conditional on the event {τ1 < ∞}, is given by

f̃0,1 (t) =
ln

(

S̄
/

S0
)

σ
√

2πt3
exp

{

−
[

ln
(

S̄
/

S0
)

−
∣

∣µ − σ2
/

2
∣

∣ t
]2

2σ2t

}

. (3)

Taking the product of (2) and (3) we can write the unconditional (de-
fective) density of τ1 as

f0,1 (t) = f̃0,1 (t) P (τ1 < ∞)

=
ln

(

S̄
/

S0
)

σ
√

2πt3
exp

{

−
[

ln
(

S̄
/

S0
)

−
(

µ − σ2
/

2
)

t
]2

2σ2t

}

. (4)

At τ1 the process independently restarts at S̄(1 − ε), following again
a geometric Brownian motion. To derive the (defective) density of the
first hitting time after the restart (denoted by τ2 = t2−t1) we just need
to replace lnS0 by ln [S̄(1− ε)] in equation (4) if we assume a constant
drift µ. Thus, for n∗ ≥ 2 one can write

fn−1,n (t) =
− ln (1 − ε)

σ
√

2πt3
exp

{

−
[

− ln (1 − ε) −
(

µ − σ2
/

2
)

t
]2

2σ2t

}

. (5)

Since t2 can be decomposed into the sum of the two independent ran-
dom variables τ1 and τ2, i.e. t2 =

∑2
i=1 τi, the (defective) density f0,2 of

t2 is simply the convolution of the corresponding (defective) densities,
given by

f0,2(t) ≡ (f0,1 ⋆ f1,2)(t) :=

∫ t

0
f0,1(t − u)f1,2(u)du.

One can proceed by iterating this methodology: At τi, i ≥ 2 the process
independently restarts at S̄(1− ε) following a geometric Brownian mo-
tion. Thus, the distribution of tn =

∑n
i=1 τi is given by

f0,n(t) ≡ (f0,n−1 ⋆ fn−1,n)(t) = (f0,1 ⋆ f1,2 ⋆ . . . ⋆ fn−1,n) (t). (6)
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Now, we are able to derive the corresponding probabilities by rewrit-
ing the number of hits in terms of hitting times. Since the events

{M = n} and ((tn < T ) ∧ (tn+1 ≥ T ))

are identical, the desired probability for (M ≥ 1) can be written as

P (M = n) ≡ P

(

(tn < T ) ∧ (tn+1 ≥ T )

)

= P (tn < T ) − P (tn+1 < T )

= P

(

n
∑

i=1

τi < T

)

− P

(

n+1
∑

i=1

τi < T

)

=

∫ T

0
f0,n(t) dt −

∫ T

0
f0,n+1(t) dt.

The probability for the event that the limit is not hit before T is given
by

P (M = 0) ≡ P (t1 > T )

= 1 −
T

∫

0

f0,1 (t) dt.

The probability for a complete fill of the iceberg order before T can be
computed via

P (M ≥ n∗) ≡ P (tn∗ ≤ T )

=

T
∫

0

f0,n∗ (t) dt.

Now the expected liquidation value, conditional on the event that
the limit is hit n times before time T , can be calculated. To simplify the
explanation, assume for a moment that the hitting times are determin-
istic. This assumption will be relaxed later. In this case the expression

IE (ST |M = n)

is equal to

IEtn

(

ST

∣

∣

∣

∣

max
tn<u<T

(Su) < S̄

)

= IEtn

(

exp [ln(ST /Stn)]Stn

∣

∣

∣

∣

max
tn<u<T

[ ln(Su/Stn)] < ln(S̄/Stn)

)

=

∫ ln(S̄/Stn )

−∞

exp(s)Stng

(

s

∣

∣

∣

∣

max
tn≤u≤T

[ ln(Su/Stn)] < ln(S̄/Stn), n

)

ds,
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since the n-th hit occurs at tn and the process independently restarts
at tn following a geometric Brownian motion conditional on the event
that the threshold S̄ is not hit within the time interval from tn to T .

One may notice that this scenario is similar to the evaluation of
knock-out barrier options (see, e.g., Zhang (1998), pp. 203–259). The
formula for the conditional density g of ln (ST /Stn) is given in Appen-
dix A.

However, for M = n ≥ 1, tn is in fact a random variable. Thus,
we need to consider the distribution of tn, conditional on the event
{tn ≤ T

∧

tn+1 > T}. Due to the independence and identical
distributions of τi for i ≥ 2 this conditional density is given by

f cond(t)dt := P(tn ∈ (t, t + dt)|τn+1 > T − t)

=
P

(

(tn ∈ (t, t + dt)) ∧ (τn+1 > T − t)

)

P(τn+1 > T − t)

=
f0,n(t)P(τn+1 > T − t)dt

P

(

(tn ≤ T ) ∧ (tn+1 > T )

)

=
f0,n(t)

(

1 −
∫ T−t
0 fn,n+1(s)ds

)

dt
∫ T
0 f0,n(u) du −

∫ T
0 f0,n+1(u) du

.

Armed with this result we are able to write the conditional expectation
of ST as

IE (ST |M = n)

=

∫ T

0
f cond(t) IEt

(

ST | max
tn<u<T

(Su) < S̄

)

dt

=

∫ T

0

f0,n(t)
(

1 −
∫ T−t
0 fn,n+1(s)ds

)

∫ T
0 f0,n(u) du −

∫ T
0 f0,n+1(u) du

×
[

∫ ln(S̄/Stn )

−∞

exp(s)St ×

g

(

s| max
t≤u≤T

[ ln(Su/St)] < ln(S̄/St), n

)

ds

]

dt. (7)

Note that the integral with respect to t in equation (7) has a singularity
at the upper end point of the integration range. Thus, for numerical
integration one should use a quadrature routine that can handle func-
tions with end-point singularities.5

5 For example, imsl d int fcn sing from the IMSL C-Library is such a routine.
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Conditional on the event that the limit is not hit before T , the
conditional expectation of ST simplifies to

IE (ST |M = 0)

=

∫ ln(S̄/S0)

−∞

exp(s)S0 g

(

s| max
0≤u≤T

[ln(Su/S0)] < ln(S̄/S0), n = 0

)

ds.

The general setup of the alternative approaches is summarized in
the following two propositions:

PROPOSITION 1. The open approach to determine the optimal

combination of the peak size and the limit of an iceberg order can be

represented by the following optimization problem:

max
{φp,S̄}

φ0 S̄

s.t. P∗ ≤
T
∫

0
f0,n∗ (t) dt

S0 < S̄

φp ≤ φ0,

where P∗ is given exogenously.

PROPOSITION 2. The self-contained approach to determine the

optimal combination of the peak size and the limit of an iceberg order

can be represented by the following optimization problem:

max
{φp,S̄}

IEG

s.t. S0 < S̄

φp ≤ φ0,

where IEG is given by

IEG =
∞
∑

n=0

P(M = n) ×
{

h (n) S̄ + [φ0 − h (n)] [1 − Ψ (φ0 − h (n))] IE (ST |M = n)

}

=



1 −
T

∫

0

f0,1 (t) dt



 φ0 · [1 − Ψ(φ0)] IE (ST |M = 0)

+
n∗−1
∑

n=1

[

∫ T

0
f0,n(t)dt −

∫ T

0
f0,n+1(t) dt

]

×
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{

h (n) S̄ + [φ0 − h (n)] {1 − Ψ [φ0 − h (n)]}IE (ST |M = n)

}

+





T
∫

0

f0,n∗ (t) dt



 φ0 S̄,

and IE (ST |M = 0) and IE (ST |M = n) for n ≥ 1 are given by

IE (ST |M = 0)

=

∫ ln(S̄/S0)

−∞

exp(s)S0 ×

g

(

s| max
0≤u≤T

[ln(Su/S0)] < ln(S̄/S0), n = 0

)

ds

IE (ST |M = n)

=

∫ T

0

f0,n(t)
(

1 −
∫ T−t
0 fn,n+1(s)ds

)

∫ T
0 f0,n(u) du −

∫ T
0 f0,n+1(u) du

×
[

∫ ln(S̄/Stn )

−∞

exp(s)St ×

g

(

s| max
t≤u≤T

[ ln(Su/St)] < ln(S̄/St), n

)

ds

]

dt.

5. Modeling of the Drift Component

Up to now the drift of the best bid price has been assumed to be a
constant. This section completes the theoretical framework by modeling
explicitly the impact of the peak size on the drift following the intuition
that the disclosure of large order volumes has an adverse market impact.
For this purpose we will model the drift µt as a function of the order
imbalance Bt.

Similar to Brown (1997) we define the imbalance Bt of the order
book as the number of shares displayed on the bid side divided by the
sum of shares displayed on the bid side and the ask side. The imbalance
coefficient is bounded by 1 (if no orders are stored on the ask side of
the book) and by 0 (if the bid side is empty). The parameter is 0.5
if the ask volume equals the bid volume. Whenever a new peak shows
up in the order book the displayed ask volume increases, which in turn
reduces Bt.

To keep the setup tractable for exposition, we assume the following
simplified scenario: The best bid price exhibits a zero drift µt ≡ µ̄ = 0
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prior to the submission of the iceberg order (t < t0). Furthermore, sup-
pose that Bt ≡ B̄ for t < t0.

As soon as the iceberg order is submitted to the market the sym-
metry of the order book starts varying. Suppose that each variation in
the displayed volume of the iceberg order φdp influences the order book
symmetry. The displayed volume of other orders remains constant over
time. Thus, we are able to model the imbalance as a function of the
displayed volume of the iceberg order only:

Bt (φdp) =
c

d + φdp
, (8)

where the parameters c (and d) denote the number of shares displayed
on the bid side (on the bid side and the ask side) before the submission
of the iceberg order.

The displayed volume φdp is equal to φp whenever a new peak is
submitted to the order book. When the peak of the iceberg order re-
ceives a complete or partial fill the parameter φdp will be reduced. In
our setup the displayed volume φdp depends on the number of times
the limit was already hit. It can be calculated as

φdp (n)

=







































min

[

φ0 − h(n),

φp −
{

max
[(

nφs

φa+φp
−

⌊

nφs

φa+φp

⌋)

(φa + φp) − φa, 0
]}

]

if n < n∗

0 else.

If the displayed volume of submitted orders has some information
content to the market, one would expect a positive relationship between
past levels of Bt and future returns. We define µn by the recursion

µn+1 = µn + β ·
(

Btn+1
− Btn

)

for n ≥ 0

with the initial value

µ0 = µ̄ + β ·
(

Bt0 − B̄
)

,

such that

∆µn = β∆Btn . (9)

Figure 5 illustrates this idea. Before time t0 the drift µt is equal to the
long-term mean µ̄. At times t0 the first peak of the iceberg order appears
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in the book and the drift µt is reduced. At times t3, t4, t5, and t6 the
first peak of the iceberg order receives partial fills, which goes along
with small upward jumps in the drift µt. At time t7 the first peak
becomes completely filled and the second peak appears in the order
book, which again causes a downward jump in the drift µt. At time t∗n
the iceberg order is completely filled and the drift µt reverts towards
its long-term mean µ̄.

t0 t3 t4 t5t6 t7 t10 t11 t12 t13 tn*

t

Μ
�

Μt

Figure 5. Example for the alternating drift component in our model.

Note that µn is a deterministic function of the random variable n in
our framework. Thus, we can rewrite equation (4) for the case where
the drift depends on the displayed peak size:

f0,1 (t) =
ln

(

S̄
/

S0
)

σ
√

2πt3
×

exp

{

−
[

ln
(

S̄
/

S0
)

−
(

µ0 − σ2
/

2
)

t
]2

2σ2t

}

. (10)

For the subsequent hitting times after the restart we get

fn−1,n (t) =
− ln (1 − ε)

σ
√

2πt3
×

exp

{

−
[

− ln (1 − ε) −
(

µn−1 − σ2
/

2
)

t
]2

2σ2t

}

. (11)
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This completes the introduction of the theoretical framework. We
now turn to the numerical implementation of the open approach.

6. Numerical Results

To exemplify the formal analysis of the previous section the open ap-

proach is implemented using the MAN dataset for 61 trading days. The
results are presented in the following.

6.1. Parameter Specification

Table III. Estimated parameters for the MAN dataset for 61 trading
days.

No. of obs. Mean Std. dev.

φs Average volume of all
transactions

40,888 868.2 1,257.4

φa Average displayed
volume of all best
ask quotes

158,607 1,554.4 1,752.0

ε Average relative
price difference be-
tween the best and
the second best bid
price

57,290 0.00090724 0.00105471

c Average number of
shares displayed on
the bid side of the
book

36,661 166,465.87 57,495.87

d Average number of
shares displayed on
the bid side and on
the ask side of the
book

36,661 291,657.18 84,722.34

To implement the model a number of parameters need to be cali-
brated with order book data. Table III summarizes the results for our
clinical sample. To estimate the parameters φs, φa, and ε we consider
all observed transactions, and best and second best ask quotes with
equal weights. For the calibration of the parameters c and d we use the
order book data collected at intervals of 1 minute from 9:30 a.m. to
19:30 p.m. To estimate the parameter β we regress 60-minutes-ahead
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returns on changes of the order imbalance during the past 60 minutes,
minute by minute. For this purpose we use best bid quotes and order
book data collected at intervals of 1 minute from 9:30 a.m. to 19:30 p.m.
We do not consider overnight returns for our analysis.

Table IV reports the results. For the calibration of the volatility pa-

Table IV. Estimated regression coefficient for equation (9).

No. of obs. Estimate t-statistic

β 60-minute forecast
intervals

29,341 116.647882 22.45

rameter we use best bid quotes collected at intervals of 15 minutes from
9:00 a.m. to 20:00 p.m. and do not consider overnight price changes.
The estimation for the volatility parameter yields σ = 0.7. Further-
more, we set S0 = e 28.55, which is the closing price at March 28,
2002, the last day of our sample period.

6.2. Numerical Implementation

The computation of f0,n(t) requires the calculation of an n-th iterated
convolution given by equation (6). In order to obtain f0,n(t) one needs
to calculate (n−1)-dimensional integrals. To the best of our knowledge,
closed form expressions are not available. Thus, we apply numerical
approximations to these integrals. Employing conventional quadrature
algorithms or Monte Carlo methods to compute high-dimensional inte-
grals is very time consuming and thus not suitable for the dimensions
under consideration in our framework. Therefore, we use interpolating
cubic splines s0,n for n ≥ 2 to approximate the convolutions in the
following way:

f0,n (t) ≈ s0,n (t) ,

such that

s0,n(t̂k) =

∫ t̂k

0
s0,n−1(t̂k − u)fn−1,n(u) du ≈ f0,n(t̂k),

where t̂k denotes the equally spaced spline knots.
Alternatively, one can also invert the Laplace transform of the den-

sity function.6 The Laplace transform for the (defective) density func-

6 Numerical routines that do this job pretty fast are, for example,
imsl d inverse laplace from the IMSL C-Library or C06LAF/C06LBF from the Nag
Fortran-Library.
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tion of the first hitting time τ1 is well known (see, e.g., Karlin and
Taylor, p. 362) and is given by

IE exp (−λτ1) = exp

{

− ln
(

S̄
/

S0
)

σ2
×





√

(

µ0 −
σ2

2

)2

+ 2σ2λ −
(

µ0 −
σ2

2

)





}

.

As the following sequences of hitting times τi for i ≥ 2 are identically
distributed their Laplace transform is given by

IE exp (−λτi) = exp

{

− ln
[

S̄
/

S̄ (1 − ε)
]

σ2
×





√

(

µi−1 −
σ2

2

)2

+ 2σ2λ −
(

µi−1 −
σ2

2

)





}

.

The Laplace transform of the sum of the independent hitting times
tn =

∑n
i=1 τi is equal to the product of the corresponding exponential

functions:

IE exp(−λtn) = exp

{

− ln
(

S̄
/

S0
)

σ2
×

[

√

(

µ0 − σ2
/

2
)2

+ 2σ2λ −
(

µ0 − σ2
/

2
)

]

+
n

∑

i=2

−
(− ln (1 − ε)

σ2

)

×
[

√

(

µi−1 − σ2
/

2
)2

+ 2σ2λ −
(

µi−1 − σ2
/

2
)

]}

.

6.3. Numerical Examples

For the first example, suppose that the investor wants to liquidate
10,000 MAN shares (approximately 1–2% of daily turnover) within
10 hours. Assume, furthermore, that φp has to be a multiple of 1,000
shares. Figure 6 represents the optimal limit S̄ as a function of the prob-
ability P∗ that the iceberg order receives a complete fill. For P∗ ≤ 59%,
the optimal limit is a monotonic decreasing function of P∗. The opti-
mal peak size remains at a constant level of 8,000 shares and is thus
insensitive to changes of P∗. Smaller or higher peak sizes reduce the
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Figure 6. Optimal limit S̄ as a function of the probability P∗ that the iceberg order
receives a complete fill. Other parameters: T = 10 hours, φ0 = 10,000 MAN shares.

value of the objective function, for example by approx. 1% if P∗ = 30%
and φp = 1,000 shares. If the limit is set to e 28.56, i.e. the smallest
possible value in this example, the probability to observe a complete
execution is still less than 60%.

The optimal peak size is significantly higher than peak sizes that
were observed empirically in Section 3. Two reasons may explain the
difference. First, one may argue that the model systematically under-
estimates the negative price impact of displaying a large order volume
in the book. There are good reasons to believe that a variation of the
order imbalance within entries close to the best quotes has a stronger
impact on future returns than changes of the order imbalance caused
by an entry of an order that possesses a more unfavorable price pri-
ority than the majority of other orders already stored in the book.
A redefinition of the order imbalance by weighting order book entries
differently, depending on their price priority, might solve this prob-
lem. Second, one may argue that market participants overestimate the
informational impact of revealing large orders in an open book. The
empirical exploration of these issues is left for further research.

In the next example we investigate the relationship between the final
time horizon T and the optimal combination of limit and peak size. We
set P∗ = 50% and φ0 = 10,000 shares. Figures 7 and 8 report the
results. If T < 6 hours, then the probability of receiving a complete
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Figure 7. Optimal limit S̄ as a function of the final time horizon T . Other parame-
ters: P∗ = 50%, φ0 = 10,000 MAN shares.
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Figure 8. Optimal peak size φp as a function of the final time horizon T . Other
parameters: P∗ = 50%, φ0 = 10,000 MAN shares.

fill is less than 50%, no matter which limit is assigned to the order. If
T ≥ 6 hours we can observe two beneficial effects for the originator of
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the iceberg order. First, as the final time horizon increases, the optimal
order limit increases as well. Second, a longer time horizon allows for
a reduction of the peak size. However, φp is not strictly monotonic
decreasing in T . Instead we observe a step function. For T ≤ 46 hours
a peak size of 8,000 shares is optimal, for T > 46 the optimal peak size
is 4,000 shares.
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Figure 9. Optimal limit S̄ as a function of φ0. Other parameters: P∗ = 25%,
T = 100 hours.

In the last example (see Figures 9 and 10) we analyze the relationship
between the initial position φ0 and the optimal pairs of φp and S̄. We
set P∗ = 25% and T = 100 hours. Figure 9 corroborates the hypothesis
that if more shares have to be liquidated within the same period of
time the limit has to be lowered to keep the execution probability at
the same level. Furthermore, an increase in φ0 tends to result in higher
peak sizes, as we can observe in Figure 10. However, in some cases the
optimal peak size decreases if the initial position is raised. At the first
moment this may seem somehow counterintuitive. The main reason
for this phenomenon can be found in the discrete setup of the order
execution process. Whenever the limit S̄ is hit, a fixed transaction size
φs is processed. At the n∗-th hit the last part of the iceberg order,
which is given by φ0 − h(n∗ − 1), becomes executable. However, if
φ0 − h(n∗ − 1) ≪ φs a small reduction in φp would not change n∗

but would increase the drift component µt and thus the probability
that tn < T .
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Figure 10. Optimal peak size φp as a function of φ0. Other parameters: P∗ = 25%,
T = 100 hours.

7. Summary and Conclusion

This paper introduces a setup that allows the determination of the
optimal combination of limit and peak size of an iceberg order, given
a large position in a security that should be liquidated within a fi-
nite time horizon. The framework balances the direct advantage of a
large peak size that leads to a better time priority of an iceberg order
and the adverse informational impact of revealing large order volumes
in an open order book. Furthermore, it assesses the tradeoff between
the order limit and the execution probability of the iceberg order. We
have presented two approaches to incorporate the execution risk of an
iceberg order. The so-called self-contained approach assumes that the
unexecuted part is liquidated by a market order. The open approach is
far more flexible as it does not require any assumption concerning the
liquidation of the unexecuted part. It identifies the optimal combina-
tion of limit and peak size, given a minimum probability of complete
order execution. Using real-world order book data we illustrate how
the open approach can be implemented and explore major properties
of the model by modifying input parameters.

To our knowledge, this framework is the first analytical approach
that investigates the tradeoff between limit and peak size of an iceberg
order, on the one hand, and the resulting execution probability, on the
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other. This paper is written in search of a stylized model that is able
to illustrate the interaction between observable market variables and
order specific parameters that are important to analyze iceberg orders
as a trading instrument.

The modeling of the best bid price by a Brownian motion or the as-
sumption of constant parameters for order imbalance, transaction size,
order flow and the price difference between the best and the second
best price are, of course, approximations as the standard deviations in
Table III clearly indicate. These simplifications allow us to keep the
number of stochastic variables to the minimum required to illustrate
the discussed trade-off in a simple way. Further research may focus on
introducing more freedom from determinism by modeling more sources
of risk, for example, in a simulation-based approach and comparing the
empirical performance of the different models. Furthermore, although
certainly challenging from a technical point of view, the investigation of
dynamic approaches seems highly relevant from an empirical perspec-
tive, since many market participants pursue dynamic instead of static
limit-setting strategies as shown in Table I in Section 3.
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Appendix

A. Conditional Density g of ln (ST /Stn)

The conditional density g of ln (ST /Stn) is given by

g
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,

where ϕ (z) denotes the standard normal density function and Φ (z)
the standard normal cumulative distribution function. If the drift is a
constant, as assumed in Section 4, set µ∗ = µ. If the drift is modeled as
a time-dependent variable, as proposed in Section 5, replace µ∗ by µtn .
For the derivation of the respective formulas , see, e.g., Harrison (1990),
pp. 1–16.




