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Abstract

This work discusses the application of the Di®erential Importance
Measure to the Sensitivity Analysis (SA) of portfolio volatility. Some
recent work in this ¯eld has shown that volatility SA based on partial
derivatives (PD) can provide guidance in: a) the evaluation of the
impact of changes in portfolio composition on the portfolio volatility
(σp); and b) in asset allocation in order to match the minimum port-
folio volatility. In this work we focus on point a, discussing the issues
related to PD based SA. In particular we show that: 1) Utilizing
PDs one makes the implicit assumption of uniform portfolio changes
2) the impact of the change in one or more weights in the portfolio
composition cannot be directly assessed. It is evident that the above
points 1) and 2) can pose some limitations in the evaluation of the im-
pact of trading strategies on portfolio volatility, since usually a trading
strategy is composed by arbitrary portfolio weight changes and by the
change in several rather than individual weights. The above limita-
tions can be overcome by exploiting the properties of DIM as an SA
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tool. We therefore propose a portfolio volatility SA method based
on DIM. We ¯rst derive the expression of the relevance of individ-
ual weights and weight groups on the portfolio volatility. We then
apply the result to the evaluation of the in°uence of weights in trad-
ing strategies. We ¯rst consider the two simplest trading schemes:
uniform and proportional variations of portfolio weights. We then de-
vote out attention to optimal trading strategies, i.e. trading strategies
that aim at minimizing portfolio volatility. The proposed method is
applied to a portfolio of 30 stocks composing the Dow Jones Index.

Keywords: Portfolio Management, Trading Strategies, Sensitivity
Analysis, Asset Allocation
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1 Introduction
This work discusses the Sensitivity Analysis (SA) of portfolio models and
proposes a SA scheme that is capable of assessing the joint impact of changes
in portfolio composition on portfolio volatility (σp).

The recent years have seen the fast development of models for the es-
timation of σp. Especially after the seminal works of Bollerslev and Engle,
([2], [?]). Generalized Autoregressive Conditional Heteroschedasticity Mod-
els (GARCH)models have nowadays become fundamental tools in investment
management. Thanks to the use of computers these models have become in-
creasingly complex and the need for the appropriate SA techniques to fully
utilized the information produced by the models is felt.

In a recent paper, Saltelli ([28]) has demonstrated how SA can be thought
of as an essential ingredient in portfolio management. Partial Derivatives
(PD) based SA has been used in the case of the sensitivity of the Value
at Risk (VaR) models by McNeil and Frey ([22]) and by Gourieroux et al.
([15]). These authors derive analytically the expressions for the ¯rst and
second derivatives of the VaR, and explain how they can be used to sim-
plify statistical inference and to perform a local analysis of the VaR. An
application of this technique can be found in Drudi et al. ([13]), where the
sensitivity of risk assessment is tested with respect to (w.r.t) the number
of factors employed, the measures of volatility (conditional versus uncon-
ditional) and correlations (stable versus unstable), and the linearization of
non-linear payo®s. Manganelli et al. [20] propose a tool based on the calcu-
lation of the partial derivatives of σp estimated via the GARCH model. The
tool is aimed at helping \risk managers to ¯nd out what the major sources
of risk are, or allow them to evaluate the impact on the portfolio variance of
a certain transaction." ([20]). In a next work by Manganelli the approach is
extended to asset allocation [21].

Recent works in the SA ¯eld have shown that the PD approach su®ers
of some limitations when used for the purposes mentioned in the italicized
sentence above ([12], [3], [4], [5], [6], [9]). In general, performing PD based
SA to evaluate the impact of parameter changes:

1 is equivalent to make the assumption of uniform parameter changes

2 does not allow the appreciation of the model sensitivity to changes in
groups of parameters
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Since a trading strategy involves simultaneous changes in more than one
weight and such changes are generally not uniform, then the shortfalls in
using PD based SA for the evaluation of the impact of trading strategies
appear evident. On the one hand the impossibility to evaluate the impact
of weight changes other than the uniform ones, and on the other hand, the
impossibility of testing the sensitivity on weight groups.

In this work we suggest that the use of the Di®erential Importance Mea-
sure (DIM) leads to a solution to the two above mentioned limitations. DIM
was, in fact, introduced in the SA realm to cope with the SA of model out-
put in response to arbitrary changes in several parameters ([12], [4], [3], [5],
[?], [10], [6], [9]). DIM generalizes traditional PD based SA techniques as,
for example, Elasticity ([6], [9]) and shares two important properties | (i)
additivity and (ii) relative changes consideration. We show that these two
properties are capable of overcoming the theoretical limitations inherent to
the PD approach illustrated in points 1) and 2) above. In particular, addi-
tivity enables the computation of the sensitivity of σp given a change in a
group of portfolio weights, and the de¯nition of DIM itself to accommodate
generic portfolio composition changes.

We ¯rst investigate the application of DIM to GARCH models from a
mathematical point of view. We provide the de¯nition of portfolio weight
di®erential importance w.r.t. σp. We compare the volatility response to
uniform and to proportional portfolio weights. As a result a method for
valuing the impact of simultaneous changes in subsets of portfolio weights is
proposed.

The possibilities of that importance measure in the context of asset man-
agement are empirically presented by considering a portfolio composed of 30
stocks composing the Dow Jones index, as of March 2002.

In Section 2 the de¯nition of DIM and some SA background related to
the recent development on this ¯eld are discussed. In Section 3 some pre-
liminary considerations on the SA of portfolio models highlighting the e®ect
of relative portfolio changes are presented. Section 4 presents volatility Es-
timation Models. Section 5 discusses the application of DIM to GARCH
models for the estimation of the importance of portfolio weights. Section 6
presents numerical results focusing on the ¯nancial management aspects of
the analysis. Section 7 o®ers some conclusions.
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2 Sensitivity Analysis Background
In the recent past, the activity in the scienti¯c ¯eld of SA of Model Output
has been steadily growing. Due to the increasing complexity of numerical
models, SA has acquired a key role in testing the correctness and corrobo-
rating the robustness of models in several disciplines. This has led to the
development and application of several new SA techniques ([4], [17], [26],
[27], [?], [29], [31],[?]). Since the SA of portfolio volatility based on PDs has
a character that can be de¯ned as Local from a SA point of view, it is on
Local SA techniques that we focus in this introduction. In the next para-
graphs we present the Di®erential Importance Measure (DIM) and discuss
in detail its relation to other local SA techniques.

Let us consider the generic model output:

Y = f(x) (1)

where x = fxi, i = 1, 2, ...ng is the set of the input parameters. Let also

dx = [dx1, dx2, . . . , dxn]T

denote the vector of (in¯nitesimal) changes.
Then the di®erential importance of xs at x0 is de¯ned as ([4]):

Ds(x0, dx) =
fs(x0)dxsPn
j=1 fj(x0)dxj

=
dfs(x0)
df (x0)

(2)

Ds is the ratio of the (in¯nitesimal) change in Y caused by a change in xs
and the total change in Y caused by a change in all the parameters. Thus,
Ds is the normalized change in Y provoked by a change in parameter xs.

It can be shown that ([4], [5], [6], [9]):

² Ds shares the additivity property with respect to the various inputs,
i.e. the impact of the change in some set of parameters coincides with
the sum of the individual parameter impacts. More formally, let S µ
f1, 2, ., ng identify some subset of interest of the input set. We have:

DS(x0, dx) =
P

s2S fs(x0)dxsPn
j=1 fj(x0)dxj

=
X

s2S

Ds(x0, dx) (3)

As a consequence,
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nX

s=1

Ds(x0, dx) = 1 (4)

i.e. the sum of all the individual parameter DIMs ( i = 1...n) is always
equal to unity [4].

² Eq. (2) shows that DIM accounts for the way parameters are varied
through the dependence on dx. Therefore, it is eliminated the arbi-
trariness of the selection of the parameter changes, that was one of
the drawbacks in using other techniques, such as Tornado Diagrams,
one way SA, or PDs. In the hypothesis of uniform parameter changes
(H1), one ¯nds ([4], [6], [9]):

D1s(x0) = fs(x0)Pn
j=1fj (x0)

(5)

In the hypothesis of proportional changes (H2), one ¯nds:

D2s(x0) =
fs(x0) ¢ x0

sPn
j=1 fj(x0) ¢ x0j

(6)

DIM generalizes other local SA techniques as the Fussell-Vesely importance
measure and Local Importance Measures based on normalized partial deriva-
tives, also known as measures of Criticality Importance or Elasticity ( [4],[6],
[5], [9],[12],[17]). The discussion of the relationship between DIM and the
Fussel-Vesely importance can be found in [4], the discussion on the relation-
ship between DIM and Elasticity can be found in ([4], [6], [9]). In particular
such works show that Elasticity produces the importance of parameters when
proportional changes in their values are considered.

3 E®ect of relative weight changes
In this Section, we show that the relative weight variations have to be con-
sidered when evaluating the impact of a trading strategy on a portfolio.

To appreciate the e®ects of assumptions on weight changes, let us consider
a simple example.
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Example 1 Let
v = a1x1 + a2x2 (7)

be the value of a portfolio at a certain point in time. Let also a1 = 100,
a2 = 9900, x1 = 10EUR and x2 = 5EUR. The total value of the portfolio
is then v = 50500EUR. Let us now assume that the ¯rst trading strategy is
to buy one additional stock of 1 and 2. In this case we have a unitary change
in a1 and a2, i.e. da1 = da2 = 1. Applying eq. (5), one gets: D11 = 0.667
and D12 = 0.333. This result means that asset 1 is the most in°uential if
a trading strategy involving uniform weight changes is considered. Let us
consider the case in which the trader opts for a proportional change in the
two assets, i.e. he buys (or sells) $% in each of them. Applying eq. (6),
one gets: D21 = 0.02 and D22 = 0.98. In this case asset 2 would be the
most in°uential on the portfolio value.

The above example clearly shows that considering the impact of changes
in portfolio composition involves not only the consideration of the rate of
change of the portfolio w.r.t. the weight (vai), but also the relative way in
which the weights are changed. We now show that evaluating the impact
of portfolio changes by means of PDs only is in fact equivalent to assume
uniform weight changes.

Proposition 1 Ranking weights based on partial derivatives is equivalent to
consider trading strategies involving uniform weight changes.

Proof. Let us consider a set of n parameters, and let us assume that one
ranks them utilizing PDs as importance measures. We use the symbol xi º
xj to state that parameter xi is more important than parameter xj. If one
utilizes partial derivatives to rank parameters then one says that parameter
xi is more important than parameter xj when the magnitude of the change
in f (x0) provoked by a change in xi is greater than the magnitude of the
change in f(x0) provoked by a change in xj:

xi º xj ()
¯̄
fi(x0)

¯̄
¸

¯̄
fj(x0)

¯̄
(8)

Nothing changes in jfi(x0)j > jfj(x0)j if one multiplies and divides both sides
for jPn

k=1 fk(x0)j, one gets:

xi º xj ()
¯̄
fi(x0)

¯̄
¸

¯̄
fj(x0)

¯̄
() jfi(x0)j

jPn
k=1 fk(x0)j ¸ jfj(x0)j

jPn
k=1 fk(x0)j

(9)
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The above is then equivalent to stating:

xi º xj ()
¯̄
D1i(x0)

¯̄
¸

¯̄
D1j(x0)

¯̄
(10)

proving that ranking based on partial derivatives is equivalent to ranking
based on D1s(x0), i.e. to stating an assumption of uniform parameter changes.

4 Importance of portfolio weights in GARCH
Volatility Estimation Models

Models of time-varying volatility have been popular since the early `90s in
empirical research in ¯nance, following an in°uential paper by Bollerslev
( [2]). Models of this type are well known as generalized autoregressive
conditional heteroscedasticity (GARCH) in the time series econometrics lit-
erature. Time-varying volatility was initially concerned with an economic
phenomenon - time-varying and autoregressive variance of in°ation.

An autoregressive conditional heteroscedastic (ARCH) process is a stochas-
tic process if its time-varying conditional variance is heteroscedastic with
autoregression, i.e.:

yt = εt, εt » N(0, σ2) (11)
σ2

t = α0 + α1ε2t¡1 + ... + αqε2t¡q (12)

The ¯rst equation is the mean equation where regressors can generally
be added to the right-hand side along side εt. The second is the variance
equation, which is an ARCH(q) process where autoregression in its squared
residuals has an order of q, or has q lags.

A stochastic process is called GARCH if its time-varying conditional vari-
ance is heteroscedastic with both autoregression and moving average:

yt = εt, εt » N(0, σ2) (13)

σ2
t = α0+

qX

i=1

αiε2t¡i +
pX

j=1

βjσ
2
t¡j (14)
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The above equations express a GARCH(p, q) process where autoregression
in its squared residuals has an order of q, and the moving average component
has an order of p.

The estimation of parameters of a GARCH model is straightforward as,
conditional on an initial variance estimate and on model parameters, the
data are normally distributed, that is a likelihood function can be easily
constructed. The conditional log-likelihood of yt+1 is ([11]):

`t(yt+1; θ) = log
·
N

µ
yt+1

σt

¶¸
¡ log(σ2

t)
2

where θ is a vector of the parameters of the model and N (¢) is a standard
normal density function. The log-likelihood of the whole dataset is:

LT (y1, ..., yT ) =
TX

t=1

`t(yt+1; θ)

Thus, parameters can be estimated by numerically maximizing the pre-
vious expression.

Throughout the discussion we consider the following GARCH(p, q) pro-
cess [21]:

yt =
p

σtεt εt » N(0, 1) (15)
σt = ztθ (16)

where yt is the return of a portfolio composed byn+1 assets calculated as yt =Pn+1
i=1 aiyt,i, where ai and yt,i are the weight and the return respectively of

asset i; zt =
¡
1, y2t¡1, ..., y2t¡q , ht¡1, ..., ht¡q

¢
and θ =

¡
α0, α1, ..., αq, β1, ..., βp

¢0 .
The partial derivative of σt w.r.t. the portfolio weights is [21]:

∂σt

∂ai
= ∂zt

∂ai
¢ θ + zt ¢ ∂θ

∂ai
(17)

∂θ
∂ai

are found by di®erentiating the log-likelihood function as follows ([20],[21]).
The solution to the set of conditions:

∂LT

∂θi

¯̄
= 0, i = 1, 2, ...,m (18)
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namely, bµ =
n

bθ1,bθ2, ...,bθm

o
, can be regarded as an implicit function of the

weights:
bµ = g(a0) (19)

where g is an m-dimensional vector of n-dimensional functions at a0. The
requirements for eq. (19) to hold are that the conditions for the implicit
function theorem are ful l̄led. Applying the implicit function theorem, if the
Hessian Hθθ =

h
∂2L
∂θiθj

i
(i, j = 1...m) is non-singular, one ¯nds that:

2
664

∂θ1
∂a1

∂θ2
∂a1

... ∂θm
∂a1

∂θ1
∂a2

∂θ2
∂a2

... ∂θm
∂a2

... ... ... ...
∂θ1
∂an

∂θ2
∂an

... ∂θm
∂an

3
775 = ¡

2
6664

∂LT
∂a1∂θ1

¯̄
∂LT

∂a2∂θ1

¯̄
... ∂LT

∂an∂θ1

¯̄
∂LT

∂a1∂θ2

¯̄
∂LT

∂a2∂θ2

¯̄
... ∂LT

∂an∂θ2

¯̄

... ... ... ...
∂LT

∂a1∂θm

¯̄ ∂LT
∂a2∂θm

¯̄
... ∂LT

∂an∂θm

¯̄

3
7775

T

¢ H¡1
θθ

(20)
More synthetically, let us denote one of the rows in the above matrix by ∂

∂ai
.

We have now all the elements to come to the de¯nition of the di®erential
importance of weights on portfolio volatility. Combining eq. (20) with eqs.
(17) and (2), one ¯nds:

Di(a0,da) =

³
∂zt
∂ai

¢ θ + zt ¢ ∂θ
∂ai

´
dai

nX

j=1

³
∂zt
∂aj

¢ θ + zt ¢ ∂θ
∂aj

´
daj +

³
∂zt
∂aj

¢ θ + zt ¢ ∂θ
∂aj

´
dan+1

ja0 (21)

Eq. (21) determines the analytical expression of the importance of portfo-
lio weights w.r.t. σp estimated via a GARCH model for the generic trading
strategy. From eq. (21), it is then straightforward to estimate the impor-
tance of weights for strategies that foresee a uniform or a proportional change
in weights. The importance of individual weights for a trading strategy that
assumes of uniform weight changes is:

D1i(a0) =
∂zt
∂ai

¢ θ + zt ¢ ∂θ
∂ai

nX

j=1

³
∂zt
∂aj

¢ θ + zt ¢ ∂θ
∂aj

´ ja0 (22)

The importance of individual weights for a trading strategy that assumes
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proportional weight changes is:

D2i(a0) =

³
∂zt
∂ai

¢ θ + zt ¢ ∂θ
∂ai

´
a0i

nX

j=1

³
∂zt
∂aj

¢ θ + zt ¢ ∂θ
∂aj

´
a0j

ja0 (23)

Suppose now that the analyst wants to evaluate the impact of changing
group A vs. group B of portfolio weights. Let SA = fa1A , a2A , ..., akAg and
SB = fa1B , a2B , ..., amBg, with kA and mB lower than n. Then, combining
eq. (21) with eq. (3), the in°uence of a change in set A weights is determined
by:

DSA(a0,da) =

kAX

i=1

³
∂zt
∂aiA

¢ θ + zt ¢ ∂θ
∂aiA

´
daiA

nX

j=1

³
∂zt
∂aj

¢ θ + zt ¢ ∂θ
∂aj

´
daj +

³
∂zt
∂aj

¢ θ + zt ¢ ∂θ
∂aj

´
dan+1

ja0

(24)
i.e. it is the sum of the importance of the weights in set A. Similarly, the
in°uence of a change in set B weights is determined by:

DSB(a0,da) =

mBX

i=1

³
∂zt

∂aiA
¢ θ + zt ¢ ∂θ

∂aiA

´
daiB

nX

j=1

³
∂zt
∂aj

¢ θ + zt ¢ ∂θ
∂aj

´
daj +

³
∂zt
∂aj

¢ θ + zt ¢ ∂θ
∂aj

´
dan+1

ja0

(25)
Thus, if DSB(a0,da) ¸ DSA(a0,da) then set B is more in°uential or

as in°uential as set A on σp. The above result is a consequence of the
additivity property of the di®erential importance measure and cannot be
obtained utilizing the sole PDs as a means for computing the sensitivity of
σp on the portfolio weights.

11



5 Sensitivity Analysis and portfolio manage-
ment

As recently pointed out by Saltelli ([28]), Sensitivity Analysis can be thought
as an important tool for asset allocation as it provides extremely useful infor-
mation on the source of uncertainty a®ecting portfolio returns. In particular,
in that paper, the author pays special attention to the volatility of stock re-
turns and thus provides an importance measure ranking aiming at estimating
the relevance of the stocks for the aggregate return. In the present paper,
we consider the dual problem, i.e. the sensitivity of portfolio volatility w.r.t.
weights.

Let us consider the classical portfolio choice program:

a¤ = arg max
a

[E (a0y) ¡ kV ar(a0y)] (26)

where E (a0y) is the expected value of the portfolio return; y is the vector
of asset returns, k is a scale variable. For given values of k, problem (26) can
be splitted into:

a¤ = argmax
a

[E (a0y)] (27)

s.t.
V ar(a0y) = ¾ 2

and the dual problem:

a¤ = arg min
a

[V ar(a0y)] (28)

s.t.
E (a0y) = µ

If we rewrite E (a0y) as a0¹ =µ, then the solution to (28) can be drawn
from the maximization of:

H = 1
2
a0§a¡ ¸ (a0¹¡µ)

thus:
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∂H
∂a

= §a¡ ¸¹ (29)

that, set equal to zero, gives the optimal portfolio:

a¤ = ¸§¡1¹ (30)

As stated in Example 1, DIMs are extremely useful in calibrating trading
strategies w.r.t. a speci¯c stock or a group of assets, that is the relevance of
an asset in determining the volatility of portfolio return changes according to
the size of the weight but also to the considered change (dai). As a particular
case, Proposition 1 has demonstrated that trading strategies set up according
to uniform changes over the whole set of weights have the same output as if
they were produced by considering only PDs.

Manganelli ([21]) provides numerical analysis arguments for the compu-
tation of ¯rst derivatives of problem (28) when the volatility of the portfolio
can be approximated by a GARCH(1,1).

5.1 An empirical application
Let us consider a portfolio of 30 stocks composing the Dow Jones Industrial
Average index (table 1), as of March 2002. Daily returns cover the period
ranging from January 2, 1992 through March 11, 2002.

[Table 1]

As a starting point we need to generate the sub-optimal weights of the
portfolio because if (30) holds, than DIMs are unde¯ned. Thus, we estimate
the weights of the optimal portfolio as de¯ned by the ¯rst order conditions
of an exponentially weighted moving average (EWMA). The choice of that
particular stochastic process as a generator of the weights has been made as
Manganelli ([21]) demonstrates that the volatility of the 30 stocks estimated
by an EWMA is only 7.34% lower than the one estimated by a GARCH(1,1)
model in a¤. This result is particularly interesting for our purposes as the
EWMA optimal portfolio can be thought as a local deviation (i.e. a small
change) in the GARCH(1,1) computed in the optimum. Notice that the ¯rst
derivative and thus a¤ is computed as of March 11, 2002.
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[¯gures 1 and 2]

Figures 1 and 2 depicts daily returns of the EWMA optimal portfolio and
the time series of the estimated variance respectively.

Table 2 shows the DIMs for the considered stocks under the hypothesis
of uniform and proportional changes. As expected, values vary greatly ac-
cording to the di®erent strategies, and what is more evident is the fact that
the ranking of stocks presents signi¯cant di®erences (table 3).

[Tables 2 and 3]

Those di®erences re°ect the fact that there are several multi-step paths
to reach the minimum variance optimum (but only one-step path) to reach
the minimum variance optimum, a¤, and they are in°uenced by two main
factors:

² initial conditions (in our case the EWMA optimal portfolio);

² the choice of the feasible adjustment strategy.

On the second point, even if it is not the proper object of the present pa-
per, it should be stated that by solving the problem (28), no information are
provided on the "optimal strategy to reach the optimum point". Comput-
ing DIMs provides information on how the optimum point can be reached,
by calculating the sign of the impact of a given stock and by ranking them
according to that impact.

Given a suboptimal portfolio, an optimal strategy might consist in the
fastest or cheapest way to reach the minimum variance (as of March 2002).
The ranking of strategies can be made on the bases of the total di®erential
that provides, given the estimated GARCH(1,1) model, the magnitude of the
impact of weights changes. In the case shown in table 2, the trading strategy
imposing uniform changes will result in a decrease of -7.04 in the volatility,
whilst the proportional changes strategy will increase volatility by 0.172.

In all the previous cases, the DIM attributes the relative importance of a
given single asset in inducing changes in volatility. For example and having
equations (24) and (25) in mind, in the uniform changes case, the former ten

14



stocks account for 46% of the result (recall: -7.04), whilst the latter ten only
for 18.38%. This implies that the former assets are the most important for
the considered strategy.

It is worthnoting that the fastest strategy is the result of (da)¤= a¤¡a,
where a is the initial point. Third columns in tables 2 and 3 report the
DIMs for the stocks involved in that strategy. As expectded, the values
greatly vary, but what is interesting is the fact that the total di®erential
of the "optimal portfolio strategy"1 lies between the ones of the uniform
changes and proportional changes strategy. This is not surprising as we are
interested in solving the maximin problem (26), thus other strategies di®erent
from (da)¤ are suboptimal because they lead to too low and too high risk
respectively.

6 Conclusions

In this work we have illustrated the sensitivity analysis of portfolio volatility
estimation models. We have suggested that performing the SA based on the
sole PDs, one encounters the following limitations:

1. Impossibility of testing the sensitivity on simultaneous changes in sev-
eral parameters

2. Impossibility of testing the sensitivity of σp for changes in weights other
than uniform ones.

We have illustrated that the previous two limitations do prevent one from
evaluating the impact of changes in portfolio composition, since a trading
strategy usually involves a change in one or more of the portfolio weights and
the changes are usually not uniform. We have seen that these limitations can
be overcome if, instead of using a PDs approach, one utilizes the Di®erential
Importance Measure (DIM) as a SA method. We have shown that, due to
the way it is de¯ned, DIM shares the following properties:

1. Additivity

2. Relative parameter changes considerations
1We use the word "optimal" to indicate the fastest strategy.
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We have shown that the above two properties enable one to solve the
limitations encountered in the use of the sole PDs. In fact, thanks to the
additivity property the impact of a change in several weights can be com-
puted as sum of the individual weight DIMs, and the e®ect of arbitrary
relative changes in portfolio weights is automatically taken into account in
the de¯nition of DIM.

We have then discussed the application to the SA of σp estimated through
GARCH models. We have utilized the result of theorem 1 in [21] and
combined it with the de¯nition of DIM to ¯nd the analytical expression
of the importance of portfolio weights w.r.t. σp. We have provided the
speci¯c analytical expression of the weight importance for the cases of the two
simplest possible strategies: the uniform change case and the proportional
change case. We have discussed the calculation of the joint importance of
weights with respect to σp by exploiting DIM additivity property.

We have then illustrated the above results by means of the numerical
computation of the SA of a portfolio composed by 30 stocks | the same
portfolio as in [21] |. It has been shown that the ranking of the importance
of assets changes according to the considered strategy.
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Table 1 : Composition of the Dow Jones Industrial Average Index   
 

This table presents the list of 30 stocks composing the portfolio considered in the 
empirical application. The composition of the Dow Jones Index should be meant as of 
March 11, 2002.  

 
Stock 

Alcoa In.  
American Express Co. 
AT&T Corp. 
Boeing Co.  
Caterpillar Inc. 
Citigroup Inc. 
Coca-Cola Co. 
Walt Disney Co.  
E.I. DuPont de Nemours & Co.  
Eastman Kodak Co. 
Exxon Mobil Corp.  
General Electric Co. 
General Motors Corp.  
Hewlett-Packard Co. 
Hope Depot Inc. 
Honeywell International Inc. 
Intel Corp. 
International Business Machines 
Corp. 
International Paper Co. 
Johnson&Johnson 
J.P. Morgan Chase & Co. 
McDonald's Corp. 
Merck & Co. 
Microsoft Corp. 
3M Co. 
Altria Group Inc. 
Procter & Gamble 
SBS Communications Inc. 
United Technologies Corp.  
Wal-Mart Stores Inc. 

 
 
 
 
 
 
 
 
 



 
Table 2: DIMs for different strategies 

 
The table presents the computation of DIMs for the stocks in the portfolio for the 
uniform changes and the proportional changes strategy. GARCH(1,1) model is 
estimated by considering the optimal EWMA portfolio. First derivatives are valued as 
of March 11, 2002. The stock Wal-Mart Stores Inc. does not have the derivative as it 
has a weight depending on all other stock weights. 

 
Stock Uniform 

changes 
Proportional 
changes 

Optimal 
strategy 

Alcoa In. 0.051073 0.15398633 0.436356 
American Express Co. 0.069683 0.12372132 0.010644 
AT&T Corp.  0.044879 0.1134629 0.009414 
Boeing Co.  0.056514 0.05225033 0.00903 
Caterpillar Inc. 0.061969 0.03523841 -0.01418 
Citigroup Inc. 0.049297 -0.0453762 0.088237 
Coca-Cola Co. 0.014888 -0.1265676 -0.01352 
Walt Disney Co. 0.043174 -0.0264934 -0.00836 
E.I. DuPont de Nemours & Co.  0.040858 -0.1400711 -0.06707 
Eastman Kodak Co. 0.029535 -0.0074914 0.00501 
Exxon Mobil Corp. 0.037164 0.13972337 0.300262 
General Electric Co.  0.0334 0.0073784 0.01815 
General Motors Corp. 0.046271 0.0660631 0.008305 
Hewlett-Packard Co.  -0.03921 0.23467628 0.020369 
Hope Depot Inc. 0.038471 0.0291163 0.000542 
Honeywell International Inc. 0.091107 0.45881233 0.044955 
Intel Corp.  0.035303 -0.0385615 0.001764 
International Business Machines 
Corp.  

0.054383 0.20823972 
0.017341 

International Paper Co.  0.035303 -0.0466493 -0.01083 
Johnson&Johnson 0.005725 -0.0539873 -0.00714 
J.P. Morgan Chase & Co.  0.039949 -0.077956 -0.01063 
McDonald's Corp.  -0.00473 0.00894133 0.161835 
Merck & Co.  0.026424 -0.0438889 -0.01404 
Microsoft Corp.  0.023015 -0.0013181 -0.00261 
3M Co. 0.035772 -0.1002449 0.001536 
Altria Group Inc. -0.01725 0.26155141 0.032909 
Procter & Gamble 0.01172 0.01668587 0.000512 
SBS Communications Inc. 0.027916 -0.1251667 -0.0148 
United Technologies Corp. 0.057395 -0.076075 -0.004 
Total Differential -7.039 0.1720617  -0.01537 

 
 
 
 
 
 



 
 

Table 3: Rankings of stocks according to the DIM 
 

The table presents the ranking of the stocks according to the importance measures 
presented in table 2.  

 
Rank Uniform changes Proportional 

changes 

Optimal strategy 

1 Honeywell International 
Inc. 

Honeywell International 
Inc. 

Alcoa In. 

2 American Express Co. Altria Group Inc. Exxon Mobil Corp. 
3 Caterpillar Inc. Hewlett-Packard Co.  McDonald's Corp. 
4 United Technologies 

Corp. 
International Business 
Machines Corp. 

Citigroup Inc. 

5 Boeing Co. Alcoa In. Honeywell International 
Inc. 

6 International Business 
Machines Corp. 

Exxon Mobil Corp. Altria Group Inc. 

7 Alcoa In. American Express Co. Hewlett-Packard Co. 
8 Citigroup Inc. AT&T Corp. General Electric Co. 
9 General Motors Corp. General Motors Corp. International Business 

Machines Corp. 
10 AT&T Corp. Boeing Co. American Express Co. 
11 Walt Disney Co. Caterpillar Inc. AT&T Corp. 
12 E.I. DuPont de Nemours 

& Co. 
Hope Depot Inc. Boeing Co. 

13 J.P. Morgan Chase & Co. Procter & Gamble General Motors Corp. 
14 Hope Depot Inc. McDonald's Corp. Eastman Kodak Co. 
15 Exxon Mobil Corp. General Electric Co. Intel Corp. 
16 3M Co. Microsoft Corp. 3M Co. 
17 Intel Corp. Eastman Kodak Co. Hope Depot Inc. 
18 International Paper Co. Walt Disney Co. Procter & Gamble 
19 General Electric Co. Intel Corp. Microsoft Corp. 
20 Eastman Kodak Co. Merck & Co. United Technologies 

Corp. 
21 SBS Communications 

Inc. 
Citigroup Inc. Johnson&Johnson 

22 Merck & Co. International Paper Co. Walt Disney Co. 
23 Microsoft Corp. Johnson&Johnson J.P. Morgan Chase & Co. 
24 Coca-Cola Co. United Technologies 

Corp. 
International Paper Co. 

25 Procter & Gamble J.P. Morgan Chase & Co. Coca-Cola Co. 
26 Johnson&Johnson 3M Co. Merck & Co. 
27 McDonald's Corp. SBS Communications 

Inc. Caterpillar Inc. 
28 Altria Group Inc. Coca-Cola Co. SBS Communications 

Inc. 
29 Hewlett-Packard Co. E.I. DuPont de Nemours 

& Co. 
E.I. DuPont de Nemours 
& Co. 

 
 



 
 

Figure 1  : Portfolio returns 
 

This figure shows the time series of the EWMA optimal portfolio returns. First order 
conditions for EWMA optimization have been valued as of March 11, 2002.  
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Figure 2 : Volatility of the portfolio 
 

The figure shows the time series of the predicted variance of the GARCH(1,1) model 
estimated in the EWMA optimal portfolio. The low value of the function in t = 
11/3/2002 indicates that the difference between the EWMA and the GARCH(1,1) 
optimal portfolios is relatively small. This difference can considered as a local change, 
thus SA based on differential measures provides appropriate indicators of relative 
importance.. 
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