
PREDICTIVE ACCURACY OF FUTURES OPTIONS IMPLIED 

VOLATILITY: THE CASE OF THE EXCHANGE RATE FUTURES 

MEXICAN PESO – U.S. DOLLAR  

 
 
 

Guillermo Benavides* (PhD) 

 

 

Central Bank of Mexico** 

 

 
 
 
* Mailing address: Guillermo Benavides, Recreo #95-306, Col. Del Valle Actipan, Mexico, 

D.F., CP. 03100, MEXICO. 

Telephone: 0115255 52372000 Ext. 3361. Fax: 011525552372230 

Email: gbenavid@banxico.org.mx 

 

** The ideas expressed in this paper are those of the author only. The Central Bank of 

Mexico is not responsible for the content of this paper. 

 
 

Submitted in August 2004 

 

 

mailto:gbenavid@banxico.org.mx


 2

ABSTRACT 

There has been substantial research effort aimed to forecast futures price return 

volatilities of financial assets and so far it hasn’t been a simple task. A significant part of 

the literature shows that volatility forecast accuracy is not easy to estimate regardless of the 

forecasting model applied. Some part of this research focuses on the performance of time-

series models (in particular ARCH models) versus option implied volatility models. This 

paper examines the volatility accuracy of several volatility forecast models for the case of 

the Mexican peso-USD exchange rate futures returns. The models applied here are a 

univariate GARCH, a multivariate ARCH (the BEKK model), two option implied volatility 

models and a composite forecast model. The composite model includes time-series 

(historical) and option implied volatility forecasts. Different to other works in the literature, 

in this paper there is a more rigorous analysis of the option implied volatilities calculations. 

While most of the papers in the literature present only one option implied volatility model 

or estimates from it in this paper there are two option pricing models presented: one for 

pricing European options and the other one an approximation to price American options. 

The results show that the option implied models are superior to the historical models in 

terms of accuracy and that the composite forecast model was the most accurate one 

(compared to the alternative models) having the lowest mean-square-errors. However, the 

results should be taken with caution given that the coefficient of determination in the 

regressions was relatively low. According to these findings it is recommended to use a 

composite forecast model if both types of data are available i.e. the time-series (historical) 

and the option implied.  

 

Keywords: Composite forecast models, exchange rates, multivariate GARCH, option 

implied volatility, volatility forecasting. 
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I. INTRODUCTION 

Price volatility forecasts are important in today’s financial markets. For example 

forecasts of price return volatilities are useful for persons involved in risk-management 

decisions. Forecasting exchange rate price volatility could help decision makers to take 

decisions, which involve long-term commitments of financial resources e.g. loans 

denominated in a foreign currency, businesses that require payments of products as inputs 

in production processes which need to be paid in a foreign currency, financial institutions 

involved in portfolio-risk management, Value-at-Risk (VaR) calculations, among others 

financial situations that involve payments in another currency.  

Since the early 1980’s the volatility forecasting literature has increased with a 

considerably success (Poon and Granger: 2003). The pioneer works of Engle (1982), Taylor 

(1985) and Bollerslev (1986) lead to an increased amount of research related to this topic. It 

is known that the more accurate the forecast is, the more the benefits (in terms of greater 

utility) a decision-maker can obtain from it (Brooks: 2002). Thus, an accurate forecast 

model in finance is a useful tool for individuals involved in financial risk taking decisions 

as the ones described above.   

There are basically two methods widely used to calculate the volatility of a financial 

asset. One of them is by modelling historical price returns of a specific asset and the other 

one is by calculating (when data is available) it option implied volatilities. Both of these 

procedures are explained below in it relevant literature review section (i.e. historical and 

option implied volatility literature review sections). Even though both methods are widely 

used there is a current debate about which method is the superior one predictor in terms of 

predicting financial asset price volatility.  
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Considering the existing debate in the academic literature related to the volatility 

forecasting accuracy between the aforementioned volatility forecasting methods in this 

research paper different volatility models (historical vs. option implieds) are compare to 

each other. The goal is to analyse which is the superior forecast model if any. It must be 

bear in mind that as today there are no conclusive answers about which is the most accurate 

method (model to) use. However, everyday there are more research papers that find that 

option implied volatility forecast are superior than historical ones (Poon and Granger: 

2003). In the present research paper the accuracies of several volatility forecast models are 

compared against each other. The models presented are: 1) a Generalised Autoregressive 

Conditional Hetersokedasticity (GARCH) model (Bollerslev: 1986), 2) a multivariate 

ARCH model (Engle and Koner: 1995), 3) implied volatility estimates for European 

options (Black-Scholes) and American options (Barone-Adesi and Whaley: 1987) and 4) a 

composite forecast model (Which includes historical and implied volatility forecast). 

Different to previous works related to this topic this paper not only compares historical 

versus option implied volatility but also tests which option implied volatility model is 

superior. European option pricing models are compared to American option approximation 

models. Furthermore, a composite model which includes the best estimates from the 

historical and option implied is also compared to these models. An additional feature is that 

these models are applied for futures prices of an exchange rate which has not been 

considered for this purpose. This is done specifically for daily futures price return 

volatilities of the exchange rate Mexican peso-U.S dollar. 

The layout of this paper is as follows. The historical, implied volatilities and 

composite approaches literature reviews are presented in Section II. The motivation and 

contribution of this work is presented in Sections III-IV. Section V presents the definition 
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of futures prices. The models are explained in Section VI. Data is detailed in Section VII. 

Section VIII presents the descriptive statistics. The results are presented in Section IX. 

Finally Section X concludes (figures and tables can be observed in the Appendix). 

  

II. ACADEMIC LITERATURE OF VOLATILITY FORECAST MODELS 

2.1 HISTORICAL VOLATILITY MODELS  

Historical volatility is described by Brooks (2002) as simply involving calculation 

of the variance or standard deviation of returns in the usual statistical way over some 

historical period (time frame). This variance or standard deviation may become a forecast 

for all future periods. Historical volatility was traditionally used as the volatility input to 

options pricing models although there is growing evidence that the use of volatility 

predicted from relatively more sophisticated time series models (ARCH models) may give 

more accurate option valuations (Akgiray: 1989, Chu and Freund: 1996). It is well 

documented that ARCH models can provide accurate estimates of commodity price 

volatility. Just to mention a few see for example, Engle (1982), Taylor (1985) Bollerslev et. 

al. (1992), Ng and Pirrong (1994), Susmel and Thompson (1997), Wei and Leuthold 

(1998), Engle (2000), Manfredo et. al. (2001). However, there is less evidence that ARCH 

models give reliable forecasts of commodity price volatility for out-of-sample evaluation 

(Park and Tomek: 1989, Schroeder et. al.: 1993, Manfredo et. al.: 2001). All of them found 

that the explanatory power of these out-of-sample forecasts is relatively low. In most cases 

the R2 are below 10% (Pong et. al.: 20031). Therefore, the forecasting ability of these 

models could be questionable. 

                                                 
1 They found that implied volatility forecasts performed at least as well as forecasts from Autoregressive 
Fractional Integrated Moving Average Models (ARFIMA) for time horizons of one and three months. 
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2.2 OPTION IMPLIED VOLATILITY MODELS 

Nowadays it is widely known in the forecasting-volatility-literature that the implied 

volatilities obtained from options prices are accurate estimators of price volatility of their 

underlying assets traded in financial markets (Clements and Hendry: 1998, Fleming: 1998, 

Blair, Poon and Taylor: 2001, Manfredo et. al.: 2001, Martens and Zein: 2002, Neely: 

2002, Ederington and Guan: 2002, Giot: 2003). The forward-looking nature of the implied 

volatilities is intuitively appealing and theoretically different to the well-known conditional 

volatility ARCH models estimated using backward-looking historical characteristics of 

time series approaches. Within the academic literature there is evidence that the 

information content of the estimated implied volatilities from options could be superior to 

those estimated by time series approaches. The aforementioned evidence is supported by 

Fleming et. al (1995) for futures market indexes, Jorion (1995), Xu and Taylor (1995), 

Neely (2002) for foreign exchange, Christensen and Prabhala (1998), Figlewski (1997), 

Fleming (1998), Clements and Hendry (1998), Blair, Poon and Taylor (2001), Martens and 

Zein (2002) for stocks, Ederington and Guan (2002) for futures options of the S&P 500. 

Manfredo et. al. (2001), Benavides (2003), Giot (2003), for agricultural commodities.  

However, not all the research papers about option implied volatilities are positive to 

in terms of using this method. There are several research papers that show skepticism about 

the forecasting accuracy of the aforementioned implied volatilities (Day and Lewis: 1992, 

1993; Figlewski: 1997, Lamoureux and Lastrapes: 1993). The latter type of research papers 

have increased the already existing controversy regarding which is the best method or 

model to use in order to obtain the most accurate volatility forecast in financial markets i.e. 
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implied volatility against time series approaches. This is because, as yet, there are no 

conclusive answers about which is the best (and consistent) volatility forecast model for 

forecasting price returns volatilities (Manfredo et. al.: 2001, Brooks : 2002). For out-of-

sample volatility evaluation, forecasting price return volatilities has been a very difficult 

task, even for option implied volatilities, given that most of the reported results in the 

academic literature generally have very low explanatory power i.e. low R2. 

 

2.3 COMPOSITE FORECAST MODELS 

Other type of models used to forecast asset price volatility are the composite 

forecast models. These models are a combination of different forecast models. The aim is 

that by combining such models it could be possible to obtain a more accurate forecast 

estimate compared to the case of not being combined. The motivation to use a composite 

approach has to do with forecast errors. It is commonly observed that individual forecast 

models generally have less than perfectly correlated forecast errors. It is a belief that each 

of the models in the composite approach will add significant information to the model as a 

whole given this statistical difference in the errors. Decreasing measurement errors by 

averaging them with several forecast models could improve forecasting (Makridakis: 

1989). It is also said that the variance of post-sample errors can be reduced considerably 

with composite forecast models (Clemen: 1989). Composite approaches of financial asset 

prices started to be formally presented since the late 1960’s. Some of the works are the ones 

of Bates and Granger (1969), Granger and Ramanathan (1984), Clemen (1989), Makridakis 

(1989), Kroner et. al. (1994), Blair et. al (2001) for stock indexes, Fang (2002), Pong et. al. 

(2003) for exchange rates. 
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In terms of non-financial empirical works there are several research papers in the 

literature about this topic. Some of them are the works of Bessler and Brandy (1981) which 

combined ARIMA and simple historical average models, and they found that for quarterly 

hog prices, the results were superior when these models were combined2. They created the 

weights for the composite forecast model based upon the forecast ability of each individual 

model in terms of their Mean-Squared-Errors (MSE). Along the same lines Park and 

Tomek (1989) evaluated several forecast models (including ARIMA, Vector-

Autoregression and OLS for their variances) and concluded in favour of the composite 

approach. Combining several forecast models gave the lowest MSE when compared to the 

same models not being combined. In an opposite finding Schroeder et. al. (1993) reported 

that forecasting cattle feeding profitability gave conflicting results. Their results show that 

there was no forecast model consistent enough to consider a reliable forecast model 

(including the composite model). Manfredo et. al. (2001) attempted to forecast agricultural 

commodity price volatility using several models which included ARIMA, ARCH and 

implied volatility from options on futures contracts. They found that there was no superior 

model to forecast volatility (based on their MSE) however they recognised that composite 

approaches, which included an option implied volatility model performed marginally better 

than forecast models not being combined. They found that their models’ R2 were 

significantly low (below 10%) and they did not find conclusive answers. They also 

acknowledged that composite approaches are now increasingly being used more than 

before. This is especially when more data (time series and option implied volatilities) are 

available. 

                                                 
2 Bessler and Brandy analysed quarterly hog prices for the sample period from 1976:01 until 1979:02. 
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In this research paper the idea of combining conditional and implied volatility 

forecasts aims specifically to test the accuracy in terms of volatility information of the 

composite forecast model against individual forecast models i.e. the historical and the 

implied volatilities models.  

 

III. MOTIVATION 

The motivation for conducting this research with the methods explained above i.e 

the historical, the option implied volatilities and the composite approach is to extend the 

existing literature on exchange rate returns forecast accuracy. This is conducted by 

comparing these methods and evaluating them. The evaluation is performed for both in-

sample and out-of-the-sample time periods. Previous research on these exchange rate 

volatility forecasts has ignored the early exercise privilege of the American options. This is 

because they use European option pricing models to find option implied volatilities of 

American options (see for example Pong et. al.: 2003). In this project both European and 

American option pricing models are used. The idea is to compare the forecast accuracy of 

both when American options are used. It was said in the literature that ignoring the early 

exercise privilege of the American options could cause implied volatilities series potentially 

flawed (Blair, Poon and Taylor: 2001). In this research paper the Barone-Adesi and Whaley 

(1987) approximation formula to find the price of an American option is use. Subsequently, 

the implied volatilities are calculated. Thus, the early exercise privilege of these American 

options is taken into consideration in the present study. 

In addition, combination of historical (using univariate and multivariate ARCH) 

with option implied models aiming to forecast volatility of the Mexican peso – US dollar 
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exchange rate futures prices has not been done before. Thus, these findings contribute with 

new knowledge to the existing academic literature on historical, option implied and 

composite forecast models applied to exchange rate futures markets. It could also be for the 

interest of groups of persons involved in making risk management decisions related to this 

exchange rate. These groups of persons could be bankers, policy makers, investors, 

exchange rate futures traders, central banks, academic researchers among others. 

 

IV. CONTRIBUTION 

This paper extends the work made in previous research papers related to forecast 

foreign exchange volatility. Firstly, several historical models are used which are commonly 

not used in the academic literature. These are the bi-variate and tri-variate ARCH models. 

In the academic literature it is more common to observe univariate GARCH modeling 

trying to solve research questions about this topic. Secondly, the implied volatilities are 

calculated using two option price models. One of the models is for European options and 

the other one for American options. Most of the papers in the literature use only the 

European method to find the option implieds (Blair, et. al 2001, Manfredo et. al. 2001, 

Pong et. al 2003, Giot, 2003). It is then a possibility that these implied volatilities are mis-

measured because they use an option valuation model for European options that does not 

considers the early exercise privilege of the American options for pricing the latter (Harvey 

and Whaley: 1992, Blair et. al: 2001). Therefore the consideration of both pricing methods 

in this research paper allows for a more rigorous analysis of each of the methods for the 

option implied volatilities calculations. Thirdly, in contrast to other papers related to this 

topic, this research paper calculates the volatility forecast for futures prices of an exchange 

rate. Most of the paper in the literature show forecast for exchange rate spot prices.  
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Furthermore, the inclusion of the multivariate ARCH conditional volatility 

estimates in the composite forecast model could be a novelty to the exchange rate volatility 

forecasting literature. Nowadays there is strong evidence that multivariate ARCH models 

are more accurate than univariate ARCH models in terms of volatility forecasting of asset 

returns (Engle : 2000, Haigh and Holt: 2000, Pojarliev and Polasek: 2000). Thus, 

combining the aforementioned estimates with the estimated implied volatilities could 

provide useful information and a rigorous examination on the performance of these 

volatility models. Lastly, the empirical analysis of the Mexican peso-USD exchange rate in 

this area is something new. Most of the works up-to-day are made on non-emerging 

economies’ currencies. Individual characteristics of this exchange rate like for example ‘the 

peso problem3 can be analysed by seeing if the models used here capture some of that 

exchange rate unusual behaviour.  

 

V. DEFINITION OF FUTURES PRICES 

   As explained in previous sections, the objective of this paper is to forecast the 

futures price volatility of the exchange rate Mexican peso-USD. For this reason a formal 

definition of a futures price is explained. According to Hull (2003 pg. 706) a futures price is 

the ‘delivery price currently applicable to a future contract.’ A futures contract ‘obligates 

the holder to buy or sell an asset at a predetermined delivery price during a specified future 

time period. The contract is marked to market daily.’ Formally the futures price can be 

expressed as (Hull: 2003 pg. 46):   

                                                 
3 In international financial markets ‘the peso problem’ is applied to situations where large discrete jumps in 
exchange rate prices or shifts on policy regimes are observed (Levich: 1998, pg. 237). 
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                                                                                                                            (1) rTeSF 00 =

 

     Where F0 is the current futures (or forward) price, S0 is the current spot price, e equals 

the e(·) function, r is the risk-less rate of interest per annum expressed with continuous 

compounding and T is the time to maturity in years. For the previous formula is assumed 

that the underlying asset pays no income. For the case of exchange rate futures the formula 

is modified to adjust for the foreign interest rate. As seen in Hull (2003, pg. 56) the formula 

can be expressed as follows, 

 

                                                                                                                      (2) Trr feSF )(
00

−=

 

    where rf is the risk-less foreign interest rate per annum expressed with continuous 

compounding, which is in the same terms of the domestic interest rate described above.  

Detailing of the previous equations 1 and 2 is important in this project. These are 

the fundamental equations that are considered in order to estimate the futures price 

volatilities of the exchange rate under study. Therefore the variables of futures prices, spot 

prices, and domestic and foreign interest rates are inputs in both the historical and option 

implied models. These models are explained in detail next.   
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VI. THE MODELS 

6.1 HISTORICAL VOLATILITY MODELS 

The historical models under analysis are the univariate GARCH(p, q) and a 

restricted version of the multi-variate ARCH BEKK(p, q) model proposed by Engle and 

Kroner (1995). The BEKK model (named like this after an earlier working paper by Baba, 

Engle, Kraft and Kroner (Baba et. al.: 1992)) is used in order to estimate the historical 

volatilities of the exchange rate under study in a multi-variate framework. The former 

estimates the conditional variances. The latter, in addition to estimating the conditional 

variances, also estimates the conditional covariances of the series under study. The BEKK 

model can be useful to test economic theories which involve price volatility analysis like 

for example price uncertainty influences to employment (Engle and Kroner: 1995), 

volatility relationships between financial assets i.e CAPM volatility Bollerslev et. al (1988), 

hedge ratio volatility for FTSE stock index returns Brooks, Hendry and Persand (2002). It 

is also possible to test futures markets theories like the Samuelson Hypothesis (Samuelson: 

1965). The latter states that spot prices are more volatile than futures prices. This could be 

tested with the previously mentioned BEKK model.  

In the present paper the univariate GARCH(1,1) model is estimated applying the 

standard procedure as explained in Taylor (1985) and Bollerslev (1986). The formulae for 

the GARCH(1,1) is presented next.  For the model there are two main equations. These are 

the mean equation and the variance equation:   

 

Mean equation,  

 

                                                                     ∆yt = µ + et                                                      (3) 
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          et It-1 ~ N(0, ht), 

 

 

 

Variance equation, 

 

                                                        ht = α0 + α1e2
t-1 + β1ht-1  .                                                         (4) 

 

Where: yt = log of the series under analysis (exchange rate) at time t, ht = variance at 

time t and t-1 for ht-1, ∆ = first differences of the series, et error term at time t, It-1 is the 

information set at time t-1, µ, φ, α0, α1, β1 are parameters and N(0, ht) is for the assumption 

that the log returns are normally distributed. In other words, assuming a constant mean µ 

(the mean of the series yt) the distribution of et is assumed to Gaussian with zero mean and 

variance ht. The parameters were estimated using maximum likelihood method using the 

BHHH (Berndtand, Hall, Hall, and Hausman) algorithm of Berndt et. al. (1974). The 

Bollerslev and Wooldridge (1992) methodology was used to estimate the standard errors. 

The procedure to obtain the BEKK model mentioned above is explained in Equations 5 - 9 

below.  

Let yt be a vector of returns at time t (in this research paper the dimension of this 

vector is 2 x 1 given that there are two series under analysis, spot and futures prices series, 

but in any different case it could be extended to a n x 1 vector), 

 

                                                                tty εµ +=                                                          (5) 
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Where µ is a constant mean vector and the heteroskedastic errors εt are multivariate 

normally distributed (µ = greek-small-letter-mu and ε = greek-small-letter-epsilon) 

 

                                                             ),0(~1 ttt HNI −ε                                      

 

Each of the elements of Ht depends on q lagged values of the squares and the cross 

products of εt as well as they on the p lagged values of Ht (H = greek-capital-letter-eta). 

Considering a multivariate model setting it is convenient to stack the non-redundant 

elements of the conditional covariance matrix into a vector i.e. those elements on and below 

the main diagonal. The operator, which performs the aforementioned stacking, is known as 

the vech operator. Defining ht = vech(Ht) and ηt = )( ttvech εε ′  the parameterisation of the 

variance matrix is (η = greek-small-letter-eta). 

 

                               ....... 11110 ptptqtqtt hhh −−−− ++++++= ββηαηαα                              (6) 

 

Equation 6 above is called the vech representation. Bollerslev et. al. (1988) have 

proposed a diagonal matrix representation, in which each element in the variance matrix 

hjk,t depends only on past values of itself and past values of the cross product εj,tεk,t. In other 

words, the variances depend on their own past squared residuals and the covariances 

depend on their own past cross products of the relevant residuals. A diagonal structure of 

the matrices αi and βi is assumed in order to obtain a diagonal model in the vech 
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representation shown in Equation 2 above (α = greek-small-letter-alpha and β = greek-

small-letter-beta). 

In the representations explained above it is difficult to ensure positive definiteness 

in the estimation procedure of the conditional variance matrix. To ensure the condition of a 

positive definite conditional variance matrix in the optimisation process Engle and Kroner 

(1995) proposed the BEKK model. This model representation can be observed below in 

Equation 7. 

 

                                          .                               (7) ββαεεαωω ′+′′+′= −
=

−−
=

∑∑ it

p

i
itit

q

i
t HH

11
)(

 

In Equation 7 above ωω ′  is symmetric and positive definite and the second and 

third terms in the right-hand-side of this equation are expressed in quadratic forms (ω = 

greek-small-letter-omega). This ensures that Ht is positive definite and no constraints are 

necessary on the αi and βi parameter matrices. As a result, the eigen values of the variance-

covariance matrix will have positive real parts which satisfy the condition for a positive 

definite matrix. 

For an empirical implementation and without loss of generality the BEKK model 

can be estimated in a restricted form having ω as a 2 x 2 lower triangular matrix, α and β 

being 2 x 2 diagonal matrices. Thus, for the bivariate case the BEKK model (BVBEKK) 

can be expressed in the following vector form: 
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or 
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Following the procedure for the bi-variate case a tri-variate model (TVBEKK) 

could also be estimated. Thus, the specification for the tri-variate case is as follows: 

 

111
2

1
2

11
2
1

2
111 −− ++= ttt HH βεαω                                                                                              (9) 
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133
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333 −− ++++= ttt HH βεαωωω  

 
11221121121212112 −−− ++== ttttt HHH ββεεααωω  

 

11331131131313113 −−− ++== ttttt HHH ββεεααωω  
 

1233213123254323223 −−− +++== ttttt HHH ββεεααωωωω  
 

 

In the bi-variate model the variables used are spot prices (y1) and futures prices (y2). 

These variables are use by relevance to the theoretical price Equation 1, which has both of 
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the variables. For the tri-variate case in addition to y1 and y2 a new variable is added. This is 

the interest rate (y3), which could be the domestic and the foreign interest rate4. The 

theoretical justification is Equation 2 that defines the theoretical price for the exchange rate 

futures price. Again, for these models maximum likelihood methodology and the BHHH 

algorithm were used in the estimation procedure. The specification of these historical (p, q) 

models is chosen applying the Akaike Information Criterion (AIC)5. It was found that the 

parsimonious first order specification was the optimal one for all of them. 

 

6.2 THE OPTION IMPLIED VOLATILITY MODELS 

The option implied volatility of an underlying asset is the market’s forecast of the 

volatility of that asset and this is obtained with the options written on that underlying asset 

(Hull: 2003). To calculate an option implied volatility of an asset an option valuation model 

is needed as well as the inputs for that model, like the risk free rate of interest, time to 

maturity, price of the underlying asset, the exercise price and the price of the option (Blair, 

Poon and Taylor: 2001). Using an inappropriate valuation model will produce pricing 

errors and the option implied volatilities will be mis-measured (Harvey and Whaley: 1992). 

For example using a valuation model that does not considers the early exercise privilege of 

an American option to find the option implied volatilites from American options will 

produce errors in the calculations i.e. using the Black and Scholes (1973) model 

                                                 
4 The risk-free interest rates for both countries (rf) were used. The results were qualitatively similar. However, 
the interest rates of the U.S. were chosen for the Mean-Square-Error evaluation. 
 

5 The AIC is obtained with the following formula:
n
k

n
l 22
+

−
. Where l is the value of the log likelihood 

function using the k estimated parameters, k is the number of estimated parameters and n is the number of 
observations. 
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(henceforth, the Black-Scholes model) to find the option implied volatilites from American 

options6. In this research paper two option pricing models are used. One of them is the BS 

and the other one is an option valuation model that gives an approximation for American 

options. The latter is a model developed by Barone-Adesi and Whaley (1987) henceforth 

BAW. The BAW model is used given that this valuation model takes into consideration the 

early exercise privilege of American options thus; mis-measurement errors from an early 

exercise are avoided.  

The BS is used in order to compare both models and test which has a superior 

predictive accuracy. The assumptions made for this model are: 1) Interest rates are non-

stochastic, which means that the forward is equal the futures price. 2) There are no 

arbitrage profits, so at equilibrium Equation 2 above holds. 3) All options are European. 4) 

The agents are risk-neutral, 5) there are no transaction costs and 6) the prices follow a 

Geometric Brownian Motion. The BS for exchange rates is stated formally in Equation 10 

below. 

 

                                            c = Se-rfTN(d1) – Xe-rTN(d2)                                                     (10) 

 

                            
T

Trr
X
S

f

σ

σ 





 +−+








=

2

1
2
1ln

d  

 

                                          Td σ−= 12d  

                                                 
6 The Black-Scholes option valuation model is for European options. These options do not have the early 
exercise privilege that American options have. 
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Where small c is the value of the European call option, T represents the time to 

maturity of the option, N(x) is the cumulative probability distribution function which is 

normally distributed. In other words, the probability that a variable with a standard normal 

distribution, ψ(0, 1) will be less than x. The exercise price is represented by X, ln is the 

natural logarithm and σ (small-letter-sigma) is the asset’s volatility measured as it standard 

deviation. The other variables are the same as defined previously.  

The assumption made for the BS model also apply to the BAW model with the 

exception that the options are assumed American not European. This BAW model is 

described in detail in Barone-Adesi and Whaley (1987, pgs: 301 – 312) and the formulae 11 

– 12 below summarises this model. 
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and, 
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The variables in the formulae above represent the following: capitol C is equal to 

the American call option price, c is equal to the Black-Scholes value for an European call, 

S* is the value of the exercise boundary (exercise now only if S > S*). q2 is an eigen value 

obtained (mathematically) from an early exercise premium differential equation as 

explained in Barone-Adesi and Whaley (1987, pg: 306). The variable b is equal to the cost 

of carry, r is the riskless rate of interest, N[.] is the cumulative univariate normal 

distribution, σ2 is the instantaneous variance and σ is the instantaneous standard deviation, 

which is a proxy for the asset’s price volatility (σ = greek-small-letter-sigma). S* is found 

with an algorithm which is described in detail in Barone-Adesi and Whaley (1987, pg: 

309). In this research paper S is equal to the exchange rate futures price F given that the 

option implied volatilities under analysis are those of the exchange rate futures prices. 

The implied volatility is calculated by an iterative process solving for the only 

unobserved variable, which is σ in the call option price function c(S, X, T, r, rf, σ). Having 

set up the BS and BAW formulas and knowing the value of the observed variables c, S, X, 

T, r, rf, the implied volatility is found by allowing σ to depend on itself plus a change 

dependent on the magnitude the calculated option price differs from the traded price (so, it 

will go up if the calculated price is below the traded price and vice versa). The calculation 
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is done several times until the pricing error becomes negligible7. For each trading day the 

aforementioned implied volatilities are derived from nearby to expiration futures options 

contracts (at least fifteen trading days prior to expiration) by taking the at-the-money (or the 

closest to at-the-money) call options price for the exchange rate Mexican peso-USD. In 

other words, the futures contract exercise price is matched against the call option futures 

price, which is at-the-money (equal) or the closest to at-the-money (almost equal). This is 

done for every trading day until the option contract is fifteen trading days close to 

expiration. When the option is fifteen trading days to expiration the implied volatilities are 

calculated with the next (in calendar) futures option contract. This is done in order to avoid 

volatility bias due to time to expiration phenomena (Figlewski: 1997). The relevant interest 

rate is used for each trading day in order to calculate these implied volatilities. 

 

6.3 THE COMPOSITE FORECAST MODEL 

In the spirit of Makridakis (1989) a composite forecast model is also estimated. The 

composite forecast model includes the estimates of the implied volatilities as well as the 

estimates from the BEKK model. Considering that the time variable in the option price 

formula is measured in years the estimates of the implied volatilities are calculated on an 

annualised basis. In order to include the implied volatilities estimates in the composite 

forecast model they must be transformed into daily trading-days estimates and then 

extended to a desired forecast horizon. Following Manfredo et. al. (2001) the formula to 

transform the aforementioned annualised estimates into daily trading-days implied 

                                                 
7 These calculations were performed using Visual Basic for Applications computer language. 
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volatilities which then can be extended to a desired forecast horizon is presented in 

Equation 13 below.  

                       

                                         
252

ˆ ,
rhIVthrt ⋅=σ                                                 (13) 

 

In Equation 13 above hrt ,σ̂  represent the hr-period volatility forecast for the 

exchange rate at time t. The symbol IVt represents the implied volatility estimate 

(annualised) at time t. The hr represents the desired forecast horizon. Considering that the 

daily implied volatilities estimates are obtained on an annualised basis with daily data the 

numerator in Equation 13 above is one, which represents one-trading-day (in other words 

the forecast is made for one trading day) and the denominator (the number 252) represent 

the number of trading days in one year. 

In order to create the composite forecast model it is necessary to use a simple 

averaging technique where the composite forecast is merely the average of individual 

forecasts at time t. It follows that weights for each of the volatility forecasts are generated 

by an ordinary least squares (OLS) regression of past realised volatility on the respective 

volatility forecasts. This procedure to create the weights for the aforementioned composite 

volatility forecast is explained in more detail in Granger and Ramanathan (1984). This can 

be observed in Equation 14 below.  

 

                                    ttkkttt εσβσβσβασ +++++= ,,22,110 ˆ...ˆˆ  .                           (14) 
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In Equation 14 above 
tσ  represent the realised volatility at time t, tk ,σ̂  represent 

the individual volatility forecast (k) corresponding to the realised volatility at period t. As it 

can be observed in this equation the composite forecast model includes the average of the 

individual volatility forecasts at time t. Following Blair, Poon and Taylor (2001) the 

realised volatility can be calculated in the following way, 

 

                                                                                                                  (15) ∑
=

+=
hr

j
jthrt R

1

2
,

2σ

 

In Equation 15 above σt,hr  represents the realised (total) volatility at time t over the 

forecast horizon hr. The R2
t represents the squared return at time period t. Thus, the 

resulting composite volatility forecast can be observed in Equation 16 below.  

 

                                                                    (16) 1,1,221,1101 ˆˆ...ˆˆˆˆˆˆ ++++ ++++= tkkttt σβσβσβασ

 

In Equation 16 above the variables are the same as expressed previously. The 

composite forecast model of this equation is a one-day volatility forecast. In order to create 

a composite volatility forecast of more than one day i.e. hr > 1 the estimated one-day 

composite volatility forecast (from Equation 16 above) is multiplied by rh . The 

aforementioned method for obtaining a composite volatility forecast of more than one day 

(h > 1) is a common practice in the academic literature however, it is important to 

emphasise that an alternative is to obtain predictions of volatility for each period in the 

forecast interval (e. g. from an ARCH model). 
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The MSE obtained from each of the estimates of all the volatility forecast models 

are compared to each other. The formula to obtain the MSE is presented in Equation 17 

below. 
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                                     (17) 

 

In Equation 17 above n is equal to the number of observations and the other 

variables are the same as described previously. These MSE comparisons are performed in 

order to provide a robust analysis of the accuracy of the aforementioned composite 

volatility forecast model against the alternative models (the conditional and implied 

volatilities models). The model with the smaller MSE is considered the most accurate 

volatility forecasting model of the returns of the exchange rate. Ranking models in terms of 

their MSE is a common practice in the forecasting volatility literature (Manfredo et al.: 

2001). 

 

VII. DATA  

7.1 FUTURES AND SPOT DATA 

The data for the exchange rate Mexican peso-USD consists of daily spot and futures 

prices obtained from the Central Bank of Mexico web page database8 and futures contracts 

traded at the Chicago Mercantile Exchange (CME) respectively. The sample period under 

 
8 The Central Bank of Mexico web page is http://www.banxico.org.mx 
 

 

http://www.banxico.org.mx/
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analysis is two years and four months from 03/09/2001 to 05/01/2004 supplied by Infosel’s 

database. The sample size is 597 observations. The sample period was chosen considering 

that it covers sufficient numbers years after important economic events in the Mexican 

economy. For example the starting of the floating-currency regime in 1994, the Central 

Bank autonomy and the implementation of the North America Free Trade Agreement 

(NAFTA) in the same year. 

 

7.2 OPTIONS DATA 

The options data consists of daily options prices for futures contracts the Mexican 

peso-USD traded at the CME. The sample period under analysis is two years from 

02/01/2002 to 05/01/2004 supplied by Reuter’s database. The sample size is 513 

observations. The data for the interest rates consists of daily 30-day and 91-day interest 

rates of US Certificates of Deposit (CD’s) obtained from the FED web page9 and same 

maturity Mexican CD’s obtained form the Central Bank of Mexico web page. The options 

data is necessary in order to estimate the implied volatilities for the futures price exchange 

rate.  

 

7.3 DATA TRANSFORMATION 

In order to avoid unrealistic ‘jumps’ when creating a time-series of futures prices 

from different contracts (Wei and Leuthold: 1998), synthetic futures prices were created. 

These were calculated by a ‘roll-over’ procedure that is basically an interpolation of futures 
                                                 
9 The web page is http://www.federalreserve.gov/ 

 

 

http://www.federalreserve.gov/
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prices from different maturity futures contracts. This procedure creates a constant maturity 

weighted average futures price based upon the futures prices and the days to maturity of the 

two near-by-expiration contracts10. The formula used to obtain the synthetic futures price11 

is shown below in Equation 18. 
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Where: SYNT = Synthetic futures price for delivery at T, Fj = Contract j futures price 

expiring at j, Fi = Contract i futures price expiring at i, T = 91, the chosen constant maturity 

in number of days, Ti = Contract i expiration in days remaining, Tj = Contract j expiration 

in days remaining, j = i + 1, with Ti ≤ T ≤ Tj. 

The time to expiration of the synthetic futures prices calculated is T = 91 days. This 

is considered an appropriate time-to-expiration given that a shorter time-to-expiration will 

give higher expected volatility. This situation is observed in empirical research papers, 

which have found that volatility in futures prices increases, as a contract gets closer to 

expiration (Samuelson: 1965). A higher expected volatility due to time-to-expiration could 

have biased the results of this analysis. Thus, 91-day synthetic futures prices were 

considered appropriate using this method in order to avoid high volatility estimates due to 

time-to-expiration causes. In addition this will always allow finding a shorter and longer 

contract, if necessary to do more analysis regarding time to maturity of the contracts. 
                                                 
10 The futures contracts for the aforementioned exchange rate at the CME have the following delivery months: 
March, June, September and December. 
 
11 The concepts synthetic futures price and futures price are synonymous for the rest of the paper. 
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VIII. DESCRIPTIVE STATISTICS 

This subsection presents the descriptive statistics for the realised volatilities of the 

exchange rate futures returns and the volatility forecasting models. The sample sizes for the 

GARCH(1,1), the bi-variate and tri-variate BEKK(1,1) models are from 03/09/2001 to 

05/01/2004. The sample sizes of the realised volatilities, the option implieds and the 

composite forecast models are from 02/01/2002 to 05/01/2004. The sample sizes for the 

historical models (conditional autoregressive models) are larger given that more data was 

available for the author. Prior to fitting the ARCH models ARCH effects tests were 

conducted on the series under analysis. This was done in order to see if the series had 

ARCH effects therefore to make sure that these types of models are appropriate for the 

data. The test conducted was the ARCH-LM test following the procedure of Engle (1982). 

According to the results it was shown that all the series under study i.e. the spot, futures 

prices and the interest rates had ARCH effects12. Under the null of homoscedasticity in the 

errors the F-statistics were 3.7620 for the spot, 7.6433 for the futures and 19.7698 for the 

US interest rates. Therefore the null hypothesis was rejected in favour of heteroscedasticity 

on those errors. 

Figure 1 presents the natural logarithms (logs) of the spot and futures prices in 

terms of Mexican pesos per USD and the realised volatility of the synthetic futures price. 

The realised volatility graph is truncated at 0.002. Two observations are not observed in the 

                                                 
12 These tests were conducted regressing the logarithmic returns of the series under analysis against a 
constant. The ARCH-LM test is the performed on the residuals of that regression. The test consists on 
regressing the square residuals against a constant and lagged values of the same square residuals. Five lags 
were applied on each test. 
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graph which are for the days 13/03/2003 – 14/03/2003 were it was observed higher than 

usual volatility.  

Table 1 show the descriptive statistics for the realised volatility and the forecasting 

models. As it can be observed in Table 1 the means of the option implied and the variances 

of the realised volatilities are the ones with higher values. These findings are consistent 

with Christensen and Prabhala (1998) who found that the means of the option implieds 

were higher than the means of the realised volatilities and that the variances of the realised 

volatilities were higher than the variances of the option implieds. The distributions in that 

table are highly skewed and leptokurtic indicating non-normality of the returns and the 

forecast estimates. This is consistent with the work of Wei and Leuthold (1998) who 

analysed volatility in futures markets and had similar findings with daily futures price 

volatility.  

Lastly, Figures 2 and 3 presents the observations of the realised volatility (top line) 

and the estimates of the historical models, the option implieds and the composite forecast 

model. Again, the realised volatility graph is truncated at 0.002. It can be observed that in 

both graphs all of the models capture the high volatility periods shown with the realised 

volatility. At simple sight the implied volatility models estimates are almost the same.  

 

IX. RESULTS 

9.1 IN-SAMPLE EVALUATION 

The OLS estimates for the weights of the composite forecast model (Equation 14 

above) and the results of the MSE are presented in Tables 2 - 3. In Table 2 the third row 

presents the estimates of the regression of the realised volatility against the historical 

TVBEKK(1,1) model. The fourth row presents the estimates of the regression of the 
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realised volatility against the BS implied volatility model. The last column presents the 

estimates of the regression of the realised volatility against both of the models. The weights 

are taken from the last row. The TVBEKK and BS models were chosen given that they had 

superior forecast accuracy in terms of MSE. As it can be observed in Table 2 the OLS 

estimates show that the implied volatilities contain more of the information content of the 

realised volatility for the returns when they are compared with the other forecast models. 

However, it is difficult to find conclusive answers about their statistical power because the 

adjusted R2 are remarkably low i.e. 0.0599.  

In Table 3 it can be observed that the most accurate model is the composite forecast 

model given that it has the lowest MSE. These results are consistent with Kroner et. al. 

(1994), Blair, Poon and Taylor (2001) and Manfredo13 et. al. (2001), Fang (2002) who 

found the most accurate volatility forecasts using composite forecast models. The second 

best returns volatilities forecasts are the implied volatility models not being combined. 

These results are consistent to that part of the literature who argues in favour of option 

implied volatility in terms of forecasting accuracy. The differences of the MSE among the 

models in Table 3 are statistically significant at the 1% level. The p-values rejected the null 

hypothesis of equality of forecast accuracy at that level. The null hypothesis is the 

composite forecast against each of the remaining models. By rejecting the null it means that 

there is statistical significant difference between the forecasts of the two models evaluated. 

                                                 
13 In Manfredo et. al. (2001) the forecast time horizon was a one-week volatility forecast for the case of corn. 
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The procedure applied to obtain these statistical significances is the same as the one 

described in Diebold and Mariano (1995)14. 

 

9.2 OUT-OF-THE-SAMPLE EVALUATION 

The sample period under analysis is partitioned in order to evaluate the out-of-the-

sample forecasts. The estimates (in-sample) for all the models are obtained from 2nd 

January 2002 to 30th December 2002 for a total of 256 observations (about half the total 

number of observations). The jump-off period is 31st December 2002, thus the out-of-the-

sample evaluation for all the forecasting models is from 31st December 2002 to 5th January 

2004. The estimates (weights) of the OLS regressions (Equation 14 above) and the out-of-

the-sample results of the MSE can be observed in Table 4 - 5 respectively. 

The variables chosen for the composite model were the ones with superior forecast 

accuracy (lowest MSE) in the in-sample evaluation. These were the tri-variate ARCH for 

the historical and the Black-Scholes for the option implied. The results of the estimates for 

each variable alone in addition to the composite weights are presented in Table 4. 

According to these estimated parameters in Table 4, it is possible to observe that the option 

implied contains more information of the realised volatility compared to the historical 

volatility model (TVBEKK). The out-of-the-sample evaluation shows that the results are 

                                                 
14 This method requires generating a time series, which is the differential of the squared-forecast errors from 

two different forecast models i.e. ( ) ( )21,2
22

1,1
2 ˆˆ −− −−−= tttttd σσσσ , where dt is the differential of the 

series and is the forecast of the i model. The t-statistic is obtained in the following way, iσ̂

n
sd

d
where 

d is the sample mean and sd is equal to the standard deviation of the series. The other variables are the same 
as described previously. 
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qualitatively similar to the in-sample evaluation (Table 3) although not the same. The 

composite forecast models were the most accurate models in the in-sample evaluation. 

However it was shown that within the composite specification the option implied is the best 

model in terms of the relevant information about the realised volatility i.e. out performing 

the TVBEKK(1,1) model15. That was consistent in both evaluation procedures: the in-

sample and the out-of-the-sample. It can be observed in Table 5 that for the out-of-the-

sample evaluation the option implied models have the lowest MSE thus, they were the most 

accurate models for forecasting futures returns of the exchange rate under analysis. The 

second in superiority was the composite model performing with more accuracy if compared 

with the historical models. The MSE differences in this table are statistically significant at 

the 5% level. The null hypothesis is the option implied models against each of the 

remaining models.  

 

X. CONCLUSION 

  The on-going debate related to which is the most accurate model to forecast 

volatility of price returns of financial assets has led academic researchers to foster empirical 

research on the aforementioned topic. A considerable amount of research projects have 

compared time-series models against option implied volatilities and for instance composite 

forecast models. The objective is to find the most accurate model (historical, option implied 

or combined) to forecast price return volatility for specific assets. Albeit part of the 

literature advocates the use of option implied volatilities as the most accurate alternative to 

forecast price returns volatilities there are still no conclusive answers in terms of finding 

                                                 
15 Additional specifications in the composite model were also tried. The results were qualitatively similar 
showing more information content from options than from historical models (GARCH, BVBEEK). 
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one superior model. This is because the coefficients of determination are usually relatively 

low for all models.  

In this paper the aforementioned volatility forecast models i.e. time-series, option 

implied and composite forecast models were compared to each other in order to find the 

most accurate volatility forecasting model for the futures price returns of the Mexican peso 

– US Dollar exchange rate. According to the results the implied volatilities contained most 

of the information content of the realised return volatility for that exchange rate time series. 

Similar findings can be found in the academic literature for agricultural commodities, stock 

prices and stock indexes. The results also show that the composite forecast model was the 

most accurate model in an in-sample evaluation when they were compared to the 

alternative models not being combined. For the out-of-the-sample evaluation the implied 

volatility forecasts proved to be superior to the other models. In terms of in-sample 

evaluation, these findings are consistent with part of the academic literature, which states 

that composite approaches are the most accurate alternative to forecast price returns 

volatilities. However, these results should be taking with caution given the low statistical 

power of the regressions (low coefficients of determination). Nonetheless, it is 

recommended that in order to have the most accurate volatility forecast both type of data 

i.e. historical and option implied should be used within a composite forecast framework. 

Especially if both type of data are available.  
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APPENDIX 

 

FIGURE 1 THE REALISED VOLATILITY OF THE FUTURES PRICE AND THE 

NATURAL LOGARITHM OF THE SPOT AND FUTURES PRICES OF THE 

EXCHANGE RATE PESO – USD 
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TABLE 1 DESCRIPTIVE STATISTICS FOR THE REALISED VOLATILITY AND THE 

VOLATILITY FORECASTING MODELS OF THE DAILY FUTURES PRICE 

RETURNS OF THE MEXICAN PESO-USD EXCHANGE RATE  

Model Mean Variance Skewness Kurtosis N 

Realised 
volatility 

     6.40 x 10-5   1.52 x 10-7    17.7230 356.6332 513

GARCH(1,1)      6.75 x 10-5   1.70 x 10-8    11.1848 156.0621 595

Bi-variate 
BEKK(1,1) 

 

     7.43 x 10-5   2.3 x 10-8    10.6991 142.4607 595

Tri-variate 
BEKK(1,1) 

 

     6.83 x 10-5   1.4 x 10-8      9.8068 119.1293 595

BS option 
implied 

 

     0.000125   1.7 x 10-8      3.0657  14.4143 513

BAW option 
implied 

 

     0.000125   1.7 x 10-8     3.0663  14.4187 513

Composite 
forecast 

     9.68 x 10-5   9.0 x 10-9     3.5656   20.3474 513

This table reports the descriptive statistics of the realised volatility and the volatility 

forecasting models for the daily futures prices returns of the Mexican peso-USD exchange 

rate. The daily BS option implied volatility is computed using the Black-Scholes model 

(1973) and the BAW option implied volatility is calculated using an approximating 

American option price formula as described in Barone-Adesi and Whaley (1987). The 

options data are call options at-the-money (or the closest to at-the-money) with at least 

fifteen days prior to expiration. The realised volatility used to obtain the composite forecast 

model is the annualised ex-post daily futures return volatility for the respective sample 

period under analysis. The sample size for the GARCH(1,1), the bi-variate and tri-variate 

BEKK(1,1) models is 597 observations (two observations are lost because of the lags in the 

models) from 3rd September 2001 to 5th January 2004. The sample size for the realised 

volatility, the option implied and the composite models is 513 observations from 2nd 

January 2002 to 5th January 2004. N = Number of observations.  
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FIGURE 2 THE REALISED VOLATILITY AND THE VOLATILITY ESTIMATES 

FROM THE HISTORICAL MODELS 

.0000

.0005

.0010

.0015

.0020

.0025

.0030
.0000

.0005

.0010

.0015

.0020

100 200 300 400 500

GARCH
BVBEKK

TVBEKK
REALISED VOLATILITY

 

 

 

 

 

 

 



 43

FIGURE 3 THE REALISED VOLATILITY AND THE VOLATILITY ESTIMATES 

FROM THE OPTION IMPLIED AND THE COMPOSITE MODEL  
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TABLE 2 IN-SAMPLE OLS ESTIMATES FOR WEIGHTS IN THE COMPOSITE 

MODEL 

INDEPENDENT VARIABLES  ADJ. R2 DW 

INTERCEPT TVBEKK(1,1) BS OPTION 

IMPLIED 

  

  3.35 x 10-5 
(1.96 x 10-5)* 
 1.7075 
 

  0.4278 
 (0.1357)** 
  3.1522 

N.A.  0.0191 2.1576 

 -2.14 x 10-5 
(2.32 x 10-5) 
 -0.9225 
 

N.A.   0.6814 
 (0.1277)** 
 5.3343 

 0.0528 1.9677 

-3.28 x 10-5 
(2.38 x 10-5) 
-1.3746 

   0.2706 
  (0.1371)**   
   1.9732 

  0.6183 
 (0.1314)** 
  4.7077 

 0.0599 2.1136 

 This table presents estimates of OLS regressions of the variables in the second row 

(independent variables) against the realised volatility of the exchange rate. Third row 

presents the estimates of the regression of the realised volatility against the historical 

TVBEKK(1,1) model. Fourth row presents the estimates of the regression of the realised 

volatility against the BS implied volatility model. The last column presents the estimates of 

the regression of the realised volatility against both of the models. The weights are taken 

from the last row. Standard errors are shown in brackets. Italics = t-statistic. (**) Indicates 

the coefficient is statistically significant at the 5% confidence level; (*) indicates the 

coefficient is statistically significant at the 10% confidence level. Adj. R2 = Adjusted 

coefficient of determination. DW = Durbin Watson statistic. The sample size for the 

estimates of the regressions is 513 observations from 2nd January 2002 to 5th January 2004. 

N.A = Not applicable. 
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TABLE 3 IN-SAMPLE MSE FOR THE EXCHANGE RATE FORECASTS 

FORECAST 

MODEL 

MSE P-VALUE RANK 

GARCH(1,1)  1.57586 x 10-7 0.00205 5 

BVBEKK(1,1) 1.61497 x 10-7 0.00015 6 

TVBEKK(1,1) 1.5466 x 10-7 0.00055 4 

BS option implied 1.49786 x 10-7 0.00046 2 

BAW option 
implied 

1.49788 x 10-7 0.00187 3 

Composite model 1.44023 x 10-7* N.A 1 

 This table reports MSE of the volatility forecasting models for the daily futures 

prices returns for the Mexican peso-USD exchange rate. The daily option implied volatility 

is computed using the Black-Scholes (1973) model and an approximating American option 

price formula as described in Barone-Adesi and Whaley (1987). The options data are call 

options at-the-money (or the closest to at-the-money) with at least fifteen days prior to 

expiration. The realised volatility used to obtain the MSE is the annualised ex-post daily 

futures return volatility for the sample period under analysis. P-Values are referred to the 

procedure to obtain statistical significances in MSE for each model against the composite 

model according to Diebold and Mariano (1995). Rank 1 = Highest, 6 = lowest. The sample 

size for the GARCH(1,1) and the BEKK(1,1) models is 597 observations from 3rd 

September 2001 to 5th January 2004. The sample size for the implied and the composite 

models is 513 observations from 2nd January 2002 to 5th January 2004. The sample size to 

calculate the MSE is the same as for the implied and the composite models i.e. 513 

observations from 2nd January 2002 to 5th January 2004. (*) Indicates the smallest value. 

N.A = Not applicable.  
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TABLE 4 IN-SAMPLE OLS ESTIMATES FOR THE OUT-OF-THE SAMPLE 

EVALUATION OF THE EXCHANGE RATE VOLATILITY PESO-USD 

INDEPENDENT VARIABLES  ADJ. R2 DW 

INTERCEPT TVBEKK(1,1) BS OPTION 

IMPLIED 

  

  4.87 x 10-7 
 (1.38 x 10-5)  
-0.0353 
 

  0.7408 
 (0.1601)** 
  4.6263 

N.A.  0.0777 1.2801 

 -1.36 x 10-5 
 (1.69 x 10-5) 
 -0.8049 
 

N.A.   0.8655 
 (0.2008)** 
  4.3087 

 0.0681 1.0284 

   4.50 x 10-5 
 (1.80 x 10-5)**  
 -2.4930 

   0.6526 
  (0.1578)**   
   4.1348 

  0.7452 
 (0.1969)** 
  3.7834 

 0.1271 1.2419 

 

 This table presents estimates of OLS regressions of the variables in the second row 

(independent variables) against the realised volatility of the respective commodity 

(dependent variable). Standard errors are shown in brackets. Italics = t-statistic. (**) 

Indicates the coefficient is statistically significant at the 5% confidence level; (*) indicates 

the coefficient is statistically significant at the 10% confidence level. Adj. R2 = Adjusted 

coefficient of determination. DW = Durbin Watson statistic. The sample size for the 

BEKK(1,1) model is 5,297 observations from 2nd January 1975 to 3rd January 1996. The 

sample size for the implied and the composite models is 757 observations from 2nd January 

1993 to 3rd January 1996. N.A = Not applicable.   
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TABLE 5 OUT-OF-THE-SAMPLE MSE FOR THE EXCHANGE RATE FORECASTS 

FORECAST 

MODEL 

MSE P-VALUE RANK 

GARCH(1,1)     2.84 x 10-7 0.0004 6 

BVBEKK(1,1)    2.77 x 10-7 0.0003 5 

TVBEKK(1,1)    2.76 x 10-7 0.0002 4 

BS option implied    2.65 x 10-7* N.A 1 

BAW option 
implied 

   2.65 x 10-7* N.A 1 

Composite model    2.69 x 10-7 0.0001 3 

 

This table reports the out-of-the-sample MSE of the volatility forecasting models 

for the daily futures prices returns of the exchange rate Mexican peso - USD. The daily 

option implied volatility is computed using the Black-Scholes (1973) model and an 

approximating American option price formula as described in Barone-Adesi and Whaley 

(1987). The options data are call options at-the-money (or the closest to at-the-money) with 

at least fifteen days prior to expiration. The realised volatility used to obtain the MSE is the 

annualised ex-post daily futures return volatility for the sample period under analysis. Rank 

1 = Highest, 6 = lowest. The in-sample size for all the models is 256 observations (about 

half the total number of observations) from 2nd January 2002 to 30th December 2002. The 

out-of-the-sample forecast evaluation period consists of 257 observations from 31st 

December 2002 to 5th January 2004. The jump-off period is 31st December 2002. (*) 

Indicates the smallest value. N.A = Not applicable.  


