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Pricing multiasset equity options with copulas:  

an empirical test 

 

 

Abstract 

 

The market for equity exotic options on a basket of underlying assets (whether single 

stocks or stock indexes) has grown significantly through time thanks to the development 

of structured equity- linked bonds. When evaluating those options, the way in which 

dependence among underlying assets’ returns is critical, and so is the definition of input 

parameters. Nevertheless, there is little empirical literature that tries to quantify the 

dispersion of theoretical fair price a trader may face when pricing an option the first 

time or when revaluing the option in his or her portfolio. This paper tries to analyze the 

effects of uncertain correlation inputs and of the choice between traditional standard 

methods assuming joint normality of asset returns and copula-based methods, through a 

Monte Carlo simulation applied to many different exotic contracts on a basket of five 

US stocks. Implications for traders and risk managers and auditors, and the potential for 

further use of copulas in exotic options pricing are then discussed. 
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1. Introduction 

 

The market for structured equity- linked bonds, that started with a guaranteed equity 

linked note in the United States in 1987, has since then developed both in terms of 

volumes and of sophistication. Derivatives desks inside major investment banks, in a 

quest for financial innovation and for the higher margins that innovators may sometimes 

attain, have invented each year new exotic options that could produce various types of 

payoffs for the final investors. Internal market reports from investment banks’ research 

departments now consider a huge number of different alternative exotic equity- linked 

products: some are able to gain worldwide success, while others may become common 

and successful in certain countries and almost unknown in others.  

In the great variety of the exotic options that an observer may find in the market one 

feature that is very common is the presence of more than one underlying asset. The 

kinds of multiasset exotic structures may vary from simple basket options whose payoff 

is linked to the overall performance of a basket of stock indices or single stocks, to 

cases such as the so-called conditional coupon structure where the investor receives a 

fixed coupon each year provided that none of a basket of stocks trespassed a certain 

barrier (e.g. none of the stocks went below 70% of the initial price). Whether or not 

closed-end pricing formulas are available, a potentially crucial issue in pricing these 

options is correlation among the different underlying assets. For instance, it is intuitive 

that the value of a basket call option would increase if correlation among underlying 

stocks or indices increase, since this would increase the volatility of the basket: 

therefore, the basket call would react as a simple call option whose value grows if 

implied volatility increases. The value of a conditional coupon structure would grow too 

for a very different reason. In fact, if underlying assets have low positive (or, in theory, 

even negative) correlation it would be more likely that at least one could touch the 

barrier and make the coupons disappear; if instead their correlation is higher it is more 

likely that all of them may grow together remaining distant from the barrier. The critical 

role of correlation in pricing these options is why they are often labeled as “correlation 

products”, and raise two main problems. 

The first problem is that the choice of correlation inputs becomes important for many 

different players inside the bank. Traders, risk managers and internal auditors are for 
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different reasons interested in using the right correlation estimates, so to guarantee that 

the option is priced correctly. The fact that risk managers should control traders’ work, 

and internal auditors should control risk managers is relevant since it means that traders’ 

choice of correlation inputs must not only be right, but also must be clearly explainable 

to other parties inside the bank. Risk managers and auditors know in fact that a wrong 

set of correlation inputs would alter the value of the portfolio: at least potentially, the 

trader might hide losses by modifying correlation inputs so to increase the value of its 

position while using perfectly fair and certified implied volatility inputs.  

Of course, if it were possible to extract implied correlations from traded multiasset 

options as implied volatilities are extracted from traded plain vanilla options, then risks 

would be much smaller. Unfortunately, while implied volatility can at least up to a 

certain extent be extracted from traded options’ prices1, it is almost impossible in 

practice to extract implied correlations. In fact, while when extracting implied volatility 

from a plain vanilla option’s price the trader has one equation to be satisfied (the pricing 

formula) and one unknown term, in the case of a basket option with five underlying 

stocks the trader has only one equation (the pricing equation of the basket option), five 

unknown implied volatilities and ten unknown correlation coefficients. Moreover, the 

pricing algorithm may not be a closed-end formula, and the trader may also be uncertain 

about whether all market participants are using the same pricing technique. Despite the 

fact that the trader cannot infer them from the market, correlation values are critical for 

him since they influence the price of the option. Therefore, wrong correlation inputs 

would produce (a) a wrong price when the option is issued and offered inside a 

structured bond to the institutional client of the investment bank, (b) a wrong mark-to-

market (or more precisely, mark-to-model) evaluation of the exotic at the end of each 

day when it has already been issued and (c) a wrong assessment of its risk profile and its 

Greeks (Delta, Gamma, Vega, Theta and Rho), since their values derive from the 

pricing formula and are equally sensible to input data. All the problems are relevant for 

the trader; the risk manager is concerned especially with the second and the third one. 

For the internal auditor the second is always crucial and the third is important as well if, 

                                                                 
1 The problem of implied volatility remains an issue for long term exotic options where it is impossible to extract data 
from prices of traded options, whose maturity is typically much shorter. In this case, however, some information may 
be obtained from the OTC market. Some information providers have also tried through time to produce “average” 
implied volatilities by receiving data from individual investment banks and giving back an aggregate average 
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as it should be, he is actively controlling the efficiency of the risk management systems 

in place inside the bank. 

The second problem is that if the dependence among underlying assets’ returns plays a 

key role, one should question whether the classic assumption of multivariate normal 

distribution is suitable to price this products. The recent stream of contributions 

concerning copulas and their application to risk management can clearly be applied also 

to the pricing of multiasset exotic options. Yet, despite the growing literature on copulas 

on one hand and the relevance of the equity- linked exotic options market on the other 

hand, there have been very few contributions aimed at testing empirically the role of 

correlation and dependence when pricing these products. In our view, it is important 

both to test whether and how much using copulas may significantly change the fair 

price estimates for exotic products, and to discuss the implementation problems that 

their use may raise. It is in fact surprising the fact that while they are widely recognized 

as a theoretically superior means to model dependence among returns, they do not 

appear to be really used in practice to price multiasset equity derivatives. One possible 

explanation could be that they might have only a modest impact on fair prices estimates 

(so that a simpler even if approximate method could be preferred). If this were not the 

case, other reasons should be found in order to explain why despite the growing interest 

also in practice as far as both risk measurement issues and credit derivatives evaluation 

are concerned, the diffusion of copulas in multiasset equity derivatives pricing decisions 

is still very limited. The aims of the paper are therefore the following: 

(1) to evaluate the impact that using copulas may have on fair price estimates of 

different exotic options on a given basket of stocks;  

(2) to discuss the problem of modeling dependence and defining proper input 

parameters in the context of equity exotic pricing; 

(3) to analyze which are the risks deriving from uncertain dependence structure among 

assets and how the different players inside an investment bank may try to handle 

the problem. 

The structure of the paper is the following. Section 2 defines the key elements about 

copulas and the main kinds of copulas that may be applied in a generic multivariate (and 

not only bivariate) setting. Section 3 describes the empirical test analyzing its aims, the 

                                                                                                                                                                                              
volatility. This solution may be used for instance by the risk manager if he or she wants to control whether the 
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choice of options’ payoff that have been tested, the underlying asset and the data and 

procedures on which parameters’ calibration has been based. Section 4 presents the 

results of the test, while Section 5 discusses its implications for the different players 

inside the bank. Section 6 concludes. 

 

2. Copula functions  

2.1. Definition of copula functions 

An n-dimensional copula 2 is a multivariate distribution function (d.f.), C, with uniform 

distributed margins in [0,1] (U(0,1)) and the following properties: 

1. C: [0,1]n  →  [0,1] 

2. [ ] ( ) 0,,1,0 1 =∈∀ ni uuCu K    if at least one of the iu equals zero 

3. C is n- increasing 

4. C has margins iC which satisfy ( ) ( ) uuCuCi == 1,1,,1,,1 KK for all u ∈ [0,1]. 

It is clear from the definition above that if nFF ,,1 K  are univariate distribution 

functions, ( ) ( )( )nn xFxFC ,,11 K  is a multivariate d.f. with margins nFF ,,1 K  because 

( )iii xFu =  is a uniform random variable, so the copulas are a useful tool to construct 

and simulate multivariate distributions. 

The following theorem is known as Sklar’s Theorem and it is the most important one 

about copulas because many practical applications are based on it. 

 

Let F be an n-dimensional d.f. with continuous margins nFF ,,1 K , then it has the follow 

unique copula representation: 

( ) ( ) ( )( ).,,,, 111 nnn xFxFCxxF KK =  

 

The following corollary can be obtained from the expression above. 

Let F be an n-dimensional d.f. with continuous margins nFF ,,1 K ,  and copula , then, 

for any ( )nuu ,,1 K  in [ ]n1,0 : 

( ) ( ) ( )( ).,,,, 1
1

1
11 nnn uFuFFuuC −−= KK  

                                                                                                                                                                                              
implied volatility estimate used by the trader is correct. 
2 See Nelsen (1998) 
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where 1−
iF is the generalized inverse of iF . 

Therefore the use of copula function allows to overcome the issue of multivariate d.f. 

estimate, dividing it into two steps: 

• determine the margins nFF ,,1 K  which represent the distribution of each 

marginal distribution (in our case, of each risk factor) and estimate their 

parameters; 

• determine the copula function which completely describes the dependence 

structure of random variables. 

 

2.2. Elliptical copulas: the Gaussian copula 

Elliptical distributions class provides a great range of multivariate distribution functions 

that share many of the tractable properties of the multivariate normal distribution and 

allow to design different dependence structures. Elliptical copulas are the copulas of 

elliptical distributions. Simulation from elliptical distributions is easy to perform, 

therefore, as a consequence of the Sklar’s theorem, the simulation of elliptical copulas is 

also easy. 

The most frequently used elliptical copulas are the Gaussian copula and the t-Student 

copula. 

The Gaussian or normal copula is simply the copula derived from the multivariate 

normal distribution. Let φ  the standard univariate Gaussian d.f. and n,ρφ  the standard 

multivariate normal d.f. with linear correlation matrix ρ , then the n-dimensional copula 

with correlation matrix ρ  is the following: 

( ) ( ) ( )( )nnn uuuuC 1
1

1
,1 ,,,, −−= φφφρρ KK  

The Gaussian copula does not have upper tail dependence and, since elliptical copulas 

are symmetric, does not even have lower tail dependence. 

The Gaussian copula is completely determined by the knowledge of the correlation 

matrix ρ  and the parameters involved are simple to estimate. 

To simulate random variables from Gaussian copula it is enough to simulate a vector 

from  the standard multivariate normal distribution with correlation matrix Σ  and then 

to trasform this vector through a univariate d.f so that you can obtain a vector from the 

chosen copula. 
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The matrix Σ , positive definite, can be easily determined with the Cholesky 

decomposition in order to calculate a matrix A such as Σ=ΤAA . Let nZZ ,,1 K be 

indipendent standard normal variable and the vector nℜ∈µ , then the vector AZ+µ  is 

multinormally distributed with mean vector µ  and matrix Σ .  

It is then possible to generate random variates from the n-dimensional Gaussian copula 

running the following algorithm: 

• calculate the Cholesky decomposition A of the matrix Σ ; 

• simulate n indipendent standard normal random variates nzz ,,1 K ; 

• set Azx = ; 

• determine the components ( ) nixu ii ,,1, K== φ ; 

• the vector ( )Τ
nuu ,,1 K  is a random variate from the n-dimensional Gaussian 

copula  

 

2.3. Elliptical copulas: the t-Student Copula 

The copula of the multivariate t-Student distribution is the t-Student copula. Defining by 

νρ ,T  a multivariate t-Student distribution with ν  degrees of freedom and correlation 

matrix ρ , the corresponding copula is the following: 

( ) ( ) ( )( )nn ututTuuC 1
1

1
,1, ,,,, −−= νννρνρ KK  

where νt  is the univariate t-Student distribution with ν  degrees of freedom. 

Because the t-Student distribution tends to the normal distribution whenν  goes to 

infinity, so the t-Student copula tends to the normal copula when +∞→ν . 

In contrast to the Gaussian copula, the t-Student copula has upper tail dependence 

increasing in ρ  and decreasing in ν . Therefore, the t-Student copula is more suitable to 

simulate events like stock market crashes or the joint default. Besides, for quite large 

values for ν , the tail dependence is significantly different from 0 only when the 

correlation coefficient is close to 1. This suggests that, for moderate values of the 

correlation coefficient, a Student copula with a large number of degrees of freedom may 

be difficult to separate from the Gaussian copula. 

The description of a Student copula is defined by two parameters: the correlation matrix 

ρ  and the number of degrees of freedom ν . The estimation of the parameter ν  is 
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rather difficult and has an important role in the estimation of the correlation matrix, as 

we will see in the following section. Therefore the t-Student copula is more difficult to 

calibrate and use than the Gaussian copula. 

Random variates from the n-dimensional t-Student copula can be generated through the 

following steps: 

• calculate the Cholesky decomposition A of the matrix Σ ; 

• simulate n indipendent standard normal random variates nzz ,,1 K ; 

• simulate a random variate, s, from 2
νχ distribution, indipendent of  z; 

• set Azy =  

• set y
s

x
ν

= ; 

• determine the components ( ) nixtu ii ,,1, K== ν ; 

• the vector ( )Τ
nuu ,,1 K  is a random variate from the n-dimensional t-Student 

copula with ν  degrees of freedom 

 

2.4. Archimedean copulas 

Elliptical copulas are not the only possible type of copulas. Another important family is 

represented by Archimedean copulas, that include for instance the Gumbel and Clayton 

copula. This class of copulas, in contrast to elliptical copulas, have closed form 

expressions, because these copulas are not derived from a multivariate distribution 

function using the Sklar’s theorem. As a consequence the Archimedean copulas are 

originally defined on two dimensions and their multivariate extension need some 

technical conditions to assert the n-copulas are proper. Therefore, even if they allow to 

model the dependence structure between variables in different and even more flexible 

ways than elliptical copulas, their application is currently confined in practice to 

bivariate problems (an example being the valuation of a credit derivative whose price 

depends also on the risk of joint default of the underlying bond and of the protection 

seller, that can be modelled through copulas). Unfortunately, multiasset equity options 

typically imply much more than two underlying assets, and therefore our test will be 

restricted to elliptical copulas. 
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3. The design of the empirical test 

3.1. General aims of the test 

The purpose of the empirical test is to check the differences among fair prices for a set 

of multiasset exotic options that can be obtained according to copulas as opposed to the 

standard assumption of joint normality of asset returns. Therefore, we will check how 

close or distant copula-based prices will be relative to the prices obtained through the 

simpler method, and how close or distant they are among themselves, if different 

copulas are used. In particular, we have tested t-Student copulas with 4, 12 and 20 

degrees of freedom. The choice to avoid Archimedean copulas derives from the fact that 

fitting those copulas on joint distributions of more than two underlying assets is 

extremely complex, and at least at present it is more than unlikely that they might be 

applied in practice to price multiasset options where the number of underlying assets 

may range from three to even twenty or more assets. At the same time, as far as the 

traditional pricing method is concerned, we will check the impact of different estimates 

of the linear correlation matrix, depending on the size of the sample and on the 

frequency of return data that are used. As a whole, the test will give a picture of how 

stable or unstable fair prices may be depending on the assumptions the trader (or risk 

manager) is making, and of the degree of uncertainty that the different players inside the 

bank who are concerned with dependence and correlation on equity exotic products may 

typically face. 

 

3.2. Underlying assets, data sample, and the set of exotic options 

The underlying assets we have considered for our test are five US stocks, and precisely 

Microsoft, General Electric, Coca Cola, IBM and JPMorgan Chase. In order to estimate 

parameters we used a five years historical time series of daily closing prices and returns 

from October 1st, 1999 to September 30th, 2004. All option valuations were conducted 

with market data on October 1st 2004; zero coupon risk-free rates were derived from the 

US swap curve on that date, while dividend yields were estimated based on historical 

average dividend yields for the stocks in the sample. 

As far as the sample of exotic options is concerned, we tried to build a sample of 

different payoff structures, a large part of which is actually commonly used in practice. 

All options had a remaining maturity of 5 years (i.e., all options were assumed to expire 
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on October 1st, 2009). Yet, for most options we distinguished between a brand new 

option evaluated at the date of issue, and an already existing option with 8 years of 

initial maturity, issued on October 1st 2001 and evaluated after 3 years. Those options 

will be labelled as having a 3+5 maturity. The reason why we differentiated between 

new and existing options is that we wanted to test whether they showed a different 

sensitivity to the correlation among underlying assets. For instance, an option whose 

payoff is based on the worst performing asset within a basket could be expected to have 

a different sensitivity to changes in correlation among assets when it is issued (and the 

worst performing asset is still unknown) or after three years (when there will be a pro 

tempore ranking of assets’ performance so that the option’s payoff is likely to be linked 

especially to the correlation of the two or three worst performing assets, while being 

relatively less sensitive to correlation between the best performing ones). The 

underlying research question is therefore whether – at least for some kinds of payoffs – 

sensitivity to correlation or to dependence structure among asset returns is only a 

temporary effect or whether instead it is a permanent one. 

The specific types of options we considered is detailed in Table 1. In some cases the 

name of the option is consistent with a very well-defined industry standard, while in 

others a single widely accepted name for the particular payoff did not exist. In any case, 

Table 1 should provide a clear enough description of the payoff to avoid 

misunderstandings. 
Table 1. A description of the exotic options analyzed in the empirical test 

Option Option description 

Asian basket option (5 yrs, strikes 
equal to initial prices) 

New Asian basket options with 5 years of maturity. The option’s 
payoff is the maximum between the mean percentage return of 

each stock (if the mean is positive) and zero (basket feature). The 
performance of each stock is calculated as the difference between 

the average price of the stock at the end of each month (Asian 
feature) and the stock’s initial price. 

Asian basket option (3+5 yrs, strikes 
equal to initial prices) 

Already issued Asian basket options; the option has been issued 3 
years before valuation date and has 5 years of remaining maturity. 
The option’s payoff is calculated as in the previous case, with the 

only difference that relevant initial prices are not prices on October 
1st, 2004 but prices on October 1st, 2001, since the option has been 

issued on that day. 
Asian basket option (3+5 yrs, strikes 

equal to average prices during the 
first 3 years) 

Already issued Asian basket option. The option is identical to the 
preceding one, apart from the fact that the strike price is set equal 
for each stock to the average price at the end of the month during 

the first free years. Therefore, the option is at the money at the 
beginning of the simulation as the first 5-year Asian option.  
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Table 1 (continued). A description of the exotic options analyzed in the empirical test 

Option Option description 

Asian best option (5 yrs, 40% 
participation rate) 

New option with 5 years of maturity where the final payoff is 40% 
of the return of the highest performing stock (if positive). The 

performance of each stock is calculated as the difference between 
the average price of the stock at the end of each month (Asian 

feature) and the stock’s initial price. 
Asian best option (3+5 yrs, 40% 

participation rate) 
Already issued Asian best option identical to the preceding one but 

with 3 years of past history and 5 years of remaining maturity 
Napoleon option (based on monthly 
basket returns, annual coupon 12%) 

5-year option where the investor receives each year a coupon equal 
to 12% minus the worst monthly performance of the stock basket 
during the year. The coupon is floored at zero if the basket has a 

minimum monthly performance lower than - 12%. 
Conditional coupon structure (5 yrs, 

8% annual coupon, barrier=60%) 
New 5-year option that pays each year a fixed 8% coupon if none 
of the underlying assets at the end of each month has ever touched 

a barrier equal to 60% of the initial price on October 1st, 2004. 
Conditional coupon structure (3+5 

yrs, 8% annual coupon, 
barrier=70%) 

Already issued option with 5 years of remaining maturity that pays 
each year a fixed 8% coupon if none of the underlying assets at the 
end of each month has ever touched a barrier equal to 70% of the 

initial price on October 1st, 2001. 
Fixed 80% coupon minus worst 

performance (5 yrs) 
New 5-year option that pays at maturity a coupon equal to 80% 

plus the negative performance of the worst performing stock within 
the basket. The coupon is capped at 80% (if all stocks had positive 

returns) and floored at 0 (if one stock decreased by more than 
80%)3 

Fixed 80% coupon minus worst 
performance (3+5 yrs) 

Already issued option with 3 years of past history and 5 years of 
remaining maturity that pays at maturity a coupon equal to 80% 

plus the negative performance of the worst performing stock within 
the basket. The coupon is capped at 80% (if all stocks had positive 
returns) and floored at 0 (if one stock decreased by more than 80%) 

Fixed 25% coupon minus put on 
basket performance (5 yrs) 

New 5-year option that pays at maturity a coupon equal to 25% 
plus the performance (only if it is negative) of the basket of stocks. 
The coupon is floored at 0 (if the basket value decreased by more 

than 25%)4 
Fixed 25% coupon minus put on 

basket performance (3+5 yrs) 
Already issued option with 3 years of past history and 5 years of 
remaining maturity that pays at maturity a coupon equal to 25% 

plus the performance (only if it is negative) of the basket of stocks. 
The coupon is floored at 0 (if the basket value decreased by more 

than 25%) 
 

 

3.3. Pricing methodology 

 

All the options described in the previous paragraph have been priced through a Monte 

Carlo simulation, calculating therefore the fair value of the option as the discounted 

                                                                 
3 The zero floor can be interpreted as the result of a spread position between two different worst put options: the 
investor would be selling a put on the worst of all assets and then buying another put on the worst of all assets whose 
strike price is fixed 80% below current prices. 
4 Again, the position can be conceived as the result between a short ATM basket put and a long OTM basket put 
whose strike price is fixed at a 25% decrease from current basket prices. 
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value of the expected payoff in a risk-neutral world. In each of the 10,000 simulation 

runs we have simulated daily correlated returns for each of the stocks and reproduced 

the daily price of each asset so to precisely calculate the payoff of each contract. In each 

simulation run we have compared seven different pricing alternatives: four of them were 

based on a simple multivariate Monte Carlo simulation under a joint normality 

assumption, and three were based on t-Student copulas with different degrees of 

freedom. The risk-neutral expected return for each asset was obviously the same under 

each pricing method. In all the cases, since the simulation requires to extract first a 

vector of uncorrelated standard normal random variables and then to transform them 

into correlated returns, we have used the same uncorrelated vectors so to guarantee that 

differences in prices may not derive from uncorrelated random variables sampling 

errors. In practice, for each extraction of a daily random uncorrelated vector we have 

transformed the same vector into different correlated vectors according to each of the 

seven method tested, and reproduced jointly seven alternative return and price paths 

according to each methodology. Uncorrelated random variables were extracted using a 

Latin Hypercube algorithm, that enabled us to reproduce in the best possible way the 

whole joint multivariate distribution in our simulation. 

The four alternative payoffs under the standard assumption of multivariate normality 

(MVN) were obtained by using four different input historical correlation matrixes: two 

5-year linear correlation matrixes based respectively on monthly and weekly stock 

returns, and two equivalent linear correlation matrixes based on 3 years of data only. 

The purpose was to check the effects of the uncertainty that even if the simpler model is 

adopted a trader or a risk manager may face in feeding the simple model with the 

“right” inputs. Volatility was set equal to historical volatility in all four cases. In fact, 

even if one could argue that consistent volatilities should have been used (e.g. weekly 3-

year sample volatilities should be combined with weekly 3-year sample correlation 

coefficients), our assumption about the practical trader’s behaviour is that the trader 

would know an implied vo latility value for all the underlying assets, and would then 

have to decide which correlation inputs he should use. Since we wanted to investigate 

the correlation problem only, we decided to test it by maintaining the same level of 

implied volatility throughout the four correlation scenarios. We simply used 5-year, 

monthly data historical volatility as a proxy for implied volatility, but this should not 
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alter results in any way. Annualized historical 5-year volatilities based on monthly 

returns for Microsoft, General Electric, Coca Cola, IBM and JPMorgan Chase were 

equal respectively to 44.15%, 27.25%, 25.83%, 35.67% and 39.65%. 

For any of the four MVN cases, historical correlation matrixes have been reproduced by 

simulating random uncorrelated standard normal variables and then transforming them 

into correlated random variables through the classic Cholesky decomposition. Therefore 

we had four different Cholesky matrixes (one for each historical correlation matrix) that 

were applied at the same time to produce different multivariate return paths. Correlation 

matrixes in the four different cases are reported in Tables 2 through 5. 

 

Table 2. Correlation matrix based on monthly returns (5-year sample) 

 Microsoft GE Coca Cola IBM  JPM 
Microsoft 1,000 0,446 -0,039 0,587 0,392 

GE 0,446 1,000 -0,068 0,455 0,342 
Coca Cola -0,039 -0,068 1,000 -0,124 0,154 

IBM  0,587 0,455 -0,124 1,000 0,509 
JPM 0,392 0,342 0,154 0,509 1,000 

 

Table 3. Correlation matrix based on monthly returns (3-year sample) 

 Microsoft GE Coca Cola IBM  JPM 
Microsoft 1,000 0,458 0,062 0,745 0,532 

GE 0,458 1,000 -0,078 0,605 0,327 
Coca Cola 0,062 -0,078 1,000 0,049 0,402 

IBM  0,745 0,605 0,049 1,000 0,586 
JPM 0,532 0,327 0,402 0,586 1,000 

 

Table 4. Correlation matrix based on weekly returns (5-year sample) 

 Microsoft GE Coca Cola IBM  JPM 
Microsoft 1,000 0,321 0,014 0,393 0,382 

GE 0,321 1,000 0,119 0,418 0,537 
Coca Cola 0,014 0,119 1,000 0,010 0,103 

IBM  0,393 0,418 0,010 1,000 0,398 
JPM 0,382 0,537 0,103 0,398 1,000 

 

Table 5. Correlation matrix based on weekly returns (3-year sample) 

 Microsoft GE Coca Cola IBM  JPM 
Microsoft 1,000 0,457 0,112 0,619 0,598 

GE 0,457 1,000 0,056 0,503 0,520 
Coca Cola 0,112 0,056 1,000 -0,041 0,142 

IBM  0,619 0,503 -0,041 1,000 0,542 
JPM 0,598 0,520 0,142 0,542 1,000 
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As far as copulas are concerned, we tested three different t-Student copulas with 4, 12 

and 20 degrees of freedom. The choice of the degrees of freedom has been arbitrary, 

due to the fact that it is very difficult in practice to optimize jointly the number of 

degrees of freedom and the correlation coefficients’ matrix. The t-20 copula is of course 

closer to the normal case, since as the number of degrees of freedom grow the t-Student 

copula gets closer and closer to the normal copula. The cases of 4 and 12 degrees of 

freedom represent instead two markedly different cases5. 

  

3.4. Estimating parameters for t -Student copulas 

To run our test we have chosen to use the t-Student copula with t-Student margins. The 

t-Student margins have been chosen in order to consider the fat tail and the t-Student 

copula in order to have a copula with tail dependence (lower and upper) and simply to 

use in a more than 2 assets dimension. 

The first step has therefore been to estimate the marginal distribution parameters. The 

density function of a t-Student distribution with ν  degrees of freedom is given by 

( ) ( )
( ) ( )

2
1

2

1
2/12/
2/1

+
−









+

ΓΓ
+Γ

=

ν

ν ννν
ν x

xh  

and in the general case 
σ

µ−
→

x
x  the distribution becomes 
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In ( )xfν , µ  is the mean of the distribution and can be simply estimate from the 

historical series through the estimator µ̂  

( )∑
=

==
T

j
jii itS

T 1

5,,1
1ˆ Kµ . 

In ( )xfν , σ  is not the standard deviation of t-Student distribution, because the variance 

of this distribution is infinite. σ  is an additional parameter that affects the shape of the 

distribution and can be valued from the data using the maximum likelihood method. 

                                                                 
5 In the different context of risk integration among different risks, Rosenberg and Schuermann (2004) have tested for 
instance the impact of a t-Student copula with 5 or 10 degrees of freedom against the normal copula. Even in that 
case, the choice of the number of degrees of freedom was subjective. 
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For every series of asset returns it is then necessary to: 

1. determine the number of degrees of freedom ν ; 

2. estimate the mean setting ( )∑
=

=
T

j
jtS

T 1

1
µ̂ ; 

3. estimate the parameter σ  using the likelihood function give by 

( ) ( )( )∏
=

=
T

j
jtSfL

1
νσ  

 from which it is possible to obtain the estimator 

( ) ( ){ }0lnln/ˆ maxmax >∀≥= σσσσσ LL . 

In order to determine ν  it is possible to follow a procedure which, among various t-

Student distributions with different degrees of freedom ν , selects the one that best fits 

the empirical data. 

The procedure in this case is represented by the following steps: 

1. estimate the mean of the empirical data; 

2. assume that the data are described by ( )xf1 , ( )xf 2 , ( )xf 3 , …, and estimate σ  

for every supposed number of degrees of freedom; 

3. standardize the data; 

4. divide the data into some intervals and determine the frequency of each class 

( jN ) through m indipendent extractions; 

5. determine the frequency of every class for every t-Student distribution ( jn ); 

6. for every ν  calculate the quadratic deviation between jN  and jn through the 

formula 
( )

∑
=

−
=

t

j j

jj

n

nN
Q

1

2

 where t is the number of classes; 

7. calculate 2χ  for every Q: you will choose the t-Student distribution with the 

smallest 2χ . 

The limit in this method is that results may partly depend on arbitrary choices, such as 

for instance the definition of the classes into which data are divided. We decided to test 

parameters under the assumption of three different degrees of freedom, respectively 

equal to 4, 12 and 20. The final results that were obtained as far as marginal distribution 

parameters are concerned are reported in Table 6. 
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Table 6. Parameters of marginal distribution functions for the t-Student copula  

 Microsoft GE Coca Cola IBM  JPM 

Mean -0,00043 -0,00016 -0,00021 -0,00023 -0,00017 

Shape ( 4=υ ) 0,00033 0,000263 0,000169 0,000543 0,000372 

Shape ( 12=υ ) 0,00047 0,000362 0,000243 0,000379 0,000523 

Shape ( 20=υ ) 0,000522 0,000396 0,00027 0,000422 0,000575 

 

After estimating parameters of the marginal distribution functions, the second logical 

step is represented by estimating copula parameters. The classical estimation method is 

again the maximum likelihood method. The density of the joint distribution F is given 

by  

( ) ( ) ( )( ) ( )∏
=

=
n

i
iinnn xfxFxFcxxf

1
111 ,,,, KKθ  

where if  is the density of the marginal distribution iF  and c is the copula density.  

Set ( ){ }T

t
t
n

t xx 11 ,, ==Χ K , the likelihood function will be 

( ) ( )∏
=

=
T

t

t
n

t xxfL
1

1 ,,Kθθ  

from which the estimator 

( ) ( ){ }Θ∈∀≥= θθθθθ LL lnln/ˆ
maxmax . 

The function that should be maximized is represented by the logarithm of the likelihood 

function ( )θl . So we obtain 
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where θ  is the vector including the parameters of the n marginal distributions and the 

parameters of the copula. 

For a t-Student copula the function is 
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This method can be computational intensive in the case of high dimensional 

distributions, because it requires to estimate jointly the parameters of the marginal 

distributions and the parameters of the dependence structure. Since copulas allow to 

split the parameters in specific parameters for the margins and in common parameters 

for the joint structure the log of the maximum likelihood function can be written in the 

following way: 

( ) ( ) ( )( ) ( )∑ ∑∑
= = =

+=
T

t

T

t

n

i
i

t
iin

t
nn

t xfxFxFcl
1 1 1

111 ;ln;;,,;ln θαθθθ K  

where ( )αθθθ ,,,1 nK= . iθ  and α  are respectively the parameters of the margins and 

the copula. 

So we can perform the estimation of the univariate marginal distributions at a first steps 

and then determine α  given the previous estimates through 

( ) ( )( )∑
=

=
T

t
n

t
nn

t xFxFc
1

111 ;ˆ;,,ˆ;lnmaxarg:ˆ αθθα K  

This two-steps method is called the method of  inference functions for margins or IMF 

method. 

However in the case of a t-Student copula the estimation of the parameters could require 

numerical optimisation of the likelihood function because it does not exist a closed form 

expression as in the case of a Gaussian copula.  

The best ideal choice would have been to estimate jointly the number of degrees of 

freedom and the correlation matrix using a simulation. The procedure would have 

implied to simulate some matrixes through extractions of random numbers between 0 

and 1 and a number between 4 and 21 (for ν ), to calculate the likelihood function for 

each matrix and ν , and to select the combination with the maximum output. 

Unfortunately the positive constraint on the logarithm and the need to obtain a positive 

definite matrix would have forced to an excessively high number of simulations in order 

to peg the estimate. For this reason, and considering that we wanted to replicate a 

method that could be applied in practice, we decided to resort to a simpler method, even 

if it does not allow to estimate the degrees of freedom and correlation parameters 

jointly. More precisely, we decided to apply the IFM method and, after the estimation of 

the margins parameters, to calculate the correlation matrix using an iterative algorithm, 

that does not require optimisation: 
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1. let 0ρ̂  the IFM estimate of the correlation matrix for the Gaussian copula6 

2. 1ˆ +mρ  is obtained using the following equation 

∑
= −Τ

Τ

+

+






 +

=
T

t
tmt

tt
m

n
T 1 1

1

ˆ1
1

1ˆ
ςρς

ν

ςς
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ρ  

3. repeat the second step until convergence ( )∞+ == ρρρ ˆ:ˆˆ 1 mm  

4. the IFM estimate of the correlation matrix for the Student copula is ∞= ρρ ˆˆ IFM  

This procedure does not allow to estimate at the same time the number of degrees of 

freedom for copula, which are considered as given. So we arbitrary chose three different 

number of degrees of freedom (4, 12, 20) and we estimated three different correlation 

matrixes, used to compare the simulated option prices. The same numbers of degrees of 

freedom have been used for the t-Student marginal distributions in order to simplify the 

simulation procedure. The final correlation matrix outcomes under the three different 

degrees of freedom are reported in Tables 7 through 9. 

 

Table 7. Correlation matrix for the t-Student copula with 4 degrees of freedom 

 Microsoft GE Coca Cola IBM  JPM 
Microsoft 1,000 0,477 0,191 0,533 0,442 

GE 0,477 1,000 0,281 0,446 0,555 
Coca Cola 0,191 0,281 1,000 0,180 0,225 

IBM  0,533 0,446 0,180 1,000 0,419 
JPM 0,442 0,555 0,225 0,419 1,000 

 

Table 8. Correlation matrix for the t-Student copula with 12 degrees of freedom 

 Microsoft GE Coca Cola IBM  JPM 
Microsoft 1,000 0,434 0,157 0,469 0,404 

GE 0,434 1,000 0,248 0,412 0,529 
Coca Cola 0,157 0,248 1,000 0,147 0,194 

IBM  0,469 0,412 0,147 1,000 0,386 
JPM 0,404 0,529 0,194 0,386 1,000 

 

                                                                 

6 ∑
=

Τ=
T

t
ttIFM T 1

1
ˆ ςςρ  where ( ) ( )( )t

n
t

t uu 1
1

1 ,, −−= φφς K  and ( ) ( )t
nn

t
n

tt xFuxFu == .,,111 K . 
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Table 9. Correlation matrix for the t-Student copula with 20 degrees of freedom 

 Microsoft GE Coca Cola IBM  JPM 
Microsoft 1,000 0,430 0,150 0,459 0,404 

GE 0,430 1,000 0,243 0,413 0,537 
Coca Cola 0,150 0,243 1,000 0,137 0,189 

IBM  0,459 0,413 0,137 1,000 0,387 
JPM 0,404 0,537 0,189 0,387 1,000 

 

 

3.5. Generation of random correlated returns 

After defining the payoff structures, the different pricing methodologies or input sets 

and the proper parameters, we started running the simulation. While the generation of 

correlated returns in the MVN case was performed through a simple Cholesky 

decomposition method, a few words may be useful about the generation of random 

correlated returns with copulas. 

Let us consider first the bidimensional case. The objective is to generate random 

number pairs ( )vu,  from the variables U and V , being uniformly distributed on [ ]1,0  

and having C as joint distribution function. So we have 

( ) ( ) ( )( ) ( )vVuUvFuFCvuC uu ≤≤Ρ== ,,,  

where uF  is the uniform d.f on [ ]1,0 . 

The conditional distribution function of variable V, for a setted value u of U is given by 

( ) ( ) ( ) ( )vC
u

vuC
u

vVuU
vVuU u=

∂
∂

=
∂

≤≤Ρ∂
=≤=Ρ

,,
,  

where ( )vCu  is the partial derivative of the copula as to u. To simplify, we assume that 

( )vCu  exists for any [ ]1,0∈v  and that it is strictly monotonic. 

Using now the method of transformation of variables it is possible to generate the 

desired pair of random numbers through the following steps: 

• generate two random numbers u and w, indipendent and uniformly distributed 

on [ ]1,0 ; u is already the first number we are looking for 

• put ( )wCv u
1−=  

Then (u,v) is a pair of random numbers that are uniformly distributed on [ ]21,0  and have 

C as a joint distribution function. It is worthwhile to note that in some cases the inverse 
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function of the partial derivative of the copula cannot be obtained. It is therefore 

necessary to use a numerical algorithm to calculate v. 

To simulate a n-dimensional vector ( )nuu ,,1 K 7 the only difference is that the algorithm 

above should be run recursively: 

• to simulate 1u  from the uniform distribution on [ ]1,0 ; 

• to simulate 2u  from ( )122 / uuC  as described before; 

• to simulate 3u  from ( )2133 ,/ uuuC ; 

• M  

• to simulate nu  from ( )11 ,,/ −nnn uuuC K . 

 

4. Empirical results 

4.1. A comparison between copula-based and multivariate normal simulations 

 

The empirical test described in section 3 has therefore produced the prices of a set of 

different exotic options, that have been obtained as the present value of the expected 

payoff in a risk-neutral world over 10,000 simulations. The overall results can be 

summarized in Table 10, which reports the fair price for all the options depending on 

whether the dependence structure between assets’ returns had been modelled either by 

assuming multivariate normally distributed returns or through t-Student copulas. In the 

case of the multivariate normality assumption (MVN) there is then a distinction based 

on how the historical linear correlation matrix had been estimated, while copulas differ 

depending on the number of the degrees of freedom. 

 

                                                                 
7 Cfr. Embrechts-McNeil-Straumann(1999). 



 21 

Table 10. Fair prices for all option types depending on simulation method. 

Simulation method Multivariate normal t-Student copula 
 
 
Option type 

5 yrs, 
monthly 
returns 

3 yrs, 
monthly 
returns 

5 years, 
weekly  
returns 

3 yrs, 
weekly 
returns 

4 D.F. 12 D.F. 20 D.F. 

Asian basket option (5 yrs, strikes 
equal to initial prices) 

14,907 15,948 14,742 15,705 34,801 18,950 17,303 

Asian basket option (3+5 yrs, strikes 
equal to initial prices) 

5,445 6,067 5,314 5,942 16,198 7,509 6,628 

Asian basket option (3+5 yrs, strikes 
equal to average prices during the 

first 3 years) 

10,690 11,309 10,588 11,195 23,754 13,322 12,231 

Asian best option (5 yrs, 40% 
participation rate) 

24,351 22,531 24,845 23,139 48,495 28,721 26,631 

Asian best option (8 yrs, 40% 
participation rate) 

12,088 11,306 12,252 11,305 26,300 14,700 13,460 

Napoleon option (based on monthly 
basket returns, annual coupon 12%) 

10,971 8,701 11,318 9,086 3,774 7,929 8,740 

Conditional coupon structure (5 yrs, 
8% annual coupon, barrier=60%) 

10,866 12,327 10,536 11,996 7,895 10,069 10,419 

Conditional coupon structure (3+5 
yrs, 8% annual coupon, 

barrier=70%) 

7,404 8,945 7,123 8,341 5,660 7,203 7,384 

Fixed 80% coupon minus worst 
performance (5 yrs) 

24,935 27,734 24,386 27,144 21,893 24,323 24,762 

Fixed 80% coupon minus worst 
performance (3+5 yrs) 

21,951 24,831 21,387 23,833 19,543 21,654 21,968 

Fixed 25% coupon minus put on 
basket performance (5 yrs) 

14,055 13,476 14,197 13,581 14,801 14,243 14,057 

Fixed 25% coupon minus put on 
basket performance (3+5 yrs) 

12,307 11,877 12,438 11,918 13,645 12,749 12,478 

 

The first clear result is that the prices produced by the t4-copula are strikingly different 

from the others, while the remaining methods produce values which apparently remain 

within a much closer range. Anyway, to clearly appreciate results it is useful to consider 

the differences from a real-world perspective in which the situations that may actually 

occur could be either (a) the case of a risk manager (or trader) who has decided to use a 

MVN assumption, but has to choose which estimate of historical correlation should be 

used, or (b) the case of a more sophisticated risk manager (or trader) who wants to 

decide whether to use copulas instead than a MVN assumption and tries to evaluate the 

potential effects of different copula specifications (in our case, the number of degrees of 

freedom for the t-Student copula). 

The first situation can be analyzed through Table 11. 
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Table 11. The effect of different estimates of linear correlations under multivariate normality assumption 
(effect of different sample size and return frequency). 

 Weekly vs monthly 
returns 

3-yr vs 5-yr sample 

 
Option type 

Fair price 
(5-yr 

monthly 
sample) 

5-yr 
sample 

3-yr 
sample 

Monthly 
returns 

Weekly 
returns 

 
(Pmax-Pmin) / 

Pavg 

Asian basket option (5 yrs, strikes 
equal to initial prices) 

14,907 -1,11% -1,53% 6,98% 6,53% 7,87% 

Asian basket option (3+5 yrs, strikes 
equal to initial prices) 

5,445 -2,42% -2,06% 11,42% 11,83% 13,24% 

Asian basket option (3+5 yrs, strikes 
equal to average prices during the 

first 3 years) 

10,690 -0,96% -1,01% 5,79% 5,73% 6,59% 

Asian best option (5 yrs, 40% 
participation rate) 

24,351 2,03% 2,70% -7,47% -6,87% 9,75% 

Asian best option (8 yrs, 40% 
participation rate) 

12,088 1,36% 0,00% -6,47% -7,72% 8,06% 

Napoleon option (based on monthly 
basket returns, annual coupon 12%) 

10,971 3,16% 4,42% -20,69% -19,72% 26,12% 

Conditional coupon structure (5 yrs, 
8% annual coupon, barrier=60%) 

10,866 -3,04% -2,69% 13,45% 13,85% 15,67% 

Conditional coupon structure (3+5 
yrs, 8% annual coupon, 

barrier=70%) 

7,404 -3,80% -6,75% 20,81% 17,10% 22,90% 

Fixed 80% coupon minus worst 
performance (5 yrs) 

24,935 -2,20% -2,13% 11,23% 11,31% 12,85% 

Fixed 80% coupon minus worst 
performance (3+5 yrs) 

21,951 -2,57% -4,02% 13,12% 11,43% 14,97% 

Fixed 25% coupon minus put on 
basket performance (5 yrs) 

14,055 1,01% 0,78% -4,12% -4,34% 5,21% 

Fixed 25% coupon minus put on 
basket performance (3+5 yrs) 

12,307 1,06% 0,35% -3,49% -4,18% 4,62% 

Average  -0,62% -0,99% 3,38% 2,91% 12,32% 

Average of differences in absolute value 2,06% 2,37% 10,42% 10,05% - 

Maximum 3,16% 4,42% 20,81% 17,10% 26,12% 

Minimum  -3,80% -6,75% -20,69% -19,72% 4,62% 

 

First of all, it is clear that the choice of the frequency of return data is not as critical as 

the choice of sample length, since changes between the 3-year and the 5-year sample are 

substantial. Anyway, the choice between monthly versus weekly returns to estimate 

correlation may maintain a significant impact on prices. The fact that average 

differences may be close to zero should not lead to wrong conclusions, since this is due 

to the fact that using weekly data there is a mild reduction in correlation. As a 

consequence, while the value of options which are (intuitively) positively linked with 
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assets’ correlation such as Asian baskets or conditional coupon structures diminishes, 

other options such as Asian best options which can profit from lower assets’ correlation 

register an increase in their value. In practice, therefore, the average difference in 

absolute value gives a clearer picture of the uncertainty the trader or the risk manager 

may face in pricing the option.  

Second, at least in the specific case and analyzing the impact in terms of percentage 

change, there is no systematic difference between the impact of correlation inputs 

changes over new (5 years) as opposed to already issued (“3+5”) options. This result 

should in any case be taken with remarkable caution considering that (i) pre- issued 

options may be particularly sensitive to one or two coefficients alone, and (ii) 

correlation coefficients for each pair of assets do not change in the same direction when 

moving from an historical sample to another. 

It must be noted that it might be wise to evaluate differences deriving from data 

frequency and sample size separately. In fact, while the choice between weekly against 

monthly data might represent a pure discretionary one, most traders would likely prefer 

to use a 5-year rather than a 3-year sample if they were to price a long-dated option. 

Yet, the difference between the prices that can be obtained with different data samples 

points out the further problems that might be faced when pricing an option where some 

of the underlying assets have only a short return series (e.g. because they are stocks that 

were listed through an IPO only a couple of years before the exotic option is issued).  

In any case, even if we consider the most favorable case when any sample size is 

available, the differences between the “fair” prices that can be obtained remains 

remarkable, especially if we consider that (a) we are assuming no uncertainty about 

implied volatility inputs (i.e. volatility is the same across all simulations) and dividend 

yields and (b) we are adopting the same pricing method with the same, easy assumption 

on the shape of the joint distribution of assets’ returns. Both conditions may not hold 

true in practice, where traders may use different implied volatilities and might be 

tempted to use alternative models to define the dependence structure among assets’ 

returns. 

This introduces us to the second issue, that is the difference among options’ prices 

obtained through different t-Student copulas against the simpler standard multivariate 
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normal method (that will be represented here through the 5-year sample, monthly data 

case). 

 
Table 12. Fair values obtained through copulas versus standard multivariate norma l method. 

 Differences versus 
multivariate normal method 

(MVN) 

 
(Pmax-Pmin) / Pavg 

 
 
 
 

t-Student 
copula, 4 

DF 

t-Student 
copula, 
12 D.F. 

t-Student 
copula, 
20 D.F. 

All 
copulas 

All 
copulas + 

MVN 
case 

t-12 and 
t-20 

copulas 
+MVN 

case 
Asian basket option (5 yrs, strikes equal 

to initial prices) 
133,5% 27,1% 16,1% 73,88% 92,57% 23,71% 

Asian basket option (3+5 yrs, strikes 
equal to initial prices) 

197,5% 37,9% 21,7% 94,64% 120,20% 31,61% 

Asian basket option (3+5 yrs, strikes 
equal to average prices during the first 3 

years) 

122,2% 24,6% 14,4% 70,11% 87,09% 21,78% 

Asian best option (5 yrs, 40% 
participation rate) 

99,1% 17,9% 9,4% 63,16% 75,33% 16,45% 

Asian best option (8 yrs, 40% 
participation rate) 

117,6% 21,6% 11,4% 70,73% 85,42% 19,47% 

Napoleon option (based on monthly 
basket returns, annual coupon 12%) 

-65,6% -27,7% -20,3% 72,88% 91,64% 33,02% 

Conditional coupon structure (5 yrs, 8% 
annual coupon, barrier=60%) 

-27,3% -7,3% -4,1% 26,67% 30,28% 7,63% 

Conditional coupon structure (3+5 yrs, 
8% annual coupon, barrier=70%) 

-23,6% -2,7% -0,3% 25,54% 25,23% 2,74% 

Fixed 80% coupon minus worst 
performance (5 yrs) 

-12,2% -2,5% -0,7% 12,12% 12,69% 2,48% 

Fixed 80% coupon minus worst 
performance (3+5 yrs) 

-11,0% -1,4% 0,1% 11,51% 11,39% 1,43% 

Fixed 25% coupon minus put on basket 
performance (5 yrs) 

5,3% 1,3% 0,0% 5,18% 5,22% 1,33% 

Fixed 25% coupon minus put on basket 
performance (3+5 yrs) 

10,9% 3,6% 1,4% 9,01% 10,46% 3,54% 

 

Results from Table 12 can be analyzed from two perspectives. On one hand, they 

should be cons idered as a whole to evaluate whether and how much the choice of 

copulas to model dependence can change estimated fair values. On the other hand, it is 

possible to study and discuss the impact on the price of each kind of option.  

The first of the two perspectives is reasonably the most important, and clearly shows 

that using t-Student copulas may significantly change fair prices’ estimates. We can 

note first that, not surprisingly, the choice of the degrees of freedom is extremely 

critical; differences from the MVN method systematically grow as the number of 
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degrees of freedom reduces, as this implies a stronger departure from the Gaussian 

copula. Since the t-20 copula is close to the Gaussian case, it can be easily noticed that 

the dispersion between the t-4, t-12 and t-20 case is much wider than the dispersion 

between the t-12, t-20 and MVN case. Even if we excluded the t-4 copula as an extreme 

choice, anyway, the difference in fair prices depending on the choice of the degrees of 

freedom is so remarkable that it would be a clear problem for a trader or a risk manager 

to adopt the method without being able to clearly justify on an empirical ground which 

is the optimal number of degrees of freedom he or she should really consider.  

As far as individual options are considered, an interesting point is that differences 

between MVN method and copulas are relatively smaller for options whose payoff is 

somewhat constrained (as it happens for all the options from the Napoleon option to the 

bottom end of Table 12, since the maximum payoff is given by a fixed coupon or series 

of coupons and the minimum payoff is zero). This can be explained intuitively by 

noting that the ability of t-Student distributions and copulas to model tails and tail 

dependence better than in the MVN may be less relevant if the payoff is never 

“extreme” due to the existence of a clear predefined (albeit wide, as in the case of the 

80% coupon) fluctuation range. This also suggests that if the first five options in Table 

12 had been capped, by determining a maximum payoff, differences would have been 

lower. This also suggests that a trader willing to reduce mispricing risk if he is using a 

MVN method for simplicity, or because he simply lacks the time to recalibrate a more 

complex copula-based simulation, may first of all try to offer exotics with a capped 

payoff, since the cap, however out-of-the money it may be, might reduce the risk of 

mis-modelling the tail dependence effect. 

In general, it can be noted that the impact of using copulas is clearly different from a 

simple change in correlation parameters, since it implies a completely different 

“mechanics” of price co-movements, where again the different way in which tail 

dependence is modeled is critical. This is evident, for instance, by noting that while an 

increase in (linear) correlation had an opposite effect on Asian basket and Asian best 

options (as observed earlier in Table 11), using copulas increases both types of options. 

In fact, their payoff is unconstrained and in the copula-based simulation they can clearly 

fully profit from higher tail dependence in the case of strong upward moves of 

underlying assets’ prices. 
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5. Implications for traders , risk managers and auditors  

 

The empirical test whose results have been just displayed has many implications for at 

least three different players who may be concerned about correlation and correlation 

risk in a multiasset exotic options’ desk.  

Let us consider the trader first. The trader’s typical activity is to price and then sell the 

exotic option (e.g. when the investment bank builds a structured bond for a defined 

counterparty) and then either hedge the position directly or hedging just part of the risk 

and transferring directional risk linked to individual equities to the desks that are in 

charge of it through an internal deal (so to make a sort of internal Delta hedge). 

Therefore, he may be concerned with (a) being wrong in pricing the exotic option when 

he sells it and (b) being wrong in hedging the position. Correlation is then important for 

two reasons. First, a poor correlation estimate may lead the trader to misprice the option 

and to hedge it poorly, since the hedging coefficients would be wrong as well. Second, 

correlations among underlying assets may change through time, and therefore a change 

in the level of correlation may produce a change in the option’s price (and in hedging 

coefficients) that is very hard to hedge for the trader8. The huge bid-ask spread that is 

typical for the long-term exotic equity options which are embedded into structured 

equity- linked bonds can be at least partially explained with the need to compensate for 

those risks. 

As far as the trader’s viewpoint is concerned, our test suggests that if the trader believes 

in a multivariate normally distributed world but is concerned with correlation changes, a 

natural way to reduce the risk would be to try to balance inside the portfolio different 

kind of options with opposite exposure to correlation changes. For instance, while the 

value of an Asian best option would increase if correlation among underlying assets 

increases, a conditional coupon structure that pays a fixed coupon provided that the 

price of all the stocks included in the basket does not fall below a certain prespecified 

barrier has the opposite exposure. Anyway, this solution may not work in practice since 

it may be difficult to persuade many final customers to buy options on almost identical 

                                                                 
8 A similar point has been made by Rebonato (1999, p. xiv) who stated (with reference to the different issue of OTC 
options’ volatility smiles) that “a trader can hope to make money from a non-plain-vanilla options strategy if her 
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baskets so to hedge correlation risk almost entirely. Moreover, even if the trader sold an 

Asian best option and a conditional coupon structure on the same set of underlying 

assets, the price of the former option would be driven after a while by the group of best 

performing assets, while the value of the latter would mostly depend on the price of the 

worst performing ones. The hedging problem could therefore be only partially tempered 

by proposing to final customers those options which either typically have a smoother 

behaviour in terms of Greeks (e.g. Asian-type options) or are likely to depend after a 

certain period mostly on a limited number of underlying assets (such as options with a 

best or worst feature, where even if the stock basket is large at the beginning after a 

while the performance is linked to a small subset only). 

If instead the trader is not so convinced about the real joint return distribution, we have 

seen that the impact on the fair price of different alternative assumptions reduces when 

the option’s payoff is bounded in some manner, as it happens for instance for the last 

four options that can be conceived as spreads between a long position in an exotic 

option and a short position in a similar option with a different strike. Yet, if the trader 

uses more sophisticated methods – at least in order to control the prices he is quoting for 

new options – than the market, he could also plan to exploit the asymmetric information 

he has in his favour, so to suggest those options that may be overvalued under a simpler 

MVN pricing algorithm. The effect could be similar to what happens sometimes as far 

as volatility is concerned, so that some investment banks are said to suggest structured 

bonds where the investor is buying an option (e.g. an Asian basket call) when historical 

volatilities are higher than long-term implied volatilities, and to suggest structured 

bonds where the investor is selling an option (e.g. a put on the worst stock, or on the 

worst monthly return, as in the conditional coupon or in the Napoleon structure) when 

historical volatilities are lower than long-term implied volatilities. If this were the case, 

the uninformed customer who cannot observe implied volatilities but only historical 

ones would be lead to overestimate the bond’s price as opposed to the “real” price the 

trader knows. 

Obviously, a key issue is whether and to such extent the trader may be able to exploit 

this private superior information even internally, when providing the inputs to price the 

option. This is one of the key concerns for the risk manager. The results of our test 

                                                                                                                                                                                              
view about the future evolution of some un-tradable key quantities, on which her hedge is based, turns out to be 
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unfortunately tell to the risk manager that the choice of both the set of inputs, even in 

the MVN, and especially of the assumptions on the joint distribution of asset returns 

may be critical. Therefore, the risk manager has in practice three alternative solutions. 

The first one is to strive to detect both the best method and the best set of parameters in 

order to price any single option in his or her portfolio, continuously revising his or her 

optimal choice, and force the trader to use the “best” model. Unfortunately, this task 

may be too computationally intensive for a bank that has to revaluate a huge portfolio of 

options on different sets of underlying assets.  

The second possible alternative solution is to define the best model once and then adopt 

it with only small “maintenance” costs based on a limited input revision. This would 

imply for instance to choose once the distribution function for marginal distributions 

and the copula to be adopted (e.g., a t-Student copula with 10 degrees of freedom) to 

simulate dependence among assets’ returns. After the initial choice, only a relatively 

minor estimation effort aimed at redefining marginal distribution and t-10 copula 

parameters would be needed. The same result could be achieved even if through time an 

industry standard emerged; in this case, many risk managers would probably assume the 

industry standard as a benchmark and refine only parameters within the “champion” 

model. In this case, of course, it remains questionable how frequently parameters could 

be revised. While in a very simplified setting a vector of implied volatilities and a 

correlation matrix would be sufficient to resume the trader’s estimates, in a more 

complicated setting the communication of all the underlying pricing assumption may 

become more complex, and inputs revision may inadvertently become slower. 

The third possible solution would be to maintain the simple model for day close 

portfolio repricing and use the most sophisticated models as a pricing control tool when 

the option is issued on one side and as a measure to capture model risk on the other. 

Maximum differences or dispersion measures among theoretical prices (at single option 

level) or theoretical portfolio values (at desk level) may be considered as a rough proxy 

of the amount of model risk the trader is assuming, and is reflected on the chance of 

making both pricing mistakes and hedging mistakes. Since the trader responds to the 

existence of  the greater pricing and hedging risk that a multiasset exotic option may 

generate by overpricing the option he sells relative to its fair value, a part of the 

                                                                                                                                                                                              
similar what she assumed when pricing the option”.  
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overpricing should be considered as a provisioning against mispricing and mishedging. 

As a consequence, the markup against the theoretical fair price should be attributed to 

the derivatives desk only pro rata throughout the option’s life span. To a certain extent, 

using the complex methodology just at the date of issue, using then a simpler (and 

easier to check) pricing methodology and forcing the trader to split the initial markup 

over time may be for the risk manager a more viable and less risky solution than 

attributing to the trader a result which is derived by the comparison of theoretical prices 

obtained through complex model whose inputs would be very hard to verify in an 

efficient manner for the risk manager. 

The constraints deriving from the computational costs of (i) adapting to changing 

market conditions more sophisticated pricing models and (ii) having an independent 

check of the same inputs by an independent risk manager are even greater if we 

consider that the internal auditor too could be assigned the responsibility to check the 

consistency of pricing algorithms and risk management procedures. Again, the more 

complex are the methodologies and the tougher is the task for the auditor. Since 

complex methodologies typically require very skilled people whose cost may be higher 

than average, it is quite unlikely to assume that a certain set of competencies can be 

easily double or tripled inside the bank. Yet, a certain understanding of the most 

sophisticated method might be useful for a few auditors too, so to be able to check from 

time to time the methodology and the process that the front-office is adopting. 

Moreover, auditors too may sponsor the adoption of a provisioning system that may 

cover the bank through time from the risks deriving from inherently uncertain pricing 

and the consequent potentially poor hedging that is typical for most correlation 

products. 

 

6. Concluding remarks 

 

What are the implications of our study for the diffusion of copulas for pricing multiasset 

equity options? In a sense, the substantial differences that copulas may produce in fair 

prices that have been documented in Section 4 are at the same time good news and bad 

news. It is good news since if differences had been small then most banks still using a 

standard multivariate normal assumptions would have been justified in maintaining a 
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simpler and cheaper method as a fast approximation to the theoretically superior copula 

approach. Instead, the existence of wide differences suggests that using the right method 

can provide a substantial advantage. It is at the same time bad news since differences 

are so huge that on one hand the trader may face the risk to quote options so distant 

from other competitors’ prices to be virtually excluded from the market and on the other 

hand a risk manager and an auditor may hardly accept to confirm day-close exotic 

options’ mark-to-model prices if there is uncertainty or even subjectivity in defining 

critical parameters such as, in particular, the number of the degrees of freedom. After 

all, plain vanilla options are typically priced through a Black-Scholes model and a 

proper implied volatility estimate despite the fact that no trader or risk manager really 

believes in the distributional assumptions of the model. Yet, when the trader’s 

evaluation can be summarized in an implied volatility surface, then it may become 

relatively easier at least for the risk manager to check the consistency of the price with 

the market and through time. 

As a consequence, further diffusion of copulas for pricing exotic options may become 

possible  especially if clear best practices about parameters’ estimation and “leading” 

copula functions will emerge. There is probably at present a lack in empirical literature 

on efficient methods for calibrating copulas in a high dimensional setting, as it is 

typically required in order to use them consistently and continuously to price multiasset 

derivatives. 

At the same time, and even experimentally, the use of copulas may be important to 

point out to risk managers and auditors where the greatest mispricing risks may lie 

within the bank’s derivatives portfolio. While a lot of improvements have been made in 

checking implied volatility inputs, the way in which dependence among returns is 

modeled, relevant parameters are calibrated, correlation risk is quantified and – if not 

reduced through a proper balanced portfolio with “correlation-bullish” and “correlation-

bearish” options – at least covered by appropriate provisioning, represent a set of topics 

that need great attention for those banks that run huge portfolios of complex equity 

derivatives. 
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