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Abstract

This paper is written with two purposes in mind. First, it brings together some recent results in

the area of mean variance theory model validation for fuzzy systems in the existence of subjective

measures suggested by experts. The central idea of the methods presented here is to map random

uncertainty given a portfolio selection model into fuzzy random uncertainty description which is

useful from an application and analysis point of view. Secondly, this paper also presents a brief

self-contained glimpse of empirical representations to practitioners unfamiliar with the field of fuzzy

modeling. It is hoped that the expositions such as this one will open new collaborations between

other branches of fuzzy mathematics (in particular, operations research which deals with large scale

static uncertainty modeling) and asset pricing theories.
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Portfolio Selection Subject to Experts’ Judgments

1 Introduction

The pioneer work in the mean variance theory has been presented by (Markowitz (1952), Markowitz

(2003)) and Tobin (1985). Later, Sharpe (1964) and Lintner (1965) presented the Capital Asset

Pricing Model (CAPM) which was built on the foundation of the mean-variance theory. The logic

behind this correlation is that the identification of the efficient frontier of risky assets with the

risk-free asset is provided by the mean-variance theory. That efficient frontier is singled out by the

risk-free asset and the tangency frontier portfolio. In equilibrium, after asserting the assumption

that all investors have identical probability beliefs (share the same information) the amalgamation

of the risk-free asset and the portfolio would hold. Therefore, if the portfolio of all risky assets

represents the market, then the CAPM is developed and it is empirically measured. Obviously,

without ignoring the Roll’s critique (1977) that CAPM’s view of the market portfolio as it contains

every asset is not always available. For example, data of real state or real asset investments are

not available, yet are crucial elements in the market. Thus, the applicability of CAPM in its

existing form is questionable, because the use of different proxies for market return will reshape

the empirical implications.

In this paper, we question one important assumption made by Markowitz (Markowitz (1952),

Markowitz (2003)), which remains a fundamental “hidden” assumption in mean-variance theory

literature today: that assets are normally distributed or that random uncertainty is the sole way

of modeling uncertainty.

Markowitz (Markowitz (2003), p.193) discussed the reasons behind the use of variance as a
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measure of dispersion in asset pricing instead of other dispersion measures.

“Many considerations influence the choice of V or S as the measure of variability in a

portfolio analysis. These considerations include cost, convenience, familiarity, and the

desirability of the portfolios produced by the analysis.”

Following Markowitz’s articulation of the importance of using variance as a measure of dis-

persion, in this paper, the variance analysis is considered. Knowing that the analyses based on

S (semi-variance) tend to produce better portfolios than those based on V, the analyses based on

semi-variance can be considered in future research endeavors after experience is gained with simpler

measures in our context.

Although Markowitz (1952) ignores the experts’ judgments in the derivation of the efficient

frontier, he emphasizes the merit of such a combination of statistical techniques and the judgment

of experts in the portfolio selection process. Yet, Markowitz does not propose a method to tackle

that issue, and he does not study the efficient set of portfolios for the investor in the presence of

fuzziness or any subjective information. Recently, It has been noted that the number of financial

papers dealing with fuzzy theory and human judgement is growing, for example Zhou and Dong

(2004).

White (1969) has presented a viable conceptual framework for the uncertainty theories which

will be used in this paper. White (1969) divides the uncertainty into so-called “subjective” and

“objective”. Subjective measures are derivable from observation of choice, whereas objective mea-

sures are derived, once the basic data are given, by specific procedures, independent of the problem

faced. White (1969) has suggested that measures of uncertainty are either formally derived from

specified data, or are imputed by observing choice in a given class of problems. Also, he said:
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“It is perhaps not an unreasonable prerequisite that objective and subjective measures

should be correlated to some extent.”

The objective of this paper is to re-examine mean-variance theory in the presence of fuzziness

articulated by fuzzy returns (LR type). We rederive the Markowitz efficient set and present the

Fuzzy Capital Market Line (FCML). By illustrating these ideas with an empirical example, a

comparative study is obtainable.

The suggested method will serve the interest of investors who select their portfolios using a

Markowitz-based model with the induction of fuzziness or any other subjective techniques like the

judgment of experts.

The remainder of the paper is organized as follows. Section 2 describes background and the

mathematical preliminaries. Section 3 presents the problem setting and derives analytically the

efficient frontier when all securities are risky and when one of the assets is riskless. Section 4 em-

pirically investigates the impact of experts judgments on the efficient frontiers. Section 5 concludes

with a summary.

2 Mathematical Background/Preliminaries

Inferences and decisions in statistics are based on information supplied by a random experiment

associated with a population and on additional information about the experiment. To achieve a

statistical inference in terms of certainty and precision is almost impossible. Since the development

of fuzzy set theory, many studies have tackled the combination of both fuzzy set and probability

theory.

The aim of this paper is to examine methods for handling statistical problems involving fuzziness
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in the elements of the random experiment, and serves as a point from which to derive the Markowitz

frontier in the presence of fuzzy uncertainty and random uncertainty. Gebhardt, Gil, and Kruse

(1991) presented two illustrative figures showing the elements and stages in a random experiment

and involving the observation of random variables and fuzziness in the observed report.

In statistics, we traditionally assume that the experimental performance and the parameter

value, or state specification in a Bayesian setting, are accomplished under randomness, whereas the

remaining stages in the experiment are handled under certain and well-defined conditions. However,

fuzziness can arise in some of these remaining stages, that is, in the assessment of the experimental

and/or prior distribution.

The notion of a fuzzy random variable (see for example, Kwakernaak (1978), Puri and Ralescu

(1986), Kruse and Meyer (1987)) provides a valuable model that is manageable in a probabilistic

framework. Also, the concept of fuzzy information presented by Zadeh (1978) can formalize either

the experimental data or the events involving fuzziness. The concept of a fuzzy random variable

Puri and Ralescu (1986) was defined as a tool for establishing relationships between the outcomes

of a random experiment and inexact data. By inexactness, we mean non-statistical inexactness

that is due to subjectivity and to imprecision of human knowledge rather than to the occurrence of

random events. Korner (1997) pointed out that the variability is given by two kinds of uncertainties:

randomness (stochastic variability) and imprecision (vagueness). Randomness models the stochastic

variability of all possible outcomes of an experiment. Fuzziness describes the vagueness of the given

or realized outcome. Randomness answers the question: What will happen in the future? Whereas

fuzziness answers the question: What has happened? or What is meant by the data?

Kwakernaak (1978) presented another explanation for the difference between randomness and

fuzziness. He pointed out that when we consider an opinion poll in which a number of people are
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questioned, randomness occurs because it is not known which response may be expected from any

given individual. Once the response is available, there still is uncertainty about the precise meaning

of the response. The latter uncertainty will be characterized by fuzziness.

2.1 Fuzzy Random Variables and Properties

In this case, we deal with two types of uncertainty, namely, randomness and possibility (fuzzy).

Randomness refers to the description of a random experiment by a probability space (Ω, A, P ),

where Ω is the set of all possible outcomes of this experiment, A is σ−field of subsets of Ω (the

set of all possible events), and the set-function P , defined on A, is a probability measure. We

assume that all the information that is relevant for further analysis of any outcome of the random

experiment can be expressed with the aid of a real number, so that we can specify a mapping U :

Ω→ R, which assigns to each outcome in Ω its random value in R. U is called a random variable

and is expected to be measurable with respect to the σ−field A and the Borel σ− field B of the

real line.

The possibility of a second kind of uncertainty in our discussion of a random experiment has to

be involved whenever we are not in the position to fix the random values U(w) as crisp numbers

in R, but only to imperfectly specify these values by a possibility distribution on R. In this

case the random variable U : Ω → R changes to fuzzy random variable X : Ω → z(R) with

z (R) = {ex/µx : R→ [0, 1]} denoting the class of all fuzzy subsets. Fuzzy random variable (f. r.v.)

is interpreted as a fuzzy perception of an inaccessible usual random variable, U : Ω→ R, which is

the original of X. The idea is that the corresponding description of a random experiment U0(w) is

imperfect in the sense that its most specific specification is the possibility distribution Xw = X(w).

In this case, for any r ∈ R the value Xw(r) quantifies the degree of possibility with which the
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proposition U0(w) = r is regarded as being true. Xw(r) = 0 implies that there is no supporting

evidence for the possibility of the truth of U0(w) = r, whereas Xw(r) = 1 implies that there is no

evidence against the possibility of the truth of U0(w) = r, so that this proposition is fully possible.

Xw(r) ∈ [0, 1) reflects that there is evidence that supports the truth of the proposition as well

as evidence that contradicts it. A way proposed by Gebhardt et al. Gebhardt, Gil, and Kruse

(1991) of interpreting a possibility distribution Xw:R→ [0, 1] is viewing Xw in terms of the context

approach.

The concept of a fuzzy random variable is a reasonable extension of the concept of a usual

random variable in the many practical applications of random experiments, where the implicit as-

sumption of data precision seems to be an inappropriate simplification rather than an adequate

modeling of the real physical conditions. Considering possibility distribution allows us to involve

uncertainty (due to the probability of occurrence of competing specification contexts) and impre-

cision (due to the context-dependent set-valued specifications of U0(w)).

Definition 1 Let (Ω, A, P ) be a probability space. A function X: Ω → z(R) is called a fuzzy

random variable if and only if:

Xα : Ω→ R, w→ inf(X(w)α) and

Xα : Ω→ R, w→ sup (X(w)α)

are A-B- measurable for all α ∈ [0, 1] , with B being the Borel σ − field of R.

The notion of a probabilistic set and fuzzy random variable was introduced by several authors

in different ways. Kwakernaak’s theory (1978) is similar to that presented here. Puri and Ralescu

(1986) considered fuzzy random variables whose values are fuzzy subsets of Rn, or more generally

of Banach space.
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Kwakernaak (1978) defines the concept of fuzzy random variable as follows:

Let Ii : R → [0, 1] be the characteristic function of the set wi. Also, let S be the space of all

piecewise continuous functions R → [0, 1]. We then define the perception of the random variable

U , as described above, as the mapping X : Ω→ S given by

w
X→ Xw

with Xw = Ii if and only if U(w) ∈ Wi . This means that we associate with each w ∈ Ω, not a

real number U(w), as in the case of an ordinary random variable, but a characteristic function Xw

, which is an element of S.

The map X : Ω → S described above characterizes a special type of fuzzy random variable.

The random variable U , of which this fuzzy random variable is a perception, is called an original

of the fuzzy random variable. Many originals may exist. Kwakernaak (1978) introduced the notion

of a fuzzy random variable as a function F

F : Ω→ F (R)

subject to certain measurability conditions, where (Ω, A, P ) is a probability space and F (R) denotes

all piecewise continuous functions:

u : R→ [0, 1]

Puri and Ralescu (1986) defined fuzzy random variable slightly differently from Kwakernaak

(1978). In Puri and Ralescu (1986), fuzzy random variable is defined as a function X : Ω→ F0(Rn),

where (Ω,A, P ) is probability space, and F0(Rn) denotes all functions (fuzzy subsets of Rn)

u : Rn → [0, 1] such that {x ∈ Rn : u(x) ≥ α} is non-empty and compact for each 0 < α ≤ 1

7



2.2 Fuzzy Variables and Their Expectations

Let (Ω, A, P ) be a probability space where P is a probability measure. Let F0(Rn) denote the set

of fuzzy subsets µ : Rn → [0, 1] with the following properties:

(a) {x ∈ Rn;µ(x) ≥ α} is compact for each α > 0

(b) {x ∈ Rn;µ(x) = 1} 6= φ

Definition 2 Korner (1997). A fuzzy random variable (fuzzy variable) is a function

X : Ω→ F0(Rn)

such that: {(w,x) : x ∈ Xα(w)} ∈ A×B for every α ∈ [0, 1]

Where Xα : Ω→ P (Rn) is defined by

Xα(w) = {x ∈ Rn : X(w)(x) ≥ α}

Definition 3 Nather (1997). A fuzzy variable X is called integrably bounded if Xα is integrably

bounded for all α ∈ [0, 1], i.e. for any α ∈ [0, 1] there exists hα ∈ L1(Ω) such that kxk ≤ hα(w)

for each x, w with x ∈ Xα(w). L
1(Ω) denotes all functions h : Ω → R which are integrable with

respect to the probability measure P. Then, expected value E[X] of a fuzzy variable X is defined as:

X : Ω→ F0(Rn); {x ∈ Rn : (E [X]) (x) ≥ α} =
R
Xα for each α ∈ [0, 1]

Theorem 4 (Puri and Ralescu (1986), Korner (1997)). If X : Ω→ F0(Rn) is an integrably bounded

fuzzy variable, there exists a unique fuzzy set v ∈ F0(Rn) such that{x ∈ Rn : v(x) ≥ α} =
R
Xα

for every α ∈ [0, 1]. This theorem was used to define expected value of a fuzzy random variable

X : Ω→ F0(Rn) which is integrably bounded.

Definition 5 The expected value of X, denoted by E[X], is the fuzzy set v ∈ F0(Rn)1 such that

{x ∈ R : v(x) ≥ α} =
R
Xα for every α ∈ [0, 1]. Existence and uniqueness of v are established

1Sets of fuzzy subsets
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in the following theorem (E [X]) (x) = Sup
©
α ∈ [0, 1] : x ∈

R
Xα

ª
and its level sets are given by :

{x : (E [X]) (x) ≥ α} =
R
Xα, α ∈ [0, 1]

2.3 Variance of Fuzzy Random Variables

Fuzzy random variable introduced by Puri and Ralescu (1986) as a generalization of compact

random sets, combines both randomness and imprecision. Stochastic variability is described by use

of probability theory and the vagueness by use of fuzzy sets introduced by Zadeh (1965).

Expectation as defined by Puri and Ralescu (1986) is the unique fuzzy set E eX with

³
E eX´

α
= E

h eXα

i
0 ≤ α ≤ 1

Further, we can define: Z
A

eXdP = E
³ eXχA

´
∀ A ∈ A,

where χA denotes the indicator of A∈ A

Following Korner (1997), the variance of frv eX is defined as V ar eX = Ed22(
eX,E eX).

Using
³
E eX´

α
= E eXα and s

E eXα
= Es eXα , this can be written as

V ar eX = n
R 1
0

R
Sn−1 V ar s eXα

(t)µ(dt)dα

Analogously, the covariance between two frv’s eX and eY is defined as2:

Cov(X,Y ) = n
R 1
0

R
Sn−1 Cov(s eXα

(t), seY α(t))µ(dt)dα

2For details see Nather (2000)
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2.4 LR-Fuzzy Numbers

If l > 0 and r > 0, then the membership function of an LR-fuzzy number hµ, l, riLR , A is

mA(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
L(µ−xl )

1

R(x−µr )

if x < µ

if x = µ

if x > µ

Here L, R : R+ → [0, 1] are fixed left-continuous and non-increasing functions with L(0) =

R(0) = 1. The functions L and R are called left and right shape functions, µ the modal point and

l , r ≥ 0 are respectively the left and right spreads of the LR-fuzzy number. The most commonly

used LR-fuzzy numbers are triangular fuzzy numbers hµ, l, ri∆ with linear shape functions

L(x) = R(x) = Max {0, 1− x} and, especially, the symmetric triangular fuzzy numbers

hµ, li∆ with l = r.

2.5 Random LR Fuzzy Numbers

Denote eY =hµY , lY , rY iLR a random LR-fuzzy number with left/right shape function L/R, with

the random central value µY and the positive random left and right spreads lY and rY . The result

for E eY is known:

E eY = hEµY , ElY , ErY iLR
Following (Nather (1997), Korner (1997)) for random LR-fuzzy numbers V ar eX and Cov( eX, eY ) is
given by:

V ar eX = V ar(µX) + al2V ar(lX) + ar2V ar(rX)− 2al1Cov(µX , lX) + 2ar1Cov(µX , lX) (1)
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and

Cov( eX, eY ) = Cov(µX , µY ) + al2Cov(lX , lY ) + ar2Cov(rX , rY ) (2)

−2al1 [Cov(µX , lY ) + Cov(µY , lY )] + 2ar1 [Cov(µX , rY ) + Cov(µX , rX)] ,

where

al1 =
1

2

Z
L−1(α)dα, al2 =

1

2

Z ¡
L−1(α)

¢2
dα

ar1 =
1

2

Z
R−1(α)dα, ar2 =

1

2

Z ¡
R−1(α)

¢2
dα

2.6 Fast computation of the parameters al1, ar1, al2, ar2

α− Cuts of A = (µ, l, r)LR are given by the intervals

Aα =
£
µ− L−1(α)l, µ+R−1(α)r

¤
; α ∈ [0, 1] ,

An LR-fuzzy number A = (µ, l, r)LR with L = R and l = r
def
= ∆ is called symmetric and

abbreviated by:

A
def
= (µ,∆)L.

For a random symmetric fuzzy number (Nather (1997), Korner (1997)):

Y = (µ,∆)L

E (µ,∆)L = (Eµ,E∆)L ,

and

V ar (µ,∆)L = V ar (µ) + 2al2V ar(∆)

In particular, the variance of a random triangular fuzzy number is simply given by

V ar(X) = V ar(µ) +
1

6
V ar(l) +

1

6
V ar(r),
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and the variance of random bell-kind fuzzy numbers is:

V ar(X) = V ar(µ) + V ar(l) + V ar(r).

The covariance of two random LR-fuzzy numbers X, Y is given by equation (2). This form is more

convenient under additional assumptions:

• If L = R (shape symmetric LR-fuzzy number) then

Cov(X,Y ) = Cov(µX,µY ) + al2(Cov(lX , lY ) + Cov(rX , rY ))

+2al1(Cov(µX , rY − lY ) + Cov(µY , rX − lX))

• If L = R, lX = rX , lY = rY (symmetric LR-fuzzy number AS := AL −AL). Then,

Cov(X,Y ) = Cov(µX , µY ) + as2Cov(lx, lY )

2.7 Expected Utility Maximum

First, mathematicians formulated principles of behavior in chance situations by assuming that the

proper objective of the individual was to maximize expected monetary return. However, later on,

some researchers found that the expected return maximum is not the proper methodology Savage

(1954) Herstein and Milnor (1953). Therefore, the expected utility rule was proposed as a substitute

for the expected return rule (Alchian (1953), Dorfman, Samuelson, and Solow (1958)). Instead of

maximizing expected return, the rational investor would maximize the expected value of the utility

of return Allais (1953).

Markowitz (Markowitz (2003), p. 209) says:

“Some recent commentators, on the other hand, have agreed that the expected utility

maxim is not the essence of rational behavior. They show instances in which human
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action differs from that dictated by the maxim... At least two well-known economists

who first wrote as opponents later became adherents of the expected utility maxim.

The writer knows of no equally famous conversion in the other direction...”

Thus, following Markowitz (2003) we use the expected utility maximum approach to rederive

the efficient frontier in the presence of fuzzy random returns.

Following (Huang and Litzenberger (1988), p 60-61), an individual’s utility function may be

expanded as a Taylor series around his expected end of period wealth.

U( ew) = U(E [ ew]) + U
0
(E [ ew])( ew −E [ ew]) + 1

2
U”(E [w]) ( ew −E [ ew])2 +R3,

where the remainder is:

R3 =
∞X
n=3

1

n!
U (n) (E [ ew]) ( ew −E [ ew])n ,

and where U (n) denotes the nth derivative of U. Assuming that the Taylor series converges and that

the expectation and summation operations are interchangeable, the individual’s expected utility

may be expressed as

E [U ( ew)] = U(E[ ew]) + 1

2!
U”( ew)σ2( ew) +E[R3],

where

E[R3] =
∞X
n=3

1

n!
U (n) (E [ ew])mn( ew)

mn( ew) denotes the nth central moment of ew. Assuming quadratic utility (or jointly normal returns),
the third and higher order derivatives are zero and, therefore, E[R3] = 0. Hence, an individual’s

expected utility is defined over the first two central moments of his end of period wealth, ew,
E[U( ew)] = E[ ew]− b

2
E[ ew2] = E[w]− b

2

³
(E[ ew])2 + σ2( ew)´ .
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3 Analytical Derivation of the Efficient Frontier with Fuzzy Ran-

dom Returns

In this section, we analytically derive the efficient frontier in the presence of subjective information

indicated by LR-fuzzy random returns. Firstly, the efficient frontier has been developed assuming

an economy consisting of no riskless assets. Then the derivation of the Fuzzy Capital Market Line

assuming an economy with both risky and riskless assets is achieved.

Throughout most of this paper we will use the following set of maintained assumptions:

(A1) Perfect markets: The markets for all assets are perfect with no taxes or transaction

costs. Unlimited borrowing and short sales are not permitted. Each asset is infinitely divisible.

(A2) Competition: All investors act as price takers in all markets.

(A3) Homogenous expectations: All investors have identical probability beliefs.

(A4) State-independent utility: Investors are risk averse and maximize the expectation of a

Von Neuman-Morgenstern utility function, which depends solely on wealth.

(A5) Complete markets: Each competitive investor can obtain any pattern of returns through

the purchase of marketed assets (subject only to his/her own budget constraint) if the number of

marketed assets with linearly independent returns is equal to the number of states. Under as-

sumptions A1 through A4 it is known that the CAPM will obtain if investor’s utility function is

quadratic over the relevant range of outcomes or if all asset returns are drawn from one of the class

of “separating distributions” defined by Ross (1978).

Following Markowitz (1952) in assuming a one-period economy, we assume that the investor

applies a buy-and-hold strategy during the entire period. Of course, it is noticeable that the

usual variations which we observe in a continuous framework are ignored here. As they are under a
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multiperiod setting, the investors are willing to rebalance their portfolios over time and single period

investment models are not appropriate to help investors to make the optimal allocation of their

wealth. Still, it is plausible that the analysis under the one-period model assists in understanding

the mean-variance theory in the presence of subjective measure, articulated by the use of fuzzy

random returns.

3.1 Investor optimization problem

Let us assume that we have N risky assets, indexed by j, where j = 1, 2,. . ., N . Let the symbol

“ ˜” and “∗ ” designate a random fuzzy variable. Let R̃j represent the one-period gross return

on asset j, where the “gross” return is equivalent to one plus the rate of return. Let ãj and b̃j

represent the lower limit and maximum limit return of security j.

For example, when the investor faces a situation in which returns are not sharply defined but

rather vague, she/he will establish, based on the experts’ judgments, an aspiration interval in which

the returns are located . In that context, the membership function which measures his/her degree

of precision has a symmetric LR linear form. Thus, when eR∗j is assumed to be vague, we construct
the fuzzy random return in the following fashion

eR∗j = eRj ±width (lj), thus, eaj = eRj − elj and ebj = eRj + elj .
The experts’ judgments provide the investor with the level of tolerance (width) she/he needs

to develop the efficient frontier and ãj and b̃j represent left-hand width and right-hand returns

respectively. The fuzzy random return can be abbreviated by eR∗j = D eRj ,eljE
Let Rf represent the gross risk-free rate of return. Let W represent initial wealth, Ỹ represent

terminal wealth, B represent the investment in a riskless asset, and Vj represent the investment in
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a risky asset j.

Given the above assumptions, the investor selects an optimal portfolio that maximizes the

expected utility of the investor’s end period wealth. It follows that the investor solves the following

optimization problem.

Subject to

Max E
h
U
³
Ỹ
´i

1 = B
W +

PN
j=1

Vj
W

Ỹ = RfB +
PN

j=1 VjR̃j

The first constraint is the investor’s budget constraint, both sides of which are divided by the

investor’s initial wealth w. The second constraint is the wealth accumulation constraint, which

incorporates fuzziness. The investor can hold an asset long or short. A short position implies

Xj < 0. We denote the investment weights as Xj =
Vj
W for asset j and Xf =

B
W for the riskless

asset. Restating the optimization problem:

Subject to

Max E
h
U
³
Ỹ
´i

1 = Xf +
PN

j=1Xj

Ỹ = RfWXf +
PN

j=1WXjR̃j ,

Using Taylor series expansion, we expand the investor’s utility function around the expected end

of period wealth.

U
³
Ỹ
´
= U

³
E
h
Ỹ
i´
+ U 0

³
E
h
Ỹ
i´³

Ỹ −E
h
Ỹ
i´

+
1

2
U”
³
E
h
Ỹ
i´³

Ỹ −E
h
Ỹ
i´2

+ T3
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where

T3 =
∞X
n=3

1

n!
U (n)

³
E
h
Ỹ
i´³

Ỹ −E
h
Ỹ
i´n

Assuming that the Taylor series converges, and because the expectation and summation operations

are interchangeable, the individual’s expected utility can be expressed as

E
h
U
³
Ỹ
´i
= U

³
E
h
Ỹ
i´
+
1

2
U”
³
E
h
Ỹ
i´

σ2
³
Ỹ
´
+E [T3]

where

E[T3] =
∞X
n=3

1

n!
U (n)

³
E
h
Ỹ
i´

mn
³
Ỹ
´

and mn(Ỹ ) denotes the nth central moment of eY .
To maximize expected utility of wealth, the investor will maximize a function of the moments

of the portfolio return, taking into account the assumption A4 that all investors are risk averse.

In addition, we know from the previous section that the covariance of random LR-fuzzy random

variable is:

Cov[X,Y ] = Cov[mx,my] + al2 [Cov(lX , lY ) + Cov(rX , rY )]

−2al1 [Cov(mX , rY − lY ) +Cov(mY , rX − lX),

under the symmetric assumption of the fuzzy LR-fuzzy variable, we get:

Cov(X,Y ) = Cov[mx,my] + al2 [Cov(lX , lY ) +Cov(rX , rY )]− 2al1 [Cov(mX , lY ) + Cov(mY , lX),

assuming further that m, r and l are independent,

V ar(X) = V ar(µ) +
1

6
V ar(l) +

1

6
V ar(r), (3)

and

Cov(X,Y ) = Cov(µX , µY ) +
1

3
Cov(lX , lY ). (4)
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Applying the equation (4) in the context of the fuzzy random returns, we get:

V ar
h
R̃∗p

i
=

NX
i=1

NX
j=1

XjXi

∙
Cov

h
R̃j , R̃i

i
+
1

3
Cov

helj ,elii¸ ,
where eR∗p is portfolio fuzzy random return, and eRj , eRi are the individual returns of assets j and i

respectively. elj ,eli represent their spreads.
Following Markowitz (1952), portfolio p is a mean-variance efficient portfolio if there is no

portfolio q such that E
h
R̃∗q

i
≥ E

h
R̃∗p

i
and V ar

h
R̃∗q

i
< V ar

h
R̃∗p

i
. Thus, the efficient frontier can

be presented as the set of portfolios that satisfy the quadratic minimization problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Subject to

Min V ar
h
R̃∗p

i
µ∗p = XfRf +

PN
j=1XjE

h
R̃∗j

i
Xf +

PN
j=1Xj = 1

(5)

where, µ∗p = E
h
R̃∗p

i
, is the expected portfolio fuzzy random return. Because of the linearity of

the expectation in fuzzy random environment, the E[ eR∗j ] implies that the expectation of a random
LR-fuzzy number eR∗j is again an LR-fuzzy number:

E[ eR∗j ] = DE[ eRj ], E[elj ]E
LR

Thus, the model (5) is equivalent to:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Subject to

Min V ar
h
R̃∗p

i
µ∗p = XfRf +

PN
j=1Xj

D
E[ eRj ], E[elj ]E

Xf +
PN

j=1Xj = 1

,

using the following notation:

µ∗p =
­
µp, lp

®
; Cov( eRj , eRi) = σij ; Cov(elj ,eli) = Lij ,
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the investment problem with only risky assets under fuzzy random environment is as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Subject to

Min
PN

i=1

PN
j=1XjXi

£
σij +

1
3Lij

¤
µp =

PN
j=1XjE[ eRj ]

lp =
PN

j=1XjE[elj ]PN
j=1Xj = 1

.

We know from (Dubois and Prade (1980), Arnold and Madan (1985), ?)) that the following mul-

tiplication has two different outcomes when k is negative versus a positive value.

k ¯ (m,α, β)LR =

⎧⎪⎪⎨⎪⎪⎩
(km, kα, kβ)LR

(km,−kα,−kβ)LR

if k > 0

if k < 0

In response to this consideration, we will limit our investigation to the case when the proportions

have positive values, which means we will be dealing with an investment problem without short

sales. Specifically, many investors do not hold short sales due to either choice or regulation (see

e.g., Jarrow (1980), Aitken, Frino, McCorry, and Swan (1998)).

We know from the existing literature that empirical derivation of the mean variance efficient set,

when short sales are allowed, shows that most, if not all efficient frontiers contain some negative

investment proportions. Levy (1983) empirically finds that without short sales, many securities do

not enter the efficient frontier, and the larger N , the smaller the percentage of the securities that

will appear in the efficient set. Thus, the efficient frontier grows slowly with an increased sample

size. This finding has been duplicated here under fuzzy information.

Ross (1977) suggested that in the absence of short sales, except on a single riskless asset, using

a geometric approach CAPM holds, as long as the market portfolio is efficient. That assumption

is maintained here; so it is intended that we will be able to generate the CAPM.
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Also, a portfolio model under a fuzzy random environment without consideration for non-

negativity constraint is difficult to model. In response to these considerations, in this paper, we

tackle the analytical derivation of the efficient frontier with fuzzy random returns, under the as-

sumption that there are no short sales of risky assets. So, the model is a quadratic programming

one in which some stocks are held long (positive proportions) while other stocks are omitted (held

in zero proportions). Efficient frontier is a combination of assets if there are no other combinations

with the same (higher) expected return with lower risk, and if there is no other portfolio with the

same (or lower) risk and with higher expected return.

3.2 Efficient frontier in an economy with risky assets

In this section we want to solve the following utility minimization problem to find the efficient

frontier:

Min
NX
i=1

NX
j=1

XjXiσji +XjXiLji (6)

s.t.

µp =
NX
j=1

XjE[ eRj ] (7)

lp =
NX
j=1

XjE[elj ] (8)

NX
j=1

Xj = 1 (9)

Xj ≥ 0 (10)
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To find the optimal solution of this quadratic programming, we first write the Lagrangian form as

F (X,λ1, λ2, λ3) =
NX
i=1

NX
j=1

XjXiσij +
NX
i=1

NX
j=1

XjXiLij

+λ1

⎛⎝µp −
NX
j=1

XjE
h
R̃j

i⎞⎠+ λ2

⎛⎝lp −
NX
j=1

XjE
helji

⎞⎠+ λ3

⎛⎝1− NX
j=1

Xj

⎞⎠ . (11)

In what follow X is in Rn and is X = (X1,X2, ...,XN ).

Organizing the previous equation (11) we obtain:

F (X,λ1, λ2, λ3) =
NX
i=1

NX
j=1

XjXi (σij + Lij) (12)

+λ1

⎛⎝µp −
NX
j=1

XjE
h
R̃j

i⎞⎠+ λ2

⎛⎝lp −
NX
j=1

XjE[elj ]
⎞⎠+ λ3

⎛⎝1− NX
j=1

Xj

⎞⎠ .

The Kuhn-Tucker conditions of equation (12) are

0 ≤
NX
j=1

Xiσ
∗
ij − λ1E

h
R̃j

i
− λ2E[elj ]− λ3, j = 1, ..,N (13)

0 = µp −
NX
j=1

XjE
h
R̃j

i
, (14)

0 = lp −
NX
j=1

XjE
helji , (15)

0 = 1−
NX
j=1

Xj . (16)

0 =
∂L

∂Xj
Xj , j = 1, .., N (17)

Xj ≥ 0 (18)

where

σ∗ij = Cov
h
R̃j , R̃i

i
+
1

3
Cov

helj ,elii = σij +
1

3
Lij

If every variable is positive then inequalities (13) are equalities because of the complementarity

conditions (16). The Xj ’s that satisfy the first order conditions minimize the variance for every
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given level of expected return and are unique. Equation (13) implies

NX
j=1

Xiσ
∗
ij − λ1E

h
R̃j

i
− λ2E[elj ]− λ3 = 0,

that implies:

Xk = λ1

NX
i=1

MkiE
h
R̃i

i
+ λ2

NX
i=1

E[eli]Mki + λ3

NX
i=1

Mki, k = 1, .., N. (19)

Define Ω∗ : Variance-Covariance of fuzzy returns, Ω
∗−1 : the inverse of the matrix Ω

∗
where Mki

denote the elements of the inverse of the variance-covariance matrix of fuzzy random returns, i.e.,

Ω∗−1 ≡ [Mki]. Ω represents the sum of the two variance-covariance matrices, Ω = [σij ] +
1
3 [Lij ].

Multiplying both sides of equation (19) by E
h
R̃k

i
, and summing over k = 1, .., N , it follows

NX
k=1

XkE
h
R̃k

i
= λ1

NX
k=1

NX
i=1

MkiE
h
R̃i

i
E
h
R̃k

i
(20)

+λ2

NX
k=1

NX
k=1

MkiE[ eRk]E[eli] + λ3

NX
k=1

NX
i=1

MkiE
h
R̃k

i
.

Also, multiplying both sides of equation (19) by E
helki, and summing over k = 1, .., N , it follows

NX
k=1

XkE
helki = λ1

NX
k=1

NX
i=1

MkiE
h
R̃i

i
E
helki (21)

+λ2

NX
k=1

NX
k=1

MkiE[elk]E[eli] + λ3

NX
k=1

NX
i=1

MkiE
helki .

Then, summing equation (19) over k = 1, .., N , it follows

NX
k=1

Xk = λ1

NX
k=1

NX
i=1

MkiE
h
R̃i

i
+ λ2

NX
k=1

NX
i=1

E[eli]Mki + λ3

NX
k=1

NX
i=1

Mki. (22)
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Next, we define

A =
NX
k=1

NX
i=1

MkiE
h
R̃i

i
,

B =
NX
k=1

NX
i=1

MkiE
h
R̃i

i
E
h
R̃k

i
,

C =
NX
k=1

NX
i=1

Mki. (23)

A1 =
NX
k=1

NX
i=1

MkiE
h
R̃i

i
E[elk],

B1 =
NX
k=1

NX
i=1

MkiE[eli]E[elk]
C1 =

NX
k=1

NX
i=1

MkiE[elk]
From equations (14), (15), (16), (20), (21) and (22), it follows:

µp = λ1B + λ2A1 + λ3A (24)

lp = λ1A1 + λ2B1 + λ3C1 (25)

1 = λ1A+ λ2C1 + λ3C. (26)

Noting here,

NX
k=1

NX
i=1

MkiE
h
R̃i

i
=

NX
k=1

NX
i=1

MkiE
h
R̃k

i
,

NX
k=1

NX
i=1

MkiE[eli]E[ eRk] =
NX
k=1

NX
i=1

MkiE[elk]E[ eRi],

NX
k=1

NX
i=1

MkiE
h
R̃i

i
E[elk] =

NX
k=1

NX
i=1

MkiE[eli]E[ eRk].

Solving system of equations (24), (25) and (26) for λ1, λ2 and λ3, and defining ∆ ≡ B(B1C−C21)−

A1(A1C−AC1)+A(A1C1−AB1), and as
P

k

P
iMki is positive because of the positive definiteness
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of matrix M ≡ [Mki], we obtain

λ1 =
µp(B1C − C21)− lp(A1C −C1A) + (A1C1 −B1A)

∆

λ2 =
−µp(A1C −AC1) + lp(BC −A2)− (BC1 −A1A)

∆
(27)

λ3 =
µp(A1C1 −AB1)− lp(BC1 −AA1) + (BB1 −A21)

∆

Next, we substitute for λ1, λ2 and λ3, from equation (27) into equation (19) to solve for Xk. Xk

is the proportion of each risky asset k held in a portfolio on the minimum-variance for a given

expected return, which is as follows:

Xk =

µp
PN

i=1Mki

h¡
B1C − C21

¢
E( eRi)− (A1C −AC1)E(eli) + (A1C1 −AB1)

i
−lp

P
iMki

h
(A1C − C1A)E( eRi)− (BC −A2)E(eli) + (BC1 −AA1)

i
+
PN

i=1Mki

h
(A1C1 −B1A)E( eRi)− (BC1 −A1A)E(eli) + (BB1 −A21)

i
∆

,

k = 1, .., N. (28)

Using the following notations:
¡
B1C − C21

¢
= α; (A1C−AC1) = β; (A1C1−AB1) = γ; (BC−A2) =

δ; (BC1 −AA1) = ϕ; (BB1 −A21) = ψ, the equation (28) is equivalent to:

Xk =

µp
PN

i=1Mki

h
αE( eRi)− βE(eli) + γ

i
− lp

P
iMki

h
βE( eRi)− δE(eli) + ϕ

i
+
PN

i=1Mki

h
γE( eRi)− ϕE(eli) + ψ

i
∆

,

k = 1, ..,N. (29)

Because M ≡ [Mki] is positive definite and ∆ is zero if and only if µ∗ = λ1 such that µ∗ =

[µ∗1, ..., µ
∗
n]
0
; µ∗j =

D
E
h eRj

i
, E[elj ]E , otherwise ∆ > 0.

Theorem 6 (Voros (1986)). Let µ∗ = [µ∗1, ...µ
∗
j ]
0 6= 1 for all λ. In the model there exists an open
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interval (µ∗p0, µ
∗
p1) of µ

∗
p in which every variable is positive if and only if :ÃX

i

Mpi

!ÃX
i

Mqiµ
∗
i

!
<

ÃX
i

Mpiµ
∗
i

!ÃX
i

Mqi

!

for all p∈ I− and q∈ I+ andÃX
k

X
i

Mkiµ
∗
k

!ÃX
k

Mkiµ
∗
k

!
−
ÃX

k

X
i

Mkiµ
∗
kµ
∗
i

!ÃX
i

Mki

!
< 0

for all i∈ I0

such that:

I+ =

(
k/

ÃX
k

X
i

Mki

!ÃX
i

Mkiµ
∗
i

!
−
ÃX

i

X
k

Mkiµ
∗
i

!ÃX
i

Mki

!
> 0

)

I− =

(
k/

ÃX
k

X
i

Mki

!ÃX
i

Mkiµ
∗
i

!
−
ÃX

i

X
k

Mkiµ
∗
i

!ÃX
i

Mki

!
< 0

)

I0 =

(
k/

ÃX
k

X
i

Mki

!ÃX
i

Mkiµ
∗
i

!
−
ÃX

i

X
k

Mkiµ
∗
i

!ÃX
i

Mki

!
= 0

)

Proof. Similar to what Vörös (1986) presented in his paper.

Because of the positivity of the variables and of ∆ it follows that:

⎡⎢⎢⎣ µp
PN

i=1Mki

h
αE( eRi)− βE(eli) + γ

i
− lp

P
iMki

h
βE( eRi)− δE(eli) + ϕ

i
+
PN

i=1Mki

h
γE( eRi)− ϕE(eli) + ψ

i
⎤⎥⎥⎦ > 0 (30)

If we define

hk =
X
i

MkiE[ eRi]; fk =
X
i

MkiE(eli) and gk =
X
i

Mki,

then, the equation (30) is equivalent to:

µp(αhk − βfk + γgk)− lp(βhk − δfk + ϕgk) + (γhk − ϕfk + ψgk) > 0 k = 1, ..., n

25



If i ∈ I0 then lp(βhk−δfk+ϕgk)+(γhk−ϕfk+ψgk) < 0, indices q ∈ I+ → (αhk−βfk+γgk) > 0,

and for p ∈ I− and p ∈ I− → (αhk − βfk + γgk) < 0, then the following inequality holds:

lp(βhk − δfk + ϕgk) + (γhk − ϕfk + ψgk)

(αhk − βfk + γgk)
< µp <

lp(βhk − δfk + ϕgk) + (γhk − ϕfk + ψgk)

(αhk − βfk + γgk)
(31)

In line with Vörös (1986), from the inequality (31), the interval in which every variable is positive

is given by:

µ1p = min
p∈I−

½
lp(βhp − δfp + ϕgp) + (γhp − ϕfp + ψgp)

(αhp −Bfp + γgp)

¾
µ0p = max

q∈I+

½
lp(βhq − δfq + ϕgq) + (γhq − ϕfq + ψgq)

(αhq −Bfq + γgq)

¾
,

We next multiply equation (13) by Xj and sum over j for j = 1, . . . , N, to derive the following:

NX
j=1

NX
i=1

XjXiσ
∗
ij = λ1

NX
j=1

E
h
R̃j

i
Xj + λ2

X
j

XjE(elj) + λ3

NX
j=1

Xj . (32)

From the definition of σ2
³
R̃∗p

´
, equations (14), and (15), equation (32) implies

V ar
h
R̃∗p

i
= λ1µ

∗
p + λ2lp + λ3. (33)

Substituting for λ1, λ2 and λ3 from (27) into (33), to obtain the equation for the minimum-variance

frontier. So, for the interval (µ∗p1, µ
∗
p0), we obtain the functional form of return-variance:

σ2
³
R̃∗p

´
=

¡
µ2pα+ l2pδ − 2µplpβ − 2lpϕ+ µpγ + ψ

¢
∆

, (34)

Once all fuzzy components (lp = 0, li and lk = 0) have been discarded in the equation (34), we

will get the standard functional form of return-variance. Thus, the model is a special case of

the Markowitz frontier. Next, for the sake of completeness of the analysis, the minimum-variance

portfolio in the presence of fuzzy random uncertainty is presented below. Since, the equation (34)

26



is a function of two variables of degree 2, partial derivatives and all other properties of multiple

variables are applicable. The differentiability is achieved as follows

∂σ2
³
R̃∗p

´
∂µp

=
2αµp − 2lpβ + γ

∆
= 0 =⇒ µpmin =

2lpβ − γ

2α
, and (35)

∂2σ2
³
R̃∗p

´
∂2µp

=
2α

∆
> 0.

3.3 Efficient frontier in an economy where one asset is risk-free

For all investors to achieve the efficient frontier by lending or borrowing against the risky portfolio,

and for the separation theorem to hold, following Ross’analysis (1977), by permitting the investor

to short sale the riskless asset, the analytical derivation of the efficient frontier is presented. The

risk-free asset offers a riskless return of Rf . With short sales restrictions, all assets will appear in

positive amounts in the market portfolio. The investor’s utility minimization problem is formulated

as follows. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Subject to

Min
Xj

P
i

P
j XiXjσ

∗
ij

µ∗p = XfRf +
P

j=1XjE[ eR∗j ]
Xf +

P
j Xj = 1

Xj ≥ 0 , j = 1, ..., N

(36)

The above model is equivalent to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Subject to

Min
Xj

P
i

P
j XiXjσ

∗
ij­

µp, lp
®
= Xf hRf , lf i+

P
j=1Xj

D
E[ eRj ], E[elj ]E

Xf +
P

j Xj = 1

Xj ≥ 0 , j = 1, ..., N

(37)
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which is equivalent to: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Subject to

Min
Xj

P
i

P
j XiXjσ

∗
ij

µp = XfRf +
P

j=1XjE[ eRj ]

lp = Xf lf +
P

j=1XjE[elj ]
Xf +

P
j Xj = 1

Xj ≥ 0 , j = 1, ..., N

, (38)

For simplicity, we assume that Rf is sharply defined, which means that lf = 0. In order to find the

optimal solution of this quadratic programming, we write the Lagrangian form:

Ψ (Xj , λ1, λ2) =
X
i

X
j

XiXjσ
∗
ij (39)

+λ1

⎛⎝µp −Rf −
X
j=1

Xj

³
E[ eRj ]−Rf

´⎞⎠
+λ1

⎛⎝lp −
X
j=1

Xj

³
E[elj ]−Rf

´⎞⎠
The Kuhn-Tucker conditions of (39) are:

∂Ψ

∂Xj
=

NX
i=1

Xiσ
∗
ij − λ1

³
E
h
R̃∗j

i
−Rf

´
− λ2E

helji ≥ 0 j = 1, ..., N (40)

∂Ψ

∂λ1
= µp −Rf −

NX
j=1

Xj

³
E
h
R̃j

i
−Rf

´
= 0 (41)

∂Ψ

∂λ2
= lp −

NX
j=1

XjE
helji = 0 (42)

∂Ψ

∂Xj
Xj = 0 (43)

Xj ≥ 0 j = 1, ..., N (44)
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If every variable Xj is positive (inequalities (44) hold) then inequalities (40) are equalities because

of the complementarity conditions (43). So, the equations (40) imply that:

Xk = λ1
X
i=1

Mki(E[ eRi]−Rf ) + λ2
X
i

MkiE(eli) k = 1, ...,N (45)

Multiplying both sides of the equation (45) by
h
E[ eRk]−Rf

i
and summing over k = 1, ..., N , it

follows:

X
Xk

³
E
h eR∗ki−Rf

´
= λ1

X
k

X
i

Mki

³
E
h eR∗i i−Rf

´³
E
h eR∗ki−Rf

´
(46)

+λ2
X
k

X
i

Mki

³
E
helii´³E[ eRk]−Rf

´
Multiplying both sides of the equation (45) by E[elk] and summing over k = 1, ..., N , it follows:

X
XkE

helki = λ1
X
k

X
i

Mki

³
E
h eR∗i i−Rf

´
E
helki (47)

+λ2
X
k

X
i

MkiE(eli)E helki
From equation (41), we deduce that the equation (46) using the implied parameters A, B, C, A1,

B1 and C1, it follows that:

µp −Rf = λ1
£
B − 2RfA+R2fC

¤
+ λ2 [A1 −RfC1] (48)

Also, from equation (42), the equation (47) implies that:

lp = λ1 [A1 −RfC1] + λ2B (49)

So, both equations (48) and (49) imply:

λ1 =
(µp −Rf )B − lp(A1 −RfC1)

(B − 2RfA+R2fC)B − (A1 −RfC
2
1)

(50)

λ2 =
(B − 2RfA+R2fC)lp − (A1 −RfC1)(µp −Rf )

(B − 2RfA+R2fC)B − (A1 −RfC
2
1)
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Defining D = (B − 2RfA + R2fC)B − (A1 − RfC
2
1) and substituting for λ1and λ2 from previous

equation (50) into equation (45) to solve for Xk:

Xk =
1

D

⎡⎢⎢⎣
£
(µp −Rf )B − lp(A1 −RfC1)

¤P
i=1Mki(E[ eRi]−Rf )+h

(B − 2RfA+R2fC)lp − (A1 −RfC1)(µp −Rf )
iP

iMkiE(eli)
⎤⎥⎥⎦

k = 1, ..., N (51)

Using the notation indicated in the previous section,

gk =
X
i

Mki ; fk =
X
i

MkiE[eli] and hk =
X
i

MkiE[ eR∗i ],
equation (51) is equivalent to:

Xk =
1

D

⎡⎢⎢⎣
£
(µp −Rf )B − lp(A1 −RfC1)

¤
(hk −Rfgk) +h

(B − 2RfA+R2fC)lp − (A1 −RfC1)(µp −Rf )
i
fk

⎤⎥⎥⎦
k = 1, ...,N (52)

Under the positive condition of the previous equation (52), and in a fashion similar to the previous

section, we derive the equation for the frontier using Vörös’s method Voros (1986). Because of the

positivity of the variables and of the dominator, multiplying equation (40) by Xj , summing from

j = 1, ..., N and rearranging, we find that:

X
j

X
i

XjXiσ
∗
ij = λ1

X
j

³
E
h eRi

i
−Rf

´
Xj + λ2

X
j

XjE(elj) (53)

From the definition of σ2( eR∗p) and equations (41), (42) , equation (53) implies that:
V ar(R̃∗p) = λ1

¡
µp −Rf

¢
+ λ2lp. (54)
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Substituting for λ1and λ2 from (50) into (54), we obtain the equation for the minimum-variance

frontier.

σ2
³
R̃∗p

´
=
1

D

⎡⎢⎢⎣
¡
µp −Rf

¢ £
(µp −Rf )B − lp(A1 −RfC1)

¤
+lp

h
(B − 2RfA+R2fC)lp − (A1 −RfC1)(µp −Rf )

i
⎤⎥⎥⎦ (55)

Arranging the above equation we get:

σ2
³
R̃∗p

´
=

h¡
µp −Rf

¢2
B + l2p

³
B − 2ARf +R2fC

´
− 2lp(A1 −RfC1)(µp −Rf )

i
(B − 2RfA+R2fC)B − (A1 −RfC

2
1)

. (56)

In the mean-standard deviation space, we get the following equation:

σ
³
R̃∗p

´
=

vuuth¡
µp −Rf

¢2
B + l2p

³
B − 2ARf +R2fC

´
− 2lp(A1 −RfC1)(µp −Rf )

i
(B − 2RfA+R2fC)B − (A1 −RfC

2
1)

(57)

Thus, the minimum-variance frontier in mean-standard space is nonlinear, and equation (57) is

the Fuzzy Capital Market Line (FCML). We believe with the absence of fuzziness (in every single

return lj = 0 and in the portfolio mean lp = 0) in the model, the equation (57) will offer the classical

capital market line. An empirical implication of this conclusion is shown in the next section.

4 Empirical Implications of the Model

In this section we analyze the relationship between risk and return in the presence of fuzzy infor-

mation, revealed by the use of fuzzy returns, in NASDAQ stocks in the 1990-2000 period.

4.1 The impact of the subjective measure on the location of capital market line

In this subsection we use NASDAQ stock data to show the impact of the introduction of fuzziness

on the location of Capital Market Line. In real life, the investor will be faced with more than just

15 assets as presented here. However, we limit our investigation in this section to 15 stocks to
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compare the location of fuzzy capital market line with respect to the location of the original CML.

The model can be solved using any optimization software to construct the market line of 15 risky

assets. The randomly selected 15 stocks are traded on the NASDAQ. The data, which covered the

monthly rate of returns of these stocks for the 10-year period 1990-2000, were taken from the Center

for Research and Security Prices (CRSP) and used to estimate the mean and standard deviation of

returns. The following tables (1 and 2) show the returns and the widths (spreads) of fuzzy returns

for 15 stocks over the 10-year period.

Table 1: 15 NASDAQ returns randomly selected
Permno M2 M3 M4 M5 M6 M7 M8 M9 M10
10025 6.38E-07 -0.010696 -0.02174 -0.11641 0.036368 0.068993 -0.022473 0.07654 -0.043018
10078 0.121184 -0.182324 -0.044449 0.018019 -0.071705 0.028368 0.00465 0.146501 0.120673
10200 0.033226 -0.210156 -0.365934 0.088947 0.056863 0.014963 -0.184304 0 -0.241162
10271 0.152579 0 0.050586 -0.009009 -0.018265 -0.018605 -0.053024 0.02927 -0.034233
10290 0.030214 -0.05506 -0.045024 0.006557 -0.013158 0.181217 -0.068598 0.111848 0.147325
10588 0.223143 -0.123059 -0.04879 0.150572 -0.242139 0.140356 -0.011976 0.102948 0.042559
10772 0.179152 0.038916 -0.14781 -0.017857 -0.018183 -0.066375 -0.159065 0.188052 0.150061
11293 0 0.098801 0.064103 -0.006558 0.066797 0.085472 -0.014225 -0.002869 0
11701 -0.174717 0 -0.105361 -0.020409 -0.020834 0.010471 -0.053489 0.094311 -0.094311
11917 0.179693 0.013072 -0.102479 -0.082444 -0.677643 0.129678 -0.176931 0.190354 -0.127833
12063 -0.158057 -0.147325 -0.057158 0.028988 -0.264816 0.051825 -0.051825 -0.161268 0.012423
12068 -0.037272 0.033198 -0.00409 -0.012371 0 0.024591 0.031875 -0.015811 -0.003992
12189 0.133531 0.020618 0 0.185719 -0.107245 0.072759 -0.072759 0 0.055059
19546 -0.11441 -0.06252 0.279585 0.115069 -0.079137 0.13206 0.030459 0.04879 0.258695
23318 -0.106314 -0.0977 -0.165619 0.312223 -0.009132 0.04485 -0.146142 -0.015346 -0.020834

Due to the space limitation, the above table does not contain all the observations over the 10-year

period; it is a subset from the complete data set. Permno is a number identifying the issuing

company

Because there are an infinite number of ways to characterize fuzziness, there are an infinite

number of ways to graphically depict the membership and to generate the data. Normally, experts

should be able to offer decision makers or investors information regarding the measure of fuzziness.

In this context, fuzziness has been used under the following conditions, that it reflects the experts’
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judgments and that the returns should be around those values. For example, the company with

permn 10078 has a 0.211 return. After getting a subjective recommendation from experts, the

return that should be used is 0.211±0.000645. In a fuzzy setting with TR type fuzzy membership,

that means that the membership function equals 1 for a return 0.211, and it is linearly decreasing

on the right and left. Ross (1995) pointed out that there are more ways to assign membership

function values to fuzzy variables than for random variables. The literature on this topic is rich

with references, for example Dubois and Prade (1980). The assignment can be intuitive or based

on algorithms or logical operations. We established the table (2) based on a combination of the

intuition and inference methods presented by Ross (1995).

Following an inference approach, we use the bid-ask spread to get the width of the fuzzy returns.

the logic behind that technique is that a bid-ask spread creates vagueness and imprecision in the

investor’s choice. It is the irregularities, which may arise from the lack of imprecision in the data,

that are a concern here.

Moreover, market-created uncertainty results from the interaction (directly or indirectly) among

participants who form their expectations in an ill-defined market. Consequently, each participant

will form his/her expectations based on their subjective prediction of other participants’ expecta-

tions.

We use the bid-ask spread because it affects the stock returns (see, Koski (1998)). There are

considerable theoretical justifications to the use of a bid-ask spread and to its effects on returns.

Heinkel and Kraus (1988) pointed out that a component of the bid-ask spread, which is based on

information asymmetries, could be considered part of true returns. Hence, the effect of bid-ask

spread is that the observed returns differ from the true returns.

Moreover, as pointed out by Amihud and Mendelson (1989) rational investors select their assets
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to maximize their expected return net. These authors showed a strong effect of the spread on

returns.

Because the bid-ask spread is related to the availability of information about the asset, the

greater the amount of information about an asset, the narrower the spread, which means the closer

the true return is to the observable return (see, Demsetz (1968)). In contrast, the more information

about an asset is vague, the greater the distance between the true return and the observed return.

In this sense, the width between the observed return and the net return, taking into consideration

the bid-ask spread has been identified (see, Merton (1987)). Also, Merton (1987) pointed out that

incomplete information about a stock, which is a major factor, is reflected in its bid-ask spread.

This conclusion has been supported by the effect of Amihud and Mendelson’s spread (1986).

In a statement Merton (1987) says:

“I also believe that financial models based on frictionless markets and complete infor-

mation are often inadequate to capture the complexity of rationality in action.”

That lead to the development of the so-called width (tolerance level), which means that the

investor uses the net and observable returns to form his/her fundamental returns, assuming that

the fuzzy random return sways between them. We employ a method comparable to Amihud and

Mendelson (1986) in developing the net return, to allow the investors the ability to compress

information into fuzzy notions that they can analyse using fuzzy theory. Under these considerations,

the following formulas have been derived to generate the widths data in Table (2).

Pmt =
Ask pricet −Bid pricet

2
,

and

Rt = ln

µ
Pmt

Pmt−1

¶
, Rnet =

µ
1− Spreadt
1 + Spreadt−1

¶
Rt,
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such that

Spreadt =
Ask pricet −Bid pricet
Ask pricet +Bid pricet

,

then

width = lt = |Rnet −Rt|

Table 2: 15 widths of the 15 NASDAQ stocks 1990-2000
Permno M2 M3 M4 M5 M6 M7 M8 M9 M10
10025 6.38E-08 0.000771 0.001388 0.008332 0.002098 0.003002 0.000999 0.00392 0.002747
10078 0.000645 0.001587 0.000402 0.00016 0.000508 0.000132 2.15E-05 0.000588 0.000428
10200 0.000647 0.005252 0.016981 0.003711 0.001969 0.000365 0.006733 0 0.014312
10271 0.004359 0 0.001566 0.000241 0.000498 0.000517 0.001818 0.000832 0.000846
10290 0.001234 0.00305 0.00199 0.000211 0.000513 0.004135 0.001642 0.003502 0.003996
10588 0.016129 0.010004 0.004648 0.011011 0.019282 0.011222 0.00124 0.009616 0.003406
10772 0.004632 0.001458 0.004932 0.000641 0.000974 0.003143 0.009105 0.010504 0.00611
11293 0 0.005047 0.003068 0.000336 0.002629 0.002612 0.000521 0.000105 0
11701 0.007638 0 0.005277 0.000812 0.000434 0.000323 0.001711 0.002763 0.003
11917 0.005927 0.000335 0.003676 0.003125 0.057284 0.008544 0.011111 0.012208 0.009176
12063 0.005244 0.00462 0.001405 0.000585 0.00999 0.002554 0.002659 0.007898 0.00045
12068 0.00108 0.000803 8.28E-05 0.000255 0 0.00059 0.000741 0.000374 7.89E-05
12189 0.015748 0.002018 0 0.018062 0.011509 0.007281 0.007801 0 0.004692
19546 0.006743 0.00391 0.013475 0.004907 0.004586 0.005464 0.001495 0.003145 0.009637
23318 0.001278 0.001265 0.002054 0.002871 8.34E-05 0.000392 0.001481 0.000157 0.000218

Due to the space limitation, the above table does not contain all the observations over the 10 year

period; it is a subset from the complete data set.

The following graph (1), which has been plotted in two dimensions, shows the location of the

capital market line with fuzziness (blue line) and without accounting for fuzziness (red line); the

value of 0.031 has been used for the portfolio width lp = 0.031 and 0.07 as the risk-free rate

Rf = 0.07 to be able to show the graph in two dimensions3. The y axis represents σ and the x

axis represents µp. By increasing from lp = 0.031 (blue line) to 0.045 ( navy line) and 0.061(brown

3Although it appears very high, risk-free rate of 0.07 has been used only for illustration purpose. The average of

T-Bill rate over the period 1990-2000 could be more appropriate.
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line), the FCML is moving upward, which means that an increase of fuzziness manifested by the

portfolio width lp will cause the market line to be more dominated by the original market line.

On the contrary, a small degree of fuzziness in the model, measured by the portfolio width, shows

that fuzzy capital market lines are dominated by the standard linear capital market line. Also, as

presented in the previous section, it is obvious in the following figure that the FCML is nonlinear.

The introduction of fuzzy information, then, shifts the intercept of the line relating µp and the

slope from Rf to another positive value (value < Rf ).

0.40.30.20.10

0.4

0.3

0.2

0.1

0

x

y

x

y

Figure 1: Capital Market Line (CML) without accounting for fuzziness (red line) and fuzzy CML

(others)

The next graph (2) plots the capital market line (blue plane) with the risk free rate (Rf = 0.07)

and the efficient frontier without the risk free-rate (green plane) in three dimensions; the y-axis
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represents the portfolio width lp, x -axis represents the portfolio mean µp and z-axis represents the

σp.
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Figure 2: 3 D graphical representation of the fuzzy frontier with and without risk-free rate

4.2 The impact of fuzziness on the location of efficient frontier

Using another set of data we randomly selected 15, 30 and 50 stocks traded on the NASDAQ.

Following the same method discussed in the previous subsection, we generate the widths (spreads)

for all the complete data in the form of 15, 30 and 50 widths. Similarly to the case of 15 assets

presented previously, the efficient frontiers have been presented for 15, 30 and 50 assets.

The mathematical problem without short sales presented previously (6-10) has two new con-

straints (8) and (10), so it requires programming techniques to handle the problem. With computer
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capability (Visual Basic (VBA) program) we are able to achieve the efficient investment strategy

for each portfolio return level µp with width lp for all different groups of assets. (15, 30 and 50

assets).

One aim of the computer program is to not only do all the necessary computations from stock

prices and solve the optimization problem but also to generate a graph of the efficient frontier

without short sales. The following figures [(3), (4), (5)] show the efficient frontier without short

sales for all three sample sizes (15, 30 and 50 assets). One major element worth elaborating on is

that all efficient frontiers are concave arcs, which is consistent with the finding of Szegö. However,

the boundary of each sample size turns out not to be a parabola. It is also clearly observed

that the arc, which is between minimum and maximum points does not coincide with the original

boundary. The minimum (maximum) point represents, as discussed previously and supported by

Szegö’s finding (1986) can be achieved by investing the capital in the investment option with lowest

(highest) return.

For comparison, the following graphs represent the case when fuzziness is not included. In

accordance with Levy (1983), the figure (6) plots the efficient frontiers constructed with and without

short sales; the efficient frontier without short sales lies inside the efficient frontier with short sales.

An investor with short sales will attain a lower utility than an investor with both short and long

positions. Also, in all cases (15, 30 and 50 assets), it is clear that the frontier is not a parabola,

but an arc of a parabola as suggested by Szegö (1980), see figures [(7), (8)].
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Figure 3: Efficient frontier (EF) without short sales for 15 asset prices
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Figure 4: Efficient frontier (EF) without short sales for 30 asset prices
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Figure 5: Efficient frontier (EF) without short sales for 50 asset prices

Gathering the information together in one graph will generate the following figures [(6), (7)

and (8)]. We note here that the efficient frontier without short sales does not coincide with the

one with short sales. Yet we may have attached a part of the efficient boundary to the original, so

we need to identify the remaining parts of the new efficient frontier. Also, the next three figures

reveal that, for all sample sizes, the efficient frontier with short sales dominates the one without

short sales. This statement appeared in much of the literature. Because short sales restrictions

add a new constraint, it is obvious that the efficient frontier will be dominated. Moreover, various

sample sizes show that the efficient frontiers with short sales are parabolas.
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Figure 6: Efficient frontier with and without short sales for 15 asset prices
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Figure 7: Efficient frontier with and without short sales for 30 assets prices
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Figure 8: Efficient frontier with and without short sales for 50 assets prices

Taking into account various sample sizes, the data suggest a conclusion consistent with Levy’s

findings (1983) that as the sample increases, the efficient frontier with and without shift from the

left. It is clear that the distance between is proportional to the data. Levy (1983) used a small

sample size up to 15 assets; here we expand that finding with a larger sample size. He empirically

finds that without short sales, many securities do not enter the efficient portfolios, and the larger

N , the smaller the percentage of the securities that appear in the efficient portfolios out of the total

number of available securities, N . This finding is supported by the collected data.

42



0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6

Sigma

M
ea

n

EF for 50 Assets

EF for 30 Assets

EF for 15 Assets
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Taking into account fuzzy information, the fuzzy efficient frontiers are represented in XYZ plane

as follows for various sample sizes, see figures [(11), (12) and (13)]:

Figure 11: Efficient frontier with subjective

fuzzy information without short sales (15 assets)

Figure 12: Efficient frontier with subjective

fuzzy information without short sales (30 assets)

Figure 13: Efficient frontier with subjective fuzzy information without short sales (50 assets)

44



Under a fuzzy information environment, the efficient frontier without short sales has been derived

and plotted for various sample sizes. The portfolio width has been included as a third parameter,

and the frontier has been plotted in a three-dimensional graph. In this section, the relationship

between risk, return and width, which is used as proxy for the subjective comment of the experts,

has been represented by a surface. The efficient frontier portfolios are plotted on a graph with

the σp in the x-axis, width in the y-axis and the mean in the z-axis. Projecting the graphical

representation into a two standard deviation-mean plane figure (14) shows an arc, not a parabola,

which is consistent with the result reported earlier when the subjective fuzzy measure was discarded

from the model. Also, for 15, 30 and 50 asset sample sizes, similar to the case of short sales, we still

observe that in the larger sample size, the efficient frontier is shifted to the left; the dominance of

the large size sample still holds. In general, the efficient frontier is a combination of assets, if there

is no other combination with the same (higher) expected return with lower risk, and if there is no

other portfolio with the same (or lower) risk and with higher expected return. In this context, a

higher (lower) risk is associated with a higher (lower) return.
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Figure 14: Efficient frontiers in a mean-standard deviation plane with subjective fuzzy measure

Also, the following graph (15) shows that as the degree of fuzziness increases (flexibility with

respect to the portfolio mean improves) there is a slight decrease in the level of risk. Note here

that the graph does not suggest a strong negative relationship for various sample sizes4. Because

the widths in our samples are correlated with the returns, we could not see a strong visible (either

positive or negative) relationship. Thus, we suggest that as soon as the investor starts getting

new subjective information from experts, which is to some extent not primarily correlated with the

historical data, we will be able to spot a strong visible relationship between the width size and the

4Also, due to the limited plotted number of observations, we could not see a very strong relationship.
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risk level. Thus, an investor who is flexible and is acquiring additional subjective information to

support the historical data will be flexible to accept a higher risk. Thus, we anticipate a negative

relationship. The following graph (15) shows a slight negative trend, mainly for a larger size sample.

In contrast, an investor with small portfolio width (not flexible with respect to the portfolio mean)

tends to accept less risk. For instance, it has been shown in the figures that sometimes there is not

a conclusive relationship between portfolio width and risk.
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Figure 15: Relationship between the widths and sigma for different sample sizes
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5 Conclusion

This study addressed the implications of relaxing one of the fundamental assumptions associated

with mean-variance theory as set down in Markowitz (Markowitz (1952), Markowitz (2003)) and

Tobin Tobin (1985) that asset returns are sharply defined. Theoretical arguments in fuzzy mathe-

matics assume that there are cases in which random uncertainty alone may not serve the purpose

and indicate that fuzziness may impact the first two moments of asset return. This suggests that the

lack of information associated with market-traded securities challenges the usefulness of standard

mean-variance theory for other research and practical portfolio management.

To make the link between existing theory and the subjectivity measure of expert’s judgments,

we rederived the Markowitz efficient set and dealt with the implications of the rederivation on the

Capital Market Line (CML). The contribution of this paper is the presentation of a methodology

for the derivation of the attainable efficient frontier in the presence of fuzzy information in the

data or when the fuzzy information is imposed in the modeling environment to reflect a subjective

measure.
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