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Abstract 
 
The purpose of this study is to analyse the hedging capabilities of weather derivatives on the 
Italian energy sector. This is achieved through the investigation of the existence of a statistically 
significant relation between gas consumption and climate parameters. We investigate such a 
relation applying different models. The first is a simple regression where we estimate gas 
consumption, as the dependent variable, and temperature, rain, humidity and pressure as 
explicative variables. In the second model we introduce a derived temperature variable in order 
to better capture the non linearity behaviour of gas consumption. In the third model we 
implement lagged, other than present, weather variables. In the fourth we apply dummy variables 
to consider, daily, monthly and holiday patterns in gas consumption. In the fifth model, finally, we 
introduce an autoregressive structure in the error term. We then turn to estimate the cost of 
weather for a gas retailer operating in Milan and to design alternatives hedging strategies.  
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1. Introduction 
 
Weather derivatives allow to hedge weather risk that is the  financial gain or loss due to 
variability in climatic conditions. The market originated in 19982 when the US power community 
realised that the high volatility of revenues due to weather variability could be controlled and, 
since then, has grown rapidly both in terms of number of contracts concluded and notional value3 
and in terms of variety of industry applications. Economists believe that something like 70% of 
the economy is vulnerable to unpredictable weather patterns. Gas utility and gas distributor 
companies report severe drops in first quarter earnings when Winter months are milder than 
normal4. The quantity of energy required to heat or cool is strongly dependent on the weather: 
below normal temperatures in Winter create higher demand for heating; above normal 
temperatures in Summer create higher demand for energy to meet air conditioning needs. 
Energy companies are then strongly subject to weather variability. Agricultural companies may 
suffer serious loss due to below zero temperatures or other abnormal weather conditions. Ice 
cream and soft drinks sales revenues are seriously affected by cold or wet Summers. Extremely 
cold temperatures or lack of snow influences ski resorts. These are some of the many cases of 
companies whose performances are linked to climate. Weather derivatives can theoretically be 
designed for almost any weather variable (temperature, rain, snow, wind..) though most of the 
contracts have so far been constructed around temperature forecasts and temperature related 
underlying5. Weather derivatives contracts are in many aspects different from “standard” 
derivatives: the contract underlying (a weather variable) is not traded in a spot market, weather 
derivatives are useful to hedge volume risk, that is the changes in quantities supplied or 
demanded due to changes in climate, but not necessarily price risk6. Moreover, weather 
derivatives are very different from insurance contracts, since they do not require proof of 
damage and allow a bigger range of events to be hedged.  
 
Weather derivatives can be assimilated to catastrophe hedging contracts. There are three basic 
approaches: Exchange Traded Derivatives (CBOT Cat Insurance Futures and Options and 
Bermuda Commodities Exchange Cat Options); Contingent Capital (Line of Credit; Contingent 
Surplus Notes; Catastrophe Equity Puts); Risk Capital (Catastrophe Bonds). They were firstly 
proposed by Goshay and Sandor in 1973 
During last years, the volume of losses has increased (figure 1) but the opportunity to manage 
these kinds of risk with insurance contracts is usually evaluated in terms of moral hazard.  
 
Figure 1 -  Insurer Disaster Losses in USA (1949-1995) 
 

                                                                 
2 The reason why the market originated in the power industry in 1998 is related to long term weather 
forecasts calling for warmer than normal weather and, as a consequence, for a remarkable reduction in 
electricity demand and in power industry revenues.  
3 According to the 2003 Price Waterhouse e Coopers survey the total notional value of weather contracts 
concluded in 2002-2003 was equal to 4,188 millions of dollars. The weather risk management association 
estimates a weather industry future growth up to 10 billion dollars.  
4 See the official site of weather risk management association www.wrma.org 
5 Price Waterhouse survey estimates that 90% of the total number of contracts concluded in 2002-2003 
were temperature related ones.  
6 “Usual” financial derivatives hedge against price risk but not against volume risk although the two risks 
are obviously related. In this regard weather derivatives are complementary to traditional commodity and 
financial derivatives. 
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Moral hazard arises whenever an economic actor, by virtue of being insured, fails to take 
precautions to prevent the event being insured against. Reinsurance protection can relax the 
normal incentives for the primary insurer to underwrite carefully and settle claims efficiently.  
The primary may become lax in its underwriting procedures, pay inadequate attention to its own 
spread of risk, and fail to provide adequate risk audits for potential new policies. 
Moreover the primary may be able to avoid the abnormal transaction costs of settling claims, and 
even buy some goodwill with its policyholders by making generous settlements with policyholders 
and passing on the costs of excess settlements to its re-insurer. 
 
These considerations explain why the insurance premium has deeply increased during the last 
decades (figure 2) 
 
 
 
 
 
 
 
Figure 2 : Premium to Expected Loss, by Exceedence and Year (1980-1995) 
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Catastrophe options seek to control this moral hazard by using industry (or sub-industry) indices.  
The basic idea is to define the contract payoff in relation to some variable that is correlated with 
insurer losses but over which the insurer has little or no control.  
Then when using catastrophe options, a primary insurer that is able to practice cost mitigation 
will receive much of the benefit of that activity in the form of reduced claims.  
q Advantages  

q Low transaction costs 
q Reduction of adverse selection and moral hazard 
q Low default risk 
q Privacy 
q Flexibility 
q Standard contracts 
q No delay in payments 

q Disadvantages 
q Market liquidity 
q Hedging imperfection 

 
The same pros and cons can be considered for weather derivatives. In particular, the hedging 
imperfection is usually at the basis of market width. 
 
The purpose of this study is to analyse the real hedging capabilities of weather derivatives on the 
Italian gas sector. This is achieved through the investigation of the existence of a robust 
statistically significant relation between energy, more specifically, gas consumption, and climate 
parameters. The proof that such a relation exists is, in fact, the first step of a valuable hedging 
strategy. There are several reasons why we choose to concentrate our attention on the energy 
sector. Among the different sectors affected by weather risk, the gas sector is one of the most 
sensitive. This is due to two factors: price and volume. Gas supply costs usually increase with 
cold weather and decrease with warm weather (price factor). Furthermore, the gas usage 
typically varies with changes in heating season weather. The gas producer or distributor profits 
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strongly depend on volumes and the main driver of volume risk is weather. Most of the weather 
derivative contracts concluded up to now are related to the protection of utilities revenues 
against changes in temperature. In the United States the energy sector is the first for trading in 
weather derivatives. In order to access the possible development of such a market in Italy an 
analysis of the relationship between electricity consumption and weather variables must be 
undertaken. The second reason why we choose to concentrate our attention on the gas industry 
is that, although the impact of meteorological conditions on the energy and gas consumption has 
long been recognised, the sector deregulation process has given a growing importance to costs 
and revenues control. In fact, whereas in a regulated monopoly the rates, the customer base and 
the revenues are defined and controlled by the regulator, in a competitive market, rates and 
return are no longer set and certain but subject to competition. The high variability in the 
prediction of demand due to weather conditions could cause significant economic losses. 
Weather derivatives can compensate future possible losses and represent an instrument for 
ensuring revenues are attained even in a competitive and uncertain market. This topic is 
particularly important for Italy where the deregulation process is starting to be put in place. The 
third reason for focusing on the gas sector is connected to the relevant scientific interest in the 
relationship between gas and energy consumption and weather variables.  
 
We investigate such a relation for the Italian Market, applying different models. The first is a 
simple regression where we estimate gas consumption, as the dependent variable, and 
temperature, rain, humidity and pressure as explicative variables. In the second model we 
introduce a derived temperature variable, the heating degree-day function, in order to better 
capture the non linearity behaviour of gas consumption. In the third model we implement lagged, 
other than present, weather variables. In the fourth model we apply dummy variables in order to 
consider, daily, monthly and holiday patterns in gas consumption. In the fifth model, finally, we 
introduce an autoregressive structure in the error term.  
 
The paper is organised as follows. The next session will summarise me thodology and results of 
previous studies on this topic. Session three will describe data. Session four will present 
methodology and results. Session five shows how weather derivatives can be used to hedge 
volume risk by a gas company. Session six concludes.  
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2. LITERATURE REVIEW 
  
Bolzern, Fronza and Brusasca (1981) analyse the relationship between daily temperature and 
winter-daily electric load in Milan from Winter 1976 to Winter 1978. The study shows a 
significant relation between the two factors. The relation increases over time.  
Al-Zayer e Al-Ibrahim (1995) estimate an econometric model to forecast electricity consumption 
in Eastern Province of Saudi Arabia. The results obtained using different econometric models 
show that temperature plays an important role in explaining the demand for electricity. They use 
either primitive variable (temperature) or derived variables (heating and cooling degree-days). 
The model with the derived degree day function shows a higher predictive power than the one 
with primitive, air temperature, variables.  
Sailor and Munoz (1996) apply a methodology which involves the historical analysis of energy 
consumption (gas and electricity) and climate data to eight of the most energy-intensive states in 
the U.S.A. Using both a primitive (temperature) variable approach and a derived (degree day) 
one they prove the existence of a relationship between temperature and electricity consumption. 
More specifically they find that the primitive variable approach is as good as the degree-day 
models for natural gas whereas, for electricity, the derived variable approach is the best one. 
This is due to the fact that natural gas is used in space heating applications only and a single 
temperature parameter, either heating degree-days or the primitive variable of temperature is 
satisfactory. Electricity is used both for heating and cooling applications and only the introduction 
of two independent indicators (heating and cooling degree-days), can take the dependence of 
electricity consumption on temperature properly into consideration. They also find that 
temperature is the most significant weather factor explaining electricity and gas demand.  
Valor, Meneu and Caselles (2000) analyse the relationship between electricity load and daily air 
temperature in Spain. Using daily electricity load from 1983 through 1999, they find that 
electricity demand shows a significant trend related to socio-economic and demographic factors, 
to seasonal effects unrelated to weather conditions (weekly and holiday effects) and to other 
factors related to temperature (monthly effects). The observed relation between temperature 
and electricity demand is non-linear with regions of non-sensitivity (around 18 degree Celsius) 
and regions with high sensitivity. They found that the use of temperature derived variables, such 
as the heating degree and the cooling degree-day variables, allows a better characterisation and 
quantification of the electricity demand functions. Finally, the use of climate variables shows that 
the sensitivity of electricity load to daily air temperature has increased over time, to a higher 
degree in Summer than in Winter. 
 
Pardo, Meneu and Valor (2002) examine the relationship between the Spanish daily electricity 
demand and derived weather variables, such as heating and cooling degree-days. Using different 
statistical models they find clear evidence of the existence of a relation between climate and 
temperature. Such a relation shows an important daily and monthly seasonal structure. The 
authors focus on the  analysis of the consequences of serial correlation and of the autoregressive 
behaviour of the weather variables in the demand estimation. In this regard they find that 
Spanish electricity is affected by current as well as by previous temperatures and the model 
obtained using lagged temperatures variables, specially heating degree-days, has the higher 
predictive power.  
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3. Data Description  
 
The data used in this analysis related to gas consumption data and weather data in Milan and 
Palermo.  

 
We chose to investigate the relation between gas consumption in Milan and Palermo because 
they represent in a significant way the heterogeneous Italian climatic subregions. Milan is the 
most populated city in the North of Italy. Palermo is one of the most important cities in the 
south of Italy. They are both big cities with composite energy demand. We believe that, given 
the existence of very different climatic regions in Italy, such an approach is preferable to a 
national aggregated analysis in order to reveal the  true impact of different weather conditions 
on gas consumption.  
 
Gas Data 
 
The gas data are daily gas consumption, Gt, (given in m3) in Palermo and Milan. The Palermo 
data go from January 1994 to December 2000. The Milan time series goes from January 1997 
to December 2000. The data refer to all economics sectors (residential, commercial, and 
industrial). We apply the natural logarithm of all values (LGt) in order to avoid non-stationarity 
effects for the time series. Figure 3 and 4 show the gas load evolution in Palermo over the 
period of time considered.  
 
Figure 3 : Palermo Gas Load Evolution 

Palermo - Gas Load Evolution - All time series
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Figure 4 : Milano gas load evolution 

Milano - Gas Load Evolution - All time series
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Weather Data  
 
As in the case of gas consumption data, the weather data are represented by two different sets 
of data: the Palermo one and the Milan one. The Palermo weather database includes daily 
maximum and minimum temperatures (in degree Celsius), daily relative mean humidity (in 
percentage points), daily mean pressure (in mill bar at 00 C) and daily rain levels (in 
millimetres). The Milan database include daily maximum (Tmax ) and minimum temperature 
(Tmin). In both cases, the arithmetic mean daily temperature, Tavg = (Tmin + Tmax)/2, has been 
chosen as the main temperature variable, because it represents the temperature evolution 
within a day well.  
 
Figure 5 and tables 1 and 2 provide statistical information on the data used. According to the 
critical values of skewness and kurtosis (respectively 0 and 3), both the energy consumption 
and  the weather variables appear to be far from a Gaussian distribution.  
 
Covariance structure analysis is used for inference and for dimension reduction with multivariate 
data. When data are not normally distributed, the asymptotic distribution free (ADF) method is 
often used to fit a proposed model. The ADF test statistic is asymptotically distributed as a chi-
square variable. Experience with real data indicates that the ADF statistic tends to reject 
theoretically meaningful models. Empirical simulation shows that the ADF statistic rejects 
correct models too often for all but impracticably large sample sizes. By comparing mean and 
covariance structure analysis with its analogue in the multivariate linear model, we propose some 
modified ADF test statistics whose distributions are approximated by F distributions. Empirical 
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studies show that the distributions of the new statistics are more closely approximated by F 
distributions than are the original ADF statistics when referred to chi-square distributions. 
Detailed analysis indicates why the ADF statistic fails on large models and why F tests and 
corrections give better results. 
 
While it may appear that the test can be carried out by performing a t-test on the estimated, the 
t-statistic under the null hypothesis of a unit root does not have the conventional t-distribution. 
Dickey and Fuller (1979) showed that the distribution under the null hypothesis is non-standard, 
and simulated the critical values for selected sample sizes. MacKinnon (1991) has implemented 
a much larger set of simula tions than those tabulated by Dickey and Fuller. In addition, 
MacKinnon estimates the response surface using the simulation results, permitting the calculation 
of Dickey-Fuller critical values for any sample size and for any number of right-hand variables. 
In Table 2 we show the outcomes such as the Akaike information criterion and the usual 
variance tests estimated for an autoregressive equation at the fourth degree. 
 
 
 
Table 1 – Normality statistics of weather and energy consumption in Milan and 
Palermo 
 
 MILAN PALERMO 

 GAS TEMP PRES  GAS TEMP PRES  

Skewness 0.5703 -0.0908 0.6460 1.5768 0.1206 -0.5588 

Kurtosis  1.9604 1.7710 1.9998 5.0540 2.0685 4.4304 

Jarque-Bera7 181.2099 117.4296 203.1421 1508.765 98.6463 351.0634 

Probability 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 

 
 
 

                                                                 
7 The Jarque-Bera test depends directly upon skewness and kurtosis; it is useful for testing whether the 
series is normally distributed. The test statistic measures the difference of the skewness and kurtosis of 
the series with those from the normal distribution. The statistic is computed as: 
 

( ) ]3K
4
1

+S[•
6

N
=JB 22 -

k-
 

 
where S is the skewness, K is the kurtosis, and k represents the number of estimated coefficients used to 
create the series.  
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Table 2 – Fourth degree autoregressive tests of weather and energy consumption in 
Milan and Palermo  
  MILAN PALERMO 

  GAS TEMP PRES GAS TEMP PRES 

ADF Test Statistic -2.399 -3.518 -3.930 -14.860 -5.291 -14.860 

Akaike info criterion 28.218 4.002 3.622 7.486 4.073 7.486 

Adjusted R-squared 0.031 0.042 0.060 0.238 0.072 0.238 
Durbin-Watson stat 2.017 2.009 2.006 1.996 2.018 1.996 

 
 
 
 

Figure 5 – Data Distribution (Gas; Temperature; Pressure) 

MILAN. Data Distribution PALERMO. Data Distribution 

0

100

200

300

400

2500000 5000000 7500000  
0

200

400

600

800

0 100000 200000 300000 400000  

0

20

40

60

80

100

0 5 10 15 20 25 30  
0

50

100

150

200

5 10 15 20 25 30 35  



 12 

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16 18 20  
0

50

100

150

200

250

300

0.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0  
 
 
Since the critical values proposed by MacKinnon for the rejection of a hypothesis of a unit root 
generally depend on probability levels such as 1% (-3.4435), 5% (-2.8666) and 10% (-2.5695), 
the empirical values appear to be interesting, except for the case of gas time series in Milan. 
Very low appear to be the adjusted R-squared, whose higher value is 23.8 per cent in the case 
of gas in Palermo. Finally, the Durbin-Watson statistics are generally close to the critical value of 
2, representative of the absence of negative or positive autocorrelation. 
 
 
 
4. Methodology and Results  
 
The analysis has been structured following a stepwise scheme. We started with the simplest 
model and we progressively added new terms in order to assess separately the impact of 
different factors on daily gas consumption. We performed linear regressions using the least 
square method. This procedure is used in Engle (1992), Peirson and Henley (1994), Pardo-
Menue and Valor (2002). The analysis is first performed for the Palermo data and afterwards 
for the Milan one. In the Milan case we directly tested our last model.  
 
The first model investigates the relation between gas demand (LG) and a set of weather 
variables such as average temperature (Tavgt), humidity (Ht), pressure (P t) and rain (Rt). The 
model is given by the following expression 
 

tttttavg PRHTcLG εδγβα +++++=  [1] 

 
The results of equation [1] estimation are given in table 3. All the variables are statistically 
significant except for the rain variable (Rt). The relationship between gas consumption and mean 
temperature is negative as expected, and statistically significant. As temperature decreases gas 
consumption increases. The humidity variable has a statistically significant negative sign. The 
pressure variable has a positive significant sign. Other studies conducted for different countries 
suggest that temperature is the relevant weather variable in explaining gas consumption and that 
other variables are not statistically significant. In our model humidity and pressure seems to be 
important. The R2 is higher than 50% (ca 66%), which can be considered a good but not yet 
completely satisfactory level. 
 
Table 3 - Model one estimation results (Palermo) 
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Variable Coefficient t  Statistic Pr > t 
c 8.00405 5.14 <.0001 
Tavg t -0.1028 -59.44 <.0001 

Ht -0.00452 -6.00 <.0001 
Rt 0.00281 1.73 0.0832 
Pt 0.00727 3.56 0.0004 
          
R-squared 0.6671    
Adjusted R-squared 0.6666    
 
 
One of the reasons for a relative low R2, could be related to the existence of a non linear relation 
between gas consumption and temperature. Figure 6 shows the scatter plot of gas consumption 
and mean temperature. As expected gas demand sharply increases when temperature falls 
below eighteen degrees. There is a “neutral zone” around 180 C, where the gas demand is 
inelastic to weather conditions. Even on the hottest days, there is always some demand for gas. 
This is a “base level” due to the demand for activities such as cooking. In general, gas demand 
has a maximum in Winter time and a minimum in Summer time. In order to better capture this 
non linear and inelastic behaviour of gas demand, we defined a derived temperature variable, the 
Heating Degree Days function. The Heating Degree Days is calculated as follows: 
 
HDD = max (180 C – Tavgt; 0) [2] 

 
For the Summer season, cooling degree days function is defined as the equation [3] shows. 
 
CDD = max (Tavgt - 180 C; 0) [3] 

 
The Heating Degree Day function has a positive value if temperature falls below eighteen 
degrees and zero otherwise. Appendix gives provides descriptive values of HDD and CDD for 
both Milan and Palermo.  
 
Based on these considerations, model two regresses the gas demand over the same set of 
weather variable like model one except for the temperature where we used the HDD derived 
temperature variable. 
 

ttttt PRHHDDcLG εδγβα +++++=  [4] 

 
Table 4 shows equation [4] estimation results. The HDDt variable has a positive and significant 
value. As expected, as temperature decreases the HDDt variable increases and gas 
consumption increases as well. The estimated coefficient shows a higher absolute value in 
comparison with the value of mean temperature from model one and it might suggest that the 
use of a derived variable for temperature is useful in order to achieve better statistical results. 
Among the other variables, only the pressure variable is now significant. However the R2 is 
lower than in the previous model.  
 
Table 4 - Model two estimation results (Palermo) 
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Variable Coefficient T  Statistic Pr > t 

    
c 1.57758 -0.98 0.3283 
HDDt 0.192 52.45 <.0001 
Ht 0.00078522 0.99 0.3207 
R t 0.00337 1.93 0.0532 
Pt 0.01638 7.65 <.0001 

    
R-Square 0.6166     
Adj R-Square  0.6160   
Durbin-Watson stat 0.22723    

 
 

The low R2 could be related to the presence of lagged effect of the weather variables on the gas 
demand. There are several reasons that suggest an influence of past weather variables on the 
present gas demand. First of all the thermal insulation of buildings could operate as a barrier 
between indoor and outdoor temperature. If so we could notice a lagged adjustment of gas 
consumption to temperature. Second, residential consumption could be adjusted with lags to 
temperature changes. In order to take these observations into consideration we expanded model 
two by adding lagged weather variables. 
 
 
 
 
 
 
Figure 6 - Total daily gas consumption and mean temperature 
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Taking into consideration the fact that lagged effects are relevant only on short term periods we 
added delayed variables up to two days. Model three is so given by the equation [5] 
 

tttttttt

ttttt

PPPRRRH

HHHDDHDDHDDcLG

ε+δ+δ+δ+γ+γ+γ+β

+β+β+α+α+α+=

−−−−−

−−−

221102211022

11022110
 [5] 

 
The estimation outcomes are reported in table 5. Given these results it is possible to reach some 
interesting conclusions: 

• The HDDt variable is significant up to a delay of two days; 
• The other climatic variables are not statistically significant ; 
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 Table 5 - Model three estimation outcomes (Palermo) 

Variable  Coefficient  t-Statistic Pr > t   
c -9.583414 -5.551060 0.0000 

HDD t 0.106124 12.74788 0.0000 

HDD t-1 0.029819 2.702715 0.0069 

HDD t-2 0.057121 6.828582 0.0000 

Ht 0.000916 0.969963 0.3322 

Ht-1 0.001030 0.961191 0.3366 

Ht-2 0.001756 1.881945 0.0600 

Rt 0.001173 0.776472 0.4376 

Rt-1 -0.000158 -0.104242 0.9170 

Rt-2 -0.001225 -0.817465 0.4138 

Pt 0.007407 2.198998 0.0280 

Pt-1 -0.005463 -1.166371 0.2436 

Pt-2 0.024892 7.341890 0.0000 

   

R-squared 0.721009  
Adjusted R-squared 0.719212  

Durbin -Watson stat 0.297962  

 
 
The R2 value slightly increases if compared with the previous model but is still not satisfactory. 
One possible reason could be the presence of seasonal pattern on the demand. The existence of 
monthly seasonal patterns on gas demand has been proved by many previous studies. Figures 
three and four suggest that this conclusion is true both in Palermo (figure 5) and Milan (figure 6) 
cases. The figures show the Monthly seasonal variation index ove r the whole period defined as 
follows: 
 

j

ij
ij

M

M
MSVI =  [6] 

 
where MSVIij is the index value for month i in year j , Mij is the monthly gas consumption for 
month i in year j  and Mj is the monthly average gas consumption for year j . For the Palermo 
data it is possible to notice that the maximum consumption is in December with a reduction in 
Spring and Autumn months and a minimum in August. The Milan dataset shows a similar pattern 
with a maximum in December and January, a reduction in the Spring months up to the minimum 
of August and a new increase in Autumn. The MSVI in Milan is higher than in Palermo. In 
order to consider an eventual monthly seasonality not related to temperature we introduced to 
our model a set of eleven dummy variables, Mjt, each one representing a month in a year. Mjt is 
equal to 1 if the t observation belong to month j and 0 otherwise. The base month is January.  
Other than a monthly pattern, gas consumption usually exhibits a daily pattern as well. Figures 7 
and 8 show the daily seasonal variation index for Palermo and Milan. This index is defined as:  
 

jk

ijk
ijk

D

D
DSVI =  [7] 
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where DSVI ikj  is the index value for day i in week j of year k, Dijk is the daily gas consumption 
for day i in week j of year k  and Djk is the daily average gas consumption in week j  of year k. 
In both cases it is possible to recognise a weekend effect. The average daily seasonal variation 
index, in fact, decreases on Saturday and Sunday. The effect is stronger in Palermo than in 
Milan. In order to consider this effect we add to our model a set of 6 dummy variables (Wit) 
representing the day of the week. Wit is equal to 1 if observation t belongs to day i and 0 
otherwise. 
 
Figure 7 -  Monthly seasonal variation index in Palermo  
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Figure 8 - Monthly seasonal variation index in Milano  
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Figure 9 - Daily seasonal variation index (Palermo) 
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Figure 10 - Daily seasonal variation index (Milan) 
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Finally, in order to consider the eventual presence of a holiday effect, that is a reduction in gas 
consumption during vacations and public holidays, we introduce in model four a holiday dummy 
variable (Ft).This dummy variable is equal to one if observation t is in a holiday day and 0 if not.  
Model four is then given by:  
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[8] 

 
 
This means that, for example, the gas demand on a non-holiday Tuesday in January would be 
equal to: 
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The gas demand on a non holiday Tuesday in February would be: 
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The results of the model estimation are given on table 6. The relevance of the seasonality effects 
on gas consumption is revealed by the extraordinary improvement of R2 now equal to more than 
80%. The heating degree days variable, either present or lagged, improves their significance. 
The humidity and pressure variable are not significant. The rain variable has a positive significant 
coefficient. The dummies representing the days of the week are positiv e and not significant, 
except for the Saturday and Sunday dummies that have a negative significant sign. This goes 
along with our expectation of a reduction in gas consumption during weekends. The dummies 
related to the monthly seasonality are all negative, except for December. As expected it is 
possible to observe a decrease of value from February to July, an increase from September to 
December, and a minimum value in August. This means that usually the gas consumption grows 
during Autumn and decreases in Spring. The holiday dummy is negative and significant, as 
expected.  
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Table 6 - Model four estimation results (Palermo) 
Variable Coefficient t-Statistic Prob. 

c -2.421094 -1.921691 0.0548 
HDDt 0.051837 8.412310 0.0000 
HDDt-1 0.015785 2.023789 0.0431 
HDDt-2 0.022865 3.743984 0.0002 
Hat -0.000316 -0.473111 0.6362 
Ht-1 2.36E-05 0.031178 0.9751 
Ht-2 -0.000758 -1.143119 0.2531 
Rt 0.001847 1.723180 0.0850 
Rt-1 0.001453 1.354419 0.1758 
Rt-2 0.001339 1.255383 0.2095 
Pt 0.008166 3.424625 0.0006 
Pt-1 -0.002641 -0.800144 0.4237 
Pt-2 0.013263 5.499181 0.0000 
Ft (Holiday) -0.255518 -6.015470 0.0000 
W2 (Tuesday) 0.041395 1.804318 0.0713 
W3 (Wednesday) 0.043031 1.878929 0.0604 
W4 (Thursday) 0.045064 1.961594 0.0500 
W5(Friday) 0.037602 1.639175 0.1013 
W6 (Saturday) -0.065076 -2.837296 0.0046 
W7 (Sunday) -0.244954 -10.68961 0.0000 
M2 (February) -0.020780 -0.665174 0.5060 
M3 (March) -0.144402 -4.713580 0.0000 
M4 (April) -0.491978 -14.47592 0.0000 
M5 (May) -0.557639 -14.28469 0.0000 
M6 (June) -0.731912 -18.17022 0.0000 
M7 (July) -0.951817 -23.66037 0.0000 
M8 (August) -1.252293 -30.77019 0.0000 
M9 (September) -0.871553 -21.98485 0.0000 
M10 (October) -0.686485 -17.59485 0.0000 
M11 (November) -0.491560 -14.03672 0.0000 
M12 (December) 0.162009 4.914343 0.0000 
   
R-squared 0.863291  
Adjusted R-squared 0.861068  
Durbin-Watson stat 0.221661  

 
 
In order to further improve the significance of our model we finally took into consideration serial 
correlation. In previous models, in fact, the Durbin Watson test was quite low suggesting the 
existence of autocorrelation in the error term. To reduce such a correlation we introduced in our 
model a second order autoregressive structure in the error term: 
 

tt)LL( ς=εϕ−ϕ− 2
211  

[11] 
 
We removed all the weather variables other than temperature because they were not statistically 
significant. Furthermore, since all the day dummies variables in the previous model were not 
significant except for the weekend ones, we eliminated the 6-day dummies variables and we 
introduced a weekend dummy (Wt). Wt is equal to 1 if observation t belongs to a weekend day 
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and 0 otherwise. Finally we did not consider the monthly dummies variables because in the new 
model with autoregressive structure in the error term they are no longer significant.  
The final model is: 
 

tttttt WFHDDHDDHDDcLG ε+++α+α+α+= −− 22110  [12] 

 
 
Table 7 gives the coefficient estimation for the final model. The R2  is now equal to 96,77% a 
very satisfactory level. All the variables are significant. The HDD variable has the positive 
expected sign. The estimated coefficient decreases over time. This could indicate a more 
relevant importance of present effects rather than lagged effects. The holiday as well as the 
weekend dummies have a negative sign that is, as expected, gas demand decrease during holiday 
and weekend days.  
 

Table 7 -  Model five estimation results (Palermo) 
 

Variable Coefficient t-Statistic Prob. 
C 11.21998 64.90907 0.0000 
HDDt 0.034343 16.00746 0.0000 
HDDt (lag 1) 0.007003 3.196813 0.0014 
HDDt (lag 2) 0.008608 4.014989 0.0001 
Dummy “Holiday” -0.181998 -37.36436 0.0000 
Dummy "Weekend" -0.183413 -13.59184 0.0000 
AR(1) 0.639377 32.17243 0.0000 
AR(2) 0.345698 17.41721 0.0000 
   
R-squared 0.967735  
Adjusted R-squared 0.967646  
Durbin-Watson stat 2.138747  
   

 
 
We repeated the same regression for the Milan data. The results of the various models are 
approximately the same. We report here just the final model coefficient estimation. The model 
has a very good explicative capability (R2 more than 99%). All the estimated coefficients are 
statistically significant and with the expected sign.  
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Table 8 - Model five estimation results (Milan) 
 

Variable Coefficient t-Statistic Prob. 
C 13.73095 10.96920 0.0000 
HDD t 0.025500 17.00303 0.0000 
HDD t (lag 1) 0.007164 4.856694 0.0000 
HDD t (lag 2) 0.005769 3.852987 0.0001 
Dummy 
“Holiday” 

-0.078751 -6.917407 0.0000 

Dummy 
"Weekend" 

-0.123602 -31.42912 0.0000 

AR(1) 0.838467 35.19806 0.0000 
AR(2) 0.159852 6.712210 0.0000 
   
R-squared 0.997162 
Adjusted R -squared 0.997151 
Durbin-Watson stat 2.021638 
  
 
 
5. Weather risk and hedging strategy 
 
The econometric analysis and the investigation of the existence of a relation between weather 
events and gas consumption are the first step to access a valuable hedging strategy. The hedging 
policy should in fact be based on the valuation of hedging costs compared to financial discomfort 
caused by weather events. This turns on estimating which weather conditions may seriously 
affect the business and measuring the costs of past adverse weather events into present 
financial terms. In this section we show how temperature risk may affect the revenues of a 
hypothetical gas company (MILGAS) based in Milan. Then we describe how weather 
derivatives contract ma y be used in order to allow our company to prevent unnecessary losses 
during adverse weather events.  
 
Milgas is a gas distributor company operating in Milan. The average quantity of natural gas sold 
during the 1997-2001 period by the firm has been equal to 917,128,430.27 m3 leading to an 
average annual revenue of 229,282,107.57 €. Average annual standard deviation of consumption, 
equal to 4% in 1997 –2001 period, has increased up to a maximum of 10% during the last years.  
 
In the previous section we have proved the existence of a relation between temperature and gas 
consumption both in Palermo and in Milan. In this section we want to investigate the relation 
between Milan temperature and Milgas demand in order to quantify the impact of a weather 
change into its revenues. 
 
Figure 11 shows the relation between average daily temperature and daily company demand. 
The figure shows that, as proved in previous section, gas demand and temperature are strongly 
negative correlated (-0.88). During the whole year, the average temperature in Milan is around 
15 °C with a standard deviation of 7.998. As far as the demand is concerned, the yearly average 
of gas sold is equal to 917,128,430 m3, as already stated, whereas the yearly average demand 
based only on colder days is  803,098,143.28 m3 with a standard deviation of 41%. In this 
analysis we consider as colder period the days between 1 of January and 30 of April and 

                                                                 
8 See Appendix for further details. 
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between the 1 of October and the 31 of December each year. In this period the average 
temperature in Milan is around 9°C and the standard deviation is equal to 4.35°C. This is 
approximately the year time when gas is used for residential heating. Demand appears to be 
strongly concentrated during the cold period (88% of the yearly total demand). The amount of 
gas that Milgas sells during winter months is very dependent on temperature and, as a 
consequence, revenues are very volatile. Figure 9 shows that the company has also a base level 
of gas demand (12% of yearly total demand). This base level is related to activities such as 
domestic cooking, fuelling hot water heaters and industrial consumption of natural gas as row 
material. This component is pretty stable during the different years.  Winter is therefore the 
period of the year where the company has its greatest exposure to reduced deliveries due to 
actual temperature different from the expected one. 
 
 
Figure 11: Relation between temperature and Milgas demand 
 

 
The price that Milgas charges to its customers is the sum of a fix component and a variable one. 
The fixed component is determined and under the control of the local authority. The variable 
component is settled by the company  and, considered the lack of real competition in the local 
gas market, it is changed in order to allow the company to reach the targeted profits. The 
company hedges the price risk, strictly related to the fixed component of the price, through 
forward contracts settled at the beginning of each year. This doesn’t hedge weather risk. In fact, 
if the number of HDDS forecasted is not achieved, the company will not realise the target profits 
due to actual gas consumption different from the predicted one. If the number of HDDs is higher 
then forecasted (this happen in a colder than usual winter) the gas demand could exceed the 
planned one and additional amounts of gas must be bought on the spot market in order to satisfy 
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clients needs. This is a risk because the gas price on the spot market during high demand period 
will probably be higher than the contractual selling price. On the other side, if the amount of 
HDDs is lower then forecasted, a lower quantity of gas will be delivered and this will turn in 
reduced revenues. The temperature risk may be therefore linked both to warmer and colder than 
normal winter. Figure 12 shows the relation between daily temperature and revenues, which 
increase as long as temperature decreases and the company seems to be negatively affected 
only by warmer than normal winters. A possible explanation to this could be related to the under 
examination period of temperature distribution in Milan where, in fact, warmer winters have a 
high likelihood than colder winters.  
 
 
 
Figure 12: Relation between temperature and Milgas net revenues 

 
 
 
 
Looking again to Figure 11, it’s possible to measure Milgas financial exposure to weather risk. 
Given the estimated relation between temperature and gas that is: 
 
Gas (m3) = 303,226 temperature (°C) + 7* 106 
 
and the net price of gas that is 0,25€/m3, Milgas financial exposure is approximately equal to 
75.000 €/°C. We then turn to consider the temperature distribution in Milan during colder months 
and measured the probability of different temperature. This lead us to conclude  that the 
company maximum exposition to weather risk is around 10,000,000 euros..  
 
Once measured financial exposure, the last step of a hedging strategy is to consider costs and 
benefits of different hedging instruments.  In section four we explained why HDDs more than 
temperature is the underlying of weather contracts. Since the hedging final objective is to 
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stabilise seasonal more than daily revenues, cumulative heating degree days (CHDDs) are a 
suitable variable than heating degree days.  
 
There is at least three hedging alternatives available to cover Milgas risk. The first one is an 
HDD swap with a tick size equal to the company financial exposure, that is €.75.000, and a 
strike level equal to 2196 CHDDs, that is the annual average CHDDs in Milan. In case of a 
winter temperature on average with the historical mean, the swap cash flows will be zero. In 
case of a milder winter, the company will receive positive cash flows equal to the difference 
between the actual CDDs and the swap rate (2196) multiplied by  the tick size. Vice versa, in 
case of a colder winter Milgas will have to pay the counterpart the difference between the swap 
rate and the actual CHDDS multiplied by 75.081 €.  This contract allows profit stabilisation but 
enables to have benefits from colder than average winter. 
 
As an alternative, the company could consider a CHDD put option. In this case it receives a 
positive cash flows in case of a warmer winter but could benefits of cold winter. One of the 
main problem on using option to hedge risk is their cost that is inversely related to the strike level. 
There is a trade off between option premium and option payoff. The strike of the option could be 
chosen based on winter forecast at the beginning of the season. That is, if the seasonal forecast 
are for a cold winter the strike of the option could be fixed to a level equal to the mean CHDDS 
plus the CHDDs standard deviation so to minimise the hedging costs. Vice-versa if forecasts are 
for a warmer than normal winter the strike could be fixed at a level equal to the historical 
CHDDs mean less their standard deviation. In this case the higher premium of the  
option should be compensated, if forecasts are correct, by higher payoff.  
 
The last alternative could be a CHDDs collar that is the combination of a low strike put bought 
and a higher strike put sold.  In this case Milgas will receive a positive payment if the actual 
CHDDs will be lower than the bought put strike and will have to make a payment if the actual 
CHDDS will be higher than the sold put option strike. This would allow the company to benefits 
of colder than normal winter up to the higher strike and to receive positive cashflows in case of 
warmer than lower strike winters. A maximum revenue is fixed as long as a minimum revenue,   
leaving an area of profits variability only in behind the two strike.  
 
 
 
Conclusions 
 In this paper an attempt was made to determine whether statistical models may be appropriate 
to estimate a relation between weather variables and energy consumption, in order to evaluate 
the potential demand for hedging contracts. 
The results seem to indicate that, in the 1994-2000 period for Palermo and 1997-2000 for Milan, 
among the explicative variables, the most significant is the temperature, both coincident and 
lagged. As expected, the seasonality component is particularly high: once implemented into the 
regression, the R2 improves from 70 per cent to roughly 80 per cent. The monthly and daily 
patterns detected for the two datasets show parabolic and negative slope, respectively. On 
balance, humidity and pressure do not seem to be statistically significant. 
These findings may be useful to assess the relation between weather derivatives and underlying, 
so to point up the interest for these financial instruments from the market. We proved that 
weather risk might be very important to a gas distributor company whose revenues are really 
dependent on weather. We believe that many other sectors have a relevant exposure to weather 
risk. However most of the time companies do not hedge weather risk for tw o main reason. 
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Some time they underestimate the impact of weather on their business. Some other time they 
know the relevance of weather risk but traditional insurance contract are too expensive and 
weather derivatives, in the European market, are a new still not well know instruments. Our 
analysis shows that a development of weather derivatives market in Europe could help 
corporations to stabilise their profits.  
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Appendix 
 
Figure: Average Temperature – Palermo  

Average Temperature - Palermo - All time series
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Figure 

Average Temperature -Milano - All time series
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Year MeanTavg TmedSTDEV Gas total load Gas mean load
1994 19,523 5,834 20328775 55695
1995 18,529 5,532 23631637 64744
1996 18,163 5,390 28782524 78641
1997 18,509 5,487 35079485 96108
1998 18,333 5,899 44789690 122711
1999 19,088 6,467 51067841 140296
2000 19,016 5,709 53601146 146451
2001 19,350 5,522 56357210 154403

All Time series 18,814 5,761 313876273 107418

PALERMO

 
 

Year Hdd Avg HddS Hdd STDEV Cdd Avg CddS Cdd STDEV
1994 1,776 648,400 2,362 3,300 1204,400
1995 2,112 771,000 2,803 2,641 964,050
1996 2,170 794,050 2,902 2,333 853,750
1997 2,190 799,180 2,643 2,698 984,900
1998 2,446 892,900 3,016 2,779 1014,450
1999 2,302 840,305 3,322 3,391 1237,550
2000 1,970 720,900 2,745 2,986 1092,700
2001 1,793 654,455 2,597 3,143 1147,165

All Time series 2,095 6121,190 2,817 2,909 8498,965

PALERMO

 
 
 

Year MeanTavg TmedSTDEV Gas total load Gas mean load
1997 15,054 7,567 802263828 2204022
1998 14,888 8,134 879553615 2409736
1999 14,415 8,172 926623119 2538693
2000 15,029 7,849 942780269 2575902
2001 14,540 8,232 1031165641 2825111

All Time series 15,074 7,990 4582386472 2510897

MILANO

 
 

Year Hdd Avg HddS Hdd STDEV Cdd Avg CddS Cdd STDEV
1997 4,954 1808,360 5,425 2,008 733,000
1998 5,238 1911,900 5,724 2,126 776,150
1999 5,562 2029,950 6,047 1,977 721,435
2000 5,050 1848,250 5,645 2,087 764,000
2001 5,426 1980,600 6,015 1,966 717,750

All Time series 5,246 9579,060 5,774 2,033 3712,335

MILANO

 


