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Modeling the revenue function of a new innovation has been addressed by a
number of researchers. The marketing literature focuses on the introduction
and acceptance of new products. Likewise, the adoption pattern and eventual
economic success of a newly released movie can be viewed as an innovation
subject to many of the same forces. And recently, there have been references
in the popular literature to option writing on the revenue of newly released
films. Unique technical problems to be addressed include 1) the requirement
that the total revenue function be non-decreasing over time and 2) the lack of
observations on the innovation at the time of release. In addition, the great
majority of extant innovation models are deterministic in nature, quantifying
only the expected number of adopters or expected revenue function. Option
pricing, on the other hand, is driven in large part by the volatility of the un-
derlying process. In this paper we develop general properties of the revenue
function, posit a specific jump revenue process and derive option pricing for-
mulas. Parameter estimates and simulations are also provided.
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PRICING AN OPTION ON A NON-DECREASING ASSET

VALUE: AN APPLICATION TO MOVIE REVENUE

Over the last twenty years, financial engineers have created an impres-

sive array of instruments designed to manage the risk of uncertain market

values and cash flows. In recent years, financial engineering has headed to

Hollywood — so to speak — by creating instruments designed to manage the

financial risk associated with motion pictures. These instruments take the

form of securitized, equity-like claims on motion picture revenues as well as

options on those revenues. Options on movie revenues are unique in sev-

eral ways and pose many interesting and challenging problems in volatility

modeling and pricing.

For example, these claims are typically sold before any revenue is gen-

erated. Thus, the value of the underlying asset is technically unknown.

Typically, option pricing models require a current value for the underlying.

Here the underlying has not been publicly traded, rendering the underlying

much like that of an initial public offering. In many cases, however, the

underlying asset will never be traded, although the claimant on the under-

lying asset will receive cash flows. In some cases, however, the instrument is

securitized, so there would presumably be a market price at which it would

sell, though it is quite possible that the market would be fairly illiquid.

A second complication is that the underlying is non-decreasing. Although

revenue can theoretically remain constant over a time period, it would

typically increase. These characteristics are most unusual compared to the

underlyings of options typically observed in financial markets. Diffusion

D R A F T December 27, 2004, 3:04pm D R A F T



PRICING AN OPTION ON A NON-DECREASING ASSET VALUE 3

models would not meet the necessary requirements. Moreover, not only

does revenue only increase but it does so in finite amounts. Hence, even if

smooth diffusion models could be used, they would be unlikely to exhibit

the appropriate properties.

Another interesting problem is that movies normally exhibit an extremely

high degree of uncertainty at the start. After the first few weeks have

passed and the critic reviews have been published, most of the uncertainty

has been resolved. Of course, the options can be designed to expire either

quickly or much later.

Although standard European options are usually the first instruments

offered for new financially engineered solutions, American options could be

of interest to some investors. As is well known, American calls on most

assets are exercisable early only if the asset has a cash flow. We will show

that this type of call option, with no specific cash flow, is optimally ex-

ercised early under some conditions. For general options, American puts

are nearly always optimally exercised early under the condition of a suffi-

ciently low value of the underlying. In this paper, we will show, however,

that American puts will either be exercised the instant they are eligible

for exercise or they will effectively terminate.1 This means that American

puts that are exercisable immediately will either have zero value or will

be exercised at once. For that reason, such options would be uninterest-

ing. Alternatively, Bermuda-style American options, not exercisable until

1By “effectively terminate”, we mean that they will remain alive but have zero value
because of no possibility of expiring in-the-money.

D R A F T December 27, 2004, 3:04pm D R A F T



4

a later date, will be considered. We will show that these options are simple

to price: they will either have zero value at the first exercise date or will

be exercised at that time. Hence, their actual expirations are irrelevant.

The paper is organized as follows. Section 1 provides background in-

formation on options on movie revenues. Section 2 examines boundary

conditions for options on movie revenues. Section 3 introduces a deter-

ministic model of adoption that forms the basis for the stochastic model

developed in Section 4. Section 5 develops pricing formulae for the valu-

ation of options and Section 6 is a simulation of option prices. Section 7

presents the empirical estimates of model parameters and Section 8 pro-

vides conclusions.

1. SOME BACKGROUND INFORMATION ON OPTIONS

ON MOVIE REVENUE

A movie is an excellent textbook example of a capital investment deci-

sion. A studio commits a significant amount of initial funding, acquires

the resources (including contracts with the actors, director, and other per-

sonnel), produces the movie, and then expends additional resources in pro-

motion and distribution while the movie generates cash flows. The cash

flows from box office receipts have an exceptionally short life. For example,

one of the most successful movies of all time, Titanic, lasted in theaters

only nine months. In contrast one of the least successful, Gigli, lasted only

about two weeks. Of course, most movies also have a second life, gener-

ating cash flows through video rentals, video sales, and television rights.

These amounts can be substantial. For example, Titanic was released on
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video in 1999 and has since generated another $300 million from rentals2 .

A third major source of revenue from a movie is box office receipts, video

sales, and rentals in non U. S. countries. Titanic, for example, has gener-

ated about twice as much in box office revenue and almost three times as

much in video rentals outside the U. S. as inside the U. S. Foreign cash

flows can occur almost simultaneously with U. S. cash flows, but we do not

consider these revenues in our analysis nor do we consider within country

re-released movie income.3

As a risky investment, a movie is characterized by a tremendous con-

centration of uncertainty during first few weeks after release. A number of

factors determine success or failure of a movie but the process is extremely

complex. Expensive movies with well-known stars are sometimes dismal

failures, while low-budget movies are sometimes highly successful.4 Some

movies receive excellent critical reviews and awards but are commercially

disappointing.5 It is extremely common to observe movies that do well in

spite of poor critic reviews. Movies that are commercial failures in the U.

S. are oftentimes highly successful in foreign markets.6 Because of the high

2We ignore video and television revenues in our model.
3For example, Close Encounters of the Third Kind was released in 1977 and again

in 1980 with additional footage. Star Wars was first released in 1977 and has been
re-leased five times in the U.S.
4For example, The Alamo released in 2004 starring Billy Bob Thornton and Dennis

Quaid cost $95 million and earned about $22 million in box office revenues. At the other
extreme, The Blair Witch Project released in 1999 cost about $35,000 and generated
box office receipts of over $140 million.
5For example, Bravehart generated only abouyt $76 million in revenue in the U.S.,

just slightly above its cost of $72 million. The movie received 10 Oscar nominationsand
won five, including Best Picture.
6For example, in 2004 the movie Troy, costing $185 million, earned only $133 million
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degree of uncertainty and the large financial investment, movies are prime

candidates for the financial engineering of risk transfer instruments.

One of the first such instruments was a $400 million seven-year Eurobond

released in 1992 by The Walt Disney Company. The interest rate was tied

to the revenues from a combination of 13 Disney movies released in Europe.

The rate was set at 7 1
2% for 18 months. Beyond that point, the coupon was

set at a formula directly related to revenues from these movies. The total

rate would end up being between 3% and 13.5%. Obviously the return on

this bond takes on the characteristic of a call option, exercising and paying

additional money if target revenue levels are met.

In 1997, Risk magazine (Conway, 1997) reported on the creation of an

Entertainment Industry Options Exchange in London. This exchange was

conceived as an organized marketplace for trading derivatives based on

movies and other entertainment-based revenues. One of the first instru-

ments planned was options based on the album Perfect World by pop

singer Debbie Bonham, sister of the late Led Zeppelin drummer John Bon-

ham. There is no subsequent evidence that this exchange was ever formally

operational.

Also in 1997 pop singer David Bowie released $55 million of bonds with

coupons tied to the revenue from some of his albums. These instruments

became known as Bowie Bonds, but they were not successful for investors,

however, and were downgraded to near junk status in 2004.

in U.S. box office receipts but has grossed about $350 million outside the U.S., placing
it in the top 50 movies of all time.
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In 2004 Risk (Patel, 2004) describes the efforts of an American com-

pany called Center-Group to create an electronic market for new derivative

instruments based on box office receipts. No further evidence exists of

whether this market has been formally created. The article also references

the securitization of revenues of such movie studios such as Vivendi and

Dreamworks SKG. It also notes, however, that some defaults have occurred

in previous securitizations.

Virtual derivatives on movies can be traded on the Hollywood Stock Ex-

change (www.hsx.com), a subsidiary of the American bond trading firm

Cantor Fitzgerald. This exchange was created in 1996, and all trading

is based on fictional (virtual) money. Stocks and options on movies can

be purchased and sold. The exchange also offers “bonds” on actors and

actresses in which value is accrued based on revenues generated by their

movies. The exchange creates value by selling the data to the movie in-

dustry, where it could presumably be used to assess the public’s interest in

movies and performers.

While it is not clear that derivatives on revenues from movies, music

recordings, and tours have been widespread, there would appear to be

great potential for such instruments. Americans spend more than $13 bil-

lion a year on movies. Not only is the entertainment industry in need of

risk management techniques, but claims on these instruments could be par-

ticularly attractive to investors because of diversification potential. Hedge

funds and other institutional investors would seem to be an ideal market,
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but individual investors might well become interested, as evidenced by the

over one million participants as claimed by the Hollywood Stock Exchange.

Although numerous types of derivatives are potentially viable for entertainment-

based products, our focus will be on options on movie revenue. As briefly

mentioned in the introduction, these options have several unique features

that must be addressed in building pricing models. These features pose in-

teresting and unusual challenges for pricing these types of claims. An added

benefit of this research is that modeling the revenue stream would be ben-

eficial for constructing securitized equity shares. We confine our research

to European and American options. Exotic variations will undoubtedly be

quite interesting, but we leave that subject to future research.

2. BOUNDARY CONDITIONS FOR OPTIONS ON MOVIE

REVENUES

We begin by examining the basic pricing results that can be developed

without specifying a stochastic process for movie revenues. We start by

defining the underlying revenue stream as a random value R(0, s), which

represents revenue accrued over the period 0 to s. Although a discrete-

time model could be used here, we let revenue accrue continuously. The

instantaneous revenue at time t is denoted as R(t). Hence,

R(0, s) =

Z s

0

dR. (1)

By definition, R(0, 0) = R(0) = 0. The revenue stream always increases;

therefore, R(0, s) > R(0, t) for any s > t.7 Initially we consider only

7One interesting characteristic of this type of underlying is that even though it is
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European options on this revenue stream with exercise price K. These

options expire at time T . The continuously compounded risk-free rate is r.

The current values of the options are C and P . The values at expiration

are C(T ) and P (T ).

As noted earlier, barring securitization, the underlying revenue stream

is not a traded asset. Nonetheless, the revenue stream has economic value,

because the holder of the stream has a claim on the expected revenue,

R(0, T ). Assuming a discount rate of k to reflect the risk-free rate plus a

risk premium, we define the value of the revenue stream at time 0 as

V (0) = E[R(0, T )]e−kT . (2)

If s > 0, a portion of the accrued revenue is known. Splitting the revenue

stream into the known and unknown components, we have

R(0, T ) =

Z s

0

dR+

Z T

s

dR, (3)

and the valuation formula at s for total revenue at T becomes

V (s) = R(0, s)e−(T−s) + e−k(T−s)E

"Z T

s

dR

#
. (4)

Conditioned on known values at time s, the value is divided into riskless

and risky streams. Let the discounted integral expression be written as

Ω(s, T ), which represents the present value of the remaining unknown cash

money, there is no adjustment for the time value of money. That is, the option is on the
cumulative revenue stream not adjusted for interest. While such an adjustment would
be simple, we do not do it here, in keeping with the typical structure as suggested by
instruments that have been created or discussed.
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flows. Then the value of the claim is

V (s) = R(0, s)e−r(T−s) +Ω(s, T ). (5)

As s approaches T , Ω(s, T ) becomes smaller and the value of the revenue

stream approaches the value of a riskless bond accruing interest. In the

remainder of this section, we assume that the value V (t) can be obtained.

2.1. Option Payoff at Expiration

By construction, the payoffs of the options at expiration are

C(T ) = Max{0, R(0, T )−K}) (6)

P (T ) = Max{0,K −R(0, T )}

Until indicated, all options are European.

2.2. Maximum Values

Now consider the maximum possible values of these options prior to

expiration. Without loss of generality, position ourselves at time 0. Since

there is no upper limit to the revenue stream, the maximum value of the

call is infinite. Theoretically, a movie could generate no revenue; hence,

the maximum value of a put would be the present value of K:

C ≤ ∞ (7)

P ≤ Ke−rT

In practice, there may well be an extremely large upper limit to the rev-

enue because there is surely a maximum amount of revenue that would be
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generated if every person attended a movie. While this maximum will play

a role in our pricing models, we do not invoke its effect here.

2.3. Minimum Values

Now consider the minimum values, sometimes known as the lower bounds.

As previously developed, the holder of the revenue stream has a claim worth

V . Suppose that the holder borrows the present value of K and sells the

call. The payoffs are R(0, T )−K − (R(0, T )−K) = 0 if R(0, T ) > K and

R(0, T ) − K ≤ 0 otherwise. Thus, this combination has a non-positive

payoff and, therefore, must have a non-positive current value. Hence,

V −Ke−rT − C ≤ 0 and thus C ≥ V −Ke−rT . Given the breakdown of

V , we could write this as C ≥ R(0, s)e−rT +Ω(s, T )−Ke−rT .

Now consider the put. Let the holder of the revenue claim buy a put and

borrow the present value of K. The payoffs are R(0, T ) + (K −R(0, T ))−

K = 0 if R(0, T ) < K and R(0, T ) −K ≥ 0 otherwise. Since these payoff

values are non-negative, the current value must be non-negative. Hence,

V + P −Ke−rT ≥ 0 and P ≥ Ke−rT − V . Thus, the lower bounds are

C ≥ Max{0, V −Ke−rT }, (8)

P ≥ Max{0,Ke−rT − V }.

Of course, these are the same as the lower bounds for ordinary options.

2.4. Put-Call Parity

Put-call parity easily follows. The payoffs of a portfolio combining the

revenue stream and a put are R(0, T ) +K − R(0, T ) = K if R(0, T ) < K
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and R(0, T ) otherwise. The payoffs of a portfolio combining a risk-free

bond and a call are K if R(0, T ) < K and K + R(0, T ) − K = R(0, T )

otherwise. Hence, the revenue claim plus put must have the same initial

value as the bond plus call. Thus,

V + P = C +Ke−rT . (9)

Of course, this is precisely the same form of put-call parity for standard

options.

2.5. The Effect of Time to Expiration

Consider options with different expiration dates, T1 and T2 where T2 >

T1. A call option is clearly worth no less with longer time to expiration,

because the underlying cannot be any lower at T2 than at T1. A put

option, however, is worth no less with the shorter expiration. The longer

term penalizes a put on two counts. For one, the underlying will always be

at least as high with the longer expiration. In addition, the holder of the

put would forgo interest on the exercise price by waiting the longer time

to exercise. Hence,

CT2 ≥ CT1 , (10)

PT2 ≥ PT2 .

Note how the put result is slightly different than the result for standard

puts where additional time is beneficial but must be traded off against lost

interest on the exercise price. For a put on revenue, however, the additional

time conveys no benefits, because revenue can only increase.
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2.6. The Effect of Exercise Price

Now consider the effect of exercise price. Consider two options with

different exercise prices, K1 and K2 with K2 > K1. A call with a lower

exercise price must be worth no less than a call with a higher exercise price.

A put with a higher exercise price must be worth no less than a put with

a lower exercise price so

CK1 ≥ CK2 , (11)

PK2 ≥ PK1 .

Obviously these are the same results as for standard options.

2.7. American Options

Consider the properties of American options. For call options, we assume

unrestricted exercise at any time prior to expiration. For put options,

however, early exercise must be Bermuda-style, that is, prohibited up to a

certain point. Otherwise, an American put would be exercised immediately,

because any additional time can only make the put move less in-the-money

or deeper out-of-the-money. Hence, we assume that the put cannot be

exercised until time τ .

The American call will have the same expiration payoff as the European

call. The upper limit for the European call of infinity can be no lower for

the American call, because the latter can always be treated like a European

call and not exercised early. Since at any time s < T the American call can

be exercised for R(0, s)−K, we must consider whether early exercise is ever
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supported. Recall that the lower bound is V (s)−Ke−r(T−s). A sufficient

condition for no early exercise is that V (s) − Ke−r(T−s) > R(0, t) − K.

Rearranging, we obtain

(R(0, s)−K)(1− e−r(T−s)) < Ω(s, T ) (12)

The left-hand side is the interest that would be earned on capturing the

exercise value, and the right-hand side is the expected gain from the re-

maining unknown revenue. Since this condition will not always be met,

the American call can be exercised early. Without an option pricing model

we cannot identify precisely when this would occur. But we know that

the option would sell for nearly its minimum value when the uncertainty is

low. Let us assume that the value of the remaining revenue, Ω(s, T ), rep-

resents a small and virtually risk-free stream. Then, the call would sell for

approximately its minimum value, R(0, s)e−r(T−s) +Ω(s, T )−Ke−r(T−s).

This value is less than the exercise value, R(0, s)−K if (R(0, s)−K)(1−

e−r(T−s)) > Ω(s, T ). The left-hand side represents interest on the exercise

value and the right-hand side represents the remaining uncertainty. This

result suggests that a deep in-the-money option will almost surely be ex-

ercised early so that the exercise value can be claimed immediately and

reinvested to earn more than the value expected from holding the position.

In fact, exercise might even occur quite early, because uncertainty is re-

solved quickly and the interest that could be earned would be largest early

in the life of the option.
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Given the possibility of early exercise of the call, its lower bound is,

therefore, Max{0, V −K,V −Ke−rT}and CA > C. These characteristics

of American calls are most unusual compared to standard American calls,

which are never exercised early unless there is a cash flow on the underlying.

In this case, however, the underlying is nothing but a sequence of cash flows,

justifying early exercise in some cases.

Now consider Bermuda-style American puts. Move forward to time τ ,

the first point at which the put can be exercised. Suppose during the

entire period up to τ , the revenue did not exceed the strike. Then at

τ , it would have to be the case that V (τ) < K, so the option would be

immediately exercised for a value of K − V (τ). If at any time prior to τ ,

revenue exceeded the strike, then the option would never be able to move

in-the-money, so its value is effectively zero. These results show that the

American put on revenue is a simple instrument. In fact, we can not only

characterize the bounds of this instrument: we can nearly obtain a pricing

formula. For all states in which revenue exceeds K prior to τ , revenue

must also exceed K at τ . In such states, the option is worthless at τ ,

even though it technically is still alive. The probability of this occurring

is Prob(R(0, τ) > K). For all complementary states, where revenue does

not exceed K prior to τ , the option will be exercised and pay K − V (τ)

at τ . Hence, this portion of the option payoff can be represented as (1 −

Prob(R(0, τ) > K))E(K− R(0, τ)|R(0, τ) < K). Discounting this value to

the present gives the American put price.
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Thus, we see that the contractual expiration of the American put is

meaningless. Only τ , the first time it can be exercised, is relevant. Thus,

an American put expiring at T , not exercisable until τ , is effectively a

European put expiring at τ . Hence, the maximum put value prior to ex-

piration will be Ke−rτ . The minimum value can be found by constructing

the same portfolio as for the European put but changing the expiration to

τ . The lowest price is therefore the lowest price of the European put with

expiration τ .

Another variation of an American put would be one with a determinis-

tically increasing exercise price. Let the exercise price be set at K time 0.

At time s, the exercise price is K(s), where K(s) is any reasonable deter-

ministic formula. We know that at time t the put must be worth at least

its European value of K(T )e−r(T−s) − V (s). A sufficient condition for no

early exercise is that K(T )e−r(T−s) − V (s) > K(s) − R(s). Substituting

for V (s), we have

K(T )e−r(T−s) −K(s)−R(0, s)(1− e−r(T−s)) > Ω(s, T ). (13)

The left-hand side is the interest earned on the exercise value, taking

into account the difference in strikes at times s and T . The right-hand side

is the present value of the expected remaining revenue.

In the special case where the exercise price grows at the continuous risk-

free rate, then K(s) = K(T )e−r(T−s) and we have the simple condition

R(0, s)(1− e−r(T−s)) < Ω(s, T ), meaning that early exercise will not occur
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if the interest on the revenue accrued is less than the present value of the

expected remaining revenue.

A full pricing model will require modeling the stochastic process of rev-

enue growth. To establish a framework for a stochastic model, we begin

with a deterministic model that provides valuable insights on the manner

in which consumers might choose to see a movie.

3. A DETERMINISTIC MODEL OF THE ADOPTION OF

AN INNOVATION

Modeling the process by which movie revenue is generated has been the

subject of a number of papers in the economics and marketing literature.

Most of these models focus on predicting revenues after most of the uncer-

tainty is resolved. That is, most of the models use such information as box

office receipts in the first week or two and Oscar nominations to explain

future revenue. The model of Sawhney and Eliashberg (1996) is primarily

a time-series model, which is based on the notion that the time it takes a

consumer to see a movie is the sum of the time it takes the consumer to

decide to see the movie and the time it takes the consumer to act on that

decision. Although the model can accommodate other information, such as

number of screens, advertising, etc., the authors prefer the simplest version

and apply it with what they consider good success to a sample of movies

from 1990 and 1991.

Ravid (1999) develops a cross-sectional model for predicting revenue

based on star power, rating, release date, number and quality of reviews,

and several other measures, including information that would not be avail-
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able before the movie is released. The model is tested on a sample of about

180 films released in the period 1991-1993. The purpose of the model is

not to predict revenue but to explain the effect of star power in movie prof-

itability. Nonetheless, the variables could be useful in modeling moving

revenue ex ante.

Simonoff and Sparrow (2000) build a model using star power, charac-

teristics of the movie, number of screens, production costs and a number

of other variables, some of which would not be known before the movie is

released. They test the model on a sample of 311 films released in 1988.

Elberse and Eliashberg (2003) use information from the domestic perfor-

mance of a film to predict foreign revenues. Clearly in this case, there is a

considerable amount of information available, so much of the uncertainty

of our interest would already be resolved. Nonetheless, the variables they

use could be helpful ex ante.

Goetzmann, Pons-Sanz, and Ravid (2004) build a model for explaining

the price paid for movie scripts and the role of script prices in predicting

the financial success of a movie.

For the most part, these models focus on forecasting revenue as a func-

tion of characteristics of the movie and certain time series properties. For

the purposes of pricing options on movie revenue, we require a tractable

and simple model for the evolution of the revenue series. Such a model

should contain a drift and a volatility. The models in the literature may be

useful for estimating the drift and volatility, but we must start at a more
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fundamental level. Moreover, we must be able to model revenue before the

release of the movie.

3.1. The Revenue Function for an Innovation

Modeling the revenue function of a new innovation has been addressed

by a number of researchers. The marketing literature focuses on the intro-

duction and acceptance of new products. Likewise, the adoption pattern

and eventual economic success of a newly released movie can be viewed

as an innovation subject to many of the same forces. Unique technical

problems to be addressed include 1) the requirement that the total rev-

enue function be non-decreasing over time and 2) the lack of observations

on the innovation at the time of release. In addition, the great majority

of extant innovation models are deterministic in nature, quantifying only

the expected number of adopters or expected revenue function. Option

pricing, on the other hand, is driven in large part by the volatility of the

underlying process.

Bass (1969), assumes that there are two forces influencing the adoption

of an innovation. One force is independent of the previous number of

adopters and the other force is positively influenced by the previous number

of adopters. Consider first an individual adopter. The probability of event

(adoption) in the interval t, t + dt, given that the event has not occurred

previously, is called the hazard function, h(t). The Bass hazard model is

h(t) =
f(t)

1− F (t) = p+ qF (t), (14)
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where f(t) is the density function of the time of adoption and F (t) is the

cumulative density up to time t. The structure of the model is deter-

mined by p and q. The parameter q must be non-negative and p must be

positive. Both parameters must be finite if the density function is to be

non-degenerate.

The first force in the adoption process, p, has been called the coefficient

of innovation. It is the decision to adopt independent of the actions of

others. Bass calls the second force, q, the coefficient of imitation. This

coefficient is related to the cumulative probability of adoption up until

time t. Lekvall and Wahlbin (1973) have referred to these coefficients,

respectively, as the external and internal influence in the adoption process.

The initial condition is F (0) = 0, giving the solution to equation (14) as

F (t) =
1− e−(p+q)t)
1 + q

pe
−(p+q)t . (15)

The density function for the time of adoption is then

f(t) =
d
³
1−e−(p+q)t)
1+ q

pe
−(p+q)t

´
dt

=
(p+ q)2 pe−(p+q)t¡
p+ qe−(p+q)t

¢2 , 0 < t <∞ (16)

The density is maximum at t∗ = 1
p+q ln(

q
p). Thus , the time of maximum

intensity is positive only if q > p. Small t∗ requires p+ q large and p ≈ q.

If the potential population is m, fixed, the total number adoptions up

to time t under the deterministic model is n(t) = mF (t) and the rate

of adoptions is µ(0, t) ≡ mf(t). The same solution can be obtained by

defining F (t) = n(t)
m as the fraction of individuals who have adopted by
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time t. The differential equation is then written as

dn(t)

dt
= (m− n(t))

³
p+

q

m
n(t)

´
, (17)

n(t) = m

Ã
1− e−(p+q)t
1 + q

pe
−(p+q)t

!
= mF (t). (18)

From equation (17) it is clear that the rate of adoptions is proportional to

the remaining non-adopters. The coefficient of proportionality is p+ q
mn(t).

Plots of total adoptions and rate of adoptions for a typical case are given

below:

3.2. Plot of Adoptions

Let p = 0.2, q = 0.9 and m = 1, 000, 000.corresponding to adoptions that

becomes asymptotic after approximately five years.

Number of Adopters (mF(t)) versus years
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Rate of Adoption (mf(t)) at t-years
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The number of adopters follows an s-shaped curve and intensity peaks at

t = 1
p+q ln(

p
q ). Large relative values of p leads to an earlier maximum. In

some cases, the peak intensity for newly released movies is near zero (just

after release).

4. A STOCHASTIC REVENUE MODEL

We choose to model total revenue as a non-decreasing jump process. The

model is in the tradition of the Merton-Bates jump-diffusion but without

the diffusion and with non-homogeneous Poisson compounding. In the

following sections, we model the number of adopters and then scale the

final result by admission price per adopter. Specifically, let

dn = (mf(t)− ȳπ)dt+ ydQ, mf(t) > ȳπ(t), (19)

where prob(dQ = 1) = π(t)dt + o(dt), π(t) is a Poisson intensity, and y is

a non-negative random variable, independent of dQ. We can choose y to
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be log-normal as in Merton-Bates, or as a positive constant, say α. The

mean of ydQ is ȳπ so the Bass intensity mλ(t) is preserved in the drift of

the process, i.e., locally E(dn) = mf(t)dt. This means that the expected

value of our model is consistent with the Bass deterministic model. Instan-

taneous drift is also non-negative when mf(t) > ȳπ(t) and this condition

is easily satisfied for plausible parameters.

Notice that the term ydQ determines the volatility to the process. The

Poisson intensity, dQ, determines the frequency of jumps and the random

variable y corresponds to their magnitude. Jump magnitude in the context

of movies represents the jump in attendance due to the unexpected addition

of new screens or other unexpected phenomena (e.g., publicity).

The solution to equation (19) is

n(T ) = n(s) +

Z T

s

(mf(t)− ȳπ)dt+
x(s,T )X
i=0

yi, y0≡0 (20)

where x(s, T ) is the random number of jump events in the interval (s, T )

and ȳ = E(yi).

5. OPTION VALUE

European calls are issued by the firm on cumulative revenue and are

cash settled at expiration. We assume a CAPM world with revenue jumps

uncorrelated with the market. Thus, the jump risk is diversifiable and not

priced. An European call option thus has value

C(s, T ) = ae−(T−s)rE (Max{n(s) + n(s, T )−K, 0}) , (21)
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where C(s, T ) is the price at time s of an option expiring at time T and

a is revenue per admission. The strike price in dollars is therefore aK.

Now, let u(x) ≡Px(s,T )
i=0 yi.Using equations (20) and (21) gives, by iterated

expectations

C(t, T ) = ae−r(T−t)ExEu|x

Ã
Max{0, n(s) +

Z T

s

(mf(t)− ȳπ)dt+ u(x)−K}
!
.

(22)

Therefore

C(t, T ) = ae−r(T−t)Ex

 ∞Z
0

Max{0, n(s) + µ(s, t)− ȳΦ(s, T ) + u−K}fu|x(u)du


= e−r(T−t)Ex(C(x)). (23)

where Φ(s, T ) =
R T
s
π(t)dt and C(x) is option value given x, defined as

C(x) = a

∞Z
0

Max{0, n(s) + µ(s, t)− ȳΦ(s, T ) + u−K}fu|x(u)du. (24)

If x = 0,

C(x) = ae−r(T−t) (n(s) + µ(s, t)− ȳΦ(s, T )−K) , if arg > 0 (25)

= 0, otherwise

If x ≥ 1, d(x) ≡ K + ȳΦ− µ− n(s) and

C(x) = a

∞Z
0

Max{0, n(s) + µ(s, t)− bΦ(s, T ) + u−K}fu|x(u)du

= a

∞Z
d

{n(s) + µ(s, t)− bΦ(s, T ) + u(x)−K}fu|x(v)du (26)

= a (n+ µ− bΦ−K)
∞Z
d

fu|x(u)du+

∞Z
d

ufu|x(u)du
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Taking expectations over the number of jumps gives the general result

C(s, T ) = ae−r(T−d)e−ΦMax{0, (n(s) + µ(s, t)− ȳΦ(s, T )−K)}+ (27)

ae−r(T−s)
∞X
x=1

e−Φ
Φx

x!
(n+ µ− bΦ−K)

∞Z
d

fu|x(u)du+

∞Z
d

ufu|x(u)du.

Further simplification depends on the distribution of u(x) =
Px(s,T )
i=0 yi.

Analysis is complicated by the fact that y > 0 does not typically reproduce

under addition. For example, lognormal variates do not reproduce under

addition and although normal variates reproduce, they can be negative.

An approximation is developed in the next section.

5.1. Special Cases

For the special case of jumps with log-normal magnitude, let yi = ezi

where y0 = 0 and zi ∼ N(γ, δ2) for i ≥ 1.The solution for the adoption

process is

n(T ) = n(s) +

Z T

s

(mf(t)− ȳπ)dt+
x(s,T )X
i=1

ezi , (28)

Notice that we can work with u ≡ Px(s,T )
i=1 yi ≡

Px(s,T )
i=0 ezi and approxi-

mate this by the normal distribution. Since the zi areNID, u(x) converges

to a normal distribution very quickly by the Central Limit Theorem. In

fact, given x, u(x) is approximately normal with mean

E(u|x) = xeγ+ δ2

2 ≡ xα (29)
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and variance

V ar(u|x) = xe2γ+δ2(eδ2 − 1) ≡ xσ2. (30)

Thus, we write the solution for C(x), x ≥ 1 as

C(x) =
1

σ
√
2πx

∞Z
d

(n+ µ− αΦ+ u−K)e− 1
2x(

u=xα
σ )

2

du. (31)

Now, let v = u−xα√
xσ

to get the standard form

C(x) =
1√
2π

∞Z
d−xa
σ
√
x

(n+ µ− αΦ+
¡√
xσv + xα

¢−K)e− 1
2v

2

dv, (32)

with solution

C(x) = N

µ
xα− d
σ
√
x

¶
(n−K + µ+ α (x− Φ)) + σ

√
xe−

1
2
(d−xa)2
σ2x√

2π
. (33)

Call option value is Ex(C(x)) given by

C(s, T ) = ae−r(T−d)e−ΦMax{0, (n(s) + µ(s, t)− αΦ(s, T )−K)} (34)

+ae−r(T−s)
∞X
x=1

e−Φ
Φx

x!

N µxα− d
σ
√
x

¶
(n+ µ+ α (x− Φ)−K) + σ

√
xe−

1
2
(d−xa)2
σ2x√

2π

 .

Boundary Conditions

By construction, boundary conditions must be satisfied. Note that s =

T ⇒ x = 0, µ = 0, Φ = 0, and n > K ⇒ d < 0 and xα−d
σ
√
x
→ ∞ ⇒

N = 1⇒ C(T, T ) = n−K. Likewise, n < K ⇒ d > 0 and xα−d
σ
√
x
→ −∞ ⇒

N = 0⇒ C(T, T ) = 0.

Probability of finishing in the money (x ≥ 1)
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Pr ob(n(T ) > K) =
1√
2π

∞Z
d−xa
σ
√
x

e−
1
2v

2

dv = N(
xa− d
σ
√
x
) (35)

Poisson Intensity Function

A plausible choice for the Poisson intensity function is π(t) = ρf(t),

where ρ is a constant and f(t) is the Bass intensity function. The reason-

ing is that jumps are more likely to occur in times of peak deterministic

intensity. More specifically, mean jump intensity is proportional to mean

adopter intensity. Under this choice, the mean number of jumps in (s, T )

is Φ(s, T ) = ρ (F (T )− F (s)). In the special case that s = 0, the call price

formula is

C(0, T ) = ce−rT eρFMax{0, (m− αρ)F −K} (36)

+ae−r(T−s)
∞X
x=1

e−ρF
ρFx

x!

N µxα− d
σ
√
x

¶
(mF + α (x− ρF )−K) + σ

√
xe−

1
2
(d−xa)2
σ2x√

2π

 .
where F ≡ F (T ).

6. SIMULATIONS

Simulations were performed using parameter estimatesm = 1.8048(107),

p = 0.337 and q = 1.1323 from the movie, “Fellowship of the Ring” adop-

tion process (next section). Parameters of the Poisson arrival process and

jump magnitude were varied to provide a sensitivity analysis. As more

data becomes available and the Kalman updating scheme is implemented,

the Poisson parameters will also be estimated.
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Table 1 gives results that vary by mean number of arrivals, Φ = ρF (T ),

expected jump size, α = eγ+
δ2

2 , and the coefficient of variation of jump

size, CV =
√
V ar(x)

E(x) =
√
eγ − 1. The first column with δ = 0corresponds

to fixed jump size. If other parameters of the Poisson process are held

fixed, options priced by models with fixed jump size are less valuable.

Call option value increases monotonically with the coefficient of variation,

the mean jump size and expected number of jumps. Because the option

chosen is implicitly at-the-money, option value is linear homogeneous in

expected jump size, e.g., note that options in Panel B are 10 times more

expensive than options in Panel A. The total revenue expected in the

first year for the Fellowship of the Ring, using estimates from our model

is 12mF = $93, 679, 550. Options are implicitly at—the-money in the sense

that the strike is set at the expected total revenue up through year one.

The most expensive call option in the table, at $1, 241, 207 is 1.3250% of

expected year one revenue ( 1,241,20793,679,550).

7. ESTIMATION

The main challenge the model poses to estimation is that the estimators

are needed most when there is little or no revenue data. Movies earn the

bulk of their revenues during the first few weekends after their release, as

described, for example, in De Vany and Walls (1996). Therefore, we can

expect the revenue options to be traded before the release of the movie and

maybe for a short period after the release but not much longer.
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7.1. Estimation With a Few Revenue Data Points

7.1.1. First-Moment Parameters: Forecast Loss Function

We write the expected value of equation (20) as,

E(n(t)|t− 1)− n(t− 1) = En(t− 1, t)

= E(m|t− 1)
Z t

t−1
f(τ) dτ

= E(m|t− 1)(F (t)− F (t− 1)),

where

F (t) =
1− e−(p+q)t
1 + q

pe
−(p+q)t .

Using plug-in estimators θ̂ := (m̂, p̂, q̂) for θ := (m, p, q), we obtain:

En(t− 1, t) = m̂
Ã
1− e−(p̂+q̂)t
1 + q̂

p̂e
−(p̂+q̂)t −

1− e−(p̂+q̂)(t−1)
1 + q̂

p̂e
−(p̂+q̂)(t−1)

!
. (37)

Observations on the adoption rate n(t − 1, t) are obtained from the ob-

served cumulative revenue data R(t) by dividing by an estimate ĉ of the

average ticket price c and then taking first differences.

The objective function to be minimized is a bilinear form in the distances

dt := n̂(t−1, t|θ̂)−n(t−1, t) of adoption forecasts implied by the parameter

estimates from the observed adoption data. The optimization problem is,

then,

min
θ

dTΩd

s.t. p, q > 0, m >> 0,

(38)

where d = (d1, d2, . . . , dT )
T and Ω is a weight matrix. We will use the

identity on RT for simplicity, that is, the objective is the sum of squares
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of the distances di. T is usually small. The first estimate of the three

first-moment parameters m, p, and q of the process is available after T = 3

points of revenue data.

Sawhney and Eliashberg (1996) report that estimators of the class (38)

have good qualities despite their small sample sizes because of the fact that

the adoption dynamics are concentrated in the first few observations. They

consider a parametrization

En(t− 1, t) = mλγ

λ− γ

¡
e−γt − e−λt¢ , (39)

where λ is the intensity for the time an individual needs to decide whether

to see a movie and γ is the intensity for the time this individual needs to

act on this decision. The parameters λ and γ are assumed to be identical

for all m individuals in the adopter population.

Figure 1 shows the estimation of model (37) on the first three observa-

tions of the adoption rate processes for the Lord of the Rings trilogy. In

the figure, we use the legend S/E for Sawhney and Eliashberg (1996) and

CHH for model (37). We also estimate the Sawhney and Eliashberg (1996)

parametrization as a benchmark. The vertical axis is the total attendance.

Parameter estimates for the Fellowship of the Rings attendance process (n)

are m = 1.8048(107), p = 0.337 and q = 1.1323. The figures show that the

attendance rate peaks a zero and declines in an approximate exponential

pattern after that.

We will use a database of movies released prior to the Lord of the Rings

trilogy and estimate the revenue process parameters θ using maximum like-
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lihood (A.1). Recording the characteristics (e.g., genre, country of release,

budget, presence or absence of stars, number of screens...) of the movies

in the database in the matrix X, we will regress the parameters on the

movie characteristics in a panel model (A.2), similar to a Poisson regres-

sion model. Plugging in the characteristics of the first part of the trilogy

yields a point estimate of the parameters of the revenue process of the

movie before any revenue data are available. After the release, as the first

revenue observations become available, we will update the estimate of the

parameters θ using an extended Kalman-filter approach. We can iterate

this procedure for the second and the third part of the trilogy, including

information from the earlier parts into the historical database. Using the

initial and the updated estimates of the parameter vector, we can calcu-

late the value of revenue options on the three movies at different stages in

the release process and for different revenue thresholds. Finally, we will

compare our estimates with the historical box office data for the trilogy.

Remaining empirical work includes estimating second moment parame-

ters and parameter updating using a Kalman filtering scheme. An outline

of the approach is given in the appendix.

8. SUMMARY AND CONCLUSIONS

In this paper we have examined the pricing of options on a non-decreasing

underlying. These instruments have surfaced in the form of contingent

claims on the revenue streams of movies, concert tours, and music record-

ings. The options are typically sold before any revenue is generated; hence,
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at that time there is no observable value of the underlying. Moreover,

the non-decreasing revenue stream poses significant challenges to modeling

the stochastic evolution of the underlying. We develop a stochastic model

based on the notion that an individual’s decision to purchase the prod-

uct is driven by two factors: the systematic influence of others who have

already purchased the product and an idiosyncratic effect independent of

the actions of others. The stochastic component of the model is captured

with a Poisson jump process, which is uncorrelated with the market factor.

We derive boundary conditions, put-call parity, results for early exercise of

American options, and of course option pricing equations.

Further challenges are encountered in implementing the model. To ob-

tain reasonable estimates of the five input parameters required in the model,

we build an econometric model of movie revenues. These revenues are well-

known to have a significant concentration of uncertainty in the near term,

which is resolved very quickly. Hence, the parameters for pricing the option

before the movie is released should be quite different from those for pricing

the movie after the first few weeks of its life. In the first case, we use a

panel regression model to estimate the parameters based on characteristics

of the movie, the timing of release, and marketing. In the second case, the

first few weeks of revenue data for the movie provide significant informa-

tion and are used with a Kalman filter to update the parameter estimates.

Preliminary empirical tests are conducted using weekly data on revenues

generated from recent movies.
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Hollywood has shown considerable ingenuity in partnering with Wall

Street to offer these instruments, as well as securitized equity claims on

movie revenues. The implications of our paper are important for the pric-

ing of these types of options but could also be useful for other possible

structures. For example, the owner of an oil field might sell a call op-

tion on oil revenues where the exercise price is the production cost. The

value of such an option would be driven by two factors, a non-decreasing

but stochastic stream of output and a stochastic price. Options on revenue

streams would seem to be a natural component of real option theory, where

claims are often a function of revenues rather than traded and easily valued

assets.
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APPENDIX

Second-Moment-Parameters: Maximum Likelihood

In the sections that follow, we outline an approach for estimating second

moment parameters. For option pricing, the volatility parameters α and

ρ are of main importance. From (20), where y = α constant, we have that

P(n(T )− n(s)) = P
Ã
x(s, T ) =

"
k

α
+

Z T

s

π(t)dt−m
Z T

s

f(t)dt

#!

= P
µ
x(s, T ) =

·
k

α
+ (ρ− m

α
)(F (T )− F (s))

¸¶

= exp

Ã
−
Z T

s

π(t)dt

! ³R T
s
π(t)dt

´κ
κ!

= exp{−ρ(F (T )− F (s))}ρ
κ(F (T )− F (s))κ

κ!
,

where

κ =

·
k

α
+ (ρ− m

α
)(F (T )− F (s))

¸
,

and [x] = max{n ∈ N|n ≤ x}. Then, given observations of the adoption

process n(t− 1, t) =: kt, the log-likelihood function is given by

L(θ) =
TX
t=2

logP{n(t)− n(t− 1) = n(t− 1, t) = kt}, (A.1)

=
TX
t=2

µ
log

ρκ(t)(F (t)− F (t− 1))κ(t)
κ(t)!

− ρ(F (t)− F (t− 1))
¶
,

where

κ(t) =

·
kt
α
+ (ρ− m

α
)(F (t)− F (t− 1))

¸
.

Estimation Without Revenue Data

Estimate of the First Revenue Data Point
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If there are no revenue and thereby adoption data available, the adoption

process must be forecast using historical data from other movies. A stan-

dard approach is the Poisson regression model, in which the log of a Poisson

density parameter is modelled as a linear function of a set of explanatory

variables. The variables discussed in the context of movies are, to name a

few, genre, country of release, budget, presence or absence of stars, number

of screens, and a time trend accounting for the sharp drop after the first

few weekends (Jones and Ritz 1991, Sawhney and Eliashberg 1996, Nee-

lamegham and Chintagunta 1999). Neelamegham and Chintagunta (1999)

suggest a Bayesian hierarchical model to obtain a density forecast of the

Poisson parameter. We use a panel regression model for the log of the five

parameters of the adoption process considered here, similar to the Poisson

regression. From a set of revenues series of k other movies, the parame-

ter vectors θi, i = 1, . . . , k are estimated by maximizing (A.1). Then, the

log of the k estimates of each parameter are regressed on the explanatory

variables. The estimation equations are, thus,

log θ̂i = log



m̂i

p̂i

q̂i

α̂i

ρ̂i


=



ξi,tβ
m + ηmi,t

ξi,tβ
p + ηpi,t

ξi,tβ
q + ηqi,t

ξi,tβ
α + ηαi,t

ξi,tβ
ρ + ηρi,t


,
i = 1, . . . , k,

t = 1, . . . , Ti.

(A.2)

where η(·)i,t is white noise with mean zero and variance σ
2
η. We assume that

there is no covariance across parameters and across movies and that there
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is no serial correlation. The (1 × K) regressor vector ξi,t for i and t fix

consists of K explanatory variables from the list stated above. The time

index t runs from 1 to Ti, the life span of movie i. We do not write a time

index to the estimates of θ because these do not vary with time. Among

the explanatory variables some will not vary with time (genre, presence of

stars, . . . ) and some will (number of screens, time trend, . . . ). Plugging

in the ξ characteristics of the movie for which the initial adoption is to be

estimated yields a point estimate for θ at time t = 0, that is, before revenue

data are available.

Update Scheme for Incoming Revenue Observations

The estimates of the parameters θ of the adoption process of the new

movie have to be updated as the first observations of the process come in.

To this end, we pursue a Kalman filter approach. As adoption process, we

employ (28) with δ = 0 so that y = α is constant. Since the (log) parame-

ters enter the adoption process non-linearly, the Kalman filter equations use

the first order Taylor expansion of the adoption process (extended Kalman

filter, Harvey 1989, pp 160ff).

The State Space Model

The non-linear state space model is specified as

yt = zt(ςt) + εt, (A.3)

ςt = Ttςt−1 +Rηt, (A.4)
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where (A.3) is the measurement equation specifying the process of obser-

vations

zt(ςt) = logn(t− 1, t) = log [(m− αρ)(F (t)− F (t− 1)) + αx(t− 1, t)] .

(A.5)

The error processes ε and η are assumed to have zero-mean and variance

and covariance matrix, respectively,

Eε2t = h,

EηtηTt = Q.

Equation (A.4) is the transition equation governing the state vector process

ςt, containing the parameters log θ, all hyperparameters β
(·), and the num-

ber of jumps x(t−1, t). Even though the parameters and hyperparameters

are constant in the data-generating process, they can be described in a

transition equation where they carry a time subscript t (Harvey 1989, p

104). Let vec β̂t be the stacked column vector of hyperparameters in the

transition equation:

vec β̂t =
³
(β̂
m

t )
T , (β̂

p

t )
T , (β̂

q

t )
T , (β̂

α

t )
T , (β̂

ρ

t )
T
´T
∈ R5K×1
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Denote 0(n1, n2) as the zero matrix with n1 rows and n2 columns, and I(n)

as the n-dimensional identity matrix. Then, the transition equation is

ςt =


log θt

vec βt

x(t− 1, t)

 = Tt


log θt−1

vec βt−1

x(t− 2, t− 1)

+I(5+5K+1)



ηmt

ηpt

ηqt

ηαt

ηρt

0(5K + 1, 1)


,

(A.6)

where

Tt =



0(1, 5) ξt 0(1, 4K) 0

0(1, 5) 0(1,K) ξt 0(1, 3K) 0

0(1, 5) 0(1, 2K) ξt 0(1, 2K) 0

0(1, 5) 0(1, 3K) ξt 0(1, 1K) 0

0(1, 5) 0(1, 4K) ξt 0

0(5K, 5) I(5K) 0(5K, 1)

0(1, 5 + 5K + 1)



,

Tt ∈ R(5+5K+1)×(5+5K+1). Thus, R in equation (A.4) is given by I(5 +

5K + 1) and ηt in equation (A.4) is given by the error vector in equation

(A.6).

In the transition equation, the parameters log θ are modelled as a linear

combination of ς with hyperparameters β as coefficients plus noise η, the

hyperparameters are simply stated as identity, and the number x of jumps
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is not related to its lagged value since the jumps of a Poisson process in

different time intervals are independent.

Linearization

Next, we need to linearize zt(ςt) by means of a first-order Taylor expan-

sion. The gradient of zt(ςt) is given by

grad zt(ςt) =
·

∂zt

∂ log θTt
,

∂zt

∂ vec βTt
,

∂zt
∂x(t− 1, t)

¸
(A.7)

From (A.5), suppressing the time subscript of the parameters, and writing

(·) for (m), (p), (q), (α) or (ρ), we have that

∂zt
∂ logm

=
m(F (t)− F (t− 1))

n(t− 1, t) ,

∂zt
∂ log p

=
(m− ρα)(F (t)− F (t− 1))

n(t− 1, t)
∂ log(F (t)− F (t− 1))

∂ log p
,

∂zt
∂ log q

=
(m− ρα)(F (t)− F (t− 1))

n(t− 1, t)
∂ log(F (t)− F (t− 1))

∂ log q
,

∂zt
∂ logα

=
−ρα(F (t)− F (t− 1)) + αx(t− 1, t)

n(t− 1, t) , (A.8)

∂zt
∂ log ρ

=
−ρα(F (t)− F (t− 1))

n(t− 1, t) ,

∂zt

∂
³
β(·)

´T = ∂zt
∂ log(·)

∂ log(·)
∂
³
β(·)

´T = ∂zt
∂ log(·)ξt,

∂zt
∂x(t− 1, t) =

α

n(t− 1, t) ,
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where

∂ log(F (t)− F (t− 1))
∂ log p

=

pep+q

ep+q − 1 −
q

p+ q
− pt− qte−(p+q)t

1 + q
pe
−(p+q)t −

q(t− 1)e−(p+q)(t−1)
1 + q

pe
−(p+q)(t−1) ,

∂ log(F (t)− F (t− 1))
∂ log q

=

q

p+ q
− qt+ qep+q

ep+q − 1 +
q2

p te
−(p+q)t

1 + q
pe
−(p+q)t +

q2

p (t− 1)e−(p+q)(t−1)
1 + q

pe
−(p+q)(t−1) .

Denote the estimate of the state vector ςt as st and the estimate of the

gradient (A.7) of zt by Ẑt:

Ẑt =
∂zt(ςt)

∂ςTt
.

Expand the first order Taylor series approximation in the point st|t−1 of

the forecast of st given information through t − 1. Then, the linearized

state space model is given by

yt
.
= zt(st|t−1) + Ẑt(ςt − st|t−1) + εt, (A.9)

ςt = Ttςt−1 +Rηt, (A.10)

The Kalman filter equations are now determined (Harvey 1989, p 161).

They consist of the prediction equations for the state vector and the co-

variance matrix P of the state vector

st|t−1 = Ttst−1,

Pt|t−1 = TtPt−1TTt +RQR,
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and the update equations for both

st = st|t−1 + Pt|t−1ẐTt F̂
−1
t (yt − zt(st|t−1)),

Pt = Pt|t−1 − Pt|t−1ẐTt F̂−1t ẐtPt|t−1,

F̂t = ẐtPt|t−1ẐTt + h.

The updated estimation st of the state vector ςt then allows to update the

estimate n̂(t− 1, t) of the adoption process.
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Figure 1: Adoption Rate Process for the Lord of the Rings Triology

S/E is the Sawhney and Eliashberg model and CHH is the model of equation (37).
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TABLE 1.

Call Prices and Jump Process Parameters

ρF CV =
p
exp(δ2)− 1

0 0.20 0.40 0.60 0.80

Panel A: Mean Jump Magnitude = 1, 000

20 $20,283 22,142 25,261 28,196 30,957

40 28,743 31,317 35,751 39,930 43,849

60 35,227 38,357 43,797 48,926 53,732

80 40,690 44,292 50,579 56,508 62,060

Panel B: Mean Jump Magnitude = 10, 000

20 $202,825 221,420 252,607 281,961 309,566

40 287,428 313,170 357,509 399,297 438,490

60 352,267 383,568 437,969 489,258 537,319

80 406,901 442,915 505,787 565,075 620,604

Panel C: Mean Jump Magnitude = 10, 000

20 $405,649 442,839 505,213 563,923 619,132

40 574,856 626,340 715,018 798,594 876,980

60 704,533 767,136 875,937 978,516 1074,638

80 813,802 885,829 1,011,575 1,130,149 1,241,207

The random number of admissions as a result of a jump is ez .The mean number of jumps
is ρF and CV is the coefficient of variation of ez . Mean jump magnitude is eγ+

δ2

2 .

The option expires in one year and is implicitly at-the-money since the strike is set
equal to expected revenue.
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