Generalized Analytical Upper Bounds for

American Option Prices’

San-Lin Chung
Department of Finance
National Taiwan University
85, Section 4, Roosevelt Road
Taipei, 106 Taiwan

and

Hsieh-Chung Chang
Department of Finance
National Central University
300, Chungda Road
Chungli, 320 Taiwan

This version: January, 2005

“ We would like to thank Chuang-Chang Chang, Hsuan-Chi Chen, Ren-Raw Chen, Bing-Huei Lin, and
Shih-Kuo Yeh for helpful comments. The authors thank the National Science Council of Taiwan for
financial support. Any comments please address to Chung at chungs@mba.ntu.edu.tw.



Generalized Analytical Upper Bounds for

American Option Prices

Abstract

This paper generalizes and tightens the analytical upper bounds of Chen and Yeh
(2002) for American options under stochastic interest rates, stochastic volatility, and
jumps where American option prices are difficult to compute with accuracy. We first
generalize Theorem 1 of Chen and Yeh (2002) and apply it to derive a tighter upper
bound for American calls when the interest rate is greater than the dividend yield. Our
upper bounds are not only tight, but also converging to the accurate American call
option prices when dividend yield or strike price is small or when volatility is large.
We then propose a general theorem which can be applied to derive upper bounds for
American options whose payoffs depend on several risky assets. As a demonstration,
we apply our general theorem to derive upper bounds for American exchange options
and American maximum options on multiple risky assets.



|. Introduction

American options require numerical methods, such as lattice methods, to provide
accurate price estimates. The valuation problem is very time-consuming and difficult
when multiple state variables are involved. For example, the options under stochastic
interest rates, stochastic volatility, and jumps involve four random factors and require
expensive lattice models. Another complex example is pricing an American option
whose payoff depends on more than one underlying asset. For these situations, tight
analytical upper bounds can provide useful benchmark values and control variates for
the correction of numerical errors.

Option pricing bounds are useful, because (1) they provide qualitative properties of
options, (2) they can be used to screen market data for empirical research, (3) they
shed light on hedging, and (4) they are generally obtained with the least assumptions
on the investor’s preferences and the distributions of the underlying asset prices.

Option pricing bounds may be derived by (1) eliminating simple dominance among
different portfolios, (see Merton (1973)) (2) applying a linear programming approach,
(see Garman (1976), Ritchken (1985), and Ritchken and Kuo (1988)) (3) using some
mathematical inequalities such as Jensen’s inequality and Cauchy’s inequality, (see Lo
(1987), Boyle and Lin (1997), and Chen and Yeh (2002)) and (4) using second-order
stochastic dominance (see Levy (1985) and Constantinides and Perrakis (2002)).

Probably due to the difficulty in dealing with the early exercise problem, the work on
American option pricing bounds is limited. Carr, Jarrow, and Myneni (1992) derived
an upper bound for American put options under the Black-Scholes economy, while
Broadie and Detemple (1996) developed upper and lower bounds using the capped
call option pricing technique (i.e. an American call option is a simple dominant
portfolio of the capped call). Although the bounds provided by Carr, Jarrow, and
Myneni (1992) and Broadie and Detemple (1996) are generally tight, their upper
bounds are not in analytical form (except under the Black-Scholes economy) and
require numerical techniques. Chen and Yeh (2002) provided analytical form upper
bounds that are applicable to general American options, e.g. American calls on
dividend paying stocks, American calls on futures, American puts on dividend paying
stocks, and American puts on futures. Moreover, their upper bounds rely neither on
the distribution of the state variable, nor do they rely on continuous time trading.

Although Chen and Yeh’s (2002) analytical form upper bounds are very general, they



can be applied only in the case where the interest rate is greater than the dividend
yield. Their upper bounds may be inadequate for options on several underlying assets,
because it is likely to happen that some underlying asset have a dividend yield larger
than the risk-free rate. In contrast, this article provides two general theorems which
can be used to derive upper bounds for American options under general situations,
including the case where the dividend yield is larger than the risk-free rate. As a
demonstration, we apply our general theorems to derive upper bounds for American
calls when the interest rate is smaller than the dividend yield, for American exchange
options, and for American maximum options on multiple risky assets.

We contribute to the literature on option pricing bounds in several ways. First,
previous papers on option bounds concentrated on European options with a single
underlying asset or a single state variable. In contrast, we provide upper bounds for
American options whose pricing involves several risky assets and/or several risk
factors (e.g. stochastic interest rates, stochastic volatility, and jumps) for each asset
price process. Secondly, our upper bounds are not only tight, but also converging to
the accurate American call option prices when dividend yield or strike price is small
or when volatility is large. Thirdly, we correct typos in Chen and Yeh (2002) and
provide numerical results to investigate the tightness of their upper bounds and the
tightness of ours. The numerical results indicate that our upper bounds are generally
tighter than those of Chen and Yeh (2002).

The rest of this article proceeds as follows. Section Il provides a general analysis for
obtaining upper bounds of American options. In this section two general theorems for
developing American upper bounds are introduced. Section Ill discusses upper
bounds under stochastic interest rates, stochastic volatility, and jumps using the
inversion Fourier method. This method was used by Heston (1993), Scott (1997),
Bakshi, Cao, and Chen (1997), and Chen and Yeh (2002), etc. We also derive upper
bounds for American exchange options and American maximum options under the
Black-Scholes economy in this section. Section IV provides numerical results to
analyze the tightness of our upper bounds. Section V concludes the paper.

I1. General Analysis

Theorem 1 of Chen and Yeh (2002) shows that an American option is bounded from
above by the risk-neutral expectation of its maturity payoff if this expectation is
greater than the intrinsic value at all times." This theorem is very general and the only

! Following Chen and Yeh (2002), all expectations are taken under the risk-neutral measure throughout
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assumptions required are that (i) the risk-neutral measure exists and (ii) the nominal
risk-free rate is strictly positive. We restate Theorem 1 of Chen and Yeh (2002) as
follows:

Theorem 1 of Chen and Yeh (2002)
An American option is bounded from above by the risk-neutral expectation of its
maturity payoff if this expectation is greater than the intrinsic value at all times.

Theorem 1 of Chen and Yeh (2002) can be presented in formal mathematics as
follows:

Let T be the maturity date of the American option, and X (t) be the intrinsic value at
time t. If E[X(T)]> X(t) for all t, where E([-] represents taking the expectation in
the risk-neutral world at time t, then E,[X(T)] is an upper bound of the American

option value.

This article will extend the idea of Chen and Yeh in a way that it is not necessary to
use the maturity payoff (X(T)) of the American option to derive the upper bound.
Instead, we replace X (T) with other functions in our generalized Theorem 1, which
can be applied to derive tighter upper bounds. Note that both their theorem and our
theorem are proved by a discrete approximation similar to the lattice approach. The
results will hold in continuous time as At reaches a limit.

A. The Generalized Theorem 1

The Generalized Theorem 1 of Chen and Yeh (2002)
Let T be the maturity of the option contract. Define Y(t,T)= h(t,T)X(T), where
X(t) is the intrinsic value of the option at time t and h(t,T) is any function which

satisfies
a. h(t,s)>45(t,s) forany t<s,where &(t,s) is the discount factor
fromtime t totime s,
b. h(t,T)=h(t,s)h(s,T) forany se(tT),
c. h(tt)=1.
If E[Y(t,T)]> X(t) for all t, then EJ[Y(t,T)] is an upper bound of the American
option value at time t.

Proof:

the paper.



Following Chen and Yeh (2002), we will prove this theorem using a discrete
approximation similar to the lattice approach. At time T — At, consider the function
Y(T —At,T) defined in the generalized Theorem 1. It is true that E, ,[Y(T —At,T)]

is larger than the discounted terminal value:

Er_a [Y(T _At’T)] =Eru [h(T _At’T)X (T )]
> E;_u[0(T AL T)X(T))
where the second inequality comes from condition a. of the generalized Theorem 1.
By constraint, E, ,[Y(T —At,T)] is also larger than the intrinsic value (X (T — At))
and thus is an upper bound of the American option price at time T —At.

Since E,_, [Y(T —At,T)]> X(T —At) is true, it is true that E,_,,[Y(T —2At,T)] is
greater than the continuation value of the American option at time T —2At:
Er on [Y (T —2At,T )] =E;ou [h(T —2At,T )X (T )]

= E; . [n(T —2At,T = Ath(T — AL, T)X(T)]

= E; L [n(T = 2At,T = AV)E,_, [N(T — A, T)X(T)]]

= E; L, [n(T —2At, T —AE,_, [Y(T —At,T)]]

> Ep L, [6(T =24 T —AE,  [Y(T —ALT)]]

> E; L[0T = 2AL, T — At)max{E, . [6(T — At,T)X(T)], X (T — At)}}
The second line follows from condition b. and the fifth line follows from condition a.
of the generalized Theorem 1. By constraint, E,_,,[Y(T —2At,T)] is also greater
than the intrinsic value of the American option and thus is an upper bound of the
American option value at time T —2At.

By mathematical induction, it is straightforward to show that E[Y(t,T)] is an upper

bound of the American option value. The result will hold in continuous time when
At approaches zero. (Q.E.D)

Note that all expectations are taken under the risk-neutral world. The main difference
between Chen and Yeh’s (2002) Theorem 1 and our generalized Theorem 1 is that we
multiply the maturity payoff function by a function h(t,T). Therefore, their upper
bound is a special case of ours where h(t,T)=1. As long as we can find an
appropriate function h(t,T) which is smaller than one and satisfies the criteria in the
generalized Theorem 1, then E,[Y(t,T)] is an upper bound which is tighter than
Chen and Yeh’s.

It should be noted that when the function h(t,T) is always smaller than one,
E[V(tT)<E[E[Y(s,T)]], for any se(t,T). In this case, our upper bound is a



sub-martingale process. In contrast, the upper bound of Chen and Yeh is a martingale
process. Nevertheless, as with the discounted American option prices, the discounted
processes of both upper bounds are super-martingale processes, i.e.

E[Y(tT) =E[s(ts)E[Y(s,T)]

E[X(T)] 2 E [o(t.s)E,[X(T)]

B. A Further Extension: Theorem 2

The generalized Theorem 1 is actually still restrictive in the sense that the upper
bound is related to the maturity payoff of the American option. If we extend our
concept to allow Y(t,T) to be any random variables which satisfy similar (or same)
criteria in the generalized Theorem 1, then it is possible to derive upper bounds for
general types of American options. Next, we will first establish our Theorem 2 and
give three applications later on.

Theorem 2
Let T be the maturity of the option contract. Define Y(t,T) as a random variable at

time t which satisfies

a. Y(T,T)>X(T),

b. E[V(tT)]>E[stt+At)Y(t+AtT) forany te[0,T - At],

c. E[Y@T)=X(t) forall telo,T],
where X(t) is the intrinsic value of the option at time t. Thus, E,[Y(t,T)] isan
upper bound of the American value.

Proof.

At time T —At, it is true that E, . [Y(T —At,T)] is larger than the discounted
terminal value:

E ulY(T-ALT)] > E 6T -ALT)V(T,T)]

= E;_[6(T - At T)X(T)]

where the first inequality comes from condition b. of Theorem 2. From condition c.,
E, .[Y(T —At,T)] is also larger than the intrinsic value and hence is an upper bound
of the American option price at time T —At. Since E,_,[Y(T —At,T)]> X(T - At)
is true, it is true that E,_,, [Y(T —2At,T)] is greater than the continuation value of
the American option at time T —2At:



EronY(T—2ALT)] 2E,,, [6(T —2At T —At)Y (T —AL,T)]
= E; e [0(T =24t T —AE,_ [Y(T - At T)]]
> E; L, [0(T —2At, T — At)max{E,_, [6(T — At, T)X (T)], X (T - At)}]

By constraint, E;_,[Y(T —2At,T)] is also greater than the intrinsic value of the
American option and thus is an upper bound of the American option value at time
T — 2At. By mathematical induction, it is straightforward to show that E,[Y(t,T)] is
an upper bound of the American option value at time t. The result will hold in
continuous time when At approaches zero. (Q.E.D)

The idea of our theorem 2 is quite intuitive and can be reasoned as follows. Condition
a. is the terminal condition which has to be fulfilled by any upper bound. Condition b.
implies that the upper bound for this period is larger than the discounted value of the
upper bound in the next period. Condition c. is a necessary condition for an upper
bound, i.e. an upper bound must be greater than the intrinsic value of the option at all
times. Combining all three conditions will guarantee that E,[Y(t,T)] is an upper

bound of the American option price.

It is worth noting that Theorem 1 of Chen and Yeh (2002), the generalized Theorem 1,
and Theorem 2 are sustained even if the payoff function X(T) or our general
function Y(t,T) depends on prices of multiple underlying assets. However, the
Theorem 1 of Chen and Yeh is applicable only when dividend yields of all assets are
smaller than the risk-free rate.> Now, we will show some applications of the
generalized Theorem 1 and Theorem 2 in the following subsections.

C. Applications of the Generalized Theorem 1 and Theorem 2
1. American Calls on Dividend Paying Stocks (when r>q)

According to the generalized Theorem 1, if one can find a suitable Y(t,T) that
satisfies our criteria, then we say E,[Y(t,T)] is an upper bound of the American

J:Equ -y )du

option price. Let Y(t,T)=e max{S; — K , 0}, where S is the stock price, K is

the strike price, r is the interest rate, and q is the dividend yield of the stock.? It is

2 Chen and Yeh’s upper bound may be very restrictive for certain types of options on multiple
underlying assets. For example, E, [X (T)] is an upper bound of the American exchange option price

only when r=>0q, 2(,, where Q, and (, are the dividend yields of the first and second

underlying assets, respectively.
® Note that when there can be no possible confusion, subscripts are sometimes omitted for simplicity.
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easy to show that h(t,T)=e satisfies three criteria in the generalized

Theorem 1. Moreover, we can verify that E,[Y (t,T)]> X(t) forall t:

E, {ejt(q”‘“‘ " max(s, - K , o}} > max{E{STej‘(q”r” kel )"“} , o}
@

> max{S, — K, 0},

The first line follows from Jensen’s inequality and the second line holds since

E{STej‘(q”r“)du}zst and r>q. Therefore, E[Y(t,T)] is an upper bound of the

American call option.

Since r>q is true, our upper bound (E{ej‘(q”r“)du

max{S; - K, 0}}) is tighter than
Chen and Yeh’s (E,[max{S; — K, 0}]). Furthermore, our upper bound converges to
the accurate American call option price under some circumstances. For instance, it is
well known that when the dividend yield is zero, the American option price equals the
price of its European counterpart (see Merton (1973)). Our upper bound also
converges to the European option price when the dividend yield approaches zero.
Moreover, when the strike price is very small or when volatility is very large, both the
accurate American call option price and our upper bound will converge to the current
stock price.

From our Theorem 2 we can propose another upper bound for American call options
where Y(t,T) follows:

Y(t,T)= max{eﬁq”r“]dusT - Kefj‘r”du, 0} .

However, this upper bound is not tighter than the above one and thus is not used in the
numerical analysis later on.

2. American Call Options on Dividend Paying Stocks (when r<q)

Chen and Yeh’s Theorem 1 can be applied to American options only when the interest



rate is larger than the dividend yield. On the other hand, our Theorem 2 is applicable
no matter whether the interest rate is larger or smaller than the dividend yield. When
the interest rate is smaller than the dividend yield, we define a function Y(t,T) for

American call options as follows:

) Y(t,T)= max{eHquru ]duST -K, O}.

Firstofall, Y(T,T)=max{S; — K,0}= X(T). This satisfies condition a. of Theorem
2. Secondly, Y(t,T) also fulfills condition b. of Theorem 2 as follows:

E[YtT) = Et[max{STef(q“_r“ 'S OH

>E, max{STej“A‘(q”_r” "k OH

(3)

> E,| o(t,t +At)max{STeI“A'(q“_r”)du ~-K OH

=E [s(t,t+ AL)Y (t+At,T)]

We finally will show that E,[Y(t,T)] are always greater than the intrinsic value at
any time t:

E.| max ej‘(q”_r”)dus —K,0!| >max{E,|S ej‘(q”_r”)du—K 0
(4) t T t T

=max{S, - K, 0},

where the first line follows from Jensen’s inequality. Thus, from Theorem 2 we know
that Et[max{efl(q“r“ )duST -K OH is indeed an upper bound for American call

options when r<q.

3. American Exchange Options

An exchange option is an option to exchange one asset for another. The payoff from
this option is

X(T): maX{SH - SZT ,0},
where S;; and S,; are values of asset one and asset two at time T, respectively. A
closed-form solution for valuing European exchange option was first produced by
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Margrabe (1978) under the Black-Scholes economy.

From Chen and Yeh’s Theorem 1, it is easy to verify that Et[X (I')] IS an upper
bound of the American exchange option when r >q, >q,, where g, and q, are
the dividend yields of asset one and asset two, respectively. Now, we will derive
another upper bound of the American exchange option.

Consider a function Y (t,T) as follows:
.ﬂ(hu -y ]du J.Tmin(qlu A2y )’ru ]du
(5) Y (t,T)=max: e S, —e* S,;,0¢.

Using a similar procedure we can easily show that conditions a. to c. of Theorem 2 are
satisfied by Y (t,T). Thus, E, [Y (t,T)] is an upper bound of the American exchange
option price. It is not difficult to show that our upper bound is tighter than Chen and
Yeh’s, especially when both g, and q, are small or when ¢, is large and q, is
small. Furthermore, it is true that our upper bound is applicable for any r, q,, and

Q-
4. American Maximun Options on Multiple Risky Assets

Options on the maximum or minimum of two risky assets were first introduced by
Stulz (1982). Stulz (1982) showed that many contingent claims, for example
option-bonds, compensation plans, risk sharing contracts, etc., have a payoff function
which includes the payoff function of a put or a call option on the maximum or
minimum of two risky assets. The payoff of a European call option on the maximum
of two risky assets is
X (T )=max{max{S,;,S, }—K,0},

where S;; and S,; are values of asset one and asset two at time T, respectively. A
closed-form solution, which involves the bivariate cumulative standard normal
distribution functions, for valuing this option was derived in Stulz (1982) under the
Black-Scholes economy.

Following Theorem 1 of Chen and Yeh (2002), it is straightforward to show that the
expected value of the maturity payoff at any arbitrary time t is an upper bound of
the American maximum option, because its value is always greater than the early
exercise value, i.e.,
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E, [max{max{S,S,; } - K,0}]> max{E,[max{S,;, S,; }] - K, 0}
> max{max{E,[S; ], E.[S,; ]} - K , 0}
> max{max{S,, S, }- K , 0},
However, the above upper bound is sustained only when the dividend yields of all
risky assets are smaller than the risk-free rate.

As a demonstration, this paper will derive another upper bound for the American
maximum options using our Theorem 2. If one follows our Theorem 2, it is easy to
prove that the expected value of the following function is also an upper bound of the
American maximum option:

(6) Y (t,T ) maX{maX{e'ﬁ "] S]_T ’ eﬂ‘hu -1, Jdu SZT}_ Keﬂmi”((hu G2y )T, Jdu ’ 0} ’

because

E |:max{max{e.ﬂqlu Ty Sl_l_ ’ e.ﬁqzu*ru 2T} K j mln(fhu qZu) I’ u’ O}j|

> max{ maX o Jdu SlT 1eﬂ%u—ru]dU82T }:| B Et |:Keﬂmin(q1u,qZU)—ru Jdu :|, 0}

Z {max E [e qlu u Sl_l_] E [ 'ﬂqZU7rU]duSZT ]}_ Et|:K ei‘[min(q1uvq2u)ru]du:|, 0}

> max{max{S,, S, }- K , 0}

There are many points worth discussing. First of all, although the following function
satisfies conditions a. and c. of Theorem 2, it does not satisfy condition b. of Theorem
2, and thus it is not an upper bound of the American maximum call option:

.ﬂ O — u _ﬂqZU -y ]du

Y'(t,T)= max{max{e s, e SZT}—K,O}.
Secondly, our upper bound is valid for any r, ¢, and g, as long as
r >min(q,,q,), €9. 0, >r >dq,. Thirdly, our upper bound is not necessarily smaller

than that derived from Theorem 1 of Chen and Yeh (2002). The reason is due to the

fact that the strike price in our upper bound (Keﬂmm(q“'qz”)_r“]du) is smaller than the

strike price in Chen and Yeh’s upper bound (K ). However, our upper bound is tighter
than Chen and Yeh’s upper bound when the dividend yields of all risky assets are
small. When both upper bounds are applicable, one can take the minimum of both
upper bounds as the upper bound of the American maximum option price. Finally, our
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upper bound will converge to the accurate American call option price under some
circumstances, e.g. when the dividend yield or strike price is very small.

Johnson (1987) and Boyle and Tse (1990) further extended the analysis of Stulz to the
pricing of European maximum options on n risky assets under the Black-Scholes
economy. The payoff of a European call option on the maximum of n risky assets is

X (T)=max{ max{S;;, S,;,---, S, } — K, 0},
Similarly, one can apply our Theorem 2 to show that the expected value of the
following function is an upper bound of the American maximum option on n risky
assets:

Y(t,T)= max{max{eﬂq“r” ]duSH, eﬂqz”fr“]dus2T e eﬂq"“fr”]dusm}— Keﬂmin(q“‘ o ]du, O}.

Note that under the Black-Scholes economy where interest rates and dividend yields
are constant, the above upper bound is actually the price of a European call option on

the maximum of n risky assets with adjusted initial prices S,e®*"™", S,e®™™ .

T

- - - mln 1u,...,1nu d -
and S e*"™ and adjusted strike price K™ Therefore, the analytical

solutions of Johnson (1987) and the approximate solutions of Boyle and Tse (1990)
are directly applicable to our upper bounds.

I11. Modeling

Both Chen and Yen’s upper bounds and our upper bounds have analytical solutions
under many asset price models. In fact, as long as a European option has an analytical
solution under a model, both upper bounds also have analytical solutions under the
same model, because both upper bounds can be regarded as European options with an
adjusted maturity payoff.* For example, a European option has an analytical solution
under the stochastic volatility model of Heston (1993) and so does our upper bound.

In order to compare with Chen and Yeh (2002), we will derive analytical solutions for
our upper bounds under stochastic interest rates, stochastic volatility, and jumps
(SVSIJ model) in the single asset cases. However, we apply the Black-Scholes model
in the multiple asset cases for simplicity.

* For example, Chen and Yeh’s upper bound E,[X(T)] is actually the price of a European option with
. jTrudu
an adjusted payoff e~ X(T).
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A. Single Asset Cases

1. American Calls on Dividend Paying Stocks when r>q

The Black-Scholes model has been extended to an environment under the stochastic
interest rate, stochastic volatility, and jumps; see for example, Heston (1993), Scott
(1977), and Bakshi, Cao, and Chen (1997). Following Chen and Yeh (2002), we
assume that the stock price process is log normal and the drift and diffusion of the
stock price process follow the square root processes,

ds, = y,S,dt+ S, v, dw;?
@) dv, = (B -V, )t + /v, dW,",

dyt = a(b Y )dt + g\/y_tdvvtIr )

where y, =1, —d,, S isthe stock price, r isthe interestrate, d is the continuous
dividend yield, v is the stock return variance, and «, S, 7, a, b, and g are

parameters associated with the processes. Finally, dW,°dW," = pdt and the interest

rate process is assumed to be independent of the stock and the variance processes.

Note that the processes v, and Yy, are strictly positive, because they follow the
square root processes. The upper bound of the American call options is

T

TR E{eﬁ(’y“ ™ max{(s, - K), o}}

8) = Et[sTeIt(‘y” o }Hl - KE[ej‘(_y“ o }HZ

=S.I1, - KM(t,T I,

where

M(,T)= E{ef(y“)du]

To solve for the two probabilities and M (t,T), we first identify the PDE where the
upper bound has to satisfy:

14



%V(UXCX —Uf)+%72vuv‘§ +%gzyu§’y +pwU

©) UL+ (@~ (a+ ANN)

+(@b—(a+1)yUy-U-yuc =0,
where x=1In(S), 7=T-t,and A and | are market prices of risk associated with
v and Y. Plugging (8) into (9), we obtain the following PDEs for the probabilities
and M(t,T),

1vl'[1X + ivl‘[1XX
(20) 2 2

+[aﬂ_(a +2’)VIH1V + [ab_(a+|)y]nly +pWH1v +pWH1xv _le =0,

+%72VH1W+%gzyH +yH1x

lyy

1 1 1, M, 1,
—VII, ——VII — VIl — 11 — 11
(11) 2 2XX 2 2x + 2 7 2w + M g y 2y + 2 g y

+ yI1,, +[0t,6’—(0{+/1)V1H2v +[ab_(a+ I)ylnzy + pwll,,, —I1,, =0,

2yy

and

1
(12) EgzyMnyr[ab—(aH)y]My ~M_-yM =0.

First, we will solve M (t,T) from equation (12). We derive its closed-form solution
as follows:

M ('[,T) _ eA(t,T)+B(t,T)yt ,
where A(t,T) and B(t,T) are shown in Appendix B. It can be easily shown that the
characteristic functions f, and f, for solving I1, and II, satisfy the same PDEs
with the boundary condition at t=T being f =e"*. With this boundary condition,
we can derive the characteristic functions as follows,

fl(u) — eC1(t,T YDy (6T v +E; (£, )y, +iux ’

(13) fz (U) —e% (T 1D (6T Wy +E (1T )y, +iux—In(M (t,T))

where C,(t,T), D,(tT), and E;(tT) (j=1,2) are shown in Appendix B.

According the inversion theorem, probabilities and characteristic functions have the
following relationship

© —iuIan_
(14) mo-i,t Re{e—’(u)}du j=1,2.

172 g iu

2. American Calls on Dividend Paying Stocks when r<q

15



To derive the upper bound of American calls when r < g, we assume the same asset
price model as in the previous subsection except that

(15) dy; = a(b - y,)dt + g-/y;dw,",

where y; =q, —r, >0. Following the similar procedure one can derive the upper
bound of the American call options as:

uec - E{eim ™ max{(s, - K), o}}

(16) - E{sTeft‘y'“ o }H; KT,
— S,IT, - KIT,.

The two probabilities TT; and IT, in equation (16) follow the same formula as
equation (14), but with two different characteristic functions as follows:

(17) fj'(u)z eC’j(t,T)+D}(t,T)vt+E}(t,T)yt’+iux

where C/(t,T), Dj(tT),and E}(t,T) (where j=1,2)are shown inAppendix C.

3. Jumps

It has been well documented that the jump component is important for pricing stock
and stock index options. The jump-diffusion model was first introduced by Merton
(1976) and then used by Bates (1991), Bakshi, Cao, and Chen (1997), and Scott
(1997), etc. Following Bakshi, Cao, and Chen (1997), we assume the following
jump-diffusion process:

dS, = (¥,S, — 4, 4,S,)dt + St\/V_tthS +J,5,d¢;,

In[1+ ‘Jt]~ N(In[1+ﬂ3]_%0-32’ UJZ)’

where:
A, 1s the frequency of jumps per year;
J, Is the percentage jump size (conditional on a jump occurring) that is
lognormally, identically, and independently distributed over time, with
unconditional mean y, . The standard deviation of In[l+J,] is o,;
& 1s a Poisson jump counter with intensity A, ; that s, Pl’{dé:l}:ﬁﬂdt and
Pr{d& =0}=1-Adt;
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& and J, are uncorrelated with each other or with W.*, W,, and W,".

The characteristic functions for the jump component are shown by Bakshi, Cao, and
Chen (1997) and Scott (1997) as:

Fou(u) = expla, 0+ 2 XT =)0 2y ) €209 _a |- 3 i, (T 1))
£, () = exp(a, (T — O+ s, )" 2088 1] 7 i (7 —t))

Bakshi, Cao, and Chen (1997) and Scott (1997) show that if jumps occur
independently with the stock price level and interest rates, then the characteristic
function of the jump component can be combined with the characteristic function of
the diffusion component. Therefore, the characteristic functions are respectively
multiplied by the original functions of (14) or (17) to calculate upper bounds.

(18)

B. Multiple Asset Cases
1. American Exchange Options on Dividend Paying Stocks

Margrabe (1978) valued an option to exchange one asset for another, which is
called an exchange option. We state his model in this subsection and use his setup to
derive a closed-form solution for the upper bound of the American exchange option.
Following Margrabe (1978) we assume that the two asset prices follow:”

ds; =vy,S,dt+o;S,dW, i=12

ivit it?

where y, =r—q,, q; isthe dividend yield of asset i, o, is the standard deviation

of return of asset i, and dW, isthe Brownian motion of asset i .

For simplicity, we follow Margrabe (1978) to assume that dividend yields and the
risk-free rate are constant. Under this simplified assumption, Margrabe (1978) shows
that the price of the European exchange option is:

(19) W, = Slte_qer (21)_ SZte—qer (Zz)’
where
—0i
In Sye e +10'27
. S,e 2
1 O_\/;
S 1
In( 1t Sﬂj"‘[qz -Q, +20'2jr
- ot ’

> For simplicity we assume that interest rate and dividend yield are constant in the multiple asset case.

17



N () = the cumulative density function (c.d.f) of the standard normal
distribution.

Similar to the proof of Margrabe (1978), we can derive upper bounds for American
exchange options under the Black-Scholes economy. According to the results in the
previous section, one upper bound of an American exchange option is:

E[YT)= E{max{eﬂ"”]dsslT _glimanrieg g H

=E, [e_” max{é/lT —Cor O}]

where ¢, =S;e% and ¢,; =S,,e™®%" The upper bound in the above equation
can be regarded as the value of an European exchange option where the initial value

of asset one is ¢, = S,e™ and the value initial of asset two is ¢, = S,e™"®%)",
Therefore, our upper bound has the following closed-form solution:

(20) SyN(z)- S, N(z;),

where
In(shs )"‘(qz _min(ql'q2)+0'2Jz_
S 2t 2
1 U\/? !
z =17 N

2. American Options on Maximum of Two Risky Assets

Under the Black-Scholes economy, Stulz (1982) derived the closed-form solution for
a European call option on the maximum of two risky assets as follows:

Crax (811255, K, 1,0y, 05, 04,05, p0,0,,7)
=Cgs (54, K, 10,07, 7) +Cg (S5, K, 1,05, 05, 7) = Cpy (S0, 5, K, 1,01, 03, 01,05, 0,05, 7),
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where Cg(.) are Black-Scholes formulae for European call options and C,, (.) is
the price of a European call option on the minimum of two risky assets which follows:

Crin (S35 S5, K, 1,0y, 0,,04,0,, 01,010, 7)

S o’
(Insﬂ(ql—qz—z)rj o o
=S, %N, dl"'o'l\/;' 2t ’ P20, — 0,
ot o
(21) S 02
(InSM(qz—ql—z)rj .
+S,e N, d2+02\/;, 1t , P01 =0,
ot o
_Ke—rer(dl’ d2! plzal_GZ}
o
where

2
In(s%)+[r -0, —lejr
d, = :
' ot

2
In(S%)+(r -4, —Gzzjr
d, = :
2 0_2\/;

2 2 2
o =0, +0, —2p,0,0,.

As stated in the previous section, our upper bound for the American maximum call
option is actually the price of a European maximum call option with adjusted initial
stock prices and adjusted strike price. Therefore, it follows a similar formula, i.e.

Croax (Slteqlr ' Szteqzr ' Kemin(quqZ)XT’ r0,,0,,0,,05,01,0:0,,7) .

IV. Numerical Results
A. Correct Numerical Results in Chen and Yeh (2002)

The pricing formulae for Chen and Yeh’s (2002) upper bounds under the stochastic
interest rates, volatility, and jumps model are not correct. The correct formulae are
shown in Appendix A. The numerical results in Chen and Yeh (2002) are thus wrong.
We report the correct numbers in their Table 1 and Table 2 to show the tightness of
their upper bounds.

19



Table 1 shows their upper bounds of calls and puts under a stochastic volatility

environment (SV model). The risk-free rate and the dividend yield remain constant
and no jumps occur in the stock price. Their parameters are S, =100, v, =0.04,

r=0.05, q=0.03, =15, =004, =01, 2=0, p=-05, and r=1.
Table 1 shows that the original upper bounds are even smaller than the European
option values, thus confirming that their formulae are doubtful.

Table 2 shows the upper bounds of American calls on dividend paying stocks, puts on
non-dividend paying stocks, calls on futures, puts on futures, and their counterpart
European option values under the stochastic volatility, stochastic interest rates, and
jumps (SVSIJ) model. Following Chen and Yeh (2002), we also compute the
European option values using formulae in Bakshi, Cao, and Chen (1997) since these
numbers serve as lower bounds of American option values. The parameter values used
in Chen and Yeh (2002) are close to those estimated by Bakshi, Cao, and Chen (1997)
using S&P 500 index option data. Their parameters are S, =100, F, =100,
v, =0.04, r,=005, q=003, =15, =004, =01, 1=0, p=-05,
a=06, b=002 (in Panels B and F, b=005),° g=005, 1=0, u, =0,

c2=01,and 4, =0.6.

From Table 2, we find that Chen and Yeh’s upper bounds are generally quite tight,
because their values are very close to European option values. The differences
between the upper bounds and the counterpart European option values are within 5%
of the counterpart European option values for most cases. The only exception is for
American puts on non-dividend paying stocks where the differences may be larger
than 30% (see Panel B and Panel F of Table 2).

B. American Calls on Dividend Paying Stocks (when r>q)

We now compare the tightness of our upper bound with that of Chen and Yeh’s for
American calls on dividend paying stocks when r >q. We use the SVSIJ model and
adopt the same parameter values as Table 2. We also calculate European option values
as the benchmark values to investigate the tightness of both upper bounds. From Table
3, we can see that our upper bound of calls is indeed tighter than Chen and Yeh’s
upper bound when r>q. On average, our upper bounds are 3.04% larger than
European option values while Chen and Yeh’s upper bounds are 5.13% larger.

® Note that the underlying asset does not pay a dividend in Panels B and F. Thus, we set b =0.05 to
match the initial risk-free rate.
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C. American Calls on Dividend Paying Stocks (when r<q)

Chen and Yeh’s upper bounds are not available for American calls on dividend paying
stocks when r <q. On the other hand, our upper bounds are still available in this
case. To demonstrate the tightness of our upper bounds in this case, we also use the
SVSIJ model and adopt the same parameter values as Table 2 except that we set
r,=0.03 and g, =0.05. The results are presented in Table 4. We find that when the
dividend yield is larger than the risk-free rate our upper bounds are not as tight as the
case where the dividend yield is smaller than the risk-free rate. The results are
expected, because our upper bounds work best (i.e. no error) for American calls when
the dividend yield is zero.

D. American Exchange Options

Pricing American exchange options is a two-dimensional stochastic problem under the
Black-Scholes economy. Bjerksund and Stensland (1993) proved that the above
two-dimensional stochastic problem can be simplified to a one-dimensional stochastic
problem. Let F(S,,S,,r,b,,b,,0,,0,, po,0,,7) denote the price of an American
exchange option on two assets with initial stock prices S, and S, , risk-free rate r,
risk-adjusted drift terms b, and b,,” volatilities o, and o,, correlation coefficient
P, and time to maturity 7. Bjerksund and Stensland (1993) showed that the
following relationship holds:

(22) F(Sn St I’,bl,bz,al,az,plzo'lo'z,T)Z F(Sn 1Sy M =0, 0, =D,,0,04, ,0,0,2‘),
where o}, =0} +0’ -2p,0,0,.

Note that both the drift term and the volatility parameter related to the second asset is

zero. Therefore, the left-hand side of the above equation corresponds to the price of an
American call where the underlying asset has current value S, risk-adjusted drift

b, —b,, and volatility o,,, the exercise price and the maturity of the call are S,, and
7, respectively, and where the risk-free rate is r—b, .

To analyze the tightness of our upper bound, we need benchmark values of American
exchange options. We apply the adaptive mesh model of Figlewski and Gao (1999) to
calculate the American exchange option price using the one-dimensional solution of

" The risk-adjusted terms b, (b, ) areequalto r—gq, (r —q,) in the Black and Scholes economy.
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Bjerksund and Stensland (1993). The number of time steps in the adaptive mesh
model is 10,000. The parameter values are adopted from Chen, Chung, and Yang
(2002) as follows: S, =40, o0,=0.2, 0,=03, p, =05, r=0.05, r=0.5833,
and S,, q,,and q, are varied.

From Panel A of Table 5, it is clear that our upper bounds are very tight, i.e. very close
to the accurate prices of the American exchange options. Our upper bounds are about
1% larger than the accurate prices in general. It is also true that our upper bounds are
tighter than Chen and Yeh’s (2002). In Panel B where the dividend yield of asset one
is larger than the risk-free rate, Chen and Yeh’s upper bound is not available while
ours is still workable. However, our upper bounds are not as tight as the case in Panel
A. The results are consistent with our argument that our upper bounds are tighter
when dividend yields of the underlying assets are small.

E. American Maximum Call Options

We finally investigate the tightness of our upper bounds for American maximum call
options on two dividend paying stocks. We use the lattice model of Chen, Chung, and
Yang (2002) to calculate the accurate price of American maximum call options. The
number of time steps in the lattice is limited to 1,000, because it is a two-dimensional
lattice. To correct the numerical errors due to the chosen medium number of time
steps, we employ the control variate technique of Hull and White (1988) to obtain the
accurate price of American maximum call options as follows:

23)  PA =PA +(PE, —PL),

max max

where P2 and PE

max max

are prices of American and European maximum call options
calculated from the lattice model of Chen, Chung, and Yang (2002) with 1,000 time

steps, respectively, and P

max

is the closed-form solution of the European maximum

call option. The parameter values used here are also from Chen, Chung, and Yang
(2002) as follows: S, =S,=40, o0,=02, 0,=03, p,=05, r=0.05,
7 =0.5833,and K, q,,and q, are varied.

From Panel A of Table 6, we find that our upper bounds are also quite tight for
in-the-money American maximum options. Our upper bounds are about 2% larger
than the accurate prices in this case. As the options become out-of-the-money, our
upper bounds are looser than the previous case, but the error is still smaller than 6%.
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It is also interesting to know that our upper bounds work well for in-the-money cases
while Chen and Yeh’s (2002) work well for out-of-the-money cases. Moreover, Chen
and Yeh’s upper bound is not available while ours is still workable in Panel B where
the dividend yield of asset one is larger than the risk-free rate. Generally speaking, the
results in Table 6 confirm our previous claim that our upper bounds are tighter when
dividend yields of the underlying assets are small.

V. Conclusion

Following the framework of Chen and Yeh (2002), we derive upper bounds of
American option prices. These upper bounds are especially useful when there are
several state variables involved in the pricing model. Our upper bounds are closed
form when the counterpart European option has a closed-form solution. Our upper
bounds are very general in the sense that they do not rely on distribution assumptions
or continuous trading. Moreover, our upper bounds are not only tight, but also
converging to the accurate American call option prices when dividend yield or strike
price are small or when volatility is large.

The only required inputs to implement our upper bounds are the risk-neutral processes
of the state variables. This is not a problem, because of the recent advances in
empirical derivatives research. For example, one can apply the implied binomial tree
approach of Rubinstein (1994) and its many extensions, such as Derman, Kani, and
Chriss (1996), Jackwerth (1997), Britten-Jones and Neuberger (2000), etc., to obtain
the risk-neutral process of the stock price. See Jackwerth (1999) for an excellent
review on option-implied risk-neutral distributions and processes.

Our upper bound is still feasible even in the extremely complicated case where the
pricing of American options depends on multiple risky assets and multiple risk factors
(e.g. stochastic interest rates, stochastic volatility, and jumps) for each asset price
process. In this case one can apply standard Monte Carlo simulations to calculate the
expected value of our upper bound, which is computationally more efficient (and may
be tighter) than other upper bounds generated by other complicated Monte Carlo
methods.® This issue is left for future research.

In future research, we would like to empirically compare the tightness of our upper

& Monte Carlo methods can provide biased high estimates of the American option prices using the
foresight bias (see Broadie and Glasserman (1997)) approach or the duality approach (see Haugh and
Kogan (2001) and Rogers (2001)). The computation is generally time consuming, because it requires
the simultaneous determination of the optimal exercise boundary.
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bound with those generated by other approaches, e.g. Carr, Jarrow, and Myneni (1992)
and Broadie and Detemple (1996). Although the upper bounds developed by them are
based on the Black-Scholes economy, they can be extended to general distributions
with slight modifications. Finally, we like to know if the risk-neutral processes of
state variables are implied by the European option prices, and how often the American
option prices may violate our upper bounds. The results will shed light on the
efficiency of option markets.
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Appendix

A. Correct the Typos of Chen and Yeh (2002)
Al. Derivation of the Futures Price

Guess the futures price as follows:

F.=S eA(t,T)+yB(t,T)+vC(t,T)'
By Ito’s lemma, we obtain the following PDE for F:
%VSZFSS +%v;/2FW +%yg2Fyy + pwSF, + ySF
+laB—(a+AN]F, +[ab—(a+1)y]F, + F, =0
Plug in the guessed solution for the futures price and obtain a system of three ODEs:

1
C, =—§}/2C2 +(a+/”t—p}/)C,

Bt=—%ngz+(a+I)B—

A =-ofC —abB.
With boundary conditions A(T )= B(T )= C(T )= 0, we can show that C =0,
(dB (a+|)]e 9
o Ldg+(@a+1) a+l
B:—2 + y
dg—(@+1)) 0, Yo
dB+(a+I)

where d, =+/(a+1) -2g?,and

A=—3%{<T—t>[ds—<a+l>]

+2In_l+ (a+|) ~de (T-0)
d +(a+|)

e,

d s +(@+1)

A2. Derivation of the Characteristic Functions of Calls
Guess the upper bound of calls as follows:

U° = E [max{S, — K,0}]
= Et[ST ]Hl — KII,
= F, . I1, - KIT,.

The PDEs for the probabilities become:
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2

v v 2
EH +7/7le +%Hlyy +pWH1xv

1xX

+[aﬂ_(a+/1_p7)v]nlv +[y+%jnlx

+[ab—(a+|)y+g;28y]l'[ly +11, =0
and

2 2
v yv gy
EHZXX + 2 IT,,, + 2 1_IZyy +p7VH2xv

2w

Hlap-(a AN 4y

+[ab—(a+1)y],, +11, =0.
Guess the following form for the characteristic functions:

f (U) _ eCl(t,T)+Dl(t,T W+E, (1,7 )y+iux+In(S/F)
1 =

fZ (u) = ecZ(t’T)+D2 (th)V“’Ez (t,T)y+iux.

Plug in the guessed solution for the characteristic functions and obtain a series of ODEs
as follows:

D, = —%;/ZDf +[(@+4)- py(iu+1)D, —%(iu —u?),

E, =—%gZEf +(@a+1)E, —(iu+1),

Cy =—-affD, —abE,,
and

D, = —%;/ZDZ2 +[(a+ A)- pyiu]D, +%(u2 +iu),

E, =—%92E22 +(@+1)E, —iu,
C, =-afD, —abE,.

The solutionsto C;, D;,and E; (j=1,2)are:

{doj — by, ]e_dDJ(T—t) _1
o _ oi | Lo+ , b

i 2
Ve dDj _bDj e—dDj(T—t) +1 dDj
dDj + bDj
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d, — by d. —b..
a2 bDJ)(T )+ 2In|1+| 22 e ™| _onl14 2 "0i
Y dp; + by dp; + by,

QD
O

N|

«

where

oy = lla + 1) pru +1F — 2 —u),
by, = (@+2)- prliu+1),

de, =+(@a+17 —202(u+1),

be, =bg, =a+l1,

dp, =[(@+2)- pyiuf + y*(iu+u?),
by, = (@ +4)— priu,

d, =+/(a+1) —2g%iu .

A3. Derivation of the Characteristic Functions of Puts
Guess the upper bound of puts as follows:

u® = Et[K —e‘Ly”"”sT}

= K(1-11,)-s,-11;)

where TIT, isthe same as calls and IT; is the probability obtained in the forward
measure. The PDE for the I1, becomes:

2 2
%H*lxx + %Vn*lvv + %H*lyy + p}/VH*lxv
[ —(a+ A= py NI
(y+ jl‘l v +[ab—(a+ 1)y + T =0.

Guess the following form for the characteristic function:
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fl* (U) _ eCf(t,T J+D; (t,T w+E; (t,T)y-+iux .

Plug in the guessed solution for the characteristic functions and obtain a series of ODEs

as follows:

D'y =—%7/2D*12 [l +2)= pyliu+1)]D" —%(iu ),

= =—%92E*12 +(a+I)E*1 —iu,

C'y =—afD1—abE":.
The solutionsto C,;, D;,and E, are:

D* =D,,
d.-b |
[dlb} e (T-t) 1 b
. .+ .
E, =— ]
9" [dg =bg ) w00 o e
— e +1
d.. +b
az t)+2ln{1+(%1—_bm]e‘dm(”)}—2In(1+—le_bDlJ
7 dpy +bpy dp, +bp,
d_. —b.. d.-b.
_a @E-b Xr—t+2n11+ i e R
9 ' de. +b. de. +b..
where

Qs =[ler+ 2)= pyliu+1)F —*(u-v?),

by = (a"‘l)_P?’(iu +1),

d.. = Ja+1}-2g%u,

1

bE;:a+I.

A4. Derivation of the Characteristic Functions of Futures Options
Guess the upper bound of futures calls as follows,

U™ = E [max{F; , —K,0]]
=F, [} —KII;.
The upper bound of futures puts is as follows:
U™ = E [max{K - F. 0]
=K@-1f)-F,0-11f)
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The PDEs for the probabilities become:

2
Y Y
Eanxx + 2 vav

+[ap~(a+ A pyNIf + S If + I =0,

+ pIdy,

and

2
Y YV
EHZFXX + 2 1_[;vv

+[oB (e 2WITG, ~ T 411 =0,

+ pIy,,

where x = In(F ). Guess the following form for the characteristic functions:

F __CPATHD} (tTv+iux -
fflu)=e ,j=1,2.

Plug in the guessed solution for the characteristic functions and obtain a series of ODEs

as follows:

Dy = —%72D1F2 +{(a+4)- pyliu+1)|Df —%(iu —u?),

Cllt: = _a,b[)]_': I}
D}, == "D +[(a+ 4)- pulDf +2(u +iu).

F F
Ch=—omf.

The solutionsto C; and D (j=1,2)are:

Df =D,
d, —b,. d. —b..
cF =~ (ay, —by T 1)+ 2In 1+[—D' Dl g~ —2|n[1+—DJ o L
vV dDj -l-bDj dDj +bDj
where

doy = [(er + 2)- py(iu+D)f - y2fiu-u?),
by, = (@ +2’)_P7(iu +1),
ller+2)= pyiuf + 2 (iu +u?),

(a+/1)—p7iu .

dD2
bD2
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B. Derivation of M(t,T) and the Characteristic Functions of Our Upper
Bound of Calls When r >d

Guess the following form for M (t,T):
M (t,T) _ eA(t,T)+B(t,T)y[.
Plug in the guessed solution for (12) and obtain a series of ODEs:
B, = —%gZBZ +(a+1)B+1,
A =—abB.
With boundary condition A(T ,0)=B(T ,0)=0, we can show that:

dg —Dbg e ds(Tt) _q
_d_B dg +Dbg +b_B

gz dg —bg e 0Tt 11 dg
dg +bg

where d, =+/(@a+1¥ +2g?, by =a+l,and
ab dg —bg | 4. (- d; —b
A=—20T —t)d, —b, ]+ 2In| 14| Se =26 Jeea-0 | _pyplq 4 S =06 1y
gZ{( )[ B B] |: |:dB+ij| dB+bB

Next, we will show the characteristic functions of our upper bound. Guess the following

form for the characteristic functions:
f (U) _ ecl(t,T)rDl(t,T)VﬁEl(t,T)yﬁiux
(u)=

i)

f2 (u) - eCz(t,T)+Dz(t,T)V1+Ez(t,T)y,+iux—|n(M (tT)) .

Plug in the guessed solution for the characteristic functions and obtain a series of ODEs:

D, = —%yZDf +[(a+4)- pr+iu)D, —%(iu —u?),

E, :—%ngf +(a+1)E —iu,

Cy =—affD, —abE,,
and

D, = —%]/ZDZZ +[(a+ 2)- pyiuD, +%(iu + uz),

E,, =—%92E22 +(a+1)E, - (iu-1),
C,, =—afD, —abE,.

The solutionsto C;, D;,and E; (j=1,2)are:
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{joj _EDj ]e—dD](T—t) 1
D Dj + Dj D
°=2 (4, b, el
Dj Dj e—d 0i (T-t) 1 Dj
] dDj +bDj |
{dEj _bEj ]e—da(T—t) 1
g - da) 195+ ]
J gz dE _bE' dg; (T-t) dE ,
) ] e_ g\l — 1 ]
] dEJ. +bEj |
d, —by d. —b..
C, = =22 d(dg; —boy T —t)+2In| 1+ 201 len (T |_ o 14 —01 01
Y dp; + by, dp,; + by,

d. —bg d. —b.
2 (dEj —bE,-XT—'[)+2|n 14|88 o900 o488 |
g dEj +bEj dEj +bEj

doy =l +2)- prliu +2)f - p2(iu-u?),
by, = (@+2)- pyliu+1),
de, =+(@a+1y - 2¢%u,

be, =bg, =a+1,

where

dp, =\/[(a+/1)—p}/iu]2+72(iu+u2),
by, = (@ +2)- priu,
d, =/(a+1) - 2g2(iu-1).

C. Derivation of the Characteristic Functions of Upper Bound of Calls
When r<d
Guess the following form for the characteristic functions:

fj’(u) _ eC’j(t,T HD5 (6T Ve +Ej (1T )y +iux .

Plug in the guessed solution for the characteristic functions and obtain a series of ODEs:

Dy, = —%yle’z +[(e+2)- py(t+iu)]Dy —%(iu —u?),

£l =-%ng1'2 +(a+)E +iu,

Cy = —afiD; - abE,
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and

D, = —%72D§2 +[(a+ 4)- pyiu]D; +%(iu + uz),

£l =—%92E;2 +(a+1)E,+iu,
C,, =—afD, —abE,.

The solutionsto C, Dj,and Ej (j=1,2)are:

d, [l dp +bg b
D; = DZ’ P i + Dj
4 dD'j - bD'j e—dD (T-t) 41 dDJ
dp, +bp,
de; — b, T
do || dg +be be.
Bf=—| 70— +—
9 dE; - bE’j e—dE,J. (T-1) +1 dE;
I de, +Dg, |

d ' _b ' —d-. _ d . —b .
C; :—% (dD', _bD'— XT _t)+2|n 1+ Dj Dj e dDJ(T t) _2|n 1+ Dl Dl
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where

by, = (a+2)-pyiu+1),

de, = J@+1Y -2g%u,

bElr:bEé :a+|,

dp, =\/[(a+/1)—p]/iu]2 +;/2(iu +u2),

by, =(a+A)- pyiu,

d, = J@+1)-2¢%(u-1).
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TABLE 1
Correct numerical results in Chen and Yeh’s Table 1

Call Option Put Option
K Original Correct European Original Correct European
Upper bound Upper bound Option Value Upper bound Upper bound Option Value
110 2.73 4.86 4.63 12.05 14.05 12.22
105 4.47 6.73 6.40 8.53 10.72 9.23
100 6.88 9.06 8.62 5.66 7.86 6.70
95 9.96 11.90 11.32 3.48 5.50 4.64
90 13.65 15.22 14.47 1.97 3.65 3.04
CPU(sec) 0.01 0.01 0.01 0.01 0.01 0.01

The stock price is 100, the initial volatility is 0.04, the risk-free rate is 0.05, the dividend is 0.03, the
time to maturity is one year, and other parameters are: « =15, #=0.04, y=0.1, 1 =0, and

p=-05.
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TABLE 2

Correct numerical results in Chen and Yeh’s Table 2

Y2
K -08 -04 00 04 08
Panel A. Calls on Dividend Paying Stocks
110 8.70 8.79 8.86 8.94 9.01
8.28 8.36 8.43 8.50 8.57
105 10.59 10.64 10.68 10.72 10.76
10.07 10.12 10.16 10.20 10.24
100 12.84 12.85 12.85 12.86 12.86
12.21 12.22 12.23 12.23 12.23
95 15.47 15.44 15.41 15.38 15.34
14.72 14.69 14.66 14.63 14.59
90 18.48 18.43 18.37 18.30 18.23
17.58 17.53 17.47 17.41 17.34
Panel B. Puts on Non-Dividend Paying Stocks
110 17.61 17.71 17.80 17.89 17.98
14.33 14.39 14.45 14.50 14.55
105 14.35 14.41 14.47 14.53 14.59
11.59 11.61 11.63 11.65 11.66
100 11.46 11.48 11.50 11.52 11.53
9.19 9.18 9.16 9.14 9.12
95 8.96 8.94 8.92 8.90 8.87
7.14 7.10 7.05 7.00 6.97
90 6.86 6.81 6.75 6.69 6.63
5.44 5.38 5.31 5.24 5.16
Panel C. Calls on Futures
110 7.82 7.91 8.00 8.09 8.17
7.43 7.52 7.61 7.69 1.77
105 9.55 9.61 9.67 9.73 9.78
9.09 9.14 9.20 9.25 9.30
100 11.65 11.67 11.69 11.71 11.73
11.08 11.10 11.12 11.14 11.16
95 14.13 14.11 14.10 14.08 14.05
13.44 13.43 13.41 13.39 13.37
90 17.00 16.95 16.90 16.85 16.79
16.17 16.13 16.08 16.03 15.97
Panel D. Puts on Futures
110 17.82 17.91 18.00 18.09 18.17
16.95 17.04 17.12 17.20 17.28
105 14.55 14.61 14.67 14.73 14.78
13.84 13.90 13.96 14.01 14.06
100 11.65 11.67 11.69 11.71 11.73
11.08 11.10 11.12 11.14 11.16
95 9.13 9.11 9.10 9.08 9.05
8.68 8.67 8.65 8.63 8.61
90 7.00 6.95 6.90 6.85 6.79
6.66 6.61 6.57 6.52 6.46
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TABLE 2 (continued)
Correct numerical results in Chen and Yeh’s Table 2

ﬂ”J
K 00 02 04 06 08
Panel E. Calls on Dividend Paying Stocks
110 4.87 6.25 7.55 8.77 9.92
4.63 5.94 7.18 8.34 9.43
105 6.73 8.11 9.41 10.62 11.77
6.40 7.72 8.95 10.11 11.20
100 9.07 10.41 11.66 12.85 13.96
8.62 9.90 11.10 12.22 13.28
95 11.90 13.15 14.34 15.45 16.50
11.32 12.51 13.64 14.70 15.70
90 15.22 16.35 17.42 18.44 19.41
14.48 15.55 16.57 17.54 18.46
Panel F. Puts on Non-Dividend Paying Stocks
110 13.83 15.20 16.48 17.69 18.82
10.54 11.90 13.18 14.38 15.50
105 10.50 11.89 13.18 14.40 15.54
7.84 9.18 10.43 11.60 12.71
100 7.66 9.02 10.29 11.48 12.60
5.59 6.86 8.06 9.18 10.24
95 5.32 6.61 7.81 8.95 10.02
3.80 497 6.07 7.11 8.10
90 3.50 4,67 5.78 6.82 7.81
2.44 3.48 4.46 5.39 6.29
Panel G. Calls on Futures
110 4.09 5.44 6.70 7.89 9.01
3.89 5.17 6.37 7.50 8.57
105 5.77 7.13 8.40 9.60 10.73
5.48 6.78 7.99 9.13 10.21
100 7.90 9.24 10.49 11.67 12.78
7.52 8.79 9.98 11.10 12.15
95 10.54 11.81 13.00 14.12 15.18
10.02 11.23 12.36 13.43 14.44
90 13.68 14.84 15.93 16.96 17.95
13.01 14.11 15.15 16.14 17.07
Panel H. Puts on Futures
110 14.09 15.44 16.70 17.89 19.01
13.41 14.68 15.88 17.01 18.08
105 10.77 12.13 13.40 14.60 15.73
10.24 11.53 12.75 13.89 14.96
100 7.90 9.24 10.49 11.67 12.78
7.52 8.79 9.98 11.10 12.15
95 5.54 6.81 8.00 9.12 10.18
5.27 6.47 7.61 8.67 9.68
90 3.68 4.84 5.93 6.96 7.95
3.50 4.60 5.64 6.63 7.56

The top numbers are upper bound values and the bottom numbers are European values. The initial
values for the state variables are 100 for the stock price, 0.04 for the initial volatility value, and 0.05 for
the interest rate level. The parameters for the variance process are ¢ =15, g=004, y=001, p=-0.5,

and 2 = 0. The parameters for the interest rate process are a=0.6, b=0.02(in Panels B and F,
b=0.05), g=005,and |-o. The parameters for the jump processare , -0, o2 = 0.1,and

2, =0.6. The dividend yield is assumed to be a constant of 0.03.
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TABLE 3
Upper bound of the American calls on dividend paying stocks when r >q

J2)
K -0.8 -04 0.0 04 0.8
110 8.70 8.79 8.86 8.94 9.01
8.53 8.61 8.69 8.76 8.83
8.28 8.36 8.43 8.50 8.57
105 10.59 10.64 10.68 10.72 10.76
10.38 10.43 10.47 10.51 10.55
10.07 10.12 10.16 10.20 10.24
100 12.84 12.85 12.85 12.86 12.86
12.59 12.59 12.60 12.60 12.60
12.21 12.22 12.23 12.23 12.23
95 15.47 15.44 15.41 15.38 15.34
15.16 15.14 15.11 15.07 15.03
14.72 14.69 14.66 14.63 14.59
90 18.48 18.43 18.37 18.30 18.23
18.11 18.06 18.00 17.94 17.87
17.58 17.53 17.47 17.41 17.34
ﬂ’.]
K 0.0 02 04 0.6 0.8
110 4.87 6.25 7.55 8.77 9.92
4.77 6.12 7.40 8.59 9.72
4.63 5.94 7.18 8.34 9.43
105 6.73 8.11 941 10.62 11.77
6.60 7.95 9.22 10.41 11.54
6.40 7.72 8.95 10.11 11.20
100 9.07 10.41 11.66 12.85 13.96
8.89 10.20 11.43 12.59 13.68
8.62 9.90 11.10 12.22 13.28
95 11.90 13.15 14.34 15.45 16.50
11.66 12.89 14.05 15.14 16.18
11.32 1251 13.64 14.70 15.70
90 15.22 16.35 17.42 18.44 19.41
14.92 16.03 17.08 18.07 19.02
14.48 15.55 16.57 17.54 18.46

The top numbers are Chen and Yeh’s upper bound values. The second numbers are our upper bound
values. The bottom numbers are European option values. The parameter values are the same as Table 2.
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TABLE 4
Upper bound of the American calls on dividend paying stocks when r <q

)
K 08 - 0.4 0.0 0.4 0.8
110 7.78 7.88 7.97 8.06 8.14
6.80 6.90 7.00 7.09 7.18
105 9.52 9.58 9.64 9.70 9.75
8.35 8.42 8.49 8.55 8.62
100 11.62 11.64 11.66 11.68 11.70
10.23 10.27 10.30 10.34 10.37
95 14.10 14.08 14.07 14.05 14.02
12.49 12.49 12.49 12.48 12.47
90 16.97 16.93 16.88 16.82 16.76
15.13 15.10 15.06 15.02 14.98
ﬂ”.]
K 0.0 02 04 06 0.8
110 4.05 5.40 6.67 7.86 8.98
3.32 4.58 5.76 6.88 7.94
105 5.72 7.09 8.37 9.57 10.70
4.76 6.05 7.26 8.40 9.48
100 7.86 9.20 10.46 11.63 12.75
6.64 7.93 9.13 10.26 11.33
95 10.50 11.77 12.96 14.09 15.15
9.00 10.24 11.40 12.49 13.52
90 13.64 14.81 15.90 16.94 17.92
11.87 13.02 14.09 15.11 16.07

The top numbers are upper bound values and the bottom numbers are European values. The parameter
values are the same as Table2 except r =0.03 and g =0.05.
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TABLE 5
Upper bounds of the American exchange options on dividend paying stocks

Panel A:r>(, >0

S, Chen and Yeh Our upper bound American values European values
30 10.5850 10.4014 10.2882 10.2807
35 6.4077 6.2965 6.2254 6.2235
40 3.3862 3.3274 3.2904 3.2888
45 1.5759 1.5486 1.5330 1.5306
50 0.6582 0.6468 0.6411 0.6393

The parameter valuesare s —40, o,=02, 0,=03, p, =05, r=0.05, r=05833, g, =002, and
g, =0.03:

Panel B:q; >r>qp

S, Chen and Yeh Our upper bound American values European values
30 N.A. 10.2427 10.0000 8.8666
35 N.A. 6.1506 5.4948 5.0592
40 N.A. 3.2191 2.6432 2.4938
45 N.A. 1.4827 1.1259 1.0776
50 N.A. 0.6128 0.4328 0.4177

The parameter values are s —40, 0, =02, 0,=03, p, =05, r=0.05, r=05833, g, =0.08,and
q,=0.03-

TABLE 6
Upper bounds of the American maximum call options on two dividend paying stocks

Panel A: r>q, >0

K Chen and Yeh Our upper bound American values European values
30 13.8760 13.7591 13.4800 13.4771
35 9.1213 9.0819 8.8598 8.8591
40 5.1847 5.1969 5.0358 5.0357
45 2.5682 2.5982 2.4944 2.4944
50 1.1553 1.1817 1.1221 1.1221

The parameter values are s -s,-40, 0,=02, 0,=03, p;, =05, r=005, r=0.5833, g, =0.02,
and q, =0.03-

Panel B: qi1>r>qp

K Chen and Yeh Our upper bound American values European values
30 N.A. 13.5890 12.8706 12.7852
35 N.A. 8.9025 8.3002 8.2494
40 N.A. 5.0450 4.6415 4.6207
45 N.A. 2.4975 2.2960 2.2899
50 N.A. 1.1263 1.0488 1.0474

The parameter values are s —s, 40, 0,=02, 0,=03, p;, =05, r=0.05, r=05833, g =008,
and q, =0.03-
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