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Generalized Analytical Upper Bounds for  

American Option Prices 

 

 

Abstract 
 

This paper generalizes and tightens the analytical upper bounds of Chen and Yeh 
(2002) for American options under stochastic interest rates, stochastic volatility, and 
jumps where American option prices are difficult to compute with accuracy. We first 
generalize Theorem 1 of Chen and Yeh (2002) and apply it to derive a tighter upper 
bound for American calls when the interest rate is greater than the dividend yield. Our 
upper bounds are not only tight, but also converging to the accurate American call 
option prices when dividend yield or strike price is small or when volatility is large. 
We then propose a general theorem which can be applied to derive upper bounds for 
American options whose payoffs depend on several risky assets. As a demonstration, 
we apply our general theorem to derive upper bounds for American exchange options 
and American maximum options on multiple risky assets. 
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I. Introduction 
 
American options require numerical methods, such as lattice methods, to provide 
accurate price estimates. The valuation problem is very time-consuming and difficult 
when multiple state variables are involved. For example, the options under stochastic 
interest rates, stochastic volatility, and jumps involve four random factors and require 
expensive lattice models. Another complex example is pricing an American option 
whose payoff depends on more than one underlying asset. For these situations, tight 
analytical upper bounds can provide useful benchmark values and control variates for 
the correction of numerical errors. 
 
Option pricing bounds are useful, because (1) they provide qualitative properties of 
options, (2) they can be used to screen market data for empirical research, (3) they 
shed light on hedging, and (4) they are generally obtained with the least assumptions 
on the investor’s preferences and the distributions of the underlying asset prices. 
 
Option pricing bounds may be derived by (1) eliminating simple dominance among 
different portfolios, (see Merton (1973)) (2) applying a linear programming approach, 
(see Garman (1976), Ritchken (1985), and Ritchken and Kuo (1988)) (3) using some 
mathematical inequalities such as Jensen’s inequality and Cauchy’s inequality, (see Lo 
(1987), Boyle and Lin (1997), and Chen and Yeh (2002)) and (4) using second-order 
stochastic dominance (see Levy (1985) and Constantinides and Perrakis (2002)).  
 
Probably due to the difficulty in dealing with the early exercise problem, the work on 
American option pricing bounds is limited. Carr, Jarrow, and Myneni (1992) derived 
an upper bound for American put options under the Black-Scholes economy, while 
Broadie and Detemple (1996) developed upper and lower bounds using the capped 
call option pricing technique (i.e. an American call option is a simple dominant 
portfolio of the capped call). Although the bounds provided by Carr, Jarrow, and 
Myneni (1992) and Broadie and Detemple (1996) are generally tight, their upper 
bounds are not in analytical form (except under the Black-Scholes economy) and 
require numerical techniques. Chen and Yeh (2002) provided analytical form upper 
bounds that are applicable to general American options, e.g. American calls on 
dividend paying stocks, American calls on futures, American puts on dividend paying 
stocks, and American puts on futures. Moreover, their upper bounds rely neither on 
the distribution of the state variable, nor do they rely on continuous time trading. 
 
Although Chen and Yeh’s (2002) analytical form upper bounds are very general, they 
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can be applied only in the case where the interest rate is greater than the dividend 
yield. Their upper bounds may be inadequate for options on several underlying assets, 
because it is likely to happen that some underlying asset have a dividend yield larger 
than the risk-free rate. In contrast, this article provides two general theorems which 
can be used to derive upper bounds for American options under general situations, 
including the case where the dividend yield is larger than the risk-free rate. As a 
demonstration, we apply our general theorems to derive upper bounds for American 
calls when the interest rate is smaller than the dividend yield, for American exchange 
options, and for American maximum options on multiple risky assets. 
 
We contribute to the literature on option pricing bounds in several ways. First, 
previous papers on option bounds concentrated on European options with a single 
underlying asset or a single state variable. In contrast, we provide upper bounds for 
American options whose pricing involves several risky assets and/or several risk 
factors (e.g. stochastic interest rates, stochastic volatility, and jumps) for each asset 
price process. Secondly, our upper bounds are not only tight, but also converging to 
the accurate American call option prices when dividend yield or strike price is small 
or when volatility is large. Thirdly, we correct typos in Chen and Yeh (2002) and 
provide numerical results to investigate the tightness of their upper bounds and the 
tightness of ours. The numerical results indicate that our upper bounds are generally 
tighter than those of Chen and Yeh (2002). 
 
The rest of this article proceeds as follows. Section II provides a general analysis for 
obtaining upper bounds of American options. In this section two general theorems for 
developing American upper bounds are introduced. Section III discusses upper 
bounds under stochastic interest rates, stochastic volatility, and jumps using the 
inversion Fourier method. This method was used by Heston (1993), Scott (1997), 
Bakshi, Cao, and Chen (1997), and Chen and Yeh (2002), etc. We also derive upper 
bounds for American exchange options and American maximum options under the 
Black-Scholes economy in this section. Section IV provides numerical results to 
analyze the tightness of our upper bounds. Section V concludes the paper. 
 
II. General Analysis 
 
Theorem 1 of Chen and Yeh (2002) shows that an American option is bounded from 
above by the risk-neutral expectation of its maturity payoff if this expectation is 
greater than the intrinsic value at all times.1 This theorem is very general and the only 

                                                 
1 Following Chen and Yeh (2002), all expectations are taken under the risk-neutral measure throughout 
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assumptions required are that (i) the risk-neutral measure exists and (ii) the nominal 
risk-free rate is strictly positive. We restate Theorem 1 of Chen and Yeh (2002) as 
follows: 
 
Theorem 1 of Chen and Yeh (2002) 
An American option is bounded from above by the risk-neutral expectation of its 
maturity payoff if this expectation is greater than the intrinsic value at all times. 
 
Theorem 1 of Chen and Yeh (2002) can be presented in formal mathematics as 
follows: 
Let T be the maturity date of the American option, and ( )tX  be the intrinsic value at 
time t. If  for all t, where ( )[ ] ( )tXTXEt > [ ]⋅tE  represents taking the expectation in 
the risk-neutral world at time t, then ( )[ ]TXEt  is an upper bound of the American 
option value. 
 
This article will extend the idea of Chen and Yeh in a way that it is not necessary to 
use the maturity payoff ( ) of the American option to derive the upper bound. 
Instead, we replace  with other functions in our generalized Theorem 1, which 
can be applied to derive tighter upper bounds. Note that both their theorem and our 
theorem are proved by a discrete approximation similar to the lattice approach. The 
results will hold in continuous time as 

( )TX
( )TX

t∆  reaches a limit. 
 

A. The Generalized Theorem 1 
 
The Generalized Theorem 1 of Chen and Yeh (2002) 
Let T be the maturity of the option contract. Define ( ) ( ) ( )TXTthTtY ,, = , where 

 is the intrinsic value of the option at time t and ( )tX ( )Tth ,  is any function which 
satisfies 

a. ( ) ( ststh ,, )δ≥  for any st < , where ( )st,δ  is the discount factor 
from time  to time , t s

  b.  for any ( ) ( ) ( TshsthTth ,,, = ) ( )Tts ,∈ , 
  c. . ( ) 1, =tth
If ( )[ ] ( )tXTtYEt >,  for all t, then ( )[ ]TtYEt ,  is an upper bound of the American 
option value at time t. 
 
Proof: 
 

                                                                                                                                            
the paper. 
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Following Chen and Yeh (2002), we will prove this theorem using a discrete 
approximation similar to the lattice approach. At time tT ∆− , consider the function 

defined in the generalized Theorem 1. It is true that 

 

( )TtTY ,∆−  ( )[ ]TtTYE tT ,∆−∆−  
is larger than the discounted terminal value: 

( )[ ] ( ) ( )[ ]
( ) ([ ],,

,,
TXTtTE

TXTtThETtTYE

tT

tTtT

∆−> )
∆−=∆−

∆−

∆−∆−

δ
 

where the second inequality comes from condition a. of the generalized Theorem 1. 

Am
By constraint, ( )[ ]TtTYE tT ,∆−∆−  is also larger than the intrinsic value ( ( )tTX ∆− ) 
and thus is an upper bound of th erican option price at time tT ∆e − .  

Since ( )[ ]
 

( )tTXTtTYE tT ∆−≥∆−∆− ,  is true, it is true that TET −( )[ ]TtYt ,22 ∆∆−  is 
reate American option at time : r than the continuation value of the tT ∆− 2g

( )[ ] ( ) ( )[ ]
( )
( ) ( ) ( )[ ][ ]
( ) ( )[ ][ ]
( ) ( )[ ][ ]
( ) ( ) ( )[ ] ( ){ }[ ].,,max,2

,,2
,,2
,,2

2,2

2

2

2

2

2

tTXTXTtTEtTtTE
TtTYEtTtTE
TtTYEtTtThE

TXTtThEtTtThE

tThETtTY

tTtT

tTtT

tTtT

tTtT

tT

∆−∆−∆−∆−>
∆−∆−∆−>
∆−∆−∆−=
∆−∆−∆−=

( ) ( )[ ],,2
,

2

2

TXTtThtTtThE
TXTE

tT

tT

∆−∆−∆−=
∆−=∆−

∆−∆−

∆−∆−

∆−∆−

∆−∆−

∆−

δδ
δ

 

The second line follows from condition b. and the fifth line follows from condition a. 
of the generalized Theorem 1. By constraint, 

∆−

∆−

( )[ ]TtTYE tT ,22 ∆−∆−  is also greater 
than the intrinsic value of the American option and thus is an upper bound of the 
American option value at time tT ∆− 2 . 
 
By mathematical induction, it i ( )[ ]TtYEt ,  s straightforward to show that is an upper 

ound of the American option value. The result will hold in continuous time when 

Note that all expectations are taken under the risk-neutral world. The main difference 
etween Chen and Yeh’s (2002) Theorem 1 and our generalized Theorem 1 is that we 

b
t∆  approaches zero.   (Q.E.D) 

 

b
multiply the maturity payoff function by a function ( )Tth , . Therefore, their upper 
bound is a special case of ours where ( ) 1, =Tth . As long as we can find an 
appropriate function ( )Tth ,  which is smaller than one and satisfies the criteria in the 
generalized Theorem 1, then ( )[ ]TtYEt ,  is an upper bound which is tighter than 
Chen and Yeh’s. 
 
It should be noted that when the function ( )Tth ,  is always smaller than one, 

( )[ ] ( )[ ][ ]TsYEETtYE stt ,, ≤ , for any ( )Tts ,∈ . In this case, our upper bound is a 
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sub-martingale process. In contrast, the upper bound of Chen and Yeh is a martingale 
ith the discounted American option prices, the discounted 

( )[ ]

process. Nevertheless, as w
processes of both upper bounds are super-martingale processes, i.e. 

( ) ( )[ ][ ]
( )[ ] ( ) ( )[ ][ ].,

,,,,
TXEstETXE

TsYEstETtYE

stt

stt

δ
δ

≥
≥

 

 
B. A Further Extension: Theorem 2 
 

he generalized Theorem 1 is actually still restrictive in the sense that the upper 
f the American option. If we extend our 

oncept to allow to be any random variables which satisfy similar (or same) 

T
bound is related to the maturity payoff o
c ( )TtY ,  
criteria in the generalized Theorem 1, then it is possible to derive upper bounds for 
general types of American options. Next, we will first establish our Theorem 2 and 
give three applications later on. 
 
Theorem 2 
Let T be the maturity of the optio ( )TtY ,  n contract. Define as a random variable at 

me t which satisfies 
)≥, , 

ti
( ) (TXTT a. Y

 b. ( )[ ] ( ) ( )[ ]TttYtttETtYE tt ,,, ∆+∆+≥ δ  for any [ ]tTt ∆−∈ ,0 , 
 c. ( )[ ]TtYEt ≥, ( )tX  for all [ ]Tt ,0∈ , 

 is the intrinsic value of the option at time t. Thus, where ( )X t ( )[ ]TtYEt ,  is an 
d of the American value. 

 
upper boun

Proof. 
 

e At tim t , it is true that T ∆− ( )[ ]TtTYE tT ,∆−∆−  is larger than the discounted 

( )[ ]
terminal value: 

( ) ( )[ ]
( ) ([ ],,

,,
)TXTtTE
TTYTtT

tT

tT

∆−=
, ETtTYE tT ≥∆−∆− ∆−

∆−

∆−

δ
δ

 

he first inequality comes from condition b. of Theorem 2. From condition c., 

tT ,∆−∆−  is also larger than the intrinsic value and hence is an upper bound 
erican option price at time 

where t
( )[ ]TtTYE

tT ∆− .of the Am  Since ( )[ ] ( )tTXTtTYE tT ∆−≥∆−∆− ,  
is true, it is true that ( )[ ]TtTYE tT ,22 ∆−∆−  is grea
the American option at time 

ter than the continuation value of 
tT ∆− 2 : 
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( )[ ] ( ) ( )[
) ( )[ ]

E
TtTYEt

TYtTETtTYE

T

tT

tTtT

≥
∆−∆−
]

([ ]
( ) ( ) ( )[ ] ( ){ }[ ]tTXTXTtTEtTtT

TtTE
TtTt

tTt

tT

∆−∆−∆−∆−
∆−=

∆−∆−∆−≥∆−

−

∆−

∆−∆−

2
,

2,2 22

∆−∆

∆−

,,max,
,2

,,

2

2

δδ
δ
δ

 
By constraint,  is also greater than the intrinsic value of the 
Am bound of the American option value at time 

. By mathematical induction, it is straightforward to show that s 
n upper bound of the American option value at time . The result will hold in 

approach

The ide

the discounted value of the 
pper bound in the next period. Condition c. is a necessary condition for an upper 

( )[ ]TtTYE tT ,22 ∆−∆−

erican option and thus is an upper 
tT ∆− 2 ( )[ ]TtYEt ,  i

a t
continuous time when es zero.   (Q.E.D) 
 

a of our theorem 2 is quite intuitive and can be reasoned as follows. Condition 
a. is the terminal condition which has to be fulfilled by any upper bound. Condition b. 
implies that the upper bound for this period is larger than 

t∆  

u
bound, i.e. an upper bound must be greater than the intrinsic value of the option at all 
times. Combining all three conditions will guarantee that ( )[ ]TtYEt ,  is an upper 
bound of the American option price. 
 
It is worth noting that Theorem 1 of Chen and Yeh (2002), the generalized Theorem 1,
and Theorem 2 are sustained even if the payoff func

 
tion ( )  or our gen

function ( )TtY ,  depends on prices
TX eral 

 of multiple underlying assets. However, the 
heorem 1 of Chen and Yeh is applicable only when dividend yields of all assets are 

ons. 

T
smaller than the risk-free rate.2  Now, we will show some applications of the 
generalized Theorem 1 and Theorem 2 in the following subsecti  
 
C. Applications of the Generalized Theorem 1 and Theorem 2 
 
1. American Calls on Dividend Paying Stocks (when qr > ) 

 that 
atisfies our criteria, then we say 

 
( )TtY ,According to the generalized Theorem 1, if one can find a suitable 

( )[ ]TtYEt ,  is an upper bound of the American 

ption price. Let t −= , where S is the stock price, K is 

s

( ) ( ) { }durq
T

uu∫ −
o 0,max, KSeTtY T

the strike price, r  is the interest rate, and q  is the dividend yield of the stock.
                                                

3 It is 
 

2 Chen and Yeh’s upper bound may be very restrictive for certain types of options on multiple 
is an

re  and
sets, respecti

 possible confusion, subscripts are sometimes omitted for simplicity. 

underlying assets. For example, [ ])(TXEt  upper bound of the American exchange option price 

only when qqr ≥≥ , whe  q  are the dividend yields of the first and second 
underlying as vely. 

 

12 1q 2

3 Note that when there can be no
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easy to show that 
)

= t u du
eTth ,  satisfies three criteria in the generalized 

ver, we can verify that 

( ) (∫ −
T

u rq

Theorem 1. Moreo ( )[ ] ( )tX>  for all t :  
 

(1)  

( ) ( ) ( )
0,maxma KeeSEeE

durqdurq

Tt

durq

t
t uut uut uu

⎬
⎫

⎨
⎧

⎥
⎤

⎢
⎡ ∫−∫≥

⎦
⎢
⎣

⎡ ∫ −−−

TtYEt ,

{ }.0,max

0,x

KS

KS

t

T

TTT

−>
⎭⎩ ⎦⎣

⎥
⎤

−
 

 
The first line follows from Jensen’s inequality and the second line holds since 

 and 

{ }

( )
t

durq

Tt SeSE
T

t uu =⎥
⎦

⎤
⎢
⎣

⎡ ∫ −
qr > . Therefore, ( )[ ]TtYEt ,  is an upper bound of the 

 

Since 

American call option. 

qr >  is true, our upper bound ( t uu ) is tighter than 

hen and Yeh’s ( ). Furthermore, our upper bound converges to 
the accurate American call option price under some circumstances. For instance, it is 

own  is zero, the American option
price of its European counterpart (see Merton (1973)). Our upper bound also 

⎬
⎫

⎨
⎧ ∫−∫=

−−
0,max,

T

t u
T

t uu dur

T

durq
KeSeTt . 

er, this upper bound is not tighter than the above one and thus is not used in the 
numerical analysis later on. 
 
2. American Call Options on Dividend Paying Stocks (when 

{ }⎥
⎦

⎤( )
T

⎢
⎣

⎡
−∫ −

0,max KSeE T

durq

t

C { }[ ]0,max KSE Tt −

well kn that when the dividend yield  price equals the 

converges to the European option price when the dividend yield approaches zero. 
Moreover, when the strike price is very small or when volatility is very large, both the 
accurate American call option price and our upper bound will converge to the current 
stock price. 
 
From our Theorem 2 we can propose another upper bound for American call options 
where ( )TtY ,  follows: 

( ) [ ]

⎭⎩

Howev

Y

qr < ) 

Chen and Yeh’s Theorem 1 can be applied to American options only when the interest 
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rate is larger than the dividend yield. On the other hand, our Theorem 2 is applicable 
o matter whether the interest rate is larger or smaller than the dividend yield. When 

n Y  for 
merican call options as follows: 

n
the interest rate is smaller than the dividend yield, we define a functio Tt,( )
A

(2)    ( ) [ ]
.0,max,
⎭
⎬
⎫

⎩
⎨
⎧

−∫=
−

KSeTtY T

durq
T

t uu  

 
First of all, ( ) { } ( )TXKSTTY T =−= max, 0, . This satisfies condition a. of Theorem 
2. Secondly, also fulfills condition b. of Theorem 2 as follows: 

 
max

0,max,

TttYtttE

KeStttE

eSE

KeSETtYE

t

durq

Tt

Tt

durq

Ttt

tt uu

T

t

T

t uu

∆+∆+=

⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−∫∆+>

⎤
⎢
⎡

⎨
⎧ ∫>

⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−∫=

∆+

∆+

−

−

δ

δ

at are always greater than the intrinsic value at 
any time t: 

(4)  
0,max0,max KeSEKSeE

durq

TtT

durq

t

T

t uu
T

t uu

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−∫≥⎥

⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−∫ −−

 

rst line follows from Jensen’s inequality. Thus, from Theorem 2 we know 

 is indeed an upper bound for American call 

( )TtY ,  

(3)   
0,K

durq

T

t uu

⎥
⎦⎣ ⎭
⎬
⎫

⎩
−

−

 

( )[ ] ( )

( )

( ) ( )

( ) ( )[ ].,,

0,max,

 
We finally will show th ( )[ ]TtYEt ,  

( ) ( )

{ },0,max KSt −=

where the fi

that 
( )

⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−∫ −
0,max KSeE T

durq

t

T

t uu

options when qr < . 
 

 

this option is 

3. American Exchange Options 

An exchange option is an option to exchange one asset for another. The payoff from 

( ) { }0,max 21 TT SSTX −= , 
set one and asset two at time T, respectively. A 

losed-form solution for valuing European exchange option was first produced by 
where TS1  and TS2  are values of as
c
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Margrabe (1978) under the Black-Scholes economy. 
 

[ ])(TXEt  From Chen and Yeh’s Theorem 1, it is easy to verify that is an upper 
of eri

n.  

sing a similar procedure we can easily show that conditions a. to c. of Theorem 2 are 
 an upper bound of the American exchange 

f that our upper bound is tighter than Chen and 
ally when both  and are small or when is large and  is 

small. Furthermore, it is true that our upper bound is applicable for any 

bound the Am can exchange option when 12 qqr ≥≥ , where 1q  and 2q  are 
the dividend yields of asset one and asset two, respectively. Now, we will derive 
another upper bound of the American exchange optio
 
Consider a function ( )TtY ,  as follows: 

(5)        ( ) [ ] [ ]

⎭
⎬
⎫

⎩
⎨
⎧ ∫−∫=

−−
0,max, 2

),min(

1
211

T

durqq

T

durq
SeSeTtY

T

t uuu
T

t uu . 

U
satisfied by ),( TtY . Thus, [ ]),( TtYEt  is
option price. It is not dif icult to show 
Yeh’s, especi 1  1q 2q  q 2q

r , 1q , and 

Stulz (1982). Stulz (1982) showed that many contingent claims, for example 
ption-bonds, compensation plans, risk sharing contracts, etc., have a payoff function 

the maximum or 
inimum of two risky assets. The payoff of a European call option on the maximum 

2q . 
 
4. American Maximun Options on Multiple Risky Assets 
 
Options on the maximum or minimum of two risky assets were first introduced by 

o
which includes the payoff function of a put or a call option on 
m
of two risky assets is 

( ) { } }{ 0,,maxmax 21 KSSTX TT −= , 
where TS1  and TS2  are values of asset one and asset two at time T, respectively. A 
closed-form solution, which involves the bivariate cumulative standard normal 
distribution functions, for valuing this option was derived in Stulz (1982) under the 
Black-Scholes economy. 
 

ing m Follow Theore 1 of Chen and Yeh (2002), it is straightforward to show that the 
expected value of the maturity payoff at any arbitrary time t  is an upper bound of 
the American maximum option, because its value is always greater than the early 
exercise value, i.e., 
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{ } }{[ ] { }[ ]{ }
{ }{ }0,][],[maxmax

0,,maxmax0,,maxmax

21

2121

KSESE
KSSEKSSE

TtTt

TTtTTt

−≥
{ }{ }.0,,maxmax 21 KSS tt −>

−≥−
 

However, the above upper bound is sustained only when the dividend yields of all 
risky assets are smaller than the risk-free rate. 
 

e follows our Theorem 2, it is easy to 
rove that the expected value of the following function is also an upper bound of the 

because 

⎭
⎬
⎫

⎩
⎨

∫−∫∫

−−−

−−−

−−−

 
There are many points worth discussing. First of all, although the following function 
satisfies conditions a. and c. of Theorem 2, it does not satisfy condition b. of Theorem 
, and thus it is not an upper bound of the American maximum call option: 

Secondly, our upper bound is valid for any 

As a demonstration, this paper will derive another upper bound for the American 
maximum options using our Theorem 2. If on
p
American maximum option: 

(6)        ( ) [ ] [ ] [ ]

⎭
⎬
⎫

⎩
⎨
⎧ ∫−∫∫=

−−−
0,},max{max,

),min(

21
2121

T

t uuu
T

t uu
T

t uu durqq

T

durq

T

durq
KeSeSeTtY , 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

{ }{ }.0,,maxmax

0,][],[maxmax

0,,maxmax

0,},max{max

21

),min(

21

),min(

21

),min(

21

2121

2121

2121

KSS

eKESeESeE

KeESeSeE

KeSeSeE

tt

durqq

tT

durq

tT

durq

t

durqq

tT

durq

T

durq

t

durqq

T

durq

T

durq

t

T

t uuu
T

t uu
T

t uu

T

t uuu
T

t uu
T

t uu

T

t uuu
T

t uu
T

t uu

−>
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ ∫−
⎭
⎬
⎫

⎩
⎨
⎧ ∫∫≥
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⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ ∫∫≥

⎥
⎦

⎤
⎢
⎣

⎡ ⎧

2

( ) [ ] [ ]

⎭
⎬
⎫

⎩
⎨
⎧

−∫∫=
−−

0,},max{max,' 21
21 KSeSeTtY T

durq

T

durq
T

t uu
T

t uu . 

r , , and  as long as 
, e.g. . Thirdly, our upper bound is not necessarily smaller 

than that derived from  1 of Chen and Yeh (2002). The reason is due to the 

fact that the st ice in our
)n(

1q 2q
),min( 21 qqr > 21 qrq ≥≥

 Theorem

rike pr  upper bound (
[ ]∫ −
T

t uuu dur
Ke

,mi 21 ) is smaller than the 

strike price in Chen and Yeh’s upper bound (

qq

K ). However, our upper bound is tighter 

small. When both upper bounds are applicable, one can take the minimum of both 
upper bounds as the upper bound of the American maximum option price. Finally, our 

than Chen and Yeh’s upper bound when the dividend yields of all risky assets are 
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upper bound will converge to the accurate American call option price under some 
circumstances, e.g. when the dividend yield or strike price is very small. 
 
Johnson (1987) and Boyle and Tse (1990) further extended the analysis of Stulz to the 
pricing of European maximum options on n risky assets under the Black-Scholes 
conomy. The payoff of a European call option on the maximum of n risky assets is e

( ) { } }{ .0,,,,maxmax 21 KSSSTX nTTT −= L  
Similarly, one can apply our Theorem 2 to show that the expected value of the 
following function is an upper bound of the American maximum option on n risky 
assets: 

t under the Black-Scholes economy where interest rates and dividend yields 
 constant, the above upper bound is actually the price of a European call option on 

1 tTq − 2 tTq −

and , and adjusted strike price . Therefore, the analytical 

Tse (1990) 
are directly applicable to our upper bounds. 

oth Chen and Yen’s upper bounds and our upper bounds have analytical solutions 
 price models. In fact, as long as a European option has an analytical 

lution under a model, both upper bounds also have analytical solutions under the 

s 
VSIJ model) in the single asset cases. However, we apply the Black-Scholes model 

                                                

  ( ) [ ] [ ] [ ] [ ]
.0,},,,max{max,

)min(

21
,,121

⎭
⎬
⎫

⎩
⎨
⎧ ∫−∫∫∫=

−−−−
T

t unuu
T

t unu
T

t uu
T

t uu durqq

nT

durq

T

durq

T

durq
KeSeSeSeTtY K

L  

Note tha
are

the maximum of n risky assets with adjusted initial prices 1teS , 2teS , …, 

)( tTq
nt

n − ∫
T

t nuu duqq )min( ,,1 K

solutions of Johnson (1987) and the approximate solutions of Boyle and 

 
III. Modeling 
 

)( )(

eS Ke

B
under many asset
so
same model, because both upper bounds can be regarded as European options with an 
adjusted maturity payoff.4 For example, a European option has an analytical solution 
under the stochastic volatility model of Heston (1993) and so does our upper bound. 
 
In order to compare with Chen and Yeh (2002), we will derive analytical solutions for 
our upper bounds under stochastic interest rates, stochastic volatility, and jump
(S
in the multiple asset cases for simplicity. 
 

 
4 For example, Chen and Yeh’s upper bound ( )[ ]TXEt  is actually the price of a European option with 

an adjusted payoff . )(TXe
T

t u dur∫
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A. Single Asset Cases 
 
1. American Calls on Dividend Paying Stocks when qr >  
 
The Black-Scholes model has been extended to an environment under the stochastic 

e, He on (1993), Scott 
977), and Bakshi, Cao, and Chen (1997). Following Chen and Yeh (2002), we 

interest rate, stochastic volatility, and jumps; see for exampl st
(1
assume that the stock price process is log normal and the drift and diffusion of the 
stock price process follow the square root processes, 

     S
tttttt dWvSdtSydS += , 

(7)     ( ) v
tttt dWvdtvdv γβα +−= , 

( ) r
tttt dWygdtybady +−= , 

 the stock price, where dry −= , S  isttt r  is the in te, is the continuous 
dividend yield, 

terest ra d  
ν  is the stock return variance, and α , β , γ , , , and a b g  are 

ters associ v ρ

sitive, because

(8)   

( ) 21

21

,

x

Π−Π=

Π⎥
⎦

⎢
⎣
∫−Π⎥

⎦
⎢
⎣

∫=

∫

TtKMS

eKEeSE

t

Tt
t ut u

T

t

 

     . 

To solve for the two probabilities and 

parame ate with the processes. Finally, tdWdW tt =  and the interest 

rate process is assumed to be independent of the stock and the variance processes. 
 
Note that the processes v  and y  are strictly po  they follow the 
square root processes. The upper bound of the American call options is 

d dS

t t

( ) ( ){ }

( ) ( )

0,ma

⎤⎡⎤⎡

⎥
⎦

⎤
⎢
⎣

⎡
−=

−−

−
KSeEU

duyduy

T

duy

t
C

TT

u

where 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡ ∫=
−

T

t u duy
eETtM ,

( )TtM , , we first identify the PDE where the 
: 

 
upper bound has to satisfy
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ργγ

 (9)   

where ( )Sx ln= , tT −=τ , and λ  and are market prices of risk associated with 
 Plugg g (8) into e

,

(10)   

l  
v  and in  (9), w  obtain the following PDEs for the probabilities 

d ( )TM , 
 

y .
an t

( )[ ] ( )[ ] ,0
2
1

2
1

2
1

2
1

11111

11
2

1
2

11

=Π−Π+Π+Π+−+Π+−+

Π+Π+Π+Π+Π
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γ
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yygvvv
 

( )[ ] ( )[ ] ,0
2
1

2
1

2
1

2
1

22222

2
2

2
2

2
2

22

=Π−Π+Π+−+Π+−+Π+

Π+Π+Π+Π−Π

τργλααβ

γ

xvyvx

yyy
y

vvxxx

vylaabvy

ygyg
M
M

vvv
 (11)  

and 

(12)  ( )[ ] .0
2
1 2 =−−+−+ yMMMylaabyMg yyy τ  

 
Fi t, we will solve from equation (12). We derive its closed-form solution 

   

rs ( )TtM ,  
as follows: 

   ( ) ( ) ,),( ,, tyTtBTtAeTtM +=  
w e shown in Appendix . It can be easily shown that the here ( )TtA ,  and ( )TtB ,  ar B
charact unctio  and 2f  for solving 1eristic f ns 1f Π  and 2Π  satisfy the same PDEs 
with the boundary condi n at Tttio =  being uxf = . With this boundary condition, 
we can derive the characteristic f ons as fo

( ) ( )

ie
uncti llows, 

(13)    
( ) ( ) ,,,, 111 iuxyTtEvTtDTtC tteuf +++=

( ) ( ) ( ) ( ) ( )( ) ,,ln,,,
2

1

222 TtMiuxyTtEvTtDTtC tteuf −+++=
 

where  and ( )TtC j , , ( )TtD j , , ( )TtE j ,  ( 2,1=j ) are shown in Appendix B. 

According the inversion theorem, probabilities and characteristic functions have the 

(14)             

following relationship 

( )
.2,1Re1

2
1

0

ln

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=Π ∫

∞
−

jdu
iu

ufe j
Kiu

j π
 

 
. American Calls on Dividend Paying Stocks when 2 qr <  
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To derive the upper bound of American calls when qr < , we assume the same asset 
t price model as in the previous subsection except tha

(15)   ( ) ,rdWygdtybayd ′+′−=′  tttt

′ ttt rqy . Following the similar procedure one can derive the upper 
f the American

(16)   

−=′

′

KS

KeSE

KSeEU

t

duy

Tt

Tt
C

T

t u

t

 

The two probabilities  and 

where = 0>−

bound o  call options as: 

( )⎡ ∫ ′ duy
T

u ( ){ }

( )

.

0,max

21

21

Π′−Π′=

Π′−Π′⎥
⎦

⎤
⎢
⎣

⎡ ∫=

⎥
⎦

⎤
⎢
⎣

1Π′ 2Π′  in equation (16) follow the same formula as 
renequation (14), but with two diffe t characteristic functions as follows: 

(17)    ( ) ( ) ( ) ( ) iuxyTtEvTtDTtC tjtjjeuf +
j

′′+′+′=′ ,,, , 

where , and ( )TtC j ,′ , ( )TtD j ,′ ( )TtE j ,′  (where 2,1=j ) are shown in Appendix C. 

 
. Jumps 

 has been well documented that the jump component is important for pricing stock 

3
 
It
and stock index options. The jump-diffusion model was first introduced by Merton 
(1976) and then used by Bates (1991), Bakshi, Cao, and Chen (1997), and Scott 
(1997), etc. Following Bakshi, Cao, and Chen (1997), we assume the following 
jump-diffusion process: 
 

,)( ttt
S

ttttJJttt dSJdWvSdtSSydS ξµλ ++−=  

[ ] [ ]( ),,1ln~1ln 22
2
1

JJJt NJ σσµ −++  

where: 
Jλ  is the frequency of jumps per year; 

nditional on a jump occurring) that is 
log

tJ  is the percentage jump size (co
normally, identically, and independently distributed over time, with 

unconditional mean Jµ . The standard deviation of [ ]tJ+1ln  is Jσ ; 

tξ  is a Poisson jump counter with intensity Jλ ; tha { } dtd Jt is, t λξ ==1Pr  and 
{ } dtd t λξ −== 10 ; Pr
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tξ  and are uncorrelated with each other or with  and  

 
he characteristic functions for the jump component are shown by Bakshi, Cao, and 

(18)   

tJ  S
tW , v

tW , r
tW .

T
Chen (1997) and Scott (1997) as: 

( ) ( )( ) ( ) ( )( )[ ] ( )( )
( ) ( ) ( ) ( )( )[ ] ( )( ).11exp

,11
2

2

12/
2

12/
1

tTiuetTuf

tTiuet

JJ
iuiuiu

JJJ

JJ
iuiuiu

JJJJ

J

J

−−−+−=

−−−+
−

+

µλµλ

µλµ
σ

σ

 

Bakshi, Cao, and Chen (1997) and Scott (1997) show that if jumps occur 

. Multiple Asset Cases 
ptions on Dividend Paying Stocks 

Margrabe (1978) valued an option to exchange one asset for another, which is 
calle

1exp Tuf −+= µλ

independently with the stock price level and interest rates, then the characteristic 
function of the jump component can be combined with the characteristic function of 
the diffusion component. Therefore, the characteristic functions are respectively 
multiplied by the original functions of (14) or (17) to calculate upper bounds. 
 
B
1. American Exchange O
 

d an exchange option. We state his model in this subsection and use his setup to 
derive a closed-form solution for the upper bound of the American exchange option. 
Following Margrabe (1978) we assume that the two asset prices follow:5  

,ititiitiit dWSdtSydS σ+=  2,1=i  
where is the dividend yield of asset ii qry −= , iq  i , iσ  is the standard deviation 

n of asset  a

or simplicity, we follow Margrabe (1978) to assume that dividend yields and the 

of retur i , nd itdW  is the Brownian motion of asset i . 
 
F
risk-free rate are constant. Under this simplified assumption, Margrabe (1978) shows 
that the price of the European exchange option is: 

(19)                ( ) ( )2211
21 eSzNeSw qq τ −− −= zNttt
τ , 

where   

,2
1ln

2
1ln

2
12

2

1

2

2

1

1

2

1

τσ

τσ

τσ

τστ

τ

⎟
⎠
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⎜
⎝
⎛ +−+⎟

⎠
⎞⎜

⎝
⎛

=

+⎟
⎠
⎞

⎜
⎝
⎛

=
−

−

qqS
S

eS
eS

z

t

t

q
t

q
t

 

                                                 
5 For simplicity we assume that interest rate and dividend yield are constant in the multiple asset case. 
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,τσ−= zz     12

   ,tT −=τ  
   ,

   

2 2112
2
2

2
1

2 σσρσσσ −+=  

,,
2

2

1

1
12 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

S
dS

S
dSCorrρ  

( )⋅N  = the cumulative density function (c.d.f) of the standard normal 
distribution. 

Similar to the proof of Margrabe (1978), we can derive upper bounds for American 
ns under the Black-Sc oles economy. According to the results in the 

previous section, one upper bound of an American exchange option is: 
 

0,max, 2

),min(

1
211

T

dsrqq

T

dsrq

tt SeSeETtYE
T

t

T

t ⎥
⎤

⎢ ⎬
⎫

⎨
∫−∫=

−−

 

bove equation 
an be he va change option where the initial value 

of asset one is and the value initial of asset two is 

Therefore, our upper bound has the following closed-form solution: 

 

exchange optio h

( )[ ] [ ] [ ]⎡ ⎧

{ }[ ]0,max 21 TT
r

t eE ζζτ −=
⎦⎣ ⎭⎩

−

where τζ 1
11

q
TT eS≡  and τζ ×≡ ),min(

22
21 qq

TT eS . The upper bound in the a
c  regarded as t lue of an European ex

τζ 1
11

q
tt eS=  τζ ×= ),min(

22
21 qq

tt eS . 
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2

),min(
2

*
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221 zNeSzNS qqq
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1 τσ
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⎞

⎝
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qqS
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212
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⎞

⎝

z

qS

2. American Options on Maximum of Two Risky Assets 
 

nder the Black-Scholes economy, Stulz (1982) derived the closed-form solution for 
a European call option on the maximum of two risky assets as follows: 

),,,,,,,,,,(),,,,,(),,,,,(
),,,,,,,,,(

21212121min222111

21212121max

τσρσσστστσ
τσρσσσ

qqrKSSCqrKSCqrKSC
qqrKSSC

tttBStBS
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2
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where (.)BSC  are Black-Scholes formulae for European call options and  is 
e pri uropean call option on the minimum of two risky assets which follows: 

(.)minC
th ce of a E
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As stated in the previous section, our upper bound for the American maximum call 
option is actually the price of a European maximum call option with adjusted initial 
stock prices and adjusted strike price. Therefore, it follows a similar formula, i.e. 

 

 
IV. Numerical Results 
 

interest rates, volatility, and jumps model are not correct. The correct formulae are 
shown in Appendix A. The numerical results in Chen and Yeh (2002) are thus wrong. 

),,,,,,,,,( 21122121
),min(

21max
2121 τσσρσστττ qqrKeeSeSC qqq

t
q

t
× .

A. Correct Numerical Results in Chen and Yeh (2002) 
 
The pricing formulae for Chen and Yeh’s (2002) upper bounds under the stochastic 

We report the correct numbers in their Table 1 and Table 2 to show the tightness of 
their upper bounds. 
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Table 1 shows their upper bounds of calls and puts under a stochastic volatility 
nvironment (SV model). The risk-free rate and the dividend yield remain constant e

and no jumps occur in the stock price. Their parameters are 100=tS , 04.0=tv , 
05.0=r , 03.0=q , 5.1=α , 04.0=β , 1.0=γ , 0=λ , 5.0−=ρ , and 1=τ . 

Table 1 shows that the original upper bounds are even smaller than the European 
option values, thus confirming that their formulae are doubtful. 
 

Table 2 shows the upper bounds of American calls on dividend paying stocks, puts on 

e also c pute th
European ption va es using rmulae in akshi, o, and hen (199  thes

Cao, and Chen (1997) 
sing S&P 500 index option data. Their parameters are 

non-dividend paying stocks, calls on futures, puts on futures, and their counterpart 
European option values under the stochastic volatility, stochastic interest rates, and 
jumps (SVSIJ) model. Following Chen and Yeh (2002), w om e 

 o lu  fo  B Ca  C 7) since e 
numbers serve as lower bounds of American option values. The parameter values used 
in Chen and Yeh (2002) are close to those estimated by Bakshi, 
u 100=tS , 100=tF , 

04.0=tv , 05.0=tr , 03.0=q , 5.1=α , 04.0=β , 1.0=γ , 0=λ , 5.0−=ρ , 
6.0=a , 02.0=b  (in Panels B and F, 05.0=b ), 6  05.0=g , 0=l , 0=Jµ , 

1.02 =Jσ , and 6.0=Jλ .  

 
From Table 2, we find that Chen and Yeh’s upper bounds are generally quite tight, 
because their values are very close to European option values. The differences 
between the upper bounds and the counterpart European option values are within 5% 

 fo ase r 
r 

of the counterpart European option values r most c s. The only exception is fo
American puts on non-dividend paying stocks where the differences may be large
than 30% (see Panel B and Panel F of Table 2). 
 

. American Calls on Dividend Paying Stocks (when B ) qr >
 
We now compare the tightness of our upper bound with that of Chen and Yeh’s for 
American calls on dividend paying stocks when qr > . We use the SVSIJ model and 
adopt the same parameter values as Table 2. We also calculate European option values 
as the benchmark values to investigate the tightness of both upper bounds. From Table 
3, we can see that our upper bound of calls is  tighter than Chen and Yeh’s  
pper bound when 

indeed
qr >u . On average, our upper bounds are 3.04% larger than 

European option values while Chen and Yeh’s upper bounds are 5.13% larger. 
                                                 
6 Note that the underlying asset does not pay a dividend in Panels B and F. Thus, we set  to 
match the initial risk-free rate. 

05.0=b
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C. American Calls on Dividend Paying Stocks (when qr < ) 

r Am
 
Chen and Yeh’s upper bounds are not available fo erican calls on dividend paying 
stocks when qr < . On the other hand, our upper bounds are still available in this 
case. To demonstrate the tightness of our upper bounds in this case, we also use the 
SVSIJ model and adopt the same parameter values as Table 2 except that we set 

03.0=tr  and 0 05.=tq The results are presented in Table 4. We find that when the 
dividend yield is larger than the risk-free rate our upper bounds are not as tigh

. 
t as the 

ase where the dividend yield is smaller than the risk-free rate. The results are 
r Am

e dividend yield is zero. 

Black-Scholes economy

c
expected, because our upper bounds work best (i.e. no error) fo erican calls when 
th
 

D. American Exchange Options 
 
Pricing American exchange options is a two-dimensional stochastic problem under the 

. Bjerksund and Stensland (1993) proved that the above 
two-dimensional stochastic problem can be simplified to a one-dimensional stochastic 
problem. Let ( )τσρσσσ ,,,,,,,, 21212121 bbrSSF  denote the price of an American 
exchange option on two assets with initial stock prices 1S  and 2S , risk-free rate r , 
risk-adjusted drift terms 1b  and 2b ,7 volatilities 1σ  and 2σ , correlation coefficient 

12ρ , and time to ma  turity τ . Bjerksund and Stensland (1993) showed that the 

 
following relationship holds: 

(22)   ( ) ( )τστσσρσσ ,0,0,,0,,,,,,,,,,,, 12212212112212121 bbbrSSFbbrSSF tttt −−= , 
 
where 2112

2
2

2
1

2
12 2 σσρσσσ −+= .  

 
Note that both the drift term and the volatility parameter related to the second asset is 
zero. Therefore, the left-hand side of the above equation corresponds to the price of an 

erican call where the underlying asset has current value tS1 , risk-adjusted drift 

21 bb − , and volatility 12

Am
σ , the exercise price and the ma  and turity of the call are tS2

τ , respectively, and where the risk-free rate is 2br − . 

o analyze the tightness of our upper bound, we need benchmark values of American 
ge options. We apply the adaptive mesh model of Figlewski and Gao (1999) to 

alculate the American exchange option price using the one-dimensional solution of 
                                                

 
T
exchan
c

 
7 The risk-adjusted terms 1b  ( ) are equal to 2b 1qr −  ( 2qr − ) in the Black and Scholes economy.
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Bjerksund and Stensland (1993). The number of time steps in the adaptive mesh 
model is 10,000. The parameter values are adopted from Chen, Chung, and Yang 
(2002) as follows: 401 =S , 2.01 =σ , 3.02 =σ , 5.012 =ρ , 05.0=r , 5833.0=τ , 

2 1q , and 2q  are varied. 

rom Panel A of Table 5, it is clear that our upp n

and 
 
F er bou ds are very tight, i.e. very close 

 the accurate prices of the American exchange options. Our upper bounds are about 

nderlying ssets are all. 

. American Maximum Call Options 

ws: 

S , 

to
1% larger than the accurate prices in general. It is also true that our upper bounds are 
tighter than Chen and Yeh’s (2002). In Panel B where the dividend yield of asset one 
is larger than the risk-free rate, Chen and Yeh’s upper bound is not available while 
ours is still workable. However, our upper bounds are not as tight as the case in Panel 
A. The results are consistent with our argument that our upper bounds are tighter 
when dividend yields of the u  a sm
 
E
 
We finally investigate the tightness of our upper bounds for American maximum call 
options on two dividend paying stocks. We use the lattice model of Chen, Chung, and 
Yang (2002) to calculate the accurate price of American maximum call options. The 
number of time steps in the lattice is limited to 1,000, because it is a two-dimensional 
lattice. To correct the numerical errors due to the chosen medium number of time 
steps, we employ the control variate technique of Hull and White (1988) to obtain the 
accurate price of American maximum call options as follo

( )EEAA PPPP(23)    maxmaxmaxmax
~~ −+= , 

where max
AP~  and max

EP~  are prices of American and European maximum call options 

calculated from the lattice model of Chen, Chung, and Yang (2002) with 1,000 time 

steps, respectively, and EPmax  is the closed-form solution of the European maximum 

call option. The parameter values used here are also from Chen, Chung, and Yang 
(2002) as follows: 4021 == SS , 2.01 =σ , 3.02 =σ , 5.012 =ρ , 05.0=r , 

5833.0=τ , and K , 1q , and 2q  are varied. 
 
From Panel A of Table 6, we find that our upper bounds are also quite tight for 

oney American m
rices

in-the-m aximum options. Our upper bounds are about 2% larger 
than the accurate p  in this case. As the options become out-of-the-money, our 
upper bounds are looser than the previous case, but the error is still smaller than 6%. 
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It is also interesting to know that our upper bounds work well for in-the-money cases 
while Chen and Yeh’s (2002) work well for out-of-the-money cases. Moreover, Chen 
and Yeh’s upper bound is not available while ours is still workable in Panel B where 
the dividend yield of as ger th e 

able 6 confirm our previous claim t
set one is lar an the risk-free rate. Generally speaking, th

results in T hat our upper bounds are tighter when 
ividend yields of the underlying assets are small. 

rices when dividend yield or strike 
rice are small or when volatility is large. 

he only required inputs to implement our upper bounds are the risk-neutral processes 

the extremely complicated case where the 
ricing of American options depends on multiple risky assets and multiple risk factors 

tness of our upper 

                                              

d
 
V. Conclusion 
 
Following the framework of Chen and Yeh (2002), we derive upper bounds of 
American option prices. These upper bounds are especially useful when there are 
several state variables involved in the pricing model. Our upper bounds are closed 
form when the counterpart European option has a closed-form solution. Our upper 
bounds are very general in the sense that they do not rely on distribution assumptions 
or continuous trading. Moreover, our upper bounds are not only tight, but also 
converging to the accurate American call option p
p
 
T
of the state variables. This is not a problem, because of the recent advances in 
empirical derivatives research. For example, one can apply the implied binomial tree 
approach of Rubinstein (1994) and its many extensions, such as Derman, Kani, and 
Chriss (1996), Jackwerth (1997), Britten-Jones and Neuberger (2000), etc., to obtain 
the risk-neutral process of the stock price. See Jackwerth (1999) for an excellent 
review on option-implied risk-neutral distributions and processes. 
 
Our upper bound is still feasible even in 
p
(e.g. stochastic interest rates, stochastic volatility, and jumps) for each asset price 
process. In this case one can apply standard Monte Carlo simulations to calculate the 
expected value of our upper bound, which is computationally more efficient (and may 
be tighter) than other upper bounds generated by other complicated Monte Carlo 
methods.8 This issue is left for future research. 
 
In future research, we would like to empirically compare the tigh

   

the simultaneous determination of the optimal exercise boundary. 

8 Monte Carlo methods can provide biased high estimates of the American option prices using the 
foresight bias (see Broadie and Glasserman (1997)) approach or the duality approach (see Haugh and 
Kogan (2001) and Rogers (2001)). The computation is generally time consuming, because it requires 
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bound with those generated by other approaches, e.g. Carr, Jarrow, and Myneni (1992) 
and Broadie and Detemple (1996). Although the upper bounds developed by them are 
based on the Black-Scholes economy, they can be extended to general distributions 
with slight modifications. Finally, we like to know if the risk-neutral processes of 
state variables are implied by the European option prices, and how often the American 
ption prices may violate our upper bounds. The results will shed light on the o

efficiency of option markets. 
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Appendix 
A. Correct the Typos of Chen and Yeh (2002) 
A1. Derivation of the Futures Price 
Guess the futures price as follows: 

( ) ( ) ( )TtvCTtyBTtA
Tt eSF ,,,

,
++= . 

By Ito’s lemma, we obtain the following PDE for F: 

( )[ ] ( )[ ] 0
2
1

2
1

2
1 222

=++−++−+

++++

tyv

SSvyyvvSS

FFylaabFv

ySFvSFFygFvFvS

λααβ

ργγ
 

Plug in the guessed solution for the futures price and obtain a system of three ODEs: 

( ) ,
2
1 22 CCCt ργλαγ −++−=  

( ) ,1
2
1 22 −++−= BlaBgBt  

.abBCAt −−= αβ  
With boundary conditions ( ) ( ) ( ) 0=== TCTBTA , we can show that , 0=C
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where ( ) 22 2gladB −+= , and 
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A2. Derivation of the Characteristic Functions of Calls 
Guess the upper bound of calls as follows: 

{ }[ ]
[ ]

.

0,max

21,

21

Π−Π=
Π−Π=

−=

KF
KSE

KSEU

Tt

Tt

Tt
C

 

The PDEs for the probabilities become: 
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Guess the following form for the characteristic functions: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

,
,,,

2

/ln,,,
1

222

111

iuxyTtEvTtDTtC
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Plug in the guessed solution for the characteristic functions and obtain a series of ODEs 
as follows: 

( ) ( )[ ] ( )2
1

2
1

2
1 2

11
2
1 uiuDiuDD t −−+−++−= ργλαγ , 

( ) ( 1
2
1

1
2

1
2

1 +−++−= iuElaEgE t ) , 

111 abEDC t −−= αβ , 
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2
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2
2 2

1
2
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( ) iuElaEgE t −++−= 2
2
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2
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1
, 

222 abEDC t −−= αβ . 

The solutions to , , and  (jC jD jE 2,1=j ) are: 
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where 

 ( ) ( )[ ] ( )222
1 1 uiuiudD −−+−+= γργλα , 

 ( ) ( 11 )+−+= iubD ργλα , 

 ( ) ( )12 22
1 +−+= iugladE , 

 , labb EE +== 21

 ( )[ ] ( )222
2 uiuuidD ++−+= γργλα , 

 ( ) uibD ργλα −+=2 , 

 ( ) uigladE
22

2 2−+= . 

 
A3. Derivation of the Characteristic Functions of Puts 
Guess the upper bound of puts as follows: 
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where  is the same as calls and  is the probability obtained in the forward 
measure. The PDE for the  becomes: 
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Guess the following form for the characteristic function: 
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Plug in the guessed solution for the characteristic functions and obtain a series of ODEs 
as follows: 
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A4. Derivation of the Characteristic Functions of Futures Options 
Guess the upper bound of futures calls as follows, 
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The upper bound of futures puts is as follows: 
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The PDEs for the probabilities become: 
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where . Guess the following form for the characteristic functions: ( )Fx ln=
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B. Derivation of  and the Characteristic Functions of Our Upper 
Bound of Calls When  

( TtM , )
dr >

 
Guess the following form for : ( )TtM ,
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Plug in the guessed solution for (12) and obtain a series of ODEs: 
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Next, we will show the characteristic functions of our upper bound. Guess the following 
form for the characteristic functions: 
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Plug in the guessed solution for the characteristic functions and obtain a series of ODEs: 
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The solutions to , , and  (jC jD jE 2,1=j ) are: 
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C. Derivation of the Characteristic Functions of Upper Bound of Calls 
When  dr <

Guess the following form for the characteristic functions: 
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Plug in the guessed solution for the characteristic functions and obtain a series of ODEs: 
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TABLE 1 
Correct numerical results in Chen and Yeh’s Table 1 

 Call Option Put Option 

K 
Original 

Upper bound 

Correct 

Upper bound

European 

Option Value

Original 

Upper bound

Correct 

Upper bound 

European 

Option Value

110 2.73 4.86 4.63 12.05 14.05 12.22 

105 4.47 6.73 6.40 8.53 10.72 9.23 

100 6.88 9.06 8.62 5.66 7.86 6.70 

95 9.96 11.90 11.32 3.48 5.50 4.64 

90 13.65 15.22 14.47 1.97 3.65 3.04 

       

CPU(sec) 0.01 0.01 0.01 0.01 0.01 0.01 

The stock price is 100, the initial volatility is 0.04, the risk-free rate is 0.05, the dividend is 0.03, the 

time to maturity is one year, and other parameters are: 5.1=α , 04.0=β , 1.0=γ , 0=λ , and 

5.0−=ρ . 
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TABLE 2 

Correct numerical results in Chen and Yeh’s Table 2 
ρ  

 K           - 0.8          - 0.4           0.0            0.4          0.8  
 
Panel A. Calls on Dividend Paying Stocks 
110           8.70          8.79          8.86           8.94         9.01 
              8.28          8.36          8.43           8.50         8.57 
105          10.59         10.64         10.68          10.72        10.76 
             10.07         10.12         10.16          10.20        10.24 
100          12.84         12.85         12.85          12.86        12.86 
             12.21         12.22         12.23          12.23        12.23 
95           15.47         15.44         15.41          15.38        15.34 
             14.72         14.69         14.66          14.63        14.59 
90           18.48         18.43         18.37          18.30        18.23 
             17.58         17.53         17.47          17.41        17.34 
 
Panel B. Puts on Non-Dividend Paying Stocks
110          17.61         17.71         17.80          17.89        17.98 
             14.33         14.39         14.45          14.50        14.55 
105          14.35         14.41         14.47          14.53        14.59 
             11.59         11.61         11.63          11.65        11.66  
100          11.46         11.48         11.50          11.52        11.53 
              9.19          9.18          9.16           9.14         9.12 
95            8.96          8.94          8.92           8.90         8.87 
              7.14          7.10          7.05           7.00         6.97 
90            6.86          6.81          6.75           6.69         6.63 
              5.44          5.38          5.31           5.24         5.16 
 
Panel C. Calls on Futures
110           7.82          7.91          8.00           8.09         8.17 
              7.43          7.52          7.61           7.69         7.77 
105           9.55          9.61          9.67           9.73         9.78 
              9.09          9.14          9.20           9.25         9.30 
100          11.65         11.67         11.69          11.71        11.73 
             11.08         11.10         11.12          11.14        11.16 
95           14.13         14.11         14.10          14.08        14.05 
             13.44         13.43         13.41          13.39        13.37 
90           17.00         16.95         16.90          16.85        16.79 
             16.17         16.13         16.08          16.03        15.97 
 
Panel D. Puts on Futures
110          17.82         17.91         18.00          18.09        18.17 
             16.95         17.04         17.12          17.20        17.28 
105          14.55         14.61         14.67          14.73        14.78 
             13.84         13.90         13.96          14.01        14.06 
100          11.65         11.67         11.69          11.71        11.73 
             11.08         11.10         11.12          11.14        11.16 
95            9.13          9.11          9.10           9.08         9.05 
              8.68          8.67          8.65           8.63         8.61 
90            7.00          6.95          6.90           6.85         6.79 
              6.66          6.61          6.57           6.52         6.46 
 

(continued on next page) 
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TABLE 2 (continued) 

Correct numerical results in Chen and Yeh’s Table 2 

Jλ  

 K               0.0           0.2           0.4            0.6          0.8  
             
Panel E. Calls on Dividend Paying Stocks 
110              4.87          6.25          7.55           8.77         9.92 
                 4.63          5.94          7.18           8.34         9.43 
105              6.73          8.11          9.41          10.62        11.77 
                 6.40          7.72          8.95          10.11        11.20 
100              9.07         10.41         11.66          12.85        13.96 
                 8.62          9.90         11.10          12.22        13.28 
95              11.90         13.15         14.34          15.45        16.50 
                11.32         12.51         13.64          14.70        15.70 
90              15.22         16.35         17.42          18.44        19.41 
                14.48         15.55         16.57          17.54        18.46 
Panel F. Puts on Non-Dividend Paying Stocks
110             13.83         15.20         16.48          17.69        18.82 
                10.54         11.90         13.18          14.38        15.50 
105             10.50         11.89         13.18          14.40        15.54 
                 7.84          9.18         10.43          11.60        12.71 
100              7.66          9.02         10.29          11.48        12.60 
                 5.59          6.86          8.06           9.18        10.24 
95               5.32          6.61          7.81           8.95        10.02 
                 3.80          4.97          6.07           7.11         8.10 
90               3.50          4.67          5.78           6.82         7.81 
                 2.44          3.48          4.46           5.39         6.29 
Panel G. Calls on Futures
110              4.09          5.44          6.70           7.89         9.01 
                 3.89          5.17          6.37           7.50         8.57 
105              5.77          7.13          8.40           9.60        10.73 
                 5.48          6.78          7.99           9.13        10.21 
100              7.90          9.24         10.49          11.67        12.78 
                 7.52          8.79          9.98          11.10        12.15 
95              10.54         11.81         13.00          14.12        15.18 
                10.02         11.23         12.36          13.43        14.44 
90              13.68         14.84         15.93          16.96        17.95 
                13.01         14.11         15.15          16.14        17.07 
Panel H. Puts on Futures
110             14.09         15.44         16.70          17.89        19.01 
                13.41         14.68         15.88          17.01        18.08 
105             10.77         12.13         13.40          14.60        15.73 
                10.24         11.53         12.75          13.89        14.96 
100              7.90          9.24         10.49          11.67        12.78 
                 7.52          8.79          9.98          11.10        12.15 
95               5.54          6.81          8.00           9.12        10.18 
                 5.27          6.47          7.61           8.67         9.68 
90               3.68          4.84          5.93           6.96         7.95 
                 3.50          4.60          5.64           6.63         7.56 
The top numbers are upper bound values and the bottom numbers are European values. The initial 
values for the state variables are 100 for the stock price, 0.04 for the initial volatility value, and 0.05 for 
the interest rate level. The parameters for the variance process are 5.1=α , 04.0=β , 01.0=γ , 5.0−=ρ , 
and 0=λ . The parameters for the interest rate process are 6.0=a , 02.0=b (in Panels B and F, 

), , and . The parameters for the jump process are 05.0=b 05.0=g 0=l 0=Jµ , , and 1.02 =Jσ

6.0=Jλ . The dividend yield is assumed to be a constant of 0.03. 
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TABLE 3 
Upper bound of the American calls on dividend paying stocks when qr >  

ρ  

 K           - 0.8          - 0.4           0.0            0.4          0.8  
 
110           8.70          8.79          8.86           8.94         9.01 
              8.53          8.61          8.69           8.76         8.83 
              8.28          8.36          8.43           8.50         8.57 
 
105          10.59         10.64         10.68          10.72        10.76 
             10.38         10.43         10.47          10.51        10.55 
             10.07         10.12         10.16          10.20        10.24 
 
100          12.84         12.85         12.85          12.86        12.86 
             12.59         12.59         12.60          12.60        12.60 
             12.21         12.22         12.23          12.23        12.23 
 
95           15.47         15.44         15.41          15.38        15.34 
             15.16         15.14         15.11          15.07        15.03 
             14.72         14.69         14.66          14.63        14.59 
 
90           18.48         18.43         18.37          18.30        18.23 
             18.11         18.06         18.00          17.94        17.87 
             17.58         17.53         17.47          17.41        17.34 

 

Jλ  

 K            0.0           0.2           0.4            0.6          0.8  
 
110           4.87          6.25          7.55           8.77         9.92 
              4.77          6.12          7.40           8.59         9.72 
              4.63          5.94          7.18           8.34         9.43 
 
105           6.73          8.11          9.41          10.62        11.77 
              6.60          7.95          9.22          10.41        11.54 
              6.40          7.72          8.95          10.11        11.20 
 
100           9.07         10.41         11.66          12.85        13.96 
              8.89         10.20         11.43          12.59        13.68 
              8.62          9.90         11.10          12.22        13.28 
 
95           11.90         13.15         14.34          15.45        16.50 
             11.66         12.89         14.05          15.14        16.18 
             11.32         12.51         13.64          14.70        15.70 
 
 
90           15.22         16.35         17.42          18.44        19.41 
             14.92         16.03         17.08          18.07        19.02 
             14.48         15.55         16.57          17.54        18.46 
The top numbers are Chen and Yeh’s upper bound values. The second numbers are our upper bound 
values. The bottom numbers are European option values. The parameter values are the same as Table 2. 
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TABLE 4 
Upper bound of the American calls on dividend paying stocks when qr <  

ρ  

 K           - 0.8          - 0.4           0.0            0.4          0.8  
 
110           7.78          7.88          7.97           8.06         8.14 
              6.80          6.90          7.00           7.09         7.18 
 
105           9.52          9.58          9.64           9.70         9.75 
              8.35          8.42          8.49           8.55         8.62 
 
100          11.62         11.64         11.66          11.68        11.70 
             10.23         10.27         10.30          10.34        10.37 
 
95           14.10         14.08         14.07          14.05        14.02 
             12.49         12.49         12.49          12.48        12.47 
 
90           16.97         16.93         16.88          16.82        16.76 
             15.13         15.10         15.06          15.02        14.98 

 

Jλ  

 K            0.0           0.2           0.4            0.6          0.8  
 
110           4.05          5.40          6.67           7.86         8.98 
              3.32          4.58          5.76           6.88         7.94 
 
105           5.72          7.09          8.37           9.57         10.70 
              4.76          6.05          7.26           8.40          9.48 
 
100           7.86          9.20         10.46          11.63         12.75 
              6.64          7.93          9.13          10.26         11.33 
 
95           10.50         11.77         12.96          14.09         15.15 
              9.00         10.24         11.40          12.49         13.52 
 
90           13.64         14.81         15.90          16.94         17.92 
             11.87         13.02         14.09          15.11         16.07 
The top numbers are upper bound values and the bottom numbers are European values. The parameter 
values are the same as Table2 except 03.0=r  and 05.0=q . 
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TABLE 5 

Upper bounds of the American exchange options on dividend paying stocks 
 

Panel A: r > q2 > q1
S2 Chen and Yeh Our upper bound American values European values
30 10.5850 10.4014 10.2882 10.2807 
35 6.4077 6.2965 6.2254 6.2235 
40 3.3862 3.3274 3.2904 3.2888 
45 1.5759 1.5486 1.5330 1.5306 
50 0.6582 0.6468 0.6411 0.6393 

The parameter values are , 401 =S 2.01 =σ , 3.02 =σ , 5.012 =ρ , 05.0=r , 5833.0=τ , , and 
. 

02.01 =q

03.02 =q
 
Panel B: q1 > r > q2

S2 Chen and Yeh Our upper bound American values European values
30 N.A. 10.2427 10.0000 8.8666 
35 N.A. 6.1506 5.4948 5.0592 
40 N.A. 3.2191 2.6432 2.4938 
45 N.A. 1.4827 1.1259 1.0776 
50 N.A. 0.6128 0.4328 0.4177 

The parameter values are , 401 =S 2.01 =σ , 3.02 =σ , 5.012 =ρ , 05.0=r , 5833.0=τ , , and 
. 

08.01 =q

03.02 =q

 
 
 
 

TABLE 6 
Upper bounds of the American maximum call options on two dividend paying stocks

 
Panel A:  r > q2 > q1

K Chen and Yeh Our upper bound American values European values
30 13.8760 13.7591 13.4800 13.4771 
35 9.1213 9.0819 8.8598 8.8591 
40 5.1847 5.1969 5.0358 5.0357 
45 2.5682 2.5982 2.4944 2.4944 
50 1.1553 1.1817 1.1221 1.1221 

The parameter values are , 4021 == SS 2.01 =σ , 3.02 =σ , 5.012 =ρ , 05.0=r , 5833.0=τ , , 
and . 

02.01 =q

03.02 =q
 
Panel B:  q1 > r > q2

K Chen and Yeh Our upper bound American values European values
30 N.A. 13.5890 12.8706 12.7852 
35 N.A. 8.9025 8.3002 8.2494 
40 N.A. 5.0450 4.6415 4.6207 
45 N.A. 2.4975 2.2960 2.2899 
50 N.A. 1.1263 1.0488 1.0474 

The parameter values are , 4021 == SS 2.01 =σ , 3.02 =σ , , 5.012 =ρ 05.0=r , 5833.0=τ , , 
and . 

08.01 =q

03.02 =q
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