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Forecasting Stock Index Volatility: 

The Incremental Information in the 

Intraday Price Range 

 

Abstract 

We compare the incremental information content of implied volatility and 
intraday high-low range volatility in the context of conditional volatility 
forecasts for three major market indexes: the S&P 100, the S&P 500, and 
the Nasdaq 100. Evidence obtained from out-of-sample volatility forecasts 
indicates that neither implied volatility nor intraday high-low range 
volatility subsumes entirely the incremental information contained in the 
other. Our findings suggest that intraday high-low range volatility can 
usefully augment conditional volatility forecasts for these market indexes. 

 

I. Introduction 

Since the development of autoregressive conditional heteroscedasticity (ARCH) 

models by Engle (1982) and their generalization (GARCH) by Bollerslev (1986, 1987), 

ARCH modeling has become the bedrock for dynamic volatility models. While originally 

formulated to forecast conditional variances as a function of past variances, the inherent 

flexibility of ARCH modeling allows ready inclusion of other volatility measures as well. 

Consequently, extensive research has focused on evaluating other volatility measures that 

might improve conditional volatility forecasts. One popular volatility measure used to 

augment ARCH forecasts is implied volatility from option prices. Lamoureux and 

Lastrapes (1993) find that an ARCH model provides superior volatility forecasts than 

implied volatility alone in a sample of 10 stock return series. However, Day and Lewis 

(1992) report that a mixture of implied volatility and ARCH forecasts of future return 

volatility for the S&P 100 stock index outperforms separate forecasts from implied 

volatility or ARCH alone. More recently, Mayhew and Stivers (2003) find that implied 

volatility improves GARCH volatility forecasts for individual stocks with high options 

trading volume. They report that for stocks with the most actively traded options, implied 

volatility reliably outperforms GARCH and subsumes all information in return shocks 

beyond the first lag.  
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 Another volatility measure that has become popular with the increasing 

availability of intraday security price data is an intraday variance computed by summing 

the squares of intraday returns sampled at short intraday intervals. Essentially, if the 

security price path is continuous then increasing the sampling frequency yields an 

arbitrarily precise estimate of return volatility (Merton, 1980). The efficacy of intraday 

return variances has been demonstrated with foreign exchange data by Andersen et al. 

(2001b), Andersen, Bollerslev, and Lange (1999), Andersen and Bollerslev (1998), and 

Martens (2001) and with stock market data by Andersen et al. (2001a), Areal and Taylor 

(2002), Fleming, Kirby, and Ostdiek (2003), and Martens (2002). Indeed as a competitor 

to implied volatility, Taylor and Xu (1997), Pong, Shackleton, Taylor, and Xu (2003), 

and Neely (2002) report that intraday return variances from the foreign exchange market 

provide incremental information content beyond that provided by implied volatility 

forecasts. By contrast, Blair, Poon, and Taylor (2001) find that the incremental 

information content of intraday return variances for the S&P 100 stock index is scant and 

that an implied volatility index published by the Chicago Board Options Exchange 

(CBOE) provides the most accurate forecasts at all forecast horizons.  

 We extend the volatility forecasting literature cited above with the specific 

objective of demonstrating the usefulness of the intraday high-low price range for 

improving volatility forecasts for three major stock market indexes: the S&P 100, the 

S&P 500, and the Nasdaq 100. This study represents the first attempt to compare the 

effectiveness of the intraday high-low price range and implied volatility as forecasts of 

future realized volatility for these market indexes.  

We find that the intraday high-low range volatility estimator provides incremental 

information content beyond that already contained in implied volatility indexes published 

by the Chicago Board Options Exchange (CBOE). This is demonstrated by comparing 

augmented volatility forecasts based around the asymmetric GARCH model developed 

by Glosten et al. (1993) and Zakoian (1990), hereafter referred to as GJR-GARCH. Our 

findings suggest that intraday high-low range volatility can usefully augment conditional 

volatility forecasts for the three broad market indexes examined. 
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There are several reasons to consider the intraday high-low price range for 

volatility measurement and forecasting. Firstly, high-low price range data has long been 

available in the financial press and is often available when high-frequency intraday 

returns data are not. Secondly, Andersen and Bollerslev (1998) point out that market 

microstructure issues such as nonsynchronous trading effects, discrete price observations, 

and bid-ask spreads, etc. may limit the effectiveness of intraday return variances as 

volatility forecasts. For example, Andersen et al. (1999) report that sampling intraday 

returns at one-hour intervals provided better results than sampling at 5-minute intervals in 

their study of foreign exchange market volatility. The intraday high-low price range may 

offer a useful alternative to an intraday return variance when market microstructure 

effects are severe. Indeed, Alizadeh et al. (2002) suggest that, “Despite the fact that the 

range is a less efficient volatility proxy than realized volatility under ideal conditions, it 

may nevertheless prove superior in real-world situations in which market microstructure 

biases contaminate high-frequency prices and returns.”  

 Thirdly, in addition to potential market microstructure biases Bai, Russell, and 

Tiao (2001) point out that the estimation efficiency of an intraday return variance 

estimator can be sensitive to non-normality in intraday returns data. As a basic 

demonstration of potential sensitivity to non-normality, let rd and rh denote a one-day 

return and an intraday return, respectively, such that the one-day return is the sum of 

n intraday returns, i.e., 
1

n

d h
h

r r
=

= ∑ . Assuming that the n intraday returns are identically, 

independently distributed (iid), with an expected value of zero, i.e., ( ) 0hE r = , then the 

sum of the squared intraday returns is an unbiased estimator of the daily return variance. 

( )2

1 1

n n

h h d
h h

E r Var r Var r
= =

   = =   
   
∑ ∑      (1) 

Theoretically, the efficiency of the squared intraday returns volatility estimator specified 

in equation (1) increases monotonically by dividing the trading day into finer increments. 

A general statement of this proposition is provided by the following theorem: 
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Theorem 

The variance of the squared intraday returns volatility estimator, i.e., 2

1

n

h
h

Var r
=

 
 
 
∑ , 

assuming iid squared intraday returns with zero expected value is given by the expression 

immediately below, in which Kurt(rd) and Kurt(rh) denote the kurtosis of daily 

returns and intraday returns, respectively. 

( )

( ) ( )( )( )
( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )

2 2

1 1

24

1
2

2

2

1

1

23

n n

h h
h h

n

h h
h

h h

h
d

d d

Var r Var r

E r Var r

n Var r Kurt r

Kurt r
Var r

n

Var r Kurt r
n

= =

=

  = 
 

= −

= × −

−
= ×

 = × − + 
 

∑ ∑

∑

    (2) 

The last equality on the right-hand side of equation (2) above is an immediate 

consequence of the assumption of iid intraday returns, for which the following 

relationship holds as an adjunct to the Central Limit Theorem:1 

( ) ( )( )3 3h dKurt r n Kurt r− = × −       (3) 

Thus, with given values for the variance and kurtosis of daily returns, i.e., Var(rd) 

and Kurt(rd), the variance of the squared intraday returns volatility estimator declines 

monotonically as n increases.  

However as shown in the last line of equation (2), the variance of the squared 

intraday returns volatility estimator is bounded away from zero for non-normally 

distributed returns with Kurt(rd) > 3. The theoretical relative efficiency of the squared 

intraday returns volatility estimator to the squared daily return volatility estimator as a 

function of return kurtosis is stated in equation (4) immediately below. 

( ) ( )
( )

2

2

1

1
23

d d
n

dh
h

Var r Kurt r

Kurt rVar r n=

−
=

  − + 
 
∑

     (4) 

                                          
1  An appendix provides a derivation. 
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With exactly normally distributed returns, i.e., Kurt(rd) = 3, this relative efficiency 

is bounded only by the number of intraday return intervals n. However for plausible 

kurtosis values, the relative efficiency in equation (4) can be severely bounded. For 

example, a daily return kurtosis of Kurt(rd) = 4 with n = 79 intraday return intervals 

yields a theoretical relative efficiency of just 2.93.2  

 Parkinson (1980) shows that the intraday high-low price range volatility estimator 

has a theoretical relative efficiency of 4.762 compared to a squared daily return. 

However, this value assumes normally distributed returns. To assess relative efficiency 

with non-normally distributed returns, we use Monte Carlo simulation experiments with 

various return kurtosis values. We then simulate intraday returns over n = 79 intraday 

intervals for each of 100,000 trading days. Kurtotic intraday returns are generated by 

random sampling from a mixture of normals, where with probability p a random normal 

variate is drawn with variance 2
pσ  and with probability 1-p is drawn with variance 2

1 pσ − . 

The probability p and the ratio of variances determine the kurtosis of the normals 

mixture: 

( )
( )

4 4
1

22 2
1

3 / 1

/ 1
p p

p p

p p
Kurtosis

p p

σ σ

σ σ

−

−

+ −
=

+ −
 

Following a convenient specification, we set p = 1/Kurtosis to solve for 2σ  as, 

( )( )2

2
1 3 2 1

2

Kurtosis Kurtosis
σ

− + − −
= . 

 

In each simulated trading day, we compute the sum of squared intraday returns, the 

squared daily return, and the squared high-low range. Relative efficiencies computed 

from these daily statistics averaged over 100,000 days are reported in the panel 

immediately below. 

                                          
2  Bai, Russell, and Tiao (2001) provide an extensive analysis of efficiency losses due to 
kurtosis and other effects with non-iid intraday returns. 
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Relative efficiencies of intraday variance estimators to 
squared daily return estimator with varied kurtosis. 

Daily 
return 

kurtosis 

 
Squared intraday 
returns estimator 

Squared intraday 
high-low range 

estimator 

 
Ratio 

3.5 4.786 2.960 1.617 
4.0 2.944 2.632 1.118 
4.5 2.289 2.462 0.930 
5.0 1.997 2.385 0.837 

 

Comparing relative efficiencies for the squared intraday returns estimator and the squared 

intraday high-low range estimator as shown in the panel above, we see that for plausible 

kurtosis values the squared intraday returns volatility estimator may not be greatly more 

efficient than the squared high-low range estimator. Indeed, for daily kurtosis values 

higher than about 4.3 the squared high-low range estimator is more efficient than the 

squared intraday returns estimator. Further, Alizadeh et al. (2002) suggest that the 

intraday high-low range is robust to microstructure noise, while the squared intraday 

returns estimator can be quite sensitive to such noise. 

 

II. Data sources 

This study is based on returns for the S&P 100, S&P 500, and Nasdaq 100 stock 

market indexes, along with daily implied volatilities for these indexes published by the 

Chicago Board Options Exchange (CBOE). Ticker symbols for the implied volatility 

indexes are VIX for the S&P 500, VXO for the S&P 100, and VXN for the Nasdaq 100.3 

Our data set spans the period January 1990 through December 2003 for the S&P 100 and 

S&P 500 stock indexes, and from January 1995 through December 2003 for the 

Nasdaq 100 stock index.  

 

                                          
3  The CBOE previously used the ticker VIX for S&P 100 implied volatility, but began 
using VXO for S&P 100 implied volatility and VIX for S&P 500 implied volatility with 
the introduction of the latter series.  
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II.1. Daily index returns 

Daily index returns are calculated as the natural logarithm of the ratio of 

consecutive daily closing index levels. 

( )1lnt t tr c c −=        (5) 

In equation (5), rt denotes the index return for day t based on index levels at the close of 

trading on days t and day t-1, i.e., ct and ct-1, respectively.  

 

II.2. Daily high-low price range 

“..intuition tells us that high and low prices contain more information regarding to 

volatility than do the opening and closing prices.” (Garman and Klass, 1980) For 

example, by only looking at opening and closing prices we may wrongly conclude that 

volatility on a given day is small if the closing price is near the opening price despite 

large intraday price fluctuations. Intraday high and low values may bring more integrity 

into an estimate of actual volatility. 

In this study, we use the intraday high-low volatility measure specified in 

equation (6), in which hit and lot denote the highest and lowest index levels observed 

during trading on day t. 

( )2
2 ln ln

4 ln 2
t t

t

hi lo
RNG

−
=       (6) 

This intraday high-low price range was originally suggested by Parkinson (1980) as a 

measure of security return volatility.4 

 

II.3 CBOE implied volatility indexes 

Implied volatilities have long been used by academics and practitioners alike to 

provide forecasts of future return volatility. In addition to studies cited earlier, 

Christensen and Prabhala (1998) overcome the methodological difficulties in Canina and 

Figlewski (1993) and show that by using non-overlapping data and an instrumental 

variables econometric methodology that implied volatility outperforms historical 

                                          
4 Interesting extensions to Parkinson (1980) have been developed by Garman and Klass 
(1980), Ball and Torous (1984), Rogers and Satchell (1991), Kumitomo (1992), and 
Yang and Zhang (2000). 
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volatility as a forecast of future return volatility for the S&P 100 index. Corrado and 

Miller (2004) update and extend the Christensen and Prabhala study and suggest that 

implied volatility continued to provide a superior forecast of future return volatility 

during the period 1995 through 2003. 

In this study, we use data for three implied volatility indexes published by the 

Chicago Board Options Exchange (CBOE). These implied volatility indexes are 

computed from option prices for options traded on the S&P 100, the S&P 500, and the 

Nasdaq 100 stock indexes.  

The implied volatility indexes with ticker symbols VIX and VXN are based on 

European-style options on the S&P 500 and Nasdaq 100 indexes, respectively. These 

indexes are calculated using the formula stated immediately below, in which C(K,T) and 

P(K,T) denote prices for call and put options with strike price K and time to maturity T 

stated in trading days. This formula assumes the option chain has strike prices ordered 

such that 1j jK K+ > . The two nearest maturities are chosen with the restriction that 

2 122 8T T≥ ≥ ≥ . 

( ) ( )
( ) ( ) ( )( )

2
1 1

2
1 12 1

22
1 min , , ,

N
h j jh

j h j h
h j j

K KT
VIX C K T P K T

T T K
+ −

= =

−−
= −

−∑ ∑  (7) 

Theoretical justification for this calculation method is provided by Britten-Jones and 

Neuberger (2000). 

The implied volatility index with ticker symbol VXO is based on American-style 

options on the S&P 100 index.5 This index is calculated using the formula stated 

immediately below in which IVC(K,T) and IVP(K,T) are implied volatilities for call and 

put options, respectively, with strike K and maturity T. The at-the-money strike Km 

denotes the largest exercise price less or equal to the current cash index S0. Hence, the 

volatility index VXO is calculated using only option contracts with strike prices that 

bracket the current cash index level. 

   
( ) ( )( ) ( ) ( )( )

( )( )

1 2

0 1
0 1

2 1 1

1 22 , ,j h
h m j C m j h P m j h

j h

m m

T S K IV K T IV K T
VXO

T T K K

+
+ − + +

= =

+

− − − +
=

− −

∑∑
 (8) 

                                          
5  Authoritative descriptions of this implied volatility index are Whaley (1993) and 
Fleming, Ostdiek, and Whaley (1995). 
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To be scaled consistently with the other daily volatility measures, the implied 

volatility indexes VXO, VIX, and VXN are all squared and divided by 252, the assumed 

number of trading days in a calendar year.  

 

[TABLE 1 HERE] 

 

II.4 Descriptive statistics  

Table 1 provides a statistical summary of the volatility data used in this study. 

Panel A reports the mean, maximum, minimum, standard deviation, and skewness and 

kurtosis coefficients for squared daily returns, squared implied volatilities, and squared 

high-low price ranges for the S&P 100 index. Panels B and C report descriptive statistics 

for the S&P 500 and Nasdaq 100 indexes, respectively. 

The period January 1990 through December 2003 yields 3,544 daily observations 

for the S&P 100 and S&P 500 indexes and the period January 1995 through December 

2003 yields 2,266 daily observations for the Nasdaq 100 index. Table 1 reveals noticeable 

statistical differences among the three volatility measures. For example, in all panels of 

Table 1 the average squared high-low range volatility is smaller than the average squared 

daily return, which in turn is smaller than the average squared implied volatility. 

Comparing volatility measures across S&P 100, S&P 500, and Nasdaq 100 indexes it is 

evident that volatility for the Nasdaq 100 is highest among the three indexes. Indeed, the 

average squared daily return for the Nasdaq 100 index is on average four to five times 

larger in magnitude than average squared daily returns for the S&P 100 and S&P 500 

indexes. 

 

III. Forecast methodology 

 To model market volatility dynamics we draw on the GJR-GARCH model 

specification developed by Glosten et al. (1993) and Zakoian (1990). This model attempts 

to capture the asymmetric effects of good news and bad news on conditional volatility. 

We augment the basic GJR-GARCH model with implied volatility and intraday high-low 

price range volatility. 
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III.1 Augmented GJR-GARCH model 

Augmented by implied volatility and the intraday high-low range, the GJR-

GARCH model for conditional variance is specified in equation (9) immediately below, 

in which the dummy variable 1−ts  = 1 if 1−tε < 0 and is zero otherwise. 

2 2 2 2
0 1 1 2 1 1 1 1 1

t t

t t t t t t t

r

h s h IVOL RNG

µ ε

α α ε α ε β γ δ− − − − − −

= +

= + + + + +
  (9) 

 

 rt return on day t 

 ht conditional volatility on day t 

 IVOLt implied volatility at end of index options trading on day t 

 RNGt intraday high-low range volatility on day t 

 

In this model, good news ( 1−tε > 0), and bad news ( 1−tε < 0) have differential impacts on 

conditional variance. The impact of good news alone is measured by the coefficient 1α , 

while the impact of bad news is measured by the sum of coefficients 21 αα + . A priori we 

expect 2α  alone as well as the sum 21 αα +  to be positive. Lagged implied volatility and 

lagged high-low range volatility measures become additional explanatory variables to 

augment the basic GJR-GARCH model.  

 By placing varied restrictions on parameters, we obtain four different volatility 

models that compare the incremental forecast information of implied volatility and high-

low price range volatility. These four models are specified immediately below. 

 

1) GJR-GARCH(1,1) model: The GJR-GARCH(1,1) model is implemented by setting the 

restrictions 0== δγ . This specification yields a model with no exogenous regressors. 
2 2

0 1 1 2 1 1 1t t t t th s hα α ε α ε β− − − −= + + +      (10) 

2) High-low range volatility excluded: This specification has the single restriction 0=δ  

to exclude intraday high-low range volatility. It combines the GJR-GARCH(1,1) model 

with lagged implied volatility as an additional regressor to assess the incremental 

information content of implied volatility. 
2 2 2

0 1 1 2 1 1 1 1t t t t t th s h IVOLα α ε α ε β γ− − − − −= + + + +     (11) 
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3) Implied volatility excluded: This specification has the single restriction 0=γ  to 

exclude implied volatility. It combines the GJR(1,1) model with intraday high-low range 

volatility. Comparison with the basic GJR(1,1) model yields an assessment of the 

incremental information content of the high-low price range volatility.  
2 2 2

0 1 1 2 1 1 1 1t t t t t th s h RNGα α ε α ε β δ− − − − −= + + + +     (12) 

4) Unrestricted model: This specification has no restrictions and therefore represents a 

complete implementation of equation (9), which is reproduced here for convenient 

reference. 
2 2 2 2

0 1 1 2 1 1 1 1 1t t t t t t th s h IVOL RNGα α ε α ε β γ δ− − − − − −= + + + + +   

 

Parameter estimates for all four specifications stated above are obtained by a 

quasi-likelihood methodology, by which covariances and standard errors are computed 

using methods suggested in Bollerslev and Wooldridge (1992). 

 

III.2 Large-sample adjustments to critical t-values 

 Connolly (1989) points out that the large sample sizes characteristic of many 

financial studies can lead to an overstatement of statistical significance due to Lindley’s 

paradox (Lindley, 1957). To alleviate this potential bias, Leamer (1978) suggests that 

critical values for regression test statistics be adjusted to reduce the likelihood of Type II 

errors. In equation (13) below presents the adjustment for t-statistics of regression 

coefficients, where T is the sample size and k is the number of degrees of freedom lost in 

the regression.  

 

( )* 1/ 1Tt T k T= − × −       (13) 

 

When the absolute value of a calculated t-statistic is greater than the value computed by 

equation (13), the absolute value of the calculated t-statistic is reduced by the adjustment 

in equation (13). We follow this procedure whenever the sample size exceeds 200. 
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III.3 Out-of-sample forecasts 

Each of the four GJR-GARCH models specified above provides out-of-sample 

volatility forecasts over N = 1, 10, 20 days. We begin by calibrating each model using 

parameters estimated over an initial estimation period. For S&P 100 and S&P 500 

indexes, we use the first 2,000 days of data as an initial parameter estimation period. Due 

to a shorter time span of available Nasdaq 100 data, we use only the first 1,000 days of 

data as an initial parameter estimation period. After the initial parameter estimation, each 

GJR-GARCH model yields out-of-sample volatility forecasts over the N = 1, 10, 20 days 

immediately subsequent to the estimation period. One-day forecasts are obtained directly 

from each model specification, while N = 10, 20-day forecasts are generated by 

multiplying the one-day volatility forecast by N. Along with these N = 1, 10, 20-day 

volatility forecasts, corresponding realized volatilities from the N = 1, 10, 20-day forecast 

periods are computed as the sum of squared daily returns in the N-day forecast period. 

After initial parameter estimation and forecast construction, the entire procedure 

is repeated by rolling forward the parameter estimation period and re-estimating GJR-

GARCH model parameters. This procedure is repeated through all remaining data. For 

the S&P 100 and S&P 100 indexes, this ultimately yields 1,541 one-day forecasts, 154 

10-day forecasts, and 77 20-day volatility forecasts. For the Nasdaq 100 index, this yields 

1,266 one-day forecasts, 126 10-day forecasts, and 63 20-day volatility forecasts. All 

volatility forecasts are non-overlapping, out-of-sample forecasts.  

Figure I provides a graphical illustration of out-of-sample one-day volatility 

forecasts. Panel A and Panel B display daily realized and forecast volatility values for the 

1,541 one-day forecasts for the S&P 100 and S&P 500 stock indexes, respectively. 

Panel C displays daily realized and forecast volatility values for the 1,266 one-day 

forecasts for the Nasdaq 100 index. While Figure I suggests that the volatility forecasts 

capture a large proportion of the variability of predictable volatility, a formal evaluation 

of forecast efficacy is provided immediately below. 

 

[FIGURE I] 
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III.4 Forecast efficiency evaluations 

To evaluate the accuracy of the out-of-sample volatility forecasts Blair et al. 

(2001) suggest the P-statistic specified in equation (13), which measures the proportion 

of the variance of realized volatilities explained by volatility forecasts. In this P-statistic, 

,t Ny  and ,t Ny  denote realized and forecast volatility values over a N-day forecast horizon 

beginning on day t.  

( )
( )

( )
( )

/
2

( 1), ( 1),
1

/
2

( 1),
1

1

T S N

S N i n S N i N
i

T S N

S N i N
i

y y
P

y y

−

+ × − + × −
=

−

+ × −
=

−
= −

−

∑

∑
   (14) 

For the data used in is study the parameters of equation (14) are T = 3,544 and S = 2,001 

for the S&P 100 and S&P 500 indexes, T = 2,266 and S = 1,001 for the Nasdaq 100 

index, and N = 1, 10, 20 for the three different forecast horizons.  

Two additional measures of forecast accuracy are the Root Mean Squared Error 

(RMSE) and Mean Absolute Error (MAE); these are computed as shown in equations (15) 

and (16) immediately below. 

( ) ( ) ( )( )
( ) / 2

1 , 1 ,
1

1
/

T S N

S N i N S N i N
i

RMSE y y
T S N

−

+ × − + × −
=

= −
− ∑   (15) 

( ) ( ) ( )

( ) /

1 , 1 ,
1

1
/

T S N

S N i N S N i N
i

MAE y y
T S N

−

+ × − + × −
=

= −
− ∑   (16) 

An alternative measure of forecast ability is the R-squared from the regression of 

an N-day realized volatility ,t Ny  on the corresponding forecast volatility ,t Ny , as 

specified in equation (17). 

, ,t N t N ty y eα β= + +      (17) 

To simultaneously compare forecasts made from Model 2 and Model 3, we 

regress realized volatility on forecasts from Model 2 and Model 3 as specified in 

equation (18), in which 2
,
M
t Ny  denotes an N-day forecast from Model 2 and 3

,
M
t Ny  denotes 

an N-day forecast from Model 3. 
2 3

, 1 2 , 3 ,ˆ ˆM M
t N t N t N ty a a y a y e= + × + × +     (18) 



 15

The R-squared of this regression is a measure of information content based on the 

proportion of volatility variance explained by the best linear function of the forecasts. 

 

[INSERT TABLE 2] 

 

IV. Empirical results 

IV.1 Full sample GJR-GARCH model results  

Table 2 presents GJR-GARCH parameter estimates and related statistics obtained 

from all available data for the three stock indexes. In Table 3, Panel A reports results 

obtained from S&P 100 index data, Panel B corresponds to S&P 500 index data, and 

Panel C reports results from Nasdaq 100 data. Parameter estimates are reported in 

columns 2 through 7, with robust t-statistics reported in parentheses below each 

coefficient estimate. Log-likelihood values are listed in column 8, with Durbin-Watson 

statistics listed in column 9. All Durbin-Watson statistics indicate an absence of 

significant autocorrelations in regression errors.  

Panels A and B of Table 2 corresponding to S&P 100 and S&P 500 indexes, 

respectively, show that log-likelihood statistics in column 8 increase monotonically 

moving from Model 1 to Model 4. For the Nasdaq 100, Panel C reveals a similar pattern, 

except that the log-likelihood value for Model 2 greater than that for Model 3.  

For all models and indexes, the GJR-GARCH coefficients 1α  measuring the 

impact of good news are never significantly positive and in some cases are significantly 

negative. By contrast, the coefficients 2α  are always significantly positive and the 

coefficient sums 1 2α α+  are always positive. Thus, overall we observe a pervasive 

asymmetric effect of past daily returns on conditional volatility in which bad news 

( 1−tε < 0) has a strong impact on conditional variance while good news ( 1−tε > 0) has a 

much weaker effect. This is consistent with empirical findings in Blair et al. (2001) who 

also find that past volatility has a similar asymmetric impact on conditional volatility.  

The augmented GJR-GARCH specification for Model 2 excludes only intraday 

high-low range volatility and that for Model 3 excludes only implied volatility. In all 

three panels of Table 2, Model 2 yields significant regression coefficients for implied 
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volatility and Model 3 yields significant regression coefficients for high-low range 

volatility. For the S&P 100 and S&P 500 indexes, Panels A and B reveal that log-

likelihood values for Model 3 are smaller than those for Model 2, thereby suggesting that 

high-low range volatility has greater information content than does implied volatility. 

However for the Nasdaq 100 index, Panel C reveals that the log-likelihood value for 

Model 2 is smaller than that of Model 3, suggesting that implied volatility has greater 

information content than intraday high-low range volatility for that index. 

Notwithstanding these differences, the results obtained from Model 4 for all three indexes 

indicate significant slope coefficients for both intraday high-low range volatility and 

implied volatility. This suggests that both volatility measures provide incremental 

information content not entirely subsumed by the other.  

 

[TABLE 3] 

 

IV.2 Out-of-sample forecast evaluation 

Table 3 summarizes out-of-sample accuracy of volatility forecasts from various 

GJR-GARCH model specifications by reporting P-statistics, root mean squared errors 

(RMSE), and mean absolute errors (MAE) of volatility forecasts for the S&P 100, 

S&P 500, and Nasdaq 100 indexes. Results for N = 1, 10, 20 day-forecasts are reported. 

Perhaps the most notable aspect of the out-of-sample volatility forecast results 

reported in Table 3 is the contrasting performance between Model 1 and Model 4. 

Model 1 represents the basic GJR-GARCH model, while Model 4 is the GJR-GARCH 

model augmented by both intraday high-low range volatility and implied volatility. 

Model 4 displays markedly improved performance over Model 1 across all three stock 

indexes and all forecast horizons. For example, one-day volatility forecasts for the 

S&P 100, S&P 500, and Nasdaq 100 indexes from Model 1 yield P-statistic values of 

0.117, 0.121, and 0.141, respectively. By contrast, Model 4 yields P-statistic values of 

0.147, 0.145, and 0.172 for corresponding one-day forecasts. Similarly for 20-day 

volatility forecasts, Model 1 yields P-statistic values of 0.243, 0.294, and 0.407, while 

Model 4 yields corresponding values of 0.367, 0.425, and 0.534. These results clearly 

indicate that volatility forecasts formed from the GJR-GARCH model are appreciably 
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improved with the additional information contained in implied volatility and high-low 

range volatility for all three stock indexes at all forecast horizons. Essentially the same 

results are reflected in the RMSE and MAE statistics. 

Looking more closely at Table 3, a specific comparison of results obtained from 

Model 2 and Model 3 holds some interest. Model 2 excludes only high-low range 

volatility and Model 3 excludes only implied volatility. P-statistics in Panel A of Table 4 

shows that Model 3 yields superior volatility forecasts to Model 2 at all forecast horizons 

for the S&P 100 index. By contrast, Model 2 yields P-statistics indicating superior 

forecasts to Model 3 for Nasdaq 100 volatility forecasts at all forecast horizons. Results 

are mixed for the S&P 500 index, for which Model 3 yields P-statistics indicating a 

superior volatility forecast to Model 2 at the one-day horizon, an inferior forecast at the 

10-day horizon, and nearly equivalent forecast performance at the 20-day horizon. Thus 

the evidence presented here does not indicate uniformly superior forecast performance for 

either the high-low range volatility or implied volatility alone. However, both Model 2 

and Model 3 provide uniformly superior forecast performance over Model 1 indicating 

that both intraday high-low range volatility and implied volatility contain information not 

captured by Model 1. 

 

 [TABLE 4] 

 

Table 4 reports R-squared values and coefficient values from regressions of 

realized volatility on out-of-sample volatility forecasts across the four models, three 

indexes, and three forecast horizons. Panel A reports results from S&P 100 volatility 

forecasts, Panel B reports results for S&P 500 volatility forecasts, and Panel C reports 

results for Nasdaq 100 volatility forecasts.  

The R-squared values shown in Panel A of Table 4 indicate that Model 3 yields 

out-of-sample S&P 100 volatility forecasts superior to those obtained from Model 2 at 

forecast horizons of 10 and 20 days. However, for one-day S&P 100 volatility forecasts 

the R-squared value of 0.148 is the same for both Model 3 and Model 2. Since Model 3 

excludes only implied volatility and Model 2 excludes only intraday high-low range 

volatility, at the one-day horizon both implied volatility and intraday high-low range 
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volatility for the S&P 100 index appear to provide similar information content. However, 

at the 10-day and 20-day horizons it appears that much of the incremental information 

contained in implied volatility is subsumed by intraday high-low range volatility. The 

relative weakness of implied volatility at 10-day and 20-day horizons is surprising since 

the VXO volatility index represents a volatility forecast over a 22-day horizon. 

Panel B of Table 4 reveals that Model 3 yields out-of-sample S&P 500 volatility 

forecasts superior to those obtained from Model 2 at the one-day forecast horizon, with 

R-squared values of 0.144 and 0.137, respectively. However, Model 3 yields volatility 

forecasts inferior to Model 2 at the 10-day horizon, with R-squared values of 0.423 and 

0.534, respectively. Similarly, Model 3 and Model 2 yield R-squared values of 0.411 and 

0.451, respectively, at the 20-day forecast horizon. In this case, the relative strength of 

implied volatility at the 10-day and 20-day forecast horizons is expected since the VIX 

volatility index is constructed to represent a 22-day volatility forecast. 

In contrast to results reported from Panel A, R-squared values shown in Panel C 

of Table 4 indicate that Model 2 provides superior Nasdaq 100 volatility forecasts at all 

forecast horizons compared to those obtained from Model 3. For one-day Nasdaq 100 

volatility forecasts, the R-squared value of 0.183 for Model 2 is almost identical to the 

value of 0.186 for Model 4, while that for Model 3 is 0.159. Thus, at the one-day horizon 

it appears that the incremental information contained in intraday high-low range volatility 

is largely subsumed by implied volatility. At the 10-day forecast horizon, the R-squared 

values for Model 2 and Model 4 are both 0.592, while the corresponding value for 

Model 3 is 0.456. Similarly at the 20-day forecast horizon, Model 2 and Model 4 yield 

the same R-squared value of 0.395, while Model 3 yields an R-squared value of 0.350. 

Thus, at all volatility forecast horizons for the Nasdaq 100 index the incremental 

information contained in intraday high-low range volatility appears to be already 

subsumed by implied volatility.  

Overall, the results shown in Table 4 mirror and reinforce those shown in Table 3. 

These all indicate that intraday high-low range volatility contains incremental 

information beyond that contained in implied volatility for out-of-sample S&P 100 

volatility forecasts at all forecast horizons. However, implied volatility provides 

incremental information beyond that contained in intraday high-low range volatility for 
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Nasdaq 100 volatility forecasts at all forecast horizons. For out-of-sample S&P 500 

volatility forecasts, the results are mixed. The intraday high-low range appears to provide 

some incremental information over implied volatility at one-day and 20-day horizons, but 

results favor implied volatility at a 10-day horizon.  

In all cases examined, both intraday high-low range volatility and implied 

volatility bring significant improvements to the GJR-GARCH model. Model 2 and 

Model 3 clearly outperform Model 1 with all indexes across all forecast horizons. Thus, 

intraday high-low range volatility and implied volatility both provide incremental 

information for forecasting conditional volatility.  

 

 [TABLE 5] 

 

To assess the relative contributions of high-low range volatility and implied 

volatility to improved conditional volatility forecasts, Table 5 reports results from 

regressions of realized volatility against competing out-of-sample forecasts. In these 

regressions, the coefficients 2α  and 3α  represent slope coefficients for forecasts from 

Model 2 and Model 3, respectively. In general, slope coefficients for both Model 2 

forecasts and Model 3 forecasts are significant across all indexes and forecast horizons. 

Two exceptions occur for Nasdaq 100 regressions with one-day and 20-day forecast 

horizons for which the coefficient 3α  has t-statistic values of just 0.76 and 0.19, 

respectively. An exception also occurs for S&P 500 regressions where the coefficient 3α  

for the 20-day forecast horizon is just 1.56. 

The results reported in Table 5 further support those reported in Table 3 and 

Table 4. The coefficient 3α  for Model 2 forecasts is uniformly larger than the coefficient 

2α  for Model 3 forecasts at all forecast horizons for the S&P 100 index, indicating 

relatively greater information content for intraday high-low range volatility. However, the 

coefficient 2α  is uniformly larger than the coefficient 3α  at all forecast horizons for the 

S&P 500 index and the Nasdaq 100 index, indicating relatively greater information 

content for implied volatility.  
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V. Summary and conclusions 

This is the first study to compare the incremental information content of the 

intraday high-low price range and implied volatility when used to augment GARCH 

model forecasts of stock market volatility. We examine conditional volatility forecasts for 

three broad market indexes: the S&P 100 and the S&P 500 over the period January 1990 

through December 2003, and the Nasdaq 100 over the period January 1995 through 

December 2003. Our results strongly support the conclusion that volatility forecasts 

formed from a GJR-GARCH model are appreciably improved with the additional 

information contained in implied volatility and high-low range volatility. 

We also find that the intraday high-low range often provides significant 

incremental information beyond that already contained in a GARCH model augmented 

by implied volatility. This is demonstrated by comparing conditional volatility forecasts 

based on various configurations of the GJR-GARCH model augmented by implied 

volatility and intraday high-low range volatility. 

For the S&P 100 index volatility forecasts, we find evidence supporting the 

conclusion that intraday high-low range volatility provides greater incremental 

information than implied volatility over one-day, 10-day, and 20-day forecast horizons. 

However, results obtained from Nasdaq 100 index volatility forecasts indicate that 

implied volatility provides greater information content than intraday high-low range 

volatility over all volatility forecast horizons. For S&P 500 index volatility forecasts, our 

results also favor implied volatility over the intraday high-low range, albeit less 

dramatically than those for Nasdaq 100 forecasts.  

Overall, our findings strongly support the conclusion that a GARCH model 

augmented by intraday high-low range volatility and/or implied volatility significantly 

improves volatility forecasts provided by a GARCH model alone. For volatility forecasts 

obtained from S&P 100 and S&P 500 indexes, we find scant evidence to suggest that 

either intraday high-low range volatility or implied volatility subsumes entirely the 

information content of the other. By contrast, for Nasdaq 100 volatility forecasts we find 

significant evidence to support the conclusion that the incremental information contained 

in intraday high-low range volatility is almost entirely subsumed by implied volatility. 
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Appendix 

Theorem 
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It is then sufficient to show that for iid intraday returns, 
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We make use of the following identity: 
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For iid returns with ( )hE r =0, we have that ( )h iE r r = 0 and ( ) ( )( )22 2
h i hE r r Var r=  for h≠i, 

and ( ) ( )( ) ( )24
h h hE r Var r Kurt r= × . There are n(n-1) cases in which h=i, j=k, and h≠j; 

another n(n-1) disjoint cases in which h=j, i=k, and h≠i; as well as another n(n-1) cases in 

which h=k, i=j, and h≠i. Thus there are 3n(n-1) cases of ( )( )2
hVar r . Also there are n 

cases where h=i=j=k. Thus we obtain, 
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Substitution into Kurt(rd) above finishes the proof. 
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Table 1: Descriptive statistics for volatility data 
 
The data include 3,544 daily observations for the S&P 100 and S&P 500 indexes over the 
period January 1990 through December 2003, and 2,266 daily observations for the 
Nasdaq 100 index over the period January 1995 through December 2003. Volatility 
measures include squared daily returns, implied variance, and squared intraday high-low 
price range. 
    Standard   
 Mean Max Min Deviation Skewness Kurtosis 
Panel A: S&P 100 index 
Squared daily returns 1.227 56.497 0.000 2.906 7.540 93.640 
Implied variance (VXO) 1.308 6.088 0.252 0.872 1.697 6.830 
Squared intraday range 0.959 28.094 0.023 1.532 6.866 82.948 
       
Panel B: S&P 500 index 
Squared daily returns 1.111 50.551 0.000 2.615 7.838 103.568 
Implied variance (VIX) 1.938 8.302 0.344 1.189 1.697 6.831 
Squared intraday range 1.783 59.708 0.026 3.219 7.271 90.352 
       
Panel C: Nasdaq 500 index 
Squared daily returns 5.597 295.94 0.000 12.345 8.911 155.278 
Implied variance (VXN) 7.435 34.447 1.195 5.414 1.336 4.422 
Squared intraday range 3.786 133.71 0.074 5.912 8.675 142.667 
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Table 2: GJR-GARCH regressions for daily S&P 100, S&P 500, and Nasdaq 100 
index volatility 

 
Parameter estimates for the augmented GJR-GARCH model specified immediately 
below. The data span the period 1990-2003 for S&P 100 and S&P 500 indexes, and 
1995-2003 for the Nasdaq 100 index. 
 

2 2 2 2
0 1 1 2 1 1 1 1 1t t t t t t th s h IVOL RNGα α ε α ε β γ δ− − − − − −= + + + + +  

 
1−ts  = 1 if 1−tε < 0 and is zero otherwise 

 
Log-L and D-W indicate maximum likelihood values and Durbin-Watson statistics, 
respectively. Robust t-statistics corrected for Lindley’s paradox are reported in 
parentheses below coefficient values. 

 0α  1α  2α  β  γ  δ  Log-L D-W 
Panel A: S&P 100 index 

Model 1 0.013 0.007 0.114 0.927   -4849.4 1.97 

 (4.66) (0.72) (5.64) (98.56)     

Model 2 -0.001 -0.039 0.184 0.678 0.215  -4805.9 2.06 

 (-0.09) (-2.60) (5.45) (10.18) (4.10)    

Model 3 0.012 -0.084 0.102 0.872  0.194 -4788.9 1.94 

 (2.35) (-4.05) (5.26) (44.82)  (4.41)   

Model 4 0.002 -0.105 0.146 0.693 0.156 0.174 -4779.1 2.02 

 (0.15) (-4.14) (5.34) (11.66) (3.79) (3.02)   

         

Panel B: S&P 500 index 
Model 1 0.012 0.008 0.110 0.929   -4689.5 2.00 

 (4.54) (0.80) (5.86) (93.77)     

Model 2 -0.070 -0.041 0.161 0.443 0.474  -4643.1 2.06 

 (-2.83) (-4.90) (5.02) (3.10) (3.64)    

Model 3 0.011 -0.092 0.096 0.881  0.088 -4599.9 1.97 

 (2.60) (-3.82) (4.96) (45.51)  (4.06)   

Model 4 -0.055 -0.091 0.139 0.479 0.060 0.393 -4595.7 1.97 

 (-2.49) (-3.25) (4.62) (3.41) (1.92) (3.23)   
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Table 2 continued 

 
Log-L and D-W indicate maximum likelihood values and Durbin-Watson statistics, 
respectively. Robust t-statistics corrected for Lindley’s paradox are reported in 
parentheses below coefficient values.  

 0α  1α  2α  β  γ  δ  Log-L D-W 
Panel C: Nasdaq 100 index 

Model 1 0.057 0.018 0.097 0.924   -4833.5 2.01 

 (4.30) (0.90) (3.13) (76.75)     

Model 2 -0.048 -0.038 0.189 0.570 0.415  -4783.5 2.04 

 (-0.60) (-1.41) (4.02) (4.99) (3.48)    

Model 3 0.035 -0.055 0.102 0.860  0.205 -4806.4 2.00 

 (1.60) (-2.73) (3.72) (43.49)  (4.81)   

Model 4 -0.049 -0.053 0.149 0.607 0.324 0.116 -4780.7 2.02 

 (-0.76) (-1.12) (3.53) (5.99) (3.34) (1.56)   

         
 
 



 28

 
 
Table 3: Volatility forecast statistics for S&P 100, S&P 500, and Nasdaq 100 
indexes 

 
Evaluations of N = 1, 10, 20 day volatility forecasts based on P-statistics, root mean 
squared errors (RMSE), and mean absolute errors (MAE), as specified in the text. The 
data span the period 1990-2003 for S&P 100 and S&P 500 indexes, and 1995-2003 for 
the Nasdaq 100 index. 
 N = 1 N = 10 N = 20 

 P RMSE MAE P RMSE MAE P RMSE MAE 

Panel A: S&P 100 index  
Model 1 0.117 3.511 1.905 0.182 14.979 9.367 0.243 25.445 17.114 

Model 2 0.139 3.470 1.891 0.244 14.877 9.318 0.278 25.271 16.841 

Model 3 0.147 3.449 1.879 0.322 13.952 8.785 0.367 23.956 16.118 

Model 4 0.147 3.453 1.877 0.308 14.039 8.872 0.367 24.104 16.101 

          
Panel B: S&P 500 index  
Model 1 0.121 3.157 1.733 0.214 13.145 8.235 0.294 22.523 14.905 

Model 2 0.128 3.125 1.715 0.352 12.383 7.966 0.389 21.608 14.418 

Model 3 0.145 3.113 1.712 0.272 12.364 7.840 0.387 21.770 14.482 

Model 4 0.145 3.109 1.708 0.379 11.980 7.748 0.425 21.170 14.096 

          

Panel C: Nasdaq 100 index  
Model 1 0.141 14.166 7.505 0.417 56.806 34.612 0.407 97.776 63.743 

Model 2 0.168 13.808 7.421 0.513 51.623 31.199 0.534 88.881 54.603 

Model 3 0.158 14.009 7.480 0.458 54.459 32.258 0.414 95.356 59.428 

Model 4 0.172 13.783 7.415 0.531 50.643 30.444 0.534 88.881 54.603 
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Table 4: Regressions of realized volatility against out-of-sample volatility forecasts 
for S&P 100, S&P 500, and Nasdaq 100 indexes 

 
Forecast regression equation specified immediately below, in which ,t Ny  denotes an 
N-day realized volatility and ,ˆt Ny  is the corresponding volatility forecast. 
 

, ,ˆt N t N ty y eα β= + +  
 
The data span the period 1990-2003 for S&P 100 and S&P 500 indexes, and 1995-
2003 for the Nasdaq 100 index. Robust t-statistics corrected for Lindley’s paradox are 
reported in parentheses below coefficient values. 
 N = 1 N = 10 N = 20 

 α  β  R2 α  β  R2 α  β  R2 
Panel A: S&P 100 index 

Model 1 0.156 0.947 0.117 7.432 0.802 0.232 15.51 0.690 0.241 

 (0.68) (7.85)  (3.28) ( 6.85)  (2.90) ( 4.89)  

Model 2 -0.346 1.285 0.148 6.348 0.703 0.284 12.98  0.894 0.298 

 (-1.32) (7.96)  (3.02) ( 7.53)  (2.08) ( 4.89)  

Model 3 -0.049 1.077 0.148 4.662  0.894 0.379 10.98  0.797 0.395 

 (-0.06) (7.80)  (2.39) ( 9.30)  (2.01) ( 6.77)  

Model 4 -0.407 1.325 0.158 4.466  0.856 0.328 7.153  0.968 0.373 

 (-1.53) (7.93)  (2.23) (8.45)  (1.35) (6.58)  

          

Panel B: S&P 500 index 

Model 1 0.101 0.964 0.120 3.436 0.827 0.381 11.627 0.679 0.372 

 (0.39) (7.58)  (1.89) (6.12)  (2.73) (4.67)  

Model 2 -0.365 1.338 0.137 -2.358 1.308 0.534 1.509 1.080 0.451 

 (-1.46) (7.65)  (-0.97) (7.01)  (0.31) (5.72)  

Model 3 -0.006 1.038 0.144 3.512 0.838 0.423 1.423 1.108 0.411 

 (-0.14) (7.34)  (2.20) (6.37)  (2.61) (3.75)  

Model 4 -0.414 1.368 0.147 -2.773 1.329 0.568 3.547 1.024 0.466 

 (-1.67) (7.75)  (-1.07) (6.67)  (0.63) (4.61)  
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Table 4 continued 

 
Robust t-statistics corrected for Lindley’s paradox are reported in parentheses below 
coefficient values. 
 N = 1 N = 10 N = 20 

 α  β  R2 α  β  R2 α  β  R2 
Panel C: Nasdaq 100 index 

Model 1 -0.089 1.043 0.141 15.50 0.834 0.393 67.07 0.579 0.301 

 (-0.08) -5.38  (1.10) (3.54)  (2.41) (2.55)  

Model 2 -2.679 1.399 0.183 -11.34 1.207 0.592 32.26 0.835 0.395 

 (-1.33) (5.00)  (-0.79) (5.11)  (1.18) (3.52)  

Model 3 0.147 1.030 0.159 15.78 0.829 0.456 76.97 0.521 0.350 

 (0.14) (5.72)  (1.23) (3.77)  (2.14) (3.70)  

Model 4 -2.491 1.383 0.186 -9.560 1.182 0.592 39.44 0.788 0.395 

 (-1.34) (5.25)  (-0.62) (4.70)  (1.30) (3.79)  
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Table 5: Regression of realized volatility on Model 2 and Model 3 forecasts for 
S&P 100, S&P 500, and Nasdaq 100 indexes 

 
Forecast regression equation specified immediately below, in which ,t Ny  denotes an 

N-day realized volatility, and 2
,ˆ M

t Ny  and 3
,ˆ M

t Ny  represent corresponding volatility forecasts 
from Model 2 and Model 3, respectively. 
 

2 3
, 1 2 , 3 ,ˆ ˆM M

t N t N t N ty y y eα α α= + + +  
 
The data span the period 1990-2003 for S&P 100 and S&P 500 indexes, and 1995-
2003 for the Nasdaq 100 index. Robust t-statistics corrected for Lindley’s paradox are 
reported in parentheses below coefficient values. 
 N = 1 N = 10 N = 20 

 2α  3α  R2 2α  3α  R2 2α  3α  R2 
S&P 100 0.571 0.689 0.158 0.592 1.351 0.392 0.747 1.557 0.416 

 (2.28) (2.30)  (2.39) (5.20)  (2.12) (4.63)  

S&P 500 0.689 0.632 0.158 0.706 0.572 0.524 0.743 0.313 0.466 
 (2.29) (2.65)  (2.92) (1.95)  (2.87) (1.56)  

Nasdaq 100 1.111 0.258 0.184 0.647 0.464 0.522 0.981 0.047 0.383 
 (2.03) (0.76)  (2.70) (2.69)  (2.85) (0.19)  

          
 

 



Figure I: Realized and forecast volatility from Model 4
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