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ABSTRACT. This paper explores the use of statistical bootstrapping in inferring the 

finite-sample distribution of option prices when an estimate is used in place of the true 

but unknown variance. This approach may have advantages over conventional 

methods, especially in small samples, such as: bias reduction, increased efficiency, 

computational simplicity and making fewer assumptions. The procedure can be easily 

adapted to infer the distribution of many useful nonlinear estimators, such as hedge 

ratios, even in the absence of analytical option pricing formulas. In an empirical 

application using S&P 500 data, we study the distribution of European and American 

option prices and deltas using bootstrapping and compare the results to those given by 

Lo’s (1986) asymptotic approach. We also explore behaviour of these distributions 

when we shift volatility levels, maturities, risk-free rates and dividend yields. 
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1. Introduction 

Inference on the distribution of option prices has been a long-standing problem in the financial 

literature. In particular, the use of estimates in place of the true but unknown volatility in the 

Black-Scholes formula (hereafter, BSF), gives rise to an interesting statistical problem since the 

estimate of the variance rate affects the estimate of the corresponding option price. This problem 

involves estimation risk whereby the model is valid but the input parameters are uncertain (see 

Gibson et al, 1997; Derman, 1998). The only simple case is when volatility is a deterministic 

function of time and can be replaced by its average value over the life of the option (Merton, 

1973). A significant complication arises from the fact that even an unbiased estimate of the 

variance does not produce an unbiased estimate of the option price since the BSF is nonlinear 

with respect to volatility (see Ingersoll, 1976; Merton, 1976; Boyle and Anathanarayanan, 1977). 

Moreover, it is well known that reducing estimation risk by increasing sample size, either by 

sampling frequency or time horizon, may not be always appropriate in view of microstructures 

and nonstationarities (e.g., see Boyle and Anathanarayanan, 1977; Campbell et al., 1997, Ch. 3). 

 

Boyle and Anathanarayanan (1977) derived nonsymmetric option price confidence intervals on 

the basis of a chi-square distribution for historical variance and proposed a Bayesian approach for 

reducing variance estimation error. By numerically integrating the BSF over the chi-squared 

probability density function (pdf) of the variance estimate, assuming that the true variance is 

known, they concluded that, in general, the average Black-Scholes value does not equal the true 

value. However, they also showed that differences become negligible even for moderate samples. 

Ball and Torous (1984) attempted to overcome the problem that resulted from the BSF non-linear 

transformation, by constructing an asymptotic maximum likelihood estimator based on high, low 

and closing prices. The attractive feature of this estimator was its invariance under non-linear 

transformations. Butler and Schachter (1986) used a Taylor expansion of the BSF and the 
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moments of the estimated variance rate in developing a minimum variance unbiased price 

estimator. The authors presented some evidence that their approach had reasonably good 

performance in small samples. Lo (1986) developed the most general framework based on 

asymptotic statistical theory for estimation and testing contingent-claim asset pricing models, 

such as the BSF. A computational advantage of this approach is that the limiting distribution of 

the contingent claim can be derived regardless of whether the claim is priced in closed form or 

numerically. Knight and Satchell (1997) proved that the uniformly minimum unbiased estimator 

for the BSF proposed by Butler and Schachter (1986) exists if and only if the option is at-the-

money. Ncube and Satchell (1997) demonstrated that the asymptotic approach of Lo (1986) is 

inappropriate if the constant volatility model is to be regarded as an approximation to a slowly 

changing time varying volatility model. They also emphasised that the true confidence intervals 

are non-symmetric and that the asymptotic approach may yield negative option prices. 

 

The problem of statistical bias due to the use of historical variance has not received much 

attention in the empirical option pricing literature.1 Knight and Satchell (1997) argued that this 

could be due to the relatively small magnitude of biases reported in simulation studies, the 

development of more general formulae than the BSF and the widespread adoption of implied 

volatilities instead of historical variances. However, as discussed by the authors, the reported 

biases may appear so small due to the conservative volatility levels and the short expirations 

adopted in the simulation studies. Finally, the authors stress that implied volatilities are not 

always readily available, as for example, in real option pricing.  

 

 

                                                 
1 For the impact of estimation risk within the context of modern portfolio theory see, for example, Jones 
(1999) and Lo (2003). 
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Recently Phillips and Yu (2004) proposed the use of the jackknife as a general method of bias 

reduction for pricing bond options and other derivative securities. They concentrated on 

estimation bias of continuous time models and, in particular, on the mean reversion parameter of 

interest rate diffusion processes. Their simulation results suggest that the jackknife provides 

substantial improvements in pricing bond options over maximum likelihood methods.  

 

This paper proposes the use of a bootstrap methodology in inferring the properties of the finite 

sample distribution of option prices and hedge parameters when estimates of variance are used. 

Despite its computational intensity, it is argued that this methodology may have considerable 

advantages over the alternatives discussed previously, in terms of: small sample statistical 

properties, data requirements, computational simplicity and consistency against no-arbitrage 

bounds. As reported by the numerous applications of the bootstrap methodology in statistics and 

econometrics, it is particularly well suited for the problem underhand, which involves a highly 

nonlinear estimation with a limited amount of data. In an empirical application, we explore the 

merit of the proposed methodology in comparison to Lo’s asymptotic approach using spot data 

from the S&P 500 index. While the empirical literature in this area has been concerned with the 

distribution of European option prices, we also look into the distribution of a hedge parameter, 

delta, which is of great concern to investors, particularly to those selling options. Moreover, we 

examine the distribution of American options, something that also has not received attention in 

the empirical literature.2 Although American options present significant computational problems, 

since no analytical pricing model exists, they are by far the most widely traded derivatives. 

Finally, motivated by Knight and Satchell (1997), we also look into the effect of high volatility 

levels, long maturities, and shifts in the risk-free rate and the dividend yield, respectively. In 

general, our conclusions are comparable to those drawn by previous researchers. More 

                                                 
2 Ncube and Satchell (1997) studied the problem of estimation risk for the specific case of perpetual 

American put options, where a closed form solution is available.  
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specifically, we also find that biases in the BSF option prices due to the use of estimates in 

historical variance are likely to be small, and that asymptotic approaches may produce confidence 

intervals for prices that violate no-arbitrage bounds. We extend these results to the hedge 

parameter delta and to American option prices, where we obtain similar results. However, we find 

that an increase in volatility and time to maturity, contrary to what has been conjectured in the 

literature, does not necessarily increase biases in option prices. Shifting volatility, time to 

maturity, risk-free rates and dividend yields appears to have significant, yet mixed, effects on the 

shape of the distribution of option prices and deltas, respectively. 

 

The next section describes Lo’s asymptotic approach along with the proposed bootstrap 

methodology. Section 3 presents an empirical application of these methodologies for inferring the 

distribution of European and American option prices and hedging parameters using variance 

estimated from S&P 500 data. The final section summarises our contribution and concludes the 

paper. 

 

2. Methodology: Inferring the Distribution of Option Prices and Hedge Parameters  

 

2.1 Asymptotic Approach 

Following the analysis by Lo (1986), the maximum likelihood estimator of σ2 is given by: 

 

2

2

1 1

1 1ˆ
n n

ML k j
k j

X X
T n

σ
= =

 
= − 

 
∑ ∑      (1) 

 

where Xk is the log difference of asset prices S(kh)/S((k-1)h) and h=T/n for n+1 are equally 

spaced observations of S(t) in the time interval [0, T]. This can be used to obtain a point estimate 
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for option prices and hedge parameters, respectively. Standard results show that 2ˆMLσ  has the 

following asymptotic distribution: 

 

2 2 4ˆ ˆ( ) (0, 2 )A
MLn Nσ σ σ− →                                                   (2) 

 

Taking a first order Taylor approximation, the asymptotic distribution of a non-linear function, 

such as an option price, ˆ
MLF , that depends on 2ˆMLσ , is given by: 
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4
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σ

σ

  ∂
  − →

  ∂  
                                       (3) 

 

The same formula applies in the case we choose to study the distribution of hedge parameters (see 

Campbell et al., 1997). As shown by Lo (1986), in the case of BSF, the asymptotic distribution is: 

 

 ( ) ( )2 2 2
1

1ˆ 0,
2

An BSF BSF N S dσ τφ − →  
 

                               (4) 

 

where φ(·) is the standard normal pdf. Once the asymptotic distribution is known, confidence 

intervals (hereafter asymptotic confidence intervals, ACI) and hypothesis tests can be constructed 

using the statistic 
ˆ
ML

F

F F
V
− , where FV  is the asymptotic standard error (ASE). In the case 

where closed form solutions are not available, such as in American options, the asymptotic 

variance can still be obtained via numerical differentiation with respect to the variance input. The 

(1-a)100% confidence interval is given by: 
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Prob ( )2 2 2
2 2ˆ ˆ( ) ( ) ( ) 1ml a F ml ml a FF z V F F z V aσ σ σ− ≤ ≤ + = −                          (5) 

 

2.2 Bootstrap Approach 

The bootstrap is a resampling method of simulation for inferring the distribution of a statistic 

derived from a sample by treating the sample as the population. It is nonparametric in the sense 

that unlike alternatives such as Monte Carlo simulation methods, it does not draw repeated 

samples from assumed distributions. The bootstrap carries out conventional statistical 

calculations in an unconventional way: by purely computational means, rather than through the 

use of mathematical formulas. Bootstrap can be thought as a nonparametric maximum likelihood 

theory applied via the computer to a more complicated class of estimation problems. The 

development of this approach is relatively new (Efron, 1979) and has become increasingly 

popular with the widespread availability of powerful computers. Although bootstrapping is 

computationally intensive, it is intuitively appealing and particularly easy to implement. A variety 

of resampling schemes, standard error estimation algorithms and hypothesis testing procedures 

have been developed within the bootstrap methodology.3 It has been widely demonstrated that 

under mild conditions, boostrapping provides more accurate approximations in small samples to 

the distribution of many statistics than classical large sample approximations (eg, see Singh, 

1981; Babu, 1986). As demonstrated by Horowitz (2001), under mild regularity conditions, the 

bootstrap provides approximations to distributions of statistics, coverage probabilities of 

confidence intervals, and rejection probabilities of hypothesis tests that are at least accurate as the 

approximations of 1st order asymptotic distribution theory, without entailing the algebraic 

complexity of higher order expansions. Even if asymptotic and bootstrap standard errors are the 

                                                 
3 An informal yet comprehensive treatment is Efron and Tibshirani (1993). Applications in econometrics 
and finance are reviewed by Horowitz (2001) and Maddala and Li (1996), respectively. For a more 
mathematical treatment, including Edgeworth expansions, see Hall (1992). 
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same, the confidence intervals can be different if the bootstrap distribution is skewed. Although 

bootstrap estimates are asymptotically efficient, they are not necessarily unbiased, but tend to 

have small biases compared to the magnitude of their standard errors. The bootstrap is especially 

well suited for cases where it is difficult to calculate the asymptotic distribution of an estimator or 

statistic. In the case of finite variance the bootstrap distribution converges weakly to normality. 

Singh (1981) has showed that under the existence of third moments, the bootstrap is 

asymptotically a better approximation to the true distribution than the normal on the basis of 

Edgeworth expansion. In the case where third moments do not exist then the bootstrap 

approximation is asymptotically equivalent to the normal (Hall, 1988). One of the major 

drawbacks of the bootstrap distribution is that it cannot provide consistent estimates in the 

presence of infinite variance (see LePage and Billard, 1992). 

 

Assume that we observe n iid data points of log difference of asset prices and that we want to 

price an option on the underlying asset. The bootstrap algorithm4 starts by generating a large 

number of independent bootstrap samples x*1, x*2, …, x*B, each of size n, The samples are 

generated by uniformly sampling from the original sample with replacement. The star notation 

indicates that x* is not the actual data set x but rather a randomised or resampled version of it. For 

each bootstrap sample we estimate the variance of returns, that is we obtain a vector of variances 

(σ2)*1, (σ2)*2, …, (σ2)*B. We then evaluate the bootstrap replication, that is, the option price 

corresponding to each replication sample: 

 

û* (b) = F((σ2)*b, ·)    b = 1, 2, 3, …, B                     (6) 

 

                                                 
4 See Efron and Tibshirani (1993). 
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The average of the bootstrap samples can be used as an estimate of the option price. The same 

procedure can be applied in studying the distribution of hedge parameters. The standard error 

se(û) (BSE) can be estimated by the sample standard deviation of the B replications: 

 

seB = { Σ[û*(b) – û*(·)]2 / (B – 1) }1/2    b = 1, 2, 3, …, B                     (7) 

where û*(·) = Σû*(b)/ B   b = 1, 2, 3, …, B   

In this way the standard deviation of the estimated option price is the empirical standard deviation 

of the replications. The result is termed the bootstrap estimate of standard error seB with B being 

the number of bootstrap samples used. Obviously, the limit of seB as B→∞ is the ideal bootstrap 

estimate.  

 

Confidence intervals and hypothesis tests can then be constructed either on the basis of the 

empirical percentiles (hereafter bootstrap nonparametric confidence intervals, BNCI) or using 

the normality assumption (hereafter bootstrap parametric confidence intervals, BPCI). Let Ĝ be 

the cumulative function of û*. The 1-2α percentile interval is defined by the α and the 1-α 

percentiles respectively of Ĝ : 

 
1 1

% %
ˆ ˆˆ ˆ, ( ), (1 )lo upu u G a G a∗ ∗ − −   = −                                           (8) 

 
Since by definition 1 ( )ˆ ˆ( ) aG a u− ∗= , the 100th percentile of the bootstrap distribution can also be 

written as 

( ) (1 )
% %ˆ ˆ ˆ ˆ, ,a a

lo upu u u u∗ ∗ ∗ ∗ −   =                                                 (9) 
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In addition to the statistical advantages in moderate samples mentioned above, the bootstrap 

distributions of option prices and hedge parameters will have a shape that is consistent with the 

true distributions and will not violate no-arbitrage bounds. The standard errors in option prices 

estimated by both the asymptotic and bootstrap approach will be identical for both calls and puts 

only in the case of European options. Put-call parity can then be used to infer the price of put 

options, for example, from the price of call options for constructing confidence intervals. 

However, in wide variety of options, including American, no generic put-call parity relationship 

exists.  
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4. An Empirical Application 

In this example we study European and American option prices and hedge parameters, 

respectively. The data employed consist of daily closing prices for the Standard and Poors 500 

Index (S&P500) from 6/10/03 to 31/12/03, a total of 60 observations. The relatively short sample 

length was determined according to standard practice (e.g. see Hull, 2004), in order to avoid 

nonstationarities. Daily returns were calculated as usual via logarithmic differencing. A 

maximum likelihood estimate of variance is used to calculate volatility levels, and, subsequently, 

point estimates of option prices using the BSF and the Barrone-Adesi (1989) approximation to 

American option prices, respectively.  Lo’s (1986) asymptotic standard errors (ASE) of prices are 

then calculated using the methodology described previously. For the European options we also 

study the asymptotic distribution of the partial derivative of option price with respect to the 

underlying asset, the so-called hedge parameter delta. We then compare the results for European 

and American options with those obtained via bootstrapping, respectively.   

 

4.1 European Options 

Table 1 presents the results for European call option prices and deltas under different levels of 

moneyness. A first observation is that price differences between BSF point estimates and 

bootstrap estimates are marginal across different levels of moneyness, something that is 

consistent with previous results (eg., see Boyle and Anathanarayanan, 1977; Lo, 1986). An 

interesting conclusion is that biases are small also for deltas, something that has also been 

observed by Figlewski and Green (1999). As indicated by the skewness and kurtosis coefficients, 

the nonparametric bootstrap distributions of prices are normal only for at-the-money options, 

whereas the bootstrap distributions of the hedge parameter delta are non-normal across all the 

different levels of moneyness.  
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Table 1. European Call Option Prices and Deltas for different levels of moneyness 

 S/X = 110% S/X = 105% S/X = 100% S/X = 95% S/X = 90% 
  Price Delta Price Delta Price Delta Price Delta Price Delta 
Point Estimate 108.542 0.976 57.472 0.836 20.864 0.488 4.577 0.159 0.574 0.027 
Average 108.572 0.976 57.459 0.838 20.756 0.487 4.569 0.157 0.609 0.028 
Difference -0.03% 0.04% 0.02% -0.25% 0.52% 0.06% 0.18% 1.36% -5.83% -1.12% 
ASE 0.233 0.008 1.211 0.020 1.987 0.003 1.212 0.023 0.315 0.011 
BSE 0.241 0.008 1.200 0.021 1.990 0.003 1.201 0.023 0.322 0.011 
CV 0.22% 0.82% 2.09% 2.51% 9.59% 0.62% 26.29% 14.65% 52.87% 39.29% 
Skewness 1.030 -0.536 0.248 0.270 0.003 -0.358 0.273 -0.217 0.934 0.457 
Kurtosis 1.534 0.163 -0.054 -0.017 -0.095 0.179 -0.037 -0.064 1.216 0.051 
JB 1,373.86 244.827 51.915 60.765 1.885 113.387 62.418 40.156 1,034.75 174.378 
BPCI Left 108.100 0.959 55.106 0.798 16.855 0.482 2.215 0.112 -0.021 0.006 
BPCI Right 109.044 0.992 59.811 0.879 24.657 0.493 6.922 0.202 1.240 0.049 
BNCI Left 108.235 0.958 55.289 0.801 16.907 0.482 2.415 0.111 0.144 0.009 
BNCI Right 109.139 0.989 59.900 0.881 24.585 0.492 7.024 0.198 1.355 0.051 
ACI Left 108.085 0.960 55.098 0.797 16.969 0.482 2.201 0.114 -0.043 0.005 
ACI Right 108.999 0.992 59.846 0.875 24.759 0.494 6.953 0.204 1.191 0.049 
BPCI/BNCI-1 (L) -0.12% 0.17% -0.33% -0.44% -0.30% 0.08% -8.27% 1.63% -114.46% -32.44% 
BPCI/BNCI-1 (R) -0.09% 0.27% -0.15% -0.23% 0.29% 0.11% -1.45% 1.67% -8.53% -3.52% 
BPCI/ACI-1 (L) 0.01% -0.14% 0.01% 0.15% -0.67% -0.02% 0.61% -1.69% -51.61% 10.29% 
BPCI/ACI-1 (R) 0.04% 0.03% -0.06% 0.43% -0.41% -0.18% -0.44% -1.02% 4.08% 0.91% 
 
The “parameters” price and delta correspond to that of a call option with spot price S, strike price X, risk 
free rate 1%, dividend yield 2% and time to maturity 3 months. Variance is calculated using 3 months 
worth of data (6.10.03 – 31.12.03) either via maximum likelihood or via bootstrapping simulation using 
5,000 simulations. “Point estimates” of the parameters are calculated from the ML-variance based 
volatilities. “Average values” of the parameters are calculated from the bootstrapping sampling 
distribution. The % difference between the point estimates and average values is given across the difference 
line. St. Dev, Skewness, Kurtosis and the Jarque-Berra (JB) normality test statistic are calculated from the 
bootstrap distribution. The JB is distributed under the null as χ2 with 2 degrees of freedom and for a=5% 
the critical value is 5.99. CV is a coefficient of variation derived as BSE/Average. Left and right 
confidence intervals are calculated via parametric bootstrapping (BPCI), nonparametric bootstrapping 
(BNCI) and Lo’s 1st order asymptotic approximation (ACI), respectively. ASE and BSE are the asymptotic 
and bootstrap standard errors, respectively. Confidence intervals under BPCI and ACI are symmetric and 
assume normality. BPCI/BNCI-1 and BPCI/BNCI-1 give % differences between left (L) and right (R) 
confidence intervals, respectively. Bold letters express the maximum absolute value across each line for 
option prices and deltas, respectively.  
 

These results are consistent with the findings by Knight and Satchell (1997) who proved that a 

uniformly minimum unbiased estimator for the BSF exists if and only if the option is at-the-

money. This can be explained using the second order Taylor expansion of the BSF with respect to 
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variance. The bias depends on the term 2 2ˆ0.5 ( ) var( )F σ σ′′ , where F’’ is the second partial 

derivative with respect to variance, and is zero only for at-the-money options. Moreover, the 

variance of the estimates, as suggested by both the nonparametric bootstrap standard errors, BSE, 

and asymptotic standard errors, ASE, is largest (smallest) for at-the-money options prices 

(deltas). More intuitively, the variance of the option price distribution will be at its highest for at-

the-money options, since at that point the sensitivity of the price with respect to variance, the so-

called vega, has a maximum.5 Conversely, the variance of the delta will be at its lowest for at-the-

money options, since at that point the sensitivity of the delta with respect to volatility, the so-

called delvar, is zero. This information is important for option writers since the level of 

uncertainty due to variance varies across moneyness. In practice, option traders treat very 

cautiously at-the-money options, since they know that they exhibit high sensitivity to changes in 

volatility. Here we show that the risk related to volatility is relatively higher even if volatility is 

assumed to be constant. Graphical depictions of the vega and delvar functions are given in Figure 

1.  

 

 

 

 

 

 

 

 

 
Figure 1. Sensitivities of delta and option price with respect to variance. Delvar is the sensitivity of delta 
with respect to variance. Vega here is defined as the sensitivity of the option price with respect to variance. 
These are calculated from a call European option priced on the Black Scholes formula using different 
moneyness levels S/X = 70%…200%, risk free rate 1%, dividend yield 2% and time to maturity 3 months.  
 

                                                 
5 The standard practice is to define vega as the sensitivity of the option price with respect to volatility. 

Although here we define it as the sensitivity to variance, we retain the same term for reasons of simplicity. 
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If we take into account the magnitude of the option price and delta, as suggested by the 

coefficients of variation (CV) given in Table 1, standard errors are higher in relative terms for the 

out-of-the money options. This is reasonable since the option price and delta level decrease 

significantly as the option becomes out-of-the money.  

 

European Option Price S/X = 90% Delta 

 
 
 
 
 
 
 
 
 

 

S/X = 100% 
 
 
 
 
 
 
 
 
 

 

S/X = 110% 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2. Distributions of European Call Option Prices and Deltas for different levels of moneyness. 
The gray (solid) curve is the normal probability curve corresponding to the average and standard error of 
the bootstrap (asymptotic) distribution. The histogram corresponds to the actual bootstrap distribution.  
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Figure 2, depicts the density functions implied by the first two moments of the asymptotic and 

parametric bootstrap distribution, respectively. These are superimposed over the bootstrap 

distribution. It is interesting to note that asymptotic and parametric bootstrap distributions are 

almost identical. The bootstrap distribution of the option price shifts to the right for in-the-money 

and out-of-the-money options, while the distribution of the hedge parameter shifts to the right 

(left) for out-of-the-money (in-the-money) options. This is to be expected since the delvar alters 

signs, whereas vega remains always positive, as depicted in Figure 1. 

 

The final step is to construct and compare confidence intervals based on the three distributions: 

parametric bootstrapping (BPCI), nonparametric bootstrapping (BNCI) and asymptotic (ACI). 

Numerical values and differences of the 95% confidence intervals are also given in Table 1. The 

differences between the three confidence intervals can also be inferred by the graphical depiction 

of the three underlying distributions, given in Figure 2. Consistent with the findings of Ncube and 

Satchell (1997), the parametric and asymptotic confidence intervals violate the no-arbitrage 

option price bounds by giving negative prices for 10% out-of-the money options. However, non-

parametric bootstrap confidence intervals always remain within the no-arbitrage limits. As 

discussed previously, we see clearly now that although the asymptotic and bootstrap standard 

errors may be very close, the confidence intervals can be different when the bootstrap distribution 

is skewed. Moneyness influences the differences between the three confidence intervals 

calculated. The greatest differences emerge at the lower bound of the confidence intervals, an 

effect that is magnified as the option moves out-of-the-money. The difference is largest at the 

point where the two parametric confidence intervals violate the no-arbitrage bound by yielding 

negative prices at the left points. Concerning the hedge parameter, the confidence interval 

behaviour for out-of-the-money options is consistent with Figlewski (1989), who shows that 

estimation risk is more pronounced for the deltas of out-of-the-money options. 
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Table 2. European Call Option Prices and Deltas under different pricing assumptions 
 
 Benchmark Time Volatility Risk free Dividend 
10% out of the 

money 
calls and puts 

 

T-t = 0.25 
σ = 10% 

r=1% 
q = 2% 

T-t = 0.5 
σ = 10% 

r=1% 
q = 2% 

T-t = 0.25 
σ = 20% 

r=1% 
q = 2% 

T-t = 0.25 
σ = 10% 

r=5% 
q = 2% 

T-t = 0.25 
σ = 10% 

r=1% 
q = 5% 

  Price Delta Price Delta Price Delta Price Delta Price Delta 
Point Estimate 0.574 0.027 2.948 0.084 10.247 0.177 0.949 0.042 0.382 0.019 
Average 0.609 0.028 2.986 0.083 10.210 0.175 0.986 0.042 0.415 0.020 
Difference -5.83% -1.12% -1.28% 1.20% 0.36% 1.36% -3.73% 0.13% -7.77% -2.41% 
ASE 0.315 0.011 1.092 0.020 2.598 0.024 0.452 0.014 0.234 0.009 
BSE 0.322 0.011 1.078 0.020 2.573 0.024 0.455 0.014 0.241 0.009 
CV 52.87% 39.29% 36.10% 24.10% 25.20% 13.71% 46.15% 33.33% 58.07% 45.00% 
Skewness 0.934 0.457 0.506 0.033 0.237 -0.286 0.759 0.287 1.078 0.594 
Kurtosis 1.216 0.051 0.222 -0.206 0.089 0.155 0.728 -0.128 1.708 0.267 
JB 1,034.750 174.378 223.716 9.794 48.262 73.108 590.897 71.939 1,577.226 308.410 
BPCI Left -0.021 0.006 0.872 0.044 5.167 0.128 0.095 0.015 -0.058 0.003 
BPCI Right 1.240 0.049 5.100 0.121 15.253 0.222 1.877 0.070 0.887 0.036 
BNCI Left 0.144 0.009 1.187 0.045 5.465 0.125 0.288 0.018 0.082 0.006 
BNCI Right 1.355 0.051 5.302 0.121 15.489 0.219 2.010 0.071 0.986 0.038 
ACI Left -0.043 0.005 0.808 0.045 5.155 0.130 0.063 0.015 -0.077 0.001 
ACI Right 1.191 0.049 5.088 0.123 15.339 0.224 1.835 0.069 0.841 0.037 
BPCI/BNCI-1 (L) -114.46% -32.44% -26.50% -2.10% -5.45% 2.40% -67.11% -14.90% -170.23% -54.55% 
BPCI/BNCI-1 (R) -8.53% -3.52% -3.81% 0.51% -1.52% 1.37% -6.62% -1.70% -10.04% -5.07% 
BPCI/ACI-1 (L) -51.61% 10.29% 7.96% -1.79% 0.23% -1.51% 50.60% 3.02% -24.32% 120.59% 
BPCI/ACI-1 (R) 4.08% 0.91% 0.23% -1.79% -0.56% -0.91% 2.29% 0.81% 5.51% -1.75% 
 

Variance is calculated using 3 months worth of data (6.10.03 – 31.12.03) either via maximum likelihood or 
via bootstrapping simulation using 5,000 simulations. “Point estimates” of the parameters are calculated 
from the ML-variance based volatilities. “Average values” of the parameters are calculated from the 
bootstrapping sampling distribution. The % difference between the point estimates and average values is 
given across the difference line. St. Dev, Skewness, Kurtosis and the Jarque-Berra (JB) normality test 
statistic are calculated from the bootstrap distribution. The JB is distributed under the null as χ2 with 2 
degrees of freedom, for a=5% the critical value is 5.99. CV is a coefficient of variation derived as 
BSE/Average. Left and right confidence intervals are calculated via parametric bootstrapping (BPCI), 
nonparametric bootstrapping (BNCI) and Lo’s 1st order asymptotic approximation (ACI), respectively. 
ASE and BSE are the asymptotic and bootstrap standard errors, respectively. Confidence intervals under 
BPCI and ACI are symmetric and assume normality. BPCI/BNCI-1 and BPCI/BNCI-1 give % differences 
between left (L) and right (R) confidence intervals, respectively. Bold letters express the maximum 
absolute value across each line for option prices and deltas, respectively.  
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Table 2 summarises the results of changes in the option pricing parameters with respect to: time 

to maturity, volatility6, risk-free rate and dividend yield. Moneyness is retained constant at 10% 

out-of-the-money while for ease of comparison we repeat the last two columns of results obtained 

for the “benchmark” case from Table 1. Contrary to the conjecture of Satchell and Knight (1997), 

biases in option prices due to variance uncertainty are less pronounced as time to maturity and 

volatility increase. This is due to the fact that the delvar and vega functions, as depicted in Figure 

1, become flatter as time to maturity and volatility increases and the second partial derivative with 

respect to variance decreases in absolute value. While the same effect seems to hold for the risk 

free rate, the opposite can be observed for increases in the dividend yield. Again, it is the 

underlying second partial derivative behaviour with respect to variance that explains these effects. 

These effects influence also the shape of the option price distributions and deltas, as seen by the 

differences in the skewness and kurtosis coefficients, and normality test statistics. Likewise, 

standard errors for both option prices and hedge parameters increase in all parameter scenarios 

except for the dividend yield. In general, changes in all parameters, except for the dividend yield, 

appear to narrow the confidence intervals. Both the parametric bootstrap and asymptotic approach 

violate the no-arbitrage bounds by yielding negative prices when dividends increase. Shifts in 

interest rates (dividend yields) improve (deteriorate) parametric and asymptotic confidence 

intervals relative to the nonparametric bootstrap.  Additional experiments indicate that further 

rising time to maturity and volatility makes all confidence intervals to converge. For example, for 

options with 6 months time to maturity and volatility at 30%, the bootstrap distributions become 

normal for all levels of moneyness. The distribution of the hedge parameter remains non-normal 

for all scenarios, but differences in the confidence intervals become negligible. The above results 

suggest that the problems that are likely to arise from the asymptotic approach with respect to 

variance uncertainty are less pronounced as time to maturity, volatility and risk-free rates 

                                                 
6 Volatility is shifted by linearly scaling returns, which does not affect the higher moments of the 

distribution. 
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increase. Moreover, it appears that dividend yields are also important and will affect the results in 

a significant, yet opposite, direction.  

 
Table 3. American Call/Put Option Prices for different levels of moneyness 
 
 S/X=110% S/X=100% S/X = 90% 
  Call Put Call Put Call Put 
Point Estimate 111.192 0.397 21.027 23.633 0.585 114.258 
Average 111.192 0.427 20.92 23.525 0.620 114.293 
Difference 0.00% -7.10% 0.51% 0.46% -5.72% -0.03% 
ASE 0.117 0.369 1.639 1.641 0.468 0.466 
BSE 0.008 0.241 1.987 1.990 0.324 0.322 
CV 0.01% 56.44% 9.50% 8.46% 52.26% 0.28% 
Skewness 31.431 1.030 0.004 0.003 0.928 0.934 
Kurtosis 1,172.78 1.534 -0.095 -0.095 1.199 1.216 
JB 287,368,594 1,374 1.894 1.888 1,017 1,035 
BPCI Left 111.177 -0.045 17.026 19.625 -0.015 113.663 
BPCI Right 111.208 0.899 24.814 27.426 1.255 114.923 
BNCI Left 111.192 0.251 17.078 19.676 0.150 113.828 
BNCI Right 111.192 0.179 24.743 27.355 1.371 115.039 
ACI Left 110.963 -0.326 17.815 20.417 -0.332 113.345 
ACI Right 111.421 1.120 24.239 26.849 1.502 115.171 
BPCI/BNCI-1 (L) -0.01% -117.93% -0.30% -0.26% -110.00% -0.14% 
BPCI/BNCI-1 (R) 0.01% 402.23% 0.29% 0.26% -8.46% -0.10% 
BPCI/ACI-1 (L) 0.19% -86.21% -4.43% -3.88% -95.49% 0.28% 
BPCI/ACI-1 (R) -0.19% -19.75% 2.37% 2.15% -16.46% -0.22% 
 
The ”parameters” price and delta correspond to that of a call option with spot price S, strike price X, risk 
free rate 1%, dividend yield 2% and time to maturity 3 months. Variance is calculated using 3 months 
worth of data (6.10.03 – 31.12.03) either via maximum likelihood or via bootstrapping simulation using 
5,000 simulations. “Point estimates” of the parameters are calculated from the ML-variance based 
volatilities. “Average values” of the parameters are calculated from the bootstrapping sampling 
distribution. The % difference between the point estimates and average values is given across the difference 
line. St. Dev, Skewness, Kurtosis and the Jarque-Berra (JB) normality test statistic are calculated from the 
bootstrap distribution. CV is a coefficient of variation derived as BSE/Average. JB test statistics are all 
highly significant, over 2,000, and are omitted. Left and right confidence intervals are calculated via 
parametric bootstrapping (BPCI), nonparametric bootstrapping (BNCI) and Lo’s 1st order asymptotic 
approximation (ACI), respectively. ASE and BSE are the asymptotic and bootstrap standard errors, 
respectively. Confidence intervals under BPCI and ACI are symmetric and assume normality. BPCI/BNCI-
1 and BPCI/BNCI-1 give % differences between left (L) and right (R) confidence intervals, respectively. 
Bold letters express the maximum absolute value across each line for option prices and deltas, respectively.  
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4.2 American Options 
 
The results with respect to the distribution of American option prices under different levels of 

moneyness are presented in Table 3. In order to ease presentation, we now present only three 

scenarios of moneyness levels. We analyse both call and put options since, as mentioned 

previously, no put-call parity relationship holds. However, we do not examine now the hedge 

parameter delta since it requires numerical differentiation that will induce additional 

approximation errors to the sampling distributions under examination.  

 
 
We see that at-the-money calls/puts exhibit the largest standard errors, as for their European 

counterparts, but not the smallest biases. As before, this effect is induced by the behaviour of 

the partial derivative functions of the option price with respect to variance. Asymptotic and 

parametric confidence intervals fail once again in the out-of-the-money area in that they allow 

negative prices. Unsurprisingly, the confidence intervals of American and European option 

prices are very similar. The deep in-the-money American call option price is almost insensitive 

to variance uncertainty as suggested by the very small standard error. This is expected since it 

will reach its intrinsic value at this volatility level and time to maturity, and, since the dividend 

yield exceeds the risk free rate, the option should be exercised immediately. Similar results 

would have occurred for the put option should the risk free rate be greater than the dividend 

yield. As before, in Table 4 we summarise the results of altering the option pricing parameters 

for both out-of-the-money American calls and puts with respect to: time to maturity, volatility, 

risk-free rate and dividend yield. In general, results are comparable to those obtained for the 

European option case in Table 2. More specifically, both call and put American option price 

biases become smaller with increases in time to maturity and volatility. Mixed results are 

obtained for increases in the two remaining parameters under study with respect to biases in 

prices and confidence intervals. It appears that an increase in interest rates increases 

(decreases) the bias and confidence intervals of American call (put) options while the inverse 
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effect holds for shifts in the dividend yield. This can be explained by the sensitivity of the 

second derivative of the option price, with respect to variance, to changes in interest rates and 

divided yields, respectively. 

 
Table 4. American Call/Put Option Prices under different pricing assumptions 
 

 Benchmark Time Volatility Interest Dividend 

10% out of the 
money 

calls and puts 

T-t = 0.25 
σ = 10% 

r=1% 
q = 2% 

T-t = 0.5 
σ = 10% 

r=1% 
q = 2% 

T-t = 0.25 
σ = 20% 

r=1% 
q = 2% 

T-t = 0.25 
σ = 10% 

r=5% 
q = 2% 

T-t = 0.25 
σ = 10% 

r=1% 
q = 5% 

  Call Put Call Put Call Put Call Put Call Put 
Point Estimate 0.585 0.397 3.005 2.662 10.287 8.424 0.949 0.251 0.430 0.587 
Average 0.620 0.427 3.043 2.697 10.249 8.402 0.986 0.277 0.459 0.620 
Difference -5.72% -7.10% -1.24% -1.29% 0.37% 0.26% -3.73% -9.14% -6.45% -5.26% 
ASE 0.468 0.369 1.217 1.093 2.571 2.22 0.595 0.283 0.392 0.447 
BSE 0.324 0.241 1.088 0.975 2.578 2.212 0.455 0.168 0.252 0.317 
CV 52.26% 56.44% 35.75% 36.15% 25.15% 26.33% 46.15% 60.65% 54.90% 51.13% 
Skewness 0.928 1.030 0.501 0.507 0.236 0.264 0.759 1.194 1.028 0.889 
Kurtosis 1.199 1.534 0.216 0.223 0.089 0.106 0.728 2.181 1.515 1.080 
JB 1,017.15 1,374.32 218.89 224.57 47.962 60.375 590.48 2,179.02 1,358.83 901.60 
BPCI Left -0.015 -0.045 0.910 0.787 5.197 4.067 0.095 -0.053 -0.034 -0.001 
BPCI Right 1.255 0.899 5.176 4.607 15.301 12.738 1.877 0.606 0.953 1.241 
BNCI Left 0.150 0.251 1.224 1.071 5.495 4.354 0.288 0.053 0.105 0.155 
BNCI Right 1.371 0.179 5.377 4.790 15.536 12.967 2.010 0.681 1.063 1.350 
ACI Left -0.332 -0.326 0.620 0.520 5.248 4.073 -0.217 -0.304 -0.339 -0.326 
ACI Right 1.502 1.120 5.390 4.804 15.326 12.775 2.115 0.806 1.198 1.502 
BPCI/BNCI-1 (L) -110.04% -117.75% -25.69% -26.55% -5.42% -6.59% 67.11% -200.1% -132.90% -100.49% 
BPCI/BNCI-1 (R) -8.45% 402.47% -3.75% -3.82% -1.51% -1.77% -6.62% -11.05% -10.40% -8.05% 
BPCI/ACI-1 (L) -95.49% -86.21% 46.85% 51.43% -0.97% -0.14% -143.74% -82.55% -89.84% 51.35% 
BPCI/ACI-1 (R) -16.46% -19.75% -3.98% -4.11% -0.16% -0.29% -11.26% -24.78% -20.47% -16.46% 

 

Variance is calculated using 3 months worth of data (6.10.03 – 31.12.03) either via maximum likelihood or 
via bootstrapping simulation using 5,000 simulations. “Point estimates” of the parameters are calculated 
from the ML-variance based volatilities. “Average values” of the parameters are calculated from the 
bootstrapping sampling distribution. The % difference between the point estimates and average values is 
given across the difference line. St. Dev, Skewness and Kurtosis are calculated from the bootstrap 
distribution. CV is a coefficient of variation derived as BSE/Average. Left and right confidence intervals 
are calculated via parametric bootstrapping (BPCI), nonparametric bootstrapping (BNCI) and Lo’s 1st order 
asymptotic approximation (ACI), respectively. ASE and BSE are the asymptotic and bootstrap standard 
errors, respectively. Confidence intervals under BPCI and ACI are symmetric and assume normality. 
BPCI/BNCI-1 and BPCI/BNCI-1 give % differences between left (L) and right (R) confidence intervals, 
respectively. Bold letters express the maximum absolute value across each line for option prices and deltas, 
respectively.  
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4. Conclusions 

This paper proposed the use of statistical bootstrap simulation in inferring the finite sample 

distribution of option prices and hedge parameters when an estimate of variance is used as a 

proxy for the true unobserved variance. After a brief literature review, we discuss this 

methodology in comparison to the standard approach in the literature, which is based on 

asymptotic theory (Lo, 1986). Like the asymptotic approach, bootstrapping has the advantage that 

limiting distributions can be derived regardless of whether the option is priced in closed form or 

numerically. Despite high computational costs, the bootstrap has advantages in terms of excellent 

small sample performance and computational simplicity. It also has the advantage of providing 

sampling distributions for option prices in finite samples that are consistent with no-arbitrage 

bounds.  

 

We demonstrate an application of the proposed approach using data on the S&P500 index. We 

explore differences between option prices obtained from the Black-Scholes formula, assuming a 

point estimate of variance, and, average Black-Scholes option prices, derived from the bootstrap 

distribution. We also study the confidence intervals of option prices obtained from three different 

approaches: parametric bootstrap, nonparametric bootstrap and asymptotic. In addition to what 

has been considered in the literature, we also investigate the behaviour of European option hedge 

parameters (deltas) and American call and put option prices under different levels of moneyness. 

Finally, we look into the effect of shifting time to maturity, volatility, interest rates and dividend 

yields. Extending previous findings (see for example, Knight and Satchell, 1997), we find that the 

deltas and option prices obtained from the bootstrap approach are marginally different than those 

obtained using a point-estimate (asymptotic) approach. In accordance to Ncube and Satchell 

(1997), we find that both the asymptotic and parametric bootstrap approach may yield European 

and American option price confidence intervals that include negative values. On the contrary, the 



 22

nonparametric bootstrap gives confidence intervals that are consistent with no-arbitrage bounds. 

Contrary to the conjecture of Satchell and Knight (1997), we find that biases in option prices due 

to variance uncertainty are not necessarily more pronounced as time to maturity and volatility 

increase.  

 

This paper does not suggest that the bootstrap approach has clear advantages over the asymptotic 

approach.  The parameteric analysis of large sample theory offers a powerful, elegant and well 

researched framework. However, the bootstrap can supplement this analysis and offer highly 

intuitive insights in the problems underhand. We argued that any problems that may arise from 

the asymptotic approach with respect to variance uncertainty will become less pronounced as 

time to maturity, volatility and risk-free rates increase and dividends decrease, respectively. In 

purely practical terms, we think that the bootstrap is especially well suited for sampling 

distribution problems in option pricing since it is particularly difficult to calculate asymptotic 

distributions. We believe that further research in this area is justified. It would also make sense to 

apply the methodology to more complicated option pricing models than those studied here, 

involving say many parameters or multiple dimensions (eg, basket options, stochastic volatility, 

etc). Following the suggestion of Satchell and Knight (1997), our present efforts are concentrated 

on investigating sampling distributions of real option prices where implied volatilities are not 

available and historical variances are estimated with great risk. It would be interesting to explore 

the application of the bootstrap methodology in other sampling distribution problems in finance, 

for example, risk management and portfolio theory (eg, Lo, 2003). Although all this literature has 

concentrated on historical variance risk, it would be also useful to look into the effect of implied 

volatility estimation risk on the sampling distribution of option prices. It is important to 

emphasise that implied volatilities do not resolve the problem of estimation risk since they are 

also subject to considerable error when option characteristics are observed with plausible errors 

(see Hentschel, 2003). Finally, rather than concentrating only on issues of estimation and bias, 
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one could look directly to decision problems underhand, for example, hedging, with respect to 

estimation risk. 
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