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Abstract 
 

The value of tax shields in a world with no leverage cost is the tax rate times the current debt, 
plus the tax rate times the present value of the net increases of debt. This expression is the difference 
between the present values of two different cash flows, each with its own risk: the present value of 
taxes for the unlevered company and the present value of taxes for the levered company.  

The value of tax shields depends only on the nature of the stochastic process of the net 
increase of debt; it does not depend on the nature of the stochastic process of the free cash flow.  

For perpetual debt, the value of tax shields is the debt times the tax rate. When the company is 
expected to repay the current debt without issuing new debt , the value of tax shields  is the present value 
of the interest times the tax rate, discounted at the required return to debt . 
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1. Introduction 

There is no consensus in the existing literature regarding the correct way to 

compute the value of tax shields. Most authors think of calculating the value of the 

tax shield in terms of the appropriate present value of the tax savings due to interest 

payments on debt. Myers (1974) proposes that the tax savings be discounted at the 

cost of debt, while Harris and Pringle (1985) propose that they be discounted at the 

cost of capital for the unlevered firm. Reflecting this lack of consensus, Copeland et 

al. (2000, p. 482) claim that “the finance literature does not provide a clear answer 

about which discount rate for the tax benefit of interest is theoretically correct.” In 

this paper, I show that a consistent way to estimate the value of the tax savings is by 

thinking of them not as the present value of a set of cash flows, but as the difference 

between the present values of two different sets of cash flows: flows to the unlevered 

firm and flows to the levered firm. 

I show that the value of tax shields in a world with no leverage cost is the tax 

rate times the debt, plus the tax rate times the present value of the net increases of 

debt. This expression is the difference between the present values of two different 

cash flows, each with its own risk: the present value of taxes for the unlevered 

company and the present value of taxes for the levered company.   

For perpetual debt, the value of tax shields is equal to the tax rate times the 

value of debt.  When the company is expected to repay the current  debt without 

issuing new debt, Myers (1974) applies, and the value of tax shields is the present 

value of the interest times the tax rate, discounted at the required return to debt. For 

constant growth companies, and under certain assumptions, the value of tax shields in 

a world with no leverage costs is the present value of the debt times the tax rate times 

the required return to the unlevered equity, discounted at the required return to the 

unlevered equity (Ku).  

The paper also shows that some commonly used methodologies for calculating 

the value of tax shields, including Harris and Pringle (1985), Miles and Ezzell (1980), 

and Ruback (2002), are incorrect for growing perpetuities.  

The paper is organized as follows. Section 2 follows a new method to prove 

that the value of tax shields in a world without leverage costs is equal to the tax rate 

times the value of debt (DT), plus the tax rate times the present value of the net 
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increases of debt. Section 2 also applies this general result to specific situations , and 

derives the relation between the required return on assets and the required return on 

equity for perpetuities in a world without leverage costs. The corresponding relation 

between the beta of the levered equity, the beta of the unlevered equity, and the beta 

of debt is also derived. Section 3 revises and analyzes the existing financial literature 

on the value of tax shields. Most of the existing approaches, including Harris and 

Pringle , Miles and Ezzell, and Ruback, yield inconsistent results regarding the present 

value of the net increases of debt.  Finally, Section 4 concludes.  

 

 

2. Value of tax shields and the stochastic process of net debt increases 

The present value of debt (D) plus that of the equity (E) of the levered company 

is equal to the value of the unlevered company (Vu) plus the value of tax shields due 

to interest payments (VTS): 

Et + Dt = Vut + VTS t (1) 

In the literature, the value of tax shields defines the increase  in the company’s 

value as a result of the tax saving obtained by the payment of interest. If leverage 

costs do not exist, Eq. (1) could be stated as follows: 

Vut + Gut = Et + Dt + GLt (2) 

where Gu is the present value of the taxes paid by the unlevered company and GL is 

the present value of the taxes paid by the levered company. Eq. (2) means that the 

total value of the unlevered company (left-hand side of the equation) is equal to the 

total value of the levered company (right-hand side of the equation). Total value is 

the enterprise value (often called the value of the firm) plus the present value of taxes. 

Please note that Eq. (2) assumes that expected free cash flows are independent of 

leverage. When leverage costs do exist, the total value of the levered company is 

lower than the total value of the unlevered company. A world with leverage cost is 

characterized by the following relation: 

Vut + Gut = Et + D t + G Lt + Leverage Cost > Et + Dt + GLt  (3) 

Leverage cost is the reduction in the company’s value due to the use of debt. 

From (1) and (2), it is clear that VTS is  

VTS t = Gut - GLt  (4) 
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Note that the value of tax shields is not the present value (PV) of tax shields. It 

is the difference between the PVs of two flows with different risk: the PV of the taxes 

paid by the unlevered company (Gu) and the PV of the taxes paid by the levered 

company (GL). 

It is quite easy to prove that the relation between the profit after tax of the 

levered company (PATL) and the equity cash flow (ECF) is:  

ECFt  = PATLt - ∆NFA t - ∆WCR t + ∆Dt (5) 

Where: 

∆WCRt = Increase of Working Capital Requirements in period t. 

∆NFAt = Increase of Net Fixed Assets in period t. 

∆Dt = Dt - D t-1 = Increase of Debt in period t. 

 

The relation between the free cash flow (FCF) and the profit after tax of the 

unlevered company (PATu) is: 

FCFt = PATut - ∆NFA t -∆WCRt (6) 

T is the tax rate. As the relation between the profit after tax (PAT) and the 

profit before tax (PBT) is PAT = PBT (1-T), the taxes paid every year by the 

unlevered company (Ta xesU) are  

TaxesUt = T·PBTut = [T/(1+T)]  (FCFt  + ∆NFAt + ∆WCR t) (7) 

And the taxes paid by the levered company are: 

TaxesLt = T·PBTt = [T/(1+T)]  (ECFt + ∆NFA t +∆WCR t -∆Dt) (8) 

PV0[·] is the present value operator. The present value in t=0 of equations (7) 

and (8) are: 

Gu0 = [T/(1+T)]  (Vu0 + PV0[∆NFAt +∆WCRt]) (9) 

GL0 = [T/(1+T)]  (E0 + PV0[∆NFAt +∆WCRt]- PV0[∆D t]) (10) 

 

Equation (9) means that the present value of the taxes paid by the unlevered 

company (Gu) is the present value of the taxes paid every year (TaxesU). The value of 

the unlevered equity (Vu0) is: Vu0 = PV0[FCFt] = PV0[E{FCF t}; Ku]. E{·} is the 

expected value operator. 

Equation (10) means that the present value of the taxes paid by the levered 

company (GL) is the present value of the taxes paid every year (TaxesL). The value of 

the levered equity (E0) is: E0 = PV0[ECFt] = PV0[E{ECFt}; Ke]. 
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Following equation (4), the value of tax shields is the difference between (9) 

and (10): 

VTS0 = Gu0 - GL0 = [T/(1+T)]  (Vu0 –  E0 + PV0[∆Dt]) (11) 

As, according to equation (1), Vu0 – E0 = D0 - VTS0 , 

VTS0 = [T/(1+T)]  (D0 - VTS0 + PV0[∆Dt]). And the value of tax shields is: 

VTS0 = T· D 0 + T· PV0[∆D t] (12) 

 

We do not know which are the correct values of Gu and GL, but we know the 

value of the difference, provided we can value PV0[∆D t], the present value of the net 

debt increases. 

Equation (12) shows that the value of tax shields depends only  upon the nature 

of the stochastic process of the net increase of debt, and does not depend upon the 

nature of the stochastic process of the free cash flow 1. The problem of equation (12) is 

how to calculate PV0[∆D t], which requires knowing the appropriate discount rate to 

apply to the expected value of the increase of debt.  

Equation (12) is also derived in Appendix 1 using pricing kernels. 

Now, we apply (12) to specific situations.  

 

 

2.1.  Perpetual debt 

If the debt is a constant perpetuity (a consol) , PV0[∆Dt] = 0, and 

VTS0 = T· D 0 (13) 

This result is far from being a new idea. Brealey and Myers (2000), Modigliani 

and Miller (1963), Taggart (1991), Copeland et al. (2000), Fernández (2004) and 

many others report it. However, the way of deriving it is new.  Most of these papers 

reach this result by arguing that the appropriate way of computing the value of the tax 

shield is to consider a certain flow DT multiplied by some measure of cost of funds, 

α, and then discounting that flow at the same rate  α .  At first glance, α  could be 

                                                 
1 If the nominal value of debt (N) is not equal to the value of debt (D), because the interest rate (r) is 
different from the required return to debt flows (Kd), equation (12) is: VTS0 = T· D0 + T· PV0[∆Nt].  
The relationship between D and N is: D0 = PV0[∆Nt] + PV 0[Nt·rt]. 
4 We use Kd so as not to complicate the notation. It should be Kdt, a different rate following the yield 
curve. Using Kd we may also think of a flat yield curve. 
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anything, related or unrelated to the company that we are valuing. Modigliani and 

Miller (1963) and Sick (1990) argue that α is the risk-free rate (R F). Myers (1974) 

assumes that α is the cost of debt (Kd) and says that the value of tax shields is the 

present value of the tax savings (D·Kd·T) discounted at the cost of debt (Kd). 

Fernández (2004) argues that α is the required return to unlevered equity (Ku). 

 

 

2.2. Debt of one-year maturity but perpetually rolled-over 

As in the previous case, E{D t} = D0, but the debt is expected to be rolled-over 

every year. The appropriate discount rate for the cash flows due to the existing debt is 

Kd.4 Define KND as the appropriate discount rate for the new debt that must be 

obtained every year, then: 

Present value of obtaining the new debt every year5 = D0 / KND 

Present value of the principal repayments at the end of every year 6 = D0 (1+ 

KND) / [(1+Kd) KND] 

PV0[∆Dt]  is the difference of these two expressions. Then:  

PV0[∆Dt]  = - D0 (KND - Kd) / [(1+Kd) KND] (14) 

If  KND = Kd, then PV0[∆D t]  = 0 

In a constant perpetuity (E{FCFt} = FCF0), it seems reasonable that, if we do 

not expect credit rationing, KND = Kd, which means that the risk associated with the 

repayment of the current debt and interest (Kd) is equivalent to the risk associated 

with obtaining an equivalent amount of debt at the same time (KND). 

 

2.3. Debt is proportional to the Equity value 

This is the assumption made by Miles and Ezzell (1980) and Arzac and Glosten 

(2004), who claim that if Dt = L·Et, then the value of tax shields for perpetuities 

growing at a constant rate g is: 

                                                 
5 Present value of  obtaining the new debt every year = D /(1+KND) + D /(1+KND)2 + D /(1+KND)3 + ... 
because D = E{Dt}, where Dt is the new debt obtained at the end of year t  (beginning of t+1) . 
6 The p resent value of the principal repayment at the end of year 1 is D /(1+Kd). 
The present value of the principal repayment  at the end of year  2 is D/[(1+Kd)(1+ KND)]. 
The present value of the principal repayment  at the end of year  t is D/[(1+Kd)(1+ KND)t-1]. 
Because D = E{ Dt}, where Dt is the debt repayment at the end of year t. 
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Kd)(1
Ku)(1

g)(Ku
T KdD

VTS 0
0 +

+
−

=  (15) 

Substituting (15) in (12), we get:  

[ ]
Kd)g)(1(Ku

Kd)g(1Ku)- (Kd
D? DVP 0t0 +−

++
=  (16) 

For the no growth case (g = 0), equation (16) is:  

PV0[∆D t] = D (Kd-Ku) / [Ku(1+Kd)] < 0.  

Comparing this expression with equation (14), it is clear that Miles and Ezzell 

imply that KND = Ku. (16) is zero for g = (Ku-Kd) / (1+Kd) and negative for smaller 

growth rates. There is not much economic sense in this expression. 

Furthermore, to assume Dt = L·Et is not a good description of the debt policy of 

any company because:  

1.  If the company pays a dividend Divt, simultaneously the company should reduce 

debt in an amount ∆Dt= - L·Divt 

2.  If the equity value increases, then the company should increase its debt, while if 

the equity value decreases, then the company should reduce its debt. If the equity 

value is such that L·E t > Assets of the company, then the company should hold 

excess cash only for the sake of complying with the debt policy.  

 

2.4. Debt increases are as risky as  the free cash flows 

Then the correct discount rate for the expected increases of debt is Ku, the 

required return to the unlevered company. In the case of a constant growing 

perpetuity, 

PV0[∆Dt] = g·D0 / (Ku-g),   

And the VTS is: 

VTS0 = T·Ku·D0 / (Ku-g) (17) 

For g = 0, equations (17) and (13) are equal. 

Equation (17) is equal to equation (28) in Fernández (2004), although the way 

of deriving it is different. 

  

2.5. The company is expected to repay the current debt without issuing new debt. 
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In this situation, the appropriate  discount rate for the negative ∆Dt (because they 

are principal payments) is Kd, the required return to the debt. In this situation, Myers 

(1974) applies: 

PV0[∆D t] = PV0[E{∆D t}; Kd]  

And the VTS is: 

VTS0 = D·T + T·PV0[E{∆Dt}; Kd] (18) 

For perpetual debt, equations (18), (17) and (13) are equal.  

For a company that is expected to repay the current debt without issuing new 

debt, the value of the debt today is:   D0 = PV0[E{Dt-1}· Kd - E{∆Dt}; Kd]. 

Substituting this expression in (51), we get the Myers (1974) formula: 

VTS0 = PV0[T·E{D t-1}· Kd; Kd]  
 

 

3.  Value of net debt increases implied by the alternative theories  

 

There is a considerable body of literature on the discounted cash flow valuation 

of firms. This section addresses the most salient papers, concentrating particularly on 

those papers that propose alternative expressions for the value of tax shields (VTS). 

The main difference between all of these papers and the approach proposed above is 

that most previous papers calculate the value of tax shields as the present value of the 

tax savings due to the payment of interest.  Instead, the correct measure of the value 

of tax shields is the difference between two present values: the present value of taxes 

paid by the unlevered firm and the present value of taxes paid by the levered firm.  

We will show how these proposed methods result in inconsiste nt valuations of the tax 

shields. 

 

Modigliani and Miller (1958, 1963) study the effect of leverage on firm value. 

Their famous Proposition 1 states that, in the absence of taxes, the firm’s value is 

independent of its debt, i.e., E + D = Vu, if T = 0.  In the presence of taxes and for the 

case of a perpetuity, but with zero risk of bankruptcy, they calculate the value of tax 

shields by discounting the present value of the tax savings due to interest payments on 

risk-free debt at the risk-free rate (R F), i.e., VTS= PV[E{D·T·RF}; RF] = D·T.  As 

indicated above, this result is the same as our Eq. (16) for the case of perpetuities, but 
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it is neither correct nor applicable for growing perpetuities.  Modigliani and Miller 

explicitly ignore the issue of the riskiness of the cash flows by assuming that the 

probability of bankruptcy was always zero.  

 

Myers (1974) introduces the APV (adjusted present value) method in which the 

value of the levered firm is equal to the value of the firm with no debt plus the present 

value of the tax savings due to the payment of interest. Myers proposes calculating the 

VTS by discounting the expected tax savings (D·Kd·T) at the cost of debt (Kd). The 

argument is that the risk of the tax savings arising from the use of debt is the same as 

the risk of the debt. The value of tax shields is  

VTS = PV[E{D·Kd·T}; Kd].   (19) 

This approach has also been recommended in later papers in the literature, such 

as Luehrman (1997). On section 2.5 we have shown that this expression is correct 

only when the company is expected to repay the current debt without issuing new 

debt. 

 

Harris and Pringle (1985) propose that the present value of the tax savings due 

to the payment of interest should be calculated by discounting the expected interest 

tax savings (D·Kd·T) at the required return to unleve red equity (Ku), i.e.,  

VTS = PV[E{D·Kd·T}; Ku]  (20) 

Their argument is that the interest tax shields have the same systematic risk as 

the firm’s underlying cash flows and, therefore, should be discounted at the required 

return to assets (Ku). Furthermore, Harris and Pringle believe that “the MM position 

is considered too extreme by some because it implies that interest tax shields are no 

more risky than the interest payments themselves” (p. 242). Ruback (1995, 2002), 

Kaplan and Ruback (1995), Brealey and Myers (2000, p. 555), and Tham and Vélez-

Pareja (2001), this last paper following an arbitrage argument, also claim that the 

appropriate discount rate for tax shields is Ku, the required return to unlevered equity. 

Ruback (2002, p. 91) also shows that the relation between the beta of the levered 

equity (βL), the beta of the unlevered equity (βu), and the beta of debt (βd) consistent 

with (20) is 

βL = βu + (βu – βd) D / E. (21) 
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Therefore, all of Ruback’s results (the relation between βL and βu using no 

taxes, and Ku being the appropriate discount rate for capital cash flows) come from 

his method of estimating VTS, which is the same as that of Harris and Pringle. 

The enterprise value (E + D) according to Fernández (2004) is 

E + D = Vu + PV[E{D·Ku·T}; Ku] = PV[E{FCF + D·Ku·T}; Ku] (22) 

 

Fernández (2004) also shows that the relation between the beta of the levered 

equity (βL), the beta of the unlevered equity (βu), and the beta of debt (βd) consistent 

with (22) is 

βL = βu + (βu – βd) D (1-T) / E. (23) 

 

A large part of the literature argues that the value of tax shields should be 

calculated differently depending on the debt strategy of the firm. A firm that wishes to 

keep a constant D/E ratio must be valued different ly from a firm that has a preset level 

of debt. Miles and Ezzell (1980) indicate that for a firm with a fixed debt target (i.e., a 

constant [D/(D+E)] ratio), the correct rate for discounting the tax savings due to debt 

is Kd for the first year and Ku for the tax savings in later years. Lewellen and Emery 

(1986) also claim that this is the most logically consistent method. Although Miles 

and E zzell do not mention what the value of tax shields should be, this can be inferred 

from their equation relating the required return to equity with the required return for 

the unlevered company in Eq. (22) in their paper. This relation implies that  

VTS = PV[E{D·T·Kd}; Ku] (1 + Ku)/(1 + Kd)  (24) 

Inselbag and Kaufold (1997)  and Ruback (2002) argue that if the firm targets 

the dollar values of debt outstanding, the VTS is given by the Myers (1974) formula. 

However, if the firm targets a constant debt/value ratio, the value of the tax shields 

should be calculated according to Miles and Ezzell (1980). Finally, Taggart (1991) 

proposes to use Miles and Ezzell (1980) if the company adjusts to its target debt ratio 

once a year, and Harris and Pringle (1985) if the company adjusts to its target debt 

ratio continuously. 
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Damodaran (1994, p. 31)  argues that if all the business risk is borne by the 

equity, then the formula relating the levered beta (βL) to the asset beta (βu) is βL =  βu 

+ (D/E) βu (1 – T). This formula is exactly the formula in Eq. (23) , assuming that βd 

= 0. One interpretation of this assumption is (Damodaran, 1994, p. 31) that “all of the 

firm’s risk is borne by the stockholders (i.e., the beta of the debt is zero) .” In some 

cases, it may be reasonable to assume that the debt has a zero beta. But then, as 

assumed by Modigliani and Miller (1963) , the required return to debt should be the 

risk-free rate. This relation for the levered beta appears in many finance books and is 

widely used by many consultants and investment bankers as an attempt to include 

some leverage cost in the valuation: for a given risk of the assets (β u), this formula 

results in a higher βL (and consequently a higher Ke and a lower equity value) than 

Eq. (23). In general, it is hard to accept that the debt has no risk and that the return on 

the debt is uncorrelated with the firm’s return on assets. From Damodaran’s 

expression for βL it is easy to deduce the relation between the required return to equity 

and the required return to assets, i.e., Ke = Ku + (D / E) (1 – T) (Ku – RF).  Although 

Damodaran does not mention what the value of tax shields should be, his formula 

relating the levered beta to the asset beta implies that the value of tax shields is: 

 VTS = PV[Ku; D·T·Ku – D (Kd – RF) (1 – T)]. (25) 

 

Finally, a common way of calculating the le vered beta with respect to the asset 

beta (often used by consultants and investment banks) is the following (see, e.g., 

Ruback 1995, p. 5):  

βL = βu (1+ D/E) (26) 

It is obvious that given the same value for βu, a higher βL (and a higher Ke and 

a lower equity value) is obtained than according to Eq. (23) or Damodaran (1994). 

Formula (26) relating the levered beta to the asset beta implies that the value of tax 

shields is VTS = PV[E{D·T·Kd - D(Kd - RF)}; Ku]. Given its widespread use in the 

industry, we will call this method the Practitioners’ method.  

 

Given the large number of alternative methods existing in the literature to 

calculate the value of tax shields, Copeland, Koller, and Murrin (2000, p. 482) assert 

that “the finance literature does not provide a clear answer about which discount rate 
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for the tax benefit of interest is theoretically correct.” They further conclude, “We 

leave it to the reader’s judgment to decide which approach best fits his or her 

situation.” 

 

 We propose three ways to compare and differentiate among the different 

approaches.  One way is to calculate the value of tax shields for level perpetuities 

according to the different approaches.  A second way is to check the implied present 

value of the net increases of debt in each of the different approaches.  A third way is 

to check the implied relation between the unlevered and levered cost of equity in each 

of the different approaches.  The levered cost of equity should always be higher than 

the cost of assets (Ku), since equity cash flows are riskier than the free cash flows. 

 

 Table 1 summarizes the implications of these approaches for the value of tax 

shields in level perpetuities. Table 1 shows that only four out of the eight approaches 

compute the value of tax shield in perpetuities as DT.  The other four approaches 

imply a lower value of tax shields than DT. 

From equation (12) the present value of the increases of debt is: 

PV0[∆D t]= (VTS0 - T· D0) / T   

Applying this equation to the theories mentioned, we may construct the 

predictions that each of these theories have for PV0[∆Dt]. These predictions are 

reported in Table 2. PV0[∆Dt] for level perpetuities should be zero. That is the case 

only in Modigliani-Miller (1963), Myers (1974) and Fernández (2004). 

As we have already argued, Myers (1974) should be used when the company 

will not issue new debt; Fernández (2004) when the company expects to issue new 

debt in the future; and Modigliani-Miller may be applied only if the debt is risk-free.  

 Table 3 summarizes the implications for the relation between the cost of assets 

(Ku) and the cost of equity (Ku) in growing perpetuities. Table 3 shows tha t not all of 

the approaches also satisfy the relation between the cost of equity and the cost of 

assets. The Modigliani and Miller (1963) and Myers (1974) approaches do not always 

give a higher cost of equity than the cost of assets.  Myers obtains Ke lower than Ku 

if the value of the tax shields is higher than the value of debt. This happens when 

D·T·Kd  / (Kd – g) > D, that is, when the growth rate is higher than the after -tax cost 

of debt: g > Kd (1 – T).  Please note also that in this situation, as the value of tax 
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shields is higher than the value of debt, the equity (E) is worth more than the 

unlevered equity (Vu). This hardly makes any economic sense.  Modigliani and 

Miller provide the inconsistent result of Ke being lower than Ku if g > RF (1 –  T).   

 

 
4. Conclusions  
 

This paper shows that the value of tax shields is: 

VTS0 = T· D 0 + T· PV0[∆Dt] (12) 

The critical parameter for calculating the value of tax shields is the present 

value of the net increases of debt. It may vary for different companies, but in some 

special circumstances it may be calculated.  

If the debt is a constant perpetuity (a consol), PV0[∆Dt] = 0, and VTS0 = T· D 0 

If the company is expected to repay the current debt without issuing new debt, 

the appropriate discount rate for the negative ∆Dt (because they are principal 

payments) is Kd, the required return to the debt. In this situation, Myers (1974) 

applies: PV0[∆Dt] = PV0[E{∆Dt}; Kd]. And the VTS is VTS0 = D T + T·PV0[E{∆Dt}; 

Kd]. 

If the correct discount rate for the increases of debt is Ku, the required return to 

the unlevered company: PV0[∆Dt] = PV0[E{∆Dt}; Ku].  In the case of a constant 

growing perpetuity, PV0[∆D t] = g·D0 / (Ku-g), and VTS0 = T·Ku·D0 / (Ku-g). 

The paper also shows that discounting the expected tax shields at the required 

return to unlevered equity, as suggested by Harris and Pringle (1985), Miles and 

Ezzell (1980), and Ruback (2002), is inconsistent 
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Table 1 

Comparison of value of tax shields (VTS) in perpetuities.  
Only three out of the seven approaches correctly compute the value of the tax shield in perpetuities as 

DT.  
The other four theories imply a lower value of the tax shield than DT. 

 
Theories     VTS  VTS in perpetuities 

Correct method  D·T  + T· PV 0[∆Dt] DT 

Damodaran (1994) PV[E{D·T·Ku - D (Kd- R F) (1-T )}; K u] < DT 

Practitioners PV[E{D·T·Kd  - D (Kd- RF)}; K u] < DT 

Harris-Pringle (1985), Ruback (1995) PV[E{D·T·Kd}; Ku] < DT 

Myers (1974)  PV[E{D·T·Kd}; Kd] DT 

Miles-Ezzell (1980) PV[E{D·T·Kd}; Ku] (1+Ku) / (1+Kd) < DT 

Modigliani-Miller (1963) PV[E{D·T·RF}; RF] DT 

Fernández (2004)  PV[E{D·T·Ku}; Ku] DT 

Ku = unlevered cost of equity 

Kd = required return to debt 

T = corporate tax rate 

D = debt value 

RF = risk-free rate 

PV[E{D·T·Ku}; Ku] = present value of  the expected value of D·T·Ku discounted at the rate Ku 
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Table 2 
Present value of the increases of debt implicit in the most popular formulae for calculating the 

value of tax shields. Constant growing perpetuities at a rate g 
    PV0[∆Dt] for constant growing 

perpetuities at a rate g 

PV0[∆Dt] if g=0 

Damodaran (1994) 

T
T)-(1

gKu
)R-(KdD

gKu
g·D F00

−
−

−
 

T
T)-(1

Ku
)R-(KdD F0−  

Practitioners 

T g)(Ku
)R-(KdD

gKu
Kd)-(KuD

gKu
g·D F000

−
−

−
−

−
 

TKu  
)R-(KdD

Ku
Kd)-(KuD F00 −−  

Harris and Pringle (1985), 

Ruback (1995) gKu
Kd)-(KuD

gKu
g·D 00

−
−

−
 

Ku
Kd)-(KuD0−  

Myers (1974) g·D0/(Kd-g)  0 

Miles and Ezzell (1980) 

 Kd)g)(1(Ku

Kd)-(KuD
 -

gKu

g·D 00

+−−
 

Kd)Ku(1

Kd)-(KuD
 - 0

+
 

Modigliani-Miller (1963) g·D0/(RF-g) 0 

Fernández (2004) g·D0/(Ku-g)  0 



  
  

 
 

16 

 
Table 3 

Comparison of the relation between Ke (levered cost of equity) and Ku (unlevered cost of equity) 

for growing perpetuities.  

The approaches of Modigliani and Miller (1963) and Myers (1974) do not always result in a higher 

cost of equity (Ke) than cost of assets (Ku).  Myers (1974) obtains Ke lower than Ku if the value of tax 

shields is higher than the value of debt. This happens when the growth rate (g) is higher than the after-

tax cost of debt, i.e., g > Kd (1 – T). Modigliani and Miller  (1963) also provide the inconsistent result 

of Ke being lower than Ku if the value of tax shields is higher than D [Ku – Kd (1 – T)] / (Ku – g). 

This happens when leverage, the tax rate, the cost of debt, or the market risk premium are high. 

 

Theories     Ke (levered cost of equity) Ke<Ku 
Damodaran (1994) Ke = Ku + (D/E) (1 - T) (Ku – RF)  No 

Practitioners Ke = Ku + (D/E) (Ku – RF)  No 
Harris-Pringle (1985), 

Ruback (1995) 
Ke = Ku + (D/E) (Ku – Kd)  No 

Myers (1974) Ke = Ku + (D - VTS) (Ku – Kd) /E  Yes,   if g > Kd (1 – T ) 
Miles -Ezzell (1980) Ke = Ku +

D
E

 (Ku - Kd) 1-
T Kd

1 + Kd
 
  

 
   No 

Modigliani -Miller (1963) Ke = K u + D
E

[K u − K d(1 - T) - (Ku - g) VTS
D

] *  Yes,   if g > RF(1-T) 

Fern ández (2004)  Ke = Ku + (D/E) (1 - T) (Ku – Kd)  No 
* Valid only for growing perpetuities 

 
D = debt value 

E = equity value 

g = growth rate 

Kd = required return to debt 

RF = risk-free rate 

T = corporate tax rate 

VTS = value of tax shields 
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Appendix 1. Derivation of the VTS formula using the pricing kernel 

 
I assume that the price today (P0) of an asset that pays a random amount CF t at time t 
is the sum of the expectation of the product of CFt and Mt , the pricing kernel for time 
t cash flows: 

∑
∞

=
1

tt0 }CF ME{   P  

E{} is the expected value operator. 
The value of the unlevered equity (Vu) and the value of the equity are: 

∑
∞

=
1

tt0 }FCF ME{   Vu  

∑
∞

=
1

tt0 }ECF ME{   E  

Applying the same valuation methodology to equations  (7) and (8)  
 

TaxesUt = T·PBTut = [T/(1+T)]  (FCFt  + ∆NFA t + ∆WCRt) (7) 

TaxesLt = T·PBTt = [T/(1+T)]  (ECFt + ∆NFA t +∆WCRt -∆Dt) (8) 

we get:    ∑
∞

=
1

tt }Taxes ME{   G L0L  and        ∑
∞

=
1

tUt0 }Taxes ME{   Gu  

Taking into consideration that VTS = Gu – GL, we get: 









−∆−= ∑ ∑∑

∞ ∞∞

1 1
tttt

1
tt0 }ECF ME{}D ME{}FCF ME{ 

T-1
T

  VTS =   









∆−−= ∑

∞

1
tt00 }D ME{EVu 

T-1
T

   

As, following equation (1), Vu – E = D – VTS, we get: 









∆−= ∑

∞

1
t }D E{VTS-D 

T-1
T

  VTS tM  

 }D E{ T - TD  VTS
1

t∑
∞

∆= tM , which is equation (12). 
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Appendix  2. Main valuation formulas  
Market value of the debt = Nominal value  

 
Theories     VTS Ke 

Correct VTS0 = T· D0 + T· PV0[∆D t]    
Damodaran (1994) PV[E{D·T·Ku - D (Kd-RF) (1-T)}; Ku]  Ke = Ku + (D/E) (1 - T) (Ku – R F)  

Practitioners PV[E{D·T·Kd  - D (Kd-RF)}; Ku] Ke = Ku + (D/E) (Ku – R F)  
Harris-Pringle (1985), 

Ruback (1995) 
PV[E{D·T·Kd}; Ku]  Ke = Ku + (D/E) (Ku – Kd)  

Myers (1974) PV[E{D·T·Kd}; Kd]  Ke = Ku + (D - VTS) (Ku – Kd) /E  
Miles-Ezzell (1980) PV[E{D·T·Kd}; Ku] (1+Ku) / (1+Kd)   Ke = Ku +

D
E

 (Ku - Kd) 1-
T Kd

1 + Kd
 
  

 
   

Modigliani -Miller 
(1963) 

PV[E{D·T·RF}; RF] K e = K u + D
E

[K u − Kd(1- T) - (K u - g) VTS
D

] *  

Fernández (2004) PV[E{D·T·Ku}; Ku]  Ke = Ku + (D/E) (1 - T) (Ku – Kd)  (21) 
 

Theori es     ßL WACC 

Damodaran (1994) 
uß

 E
T)-D(1

ßußL +=  
[ ]

DE
)T1)(RKd

D
DE

DT
1Ku F

+
−−

+







+

−  

Practitioners 
uß

E
D

ßußL +=
   

 
DE

)T-(1 KdR
DKu F

+
−

−  

Harris-Pringle (1985), 
Ruback (1995) ßd)u(ß

E
D

ßuß L −+=
  
 DE

T Kd D
Ku

+
−  

Myers (1974) 
ßd)u(ß

E
VTS-D

ßußL −+=  
DE

DTKdVTS)KdKu(VTS
Ku

+
+−

−  

Miles-Ezzell (1980) 






+
−+=

Kd1
Kd T

-1ßd)u(ß
E
D

ßuß L  Kd1
Ku1

  
DE
T Kd

DKu
+
+

+
−  

Modigliani -Miller 
(1963) 

[ ]
M

L P E
g)VTS(KuT)Kd(1KuD

ßuß
−−−−

+= * *
DE
VTS)gKu(

Ku
+

−
−  

Fernández (2004) 
ßd)u(ß

 E
T)-D(1

ßuß L −+=
    









+
−

DE
DT

1Ku
 

* Valid only for growing perpetuities  
 

Theories     WACCBT 

Damodaran (1994) 
DE

)RKu(TR- Kd
DKu FF

+
−−

+  

Practitioners 
DE
R- Kd

DKu F
+

+  

Harris-Pringle (1985), 
Ruback (1995) 

Ku 

Myers (1974) 

DE
)KdKu(VTS

Ku
+

−
−  

Miles-Ezzell (1980) Ku -
D T Kd 
(E +  D)

 
(Ku - Kd)
(1 + Kd)

 

Modigliani -Miller 
(1963) *

DE
TDKdVTS)gKu(

Ku
+

−−
−  

Fernández (2004) Ku -  
DT(Ku - Kd)

(E + D)
 

 


