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Abstract

We present an approach for valuing real investment projects taking into ac-
count both personal and corporate taxation, and assuming that the project
may also be financed by issuing incremental debt. The setting is a general-
ized Miller equilibrium economy with differential taxation for bond-holders
and equity-holders and with cross-sectional variation in corporate tax rates.
We use valuation neutrality (the martingale operator is not affected by taxes)
and holding-period neutrality (there are no tax-based incentives to adjust
the investment holding period) of the tax scheme. Accordingly, we provide a
certainty equivalent (risk-neutral) valuation framework taking into account
taxation and valuation of tax shields, for capital budgeting projects both in
case the firm can and can prevent default on debt payment.

The certainty-equivalent operator is not affected by tax shields and is the
same before and after personal taxes. Interest tax shields can be incorpo-
rated by either adjusting the discount rate for interest tax shields (depending
on the financincg system) or with an APV-like approach with interest tax
shields being additive.

We also analyze also the effect of debt financing on the value of the option
to invest and on the exercise policy, including the effect of default risk. One
of the findings of this work is that for low uncertainty a higher leverage can
reduce the time-value of the real options and increases the probability of
exercising these options. This effect is completely offset in case either the
uncertainty or the leverage is high; i.e., when the firm is close to default.

Keywords: Investment under uncertainty, capital structure, risk-neutral
valuation, corporate and personal taxation, default risk.
JEL classifications: G31, G32, C61



1 Introduction

The most widely used models for valuing or optimizing capital investment
decisions under uncertainty are based on cash flows discounted at a risk-
adjusted rate. Nevertheless, the presence of leverage, discretion and asym-
metry forces a valuation approach based on computation of certainty equiv-
alent, as opposed to expected, cash flows. This leads to the real options
approach for capital budgeting valuation.

The interaction of personal and corporate taxes on various financing
instruments generates a net interest tax shield that may have positive or
negative value. This interaction is so often mishandled that few people
recognize that it could just as likely have a negative value as a positive value.
The differential taxation does not affect the certainty-equivalent (equivalent
martingale) operator. The value of the interest tax shield can be calculated
either by an additive term that separates the value under different financing
scenarios (an adjusted present value or APV treatment), or by adjusting
the discount rate to reflect the tax wedge that separates the riskless market
returns for instruments of different tax classes in what we will call a tax-
adjusted discount rate (TADR) approach.

A equity-finance real investment opportunity (such as an option to pur-
sue an R&D project) should be discounted at a different riskless discount
rate than used for a financial derivative. This is because the marginal in-
vestor for a capital investment project is likely to face differential taxation of
debt and equity instruments, which drives a tax wedge between the riskless
returns on equity and debt instruments. However, the market maker who
sets the relative prices of financial derivatives and their underlying instru-
ments is typically taxed at the same rate on all financial instruments, so
she does not see a tax wedge between riskless equity and debt instruments.
Thus, the common practice of discounting financial derivatives (puts and
calls on stocks, for example) at the riskless debt rate is appropriate. How-
ever, we show that it is incorrect to carry this practice over to a real options
setting, where certainty-equivalents that are financed by equity should be
financed by an equity rate that differs (and is typically lower than) the debt
rate.

The fact that a financial market maker does not use the same discount
rate to value an investment as a long-term capital investor would use does
seem to lead to some arbitrage opportunities that we do not explore. It
may be difficult to take advantage of these arbitrage opportunities because
a dynamic hedge based on the long term capital value may generate adverse
tax consequences, or may be had to form because of incomplete markets.
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Most capital budgeting projects are financed partly by debt and partly
by equity. Finally, there are some cash flows from a project, like the tax
advantage to debt due to the deduction of interest payments from the tax-
able income, that are contingent on the cash flow of the project and are
lost in case the firm default on debt service. For this case, a suitable valua-
tion approach is needed, based on certainty equivalent operators taking into
account personal taxation.

In this work we introduce a continuous-time valuation framework for cash
flows emerging in capital budgeting, taking into account personal and cor-
porate taxes, under the assumption that taxes do not introduce tax timing
options due to the taxation of capital gains. We do show broad circum-
stances under which taxes do not affect the equivalent martingale measure.

This paper shows how to adjust the value of discretionary and asym-
metric cash flows, in order to apply the real options approach, for the value
of debt and taxes under two different types of settings. In the first, we as-
sume that debt is default-free because of the ability of the management to
constantly adapt the debt level of the firm. This assumption, first due to
Miles and Ezzel (1980, 1985), is widely accepted in capital budgeting (see
recently on this Grinblatt and Liu (2002)), and is here considered as the
benchmark case. In the second setting, we assume that debt is defaultable
and incorporate the effect of the probability of default into the valuation.
In this respect, our work extends previous research by Merton (1974), incor-
porating tax shields; by Brennan and Schwartz (1978), Leland (1994) and
Leland and Toft (1996), considering personal and corporate taxation.

Lastly, the paper aims at describing the influence of debt financing on
the value of the project and on the decision to invest. The are few other
contributions in the real options literature that deal with the interaction
between investment and financing decisions.

An early contribution was given by Trigeorgis (1993), who analyzed the
option to default on debt payments, noting potential interactions with op-
erating flexibility, but with no reference to tax benefits from debt financing.
Another important contribution is Mauer and Triantis (1994), who presented
a real options model of a flexible production plant with a capital structure
changing over time as a consequence of an optimal dynamic financing policy,
but with the important limitation that default is ruled out by the ability
to reduce the debt. They do not find any influence of debt financing on
the investment policy. In contrast, we show that debt financing, also in the
default free case, have a deep impact both on the value of the option to
invest and on the probability of investing.

A third line of research was started by Mello and Parsons (1992), who
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studied the effect of agency problems of debt (underinvestment or overin-
vestment) on the optimal operating policy for the firm with different op-
erating modes and provides a measure of the agency cost of debt. Mauer
and Ott (2000) and Childs et al. (2000) extend these results to the case of
expansion options. We do not analyze potential conflicts of interest between
equity-holders and debt-holders.

Our model is more general than these contributions in that we properly
incorporate personal taxation and that we do no assume that debt level is
a predetermined function independent of the operating policy (as in Mello
and Parsons (1992)) or of the strategic policy (as in Mauer and Ott (2000)
and Childs et al. (2000)).

An outline of our work is as follows. First, in Section 2, we provide
an equilibrium valuation approach in continuous-time for real and financial
assets in an economy with personal and corporate taxes, where tax rates on
bonds and stocks are different. In Section 3 we present a continuous-time
valuation approach for levered and unlevered real assets for capital budgeting
purposes. We study first a case with no default risk, and then we incorporate
the possibility that the firm can default on debt payments. In Section 4 we
introduce the basic real option to delay an investment under the assumption
that the incremental debt to finance the real asset is issued conditional on
the decision to invest. In Section 5 we analyze the effect of debt financing
on the value of the real option and on the optimal investment policy. The
results are sharply different in the default-free case and in the defaultable
case. In the first, a higher leverage for a supra-marginal firm/project (i.e., a
firm/project which has a tax advantage to debt) increases the value of the
option to delay investment and increases the probability of investing, thus
reducing the time-value of the option to defer investment. In the second case,
the positive effect of debt for a supra-marginal firm/project, because of the
tax benefit on interest payments, can be completely offset when uncertainty
is high and the firm is close to default.

2 Asset valuation in a generalized Miller economy

2.1 Tax equilibrium

This section discusses the valuation framework for capital budgeting pur-
poses in a continuous-time Miller economy that is generalized to allow for
cross-sectional variation in corporate tax rates. Miller (1977) assumes that
the personal tax rate for bond investment income is different from the per-
sonal tax rate for stock investment income. He assumes that there is cross-
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sectional variation in personal tax rates, but not corporate tax rates. Thus,
in his tax equilibrium, all corporations are indifferent about capital struc-
ture, but individual investors have a tax-induced preference for debt or eq-
uity, leading to tax clienteles. By allowing cross-sectional variation in corpo-
rate tax rates, as in Sick (1990), only firms at the margin are indifferent (on
a tax basis) between issuing debt and equity, and supra-marginal firms with
a tax rate below the marginal rate prefer to issue equity and infra-marginal
firms with a tax rate above the marginal rate prefer to issue equity.

A cash flow is valued according to an equivalent martingale measure
(EMM) that, in principle, may be specific to the form in which the cash
flow is conveyed to the investor. We establish circumstances where the tax
system is neutral, in the sense that it does not affect the EMM (valuation
neutrality). We also establish conditions where the holding-period timing
options (as in Constantinides (1983)) have no value (holding-period neu-
trality). This is crucial when valuing corporate investments, because their
cash flow streams must be valued from the point of view of bond-holders
and equity-holders of the corporation. Although there are several neutral
personal tax systems,1 we will achieve a neutral tax system with a linear
personal taxation scheme (symmetric in gains in losses) that also has a mark-
to-market feature that taxes capital gains as accrued rather than when they
are realized.2 Of course, the relevant personal tax system for any capital
budgeting valuation may not be exactly neutral, but it will often be close
enough to neutral that the techniques here are the appropriate starting point
for valuation and policy decisions.

The setting is an economy with complete financial markets that has both
personal and corporate taxes. We assume an underlying complete probabil-
ity space (Ω,F , P) and a (possibly infinite) time horizon T , Ω is the set of
possible realizations of the economy, F is the σ-field of distinguishable events
at T , and P is the actual probability on F . We denote F = {Ft, t ∈ [0, T ]}
the augmented filtration or information generated by the process of security
prices, with FT = F .

We denote by τ c the marginal tax rate for a company; τ b the personal
tax rate for income from bonds, and τ e the personal tax rate for income
from equities. We assume that, for the individual investor, capital gains
and coupons in bond markets are taxed at the same rate, and capital gains
and dividends in equity markets are taxed at the same rate. The personal

1See Auerbach and Bradford (2001).
2In Jensen (2003), the proof of valuation neutrality and holding-period neutrality is

provided also for other cash flow-based taxation schemes.
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tax operators are linear at any date t (i.e., for each investor, income and
losses are taxed, or generate tax relief, at the same rate). On the other
hand, the tax scheme for corporations need not be linear. We allow τ c, τ b

and τ e to be F-adapted stochastic processes, i.e. they are determined as a
function of the (stochastic) factors underlying the economy, but they must
have continuous sample paths, almost surely. The stochastic nature of tax
rates is not essential to achieve the results of this paper and readers may
find it more convenient to think of the tax rates as being deterministic or
even constant. In general, τ b and τ e are different. Ross (1987) established
the existence of equilibrium and of an EMM for an economy with personal
taxes and a convex tax schedule. These assumptions are satisfied in our
setting.

Consider a firm with tax rate τ c that is deciding whether to issue debt
or equity to an investor who has tax rates τ e and τ b on equity and debt
respectively. If (1 − τ c)(1 − τ e) > (1 − τ b), the firm has incentives to issue
equity. It can even issue equity at a slightly higher after-all-tax rate of
return, thereby attracting a new investor with a higher tax rate on equity
(relative to debt), who formerly would have purchased debt. (It does this
while still paying a lower after-corporate-tax rate of return on the new equity
than on the debt.) This switch in marginal investors reduces the gap between
(1 − τ c)(1 − τ e) and (1 − τ b). Similarly, if (1 − τ c)(1 − τ e) < (1 − τ b), the
firm has incentives to issue debt. This attracts investors who are taxed more
heavily on debt.

Equilibrium is achieved by adjusting relative prices on debt and equity,
which affects the expected rates of return on these securities. In equilibrium,
the marginal firm, with marginal tax rate τ c = τm, will be indifferent be-
tween issuing debt and equity and the marginal investor (with tax rates τ e

and τ b) will be indifferent between buying debt and equity. In this equilib-
rium, security prices (and expected returns) are such that the after-all-tax
returns are the same for the marginal firm and the marginal investor, so
that there is no overall gain from debt in this economy,

(1− τm)(1− τ e) = (1− τ b).

Since there is cross-sectional variation in corporate tax rates τ c, there
will be supra- and infra-marginal firms, i.e., firms that have a gain (τ c > τm)
or a loss (τ c < τm) from leverage, respectively.3 We can characterize the

3The fact that some firms have unlevered capital structure can be interpreted as an
evidence that there are infra-marginal firms, although an infra-marginal can have leverage
because of agency costs in issuing equity.
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marginal firm’s tax rate τm by the equation

1− τm =
1− τ b

1− τ e
, (2.1)

The equilibrium entails setting the expected rates of return on the se-
curities. To set aside risk premia for a moment, we consider riskless debt
offering a yield of rf and riskless equity offering a yield of rz. In equilib-
rium, these yields must achieve the same rate of after-all-tax return for the
marginal investor investing in the marginal firm:

(1− τ e)rz = (1− τ b)rf .

Thus, we can characterize (2.1) in terms of market rates of return by:

1− τm =
rz

rf
. (2.2)

Tax arbitrage has a tendency to make all firms behave as if they have
the same tax rate. At the corporate level, an arbitrage scheme could involve
a highly taxed firm with τ c > τm issuing debt to acquire its own equity, for
example. Or, it could involve a low-tax firm issuing equity to buy back debt.
We assume that there are tax laws and agency costs4 that prevent a firm
from undertaking such an arbitrage transaction. Thus, there will generally
be supra- and infra-marginal firms in this generalized Miller tax equilibrium.

It is more difficult to generate tax arbitrage opportunities that would
have all investors facing the same effective personal tax rate as that held by
the marginal investor. This is because personal tax laws identify the indi-
vidual and generally change when a financial entity (such as a corporation,
mutual fund or trust) is inserted between the investor and the investment
vehicle. Thus, there will generally be supra- and infra-marginal investors
in this generalized Miller tax equilibrium. Indeed, Miller (1977) also as-
sumed this. For example, suppose an investor pays little or no tax on any
investment (e.g. a pension fund), but the marginal investor pays higher tax
on debt than on equity. The untaxed infra-marginal investor would prefer
the tax benefits of debt, but this will prevent the investor from earning risk
premia paid on equity investments. We assume that any attempt to con-
vert an equity investment with a risk premium to a debt instrument for tax
purposes is prevented by tax law.

Taxes introduce a risk sharing mechanism between government and taxed
investors. This could cause a difference between the equilibrium pricing mea-
sure with and without personal taxes. We will assume a valuation neutral

4See for instance, Myers and Majluf (1984).
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tax scheme, in the sense that, although individual investors have different
tax rates, the market stays in equilibrium since no arbitrage opportunities
are introduced and the equilibrium pricing measure is unchanged by the
presence of taxation. For valuation purposes, this means that the expected
(under the EMM) pre-tax cash flow stream of a security, discounted at a
pre-tax rate, is equal to the expected (under the same EMM) after-tax cash
flow stream, discounted at an after-tax rate.

A second important issue introduced by taxation of security returns is the
presence of timing options related to taxation of capital gains, as pointed out
by Constantinides (1983). Taxation of capital gains produces timing options
due to a (rational) delay of liquidation of positions in financial securities,
until a date of forced liquidation, if the accrued capital gain is positive and
the anticipation of liquidation of the position if the capital gain is negative,
to take advantage of the tax credit.

We assume a holding-period neutral tax scheme,5 i.e. a tax scheme that
does not introduce any timing options related to taxation of capital gains
and so it does not change portfolio strategies of individual investors. Auer-
bach (1991) and Auerbach and Bradford (2001) describe a generalized tax
scheme that prevent tax arbitrages and realizes holding-period neutrality.6

Within this class of valuation and holding-period neutral tax schemes, we
will consider the mark-to-market personal taxation. Mark-to-market taxa-
tion of a security consists of accrual of taxes on capital gains on a separate
account as if the security were actually traded. The realization of the ac-
crued tax on capital gain is deferred until the date the security is actually
traded. There are several practical problems related to this scheme, espe-
cially when related to illiquid (or inefficiently traded) securities. As far as
a no-arbitrage financial market is concerned, the main drawback of mark-
to-market taxation is related to the liquidity constraints it imposes on the
individual investors. Nevertheless, mark-to-market taxation is a reasonable
benchmark and has been used for this in the public finance literature.7

5To the best of our knowledge, the definition of holding-period neutrality is due to
Auerbach (1991, p. 169):

“A realization-based tax system is holding-period neutral if it leads each in-
vestor in an asset to require a before-tax return having a certainty-equivalent
value that is not a function of the length of holding period or the asset’s past
pattern of return.”

6Jensen (2003) provides an exhaustive characterization of the class of taxation schemes
that satisfy the requirements of valuation and holding-period neutrality in a discrete-time
setting.

7An extension of the results presented below to other neutral taxation scheme is beyond
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2.2 Security price dynamics

In the economy described above,8 let Q be an EMM on F .9 We denote the
risk-neutral expectation operator with respect to Q as EQ[ · | Ft] = Êt[·].

The price of an arbitrary stock, denoted S, is an adapted Itô process
{St} with dynamic (under Q)

dSt = (rz
t St −Xt) dt + σtdZt S(0) = S0. (2.3)

(rz, Xt and σt are adapted processes which satisfy the usual integrability
conditions) where rz

t is the time-t certainty equivalent (CE) instantaneous
rate of return for a stock at the market level (before-personal taxes) under
the EMM, and where the adapted process Xt is the flow of dividends. We
make the assumption that taxes on dividends are levied at the same rate as
taxes on capital gains as far as the same investor is concerned.

We define also a money market account,10 at the market level, of value
B with dynamics (before personal tax):

dBt = rf
t Btdt B0 = 1 . (2.4)

where the riskless rate of return or CE rate, rf
t , is an adapted process (and

satisfies the standard conditions). thus

Bt = exp
(∫ t

0
rf
udu

)
.

The equilibrium rates of return on the money market and stock market
are the same after all taxes for the marginal investor, so, at any date t we
have (generalized Miller equilibrium relation) that yields a common after-
all-tax riskless CE return rz,at

t

rz,at
t ≡ rf

t (1− τ b
t ) = rz

t (1− τ e
t ) (2.5)

the scope of this paper and will be the subject of future research. We will provide our
results in a continuous-time Miller (1977) setting, where the tax rate for bonds and the
tax rate for stocks can be different even if they are traded by the same agent. Our results
significantly extend Jensen (2003) results to an economy where personal tax rates can be
cross-sectionally different and bonds are taxed differently from bonds.

8We skip the description of the other technical hypotheses suited for the existence of
an EMM for valuing the securities. Interested readers can refer to Duffie (2001).

9Since in principle the EMM can be affected by personal taxation, our choice of Q is
arbitrary for the time being. As we will prove later, under the mark-to-market symmetric
tax scheme the EMM is not affected by taxation. Hence, Q will be legitimately defined as
the equilibrium EMM.

10Here we will concentrate on default-free bonds. We postpone the valuation of de-
faultable bonds, like corporate bonds, until Section 3.3, where we introduce endogenous
default and the valuation formula will be more easily introduced.
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or11

rz = (1− τm)rf . (2.6)

Generally rz ≤ rf , since the marginal firm’s tax rate τm ≥ 0. This requires
that the marginal investor’s debt tax rate exceeds her equity tax rate: τ b ≥
τ e. Only if τ b = τ e (or equivalently, τm = 0) can we have rz = rf .12

In what follows, we only require that all tax rates be between 0 and 1:
0 ≤ τ b, τ b τ c, τm < 1. Thus, taxation is never confiscatory. For convenience,
we define

Bz
t = exp

(∫ t

0
rz
udu

)
to be the accumulated value of an investment in the CE equity account.

2.3 Valuation neutrality and holding-period neutrality

Using the martingale valuation results,13 given a maturity date T ′ > t
(where T ′ is a stopping time with respect to F) the market price of the
stock at time t (i.e., before personal taxes) is

St = Bz
t Êt

[
ST ′

Bz
T ′

+
∫ T ′

t

Xu

Bz
u

du

]
, (2.7)

11Equation (2.6) provides also a way to estimate the marginal tax rate τm, since rz and
rf can either be observed or derived from security prices.

12The assumption that τ b = τe is very common in the literature. For example, it was
used by Modigliani and Miller (1963) and underlies most of the standard exposition of the
CAPM, such as Sharpe (1964) and APT as in Ross (1976). The more accurate assumption,
as in Miller (1977) and others is differential taxation of debt and equity income, typically
τ b ≥ τe. This forces us to deal with differential riskless rates in debt and equity markets.
Typically rf ≥ rz, although our results do not depend on this condition.

13Ross (1987) shows that there is an equivalent martingale pricing operator in the
presence of taxes. His results are general and, in our setting, establish a pricing operator
after all taxes, as well as pricing operators for debt flows before personal tax and for equity
flows before personal tax. Even if each of these three pricing operators is unique within its
own setting, there is no immediate guarantee that these pricing operators are related or
equivalent. Sick (1990) raised this question in a discrete-time setting and showed that the
certainty equivalent operators associated with these pricing operators are all identical to
each other. That is, taxes and tax shields do not generate a risk premium. We establish
an equivalent result in continuous time, but initially, we must be careful to distinguish
the source of any pricing operator. For the time being, we take the martingale pricing
operator that prices equity cash flows after corporate tax and before personal tax.

9



which is the value of the stock at the market level (i.e., before personal
taxes), given by the CE price at T ′ discounted at the CE equity rate. Let

Bz,at
t ≡ exp

(∫ t

0
rz
u(1− τ e

u)du

)
be the time-t value of one dollar invested at time 0 and earning the CE rate
of return on equity rz

u net of personal taxes τ e
u for 0 ≤ u ≤ t.

Define the after-all-tax stock value Sat
t by

Sat
t = Bz,at

t Êt

[
ST ′

Bz,at
T ′

+
∫ T ′

t

(1− τ e
u)Xu

Bz,at
u

du−
∫ T ′

t

τ e
u

Bz,at
u

dSat
u

]
. (2.8)

This is the value of the stock after personal taxes and is defined as the
certainty-equivalent after-personal-tax price at T ′, and all after tax dievi-
dends, discounted at the after-tax CE equity rate. This is a recursive def-
inition, initially defining Sat

t = ST ′ for t = T ′ and working backwards for
earlier t. Note that the definition uses the same risk-neutral expectations
Êt[·] and probability measure Q as is used for the pretax value St. We will
show that this is the same as the pre-personal-tax value of the stock.

Equation (2.8) implements a mark-to-market taxation rule. That is,
each period, capital gains (or losses, if negative) are taxed as accrued even
though they are not realized. This tax scheme requires that, at the date
of liquidation, the capital gains in the interval [t, T ′] are considered at the
date they occur and then interest accrues on the tax on capital gains at the
after-personal tax rate of return until T ′. The tax on capital gains (on the
after-tax stock price Sat

t ) accrued from t to T ′ and paid at the liquidation
date T ′ is Bz,at

t

∫ T ′

t τ e
u/Bz,at

u dSat
u . This amount is specific to the realized path

for Sat
t . In Equation (2.8), the present value at t of the tax on capital gains

realized at time u ≥ t is computed by discounting by the factor Bz,at
t /Bz,at

u .
The expectation of this discounted value is taken with respect to the (risk-
neutral) probability of all future paths for Sat

t .
For the money market account, we denote the value of a unit-dollar

amount accrued at the after-personal-tax rate rf
t (1− τ b

t ) by

Bf,at
t = exp

(∫ t

0
rf
u(1− τ b

u)du

)
.

Since the equilibrium relation in (2.5) holds at any t, we have Bf,at =
Bz,at∀t. Analogous to definition (2.8) for stocks, we define the after-all-tax
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bond value Bat
t by

Bat
t = Bf,at

t Êt

[
BT ′

Bf,at
T ′

−
∫ T ′

t

τ b
u

Bf,at
u

dBat
u

]
. (2.9)

Proposition 1. Under the linear mark-to-market taxation rule:

1. the value of the stock at the market level equals the value of the stock
after personal taxes: St = Sat

t , and

2. the value of the money market account before personal taxes is equal to
the value of the money market account after personal taxes: Bt = Bat

t .

This result is often described as a system of taxation that is value neutral.
In fact, the next result is an extension of Sick (1990, Proposition 1) to a
continuous-time setting.

Corollary 2. The martingale expectation operator Ê, or equivalently, the
risk-neutral measure Q correctly values both equity (and money market)
payoffs that are after personal taxes as well as equity (and money market)
payoffs that are before personal taxes.

We have implicitly assumed that the personal equity tax rate τ e
t is the tax

rate of the marginal investor, because we have been developing relationships
for equilibrium prices. However, the same result holds true for any investor,
whether or not he is marginal, provided that the tax schedule is locally
linear. That is to say that the marginal payoffs provided by the investment
under consideration will cause variation along a portion of the tax schedule
that has a constant marginal tax rate.

Corollary 3. If an investor has a tax schedule that is locally linear in
equity (bond) income at rate τ e

t (τ b
t ), then the personal valuation of the risk-

neutral expectation of a pretax stream of equity (money market account)
flows discounted at the CE discount rate for equity rz

t (at rf
t ) has the same

value as a stream of equity (money market account) values net of mark-to-
market capital gains tax, if discounted at the investor’s personal after-tax
equity (bond) rate rz,at

t (rf,at
t ).

It should be clear now also that the choice of a given EMM, Q, was
just for the sake of definiteness, since the argument could be applied for
any EMM. Hence, under a mark-to-market linear personal tax system, the
EMM is not affected by taxes.
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We have discussed the valuation neutrality property of a linear mark-to-
market taxation scheme. We will also show that such a scheme is holding-
period neutral, in the sense that it does not change the set of opportunities
available to the investor by inducing timing options.

Proposition 4. Under the linear mark-to-market taxation rule and in equi-
librium, for the marginal investor no further incentives for liquidating a po-
sition are introduced by taxation; i.e., tax options are worthless.

We remark that the assumption of Miller equilibrium (i.e., condition
(2.5)) is crucial for this result, since this permits us to “transfer” the tax
account back and forth over time at the unique after-personal taxes rate of
return rf (1− τ b) = rz(1− τ e) for the marginal investor.

The above results, and in particular the valuation equations at the mar-
ket level (i.e., after corporate taxes and before personal taxes) for bonds and
stocks, will be useful to evaluate general cash flows to equity-holders and
debt-holders (at the market level) generated by capital budgeting projects.
In this sense, Propositions 1 and 4 make sure that the value of these general
cash flows are the same even if we introduce a symmetric mark-to-market
taxation (although at cross-sectionally different rates) for bond-holders and
debt-holders.

3 Capital budgeting with exogenous capital struc-
ture in a generalized Miller economy

In the framework described in Section 2, we introduce capital budgeting
valuation, assuming that the corporation has an exogenously given capital
structure. The capital structure can be the one proposed by Modigliani and
Miller (1958), with constant level of debt, or the one proposed by Miles and
Ezzel (1985), with constant debt proportion, or a more general class pro-
posed by Grinblatt and Liu (2002).14 We will examine both the default-free
case (constant debt proportion or Miles and Ezzel (1980) debt policy) and
the case with defaultable debt (constant debt level or Modigliani and Miller
(1958) debt policy), assuming that the default threshold is predetermined.

For capital budgeting valuation, since the interest payments on debt
are tax deductible, it is important to evaluate the interest tax shield to

14We will not consider model with endogenous capital structure, as Fisher et al. (1989),
Mauer and Triantis (1994), Goldstein et al. (2001), Dangl and Zechner (2003), Christensen
et al. (2002). Capital budgeting valuation with endogenous financial decisions will be the
subject for future research.
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determine the cost of capital. The tax shield is a function of the leverage of
the firm/project and is contingent on the cash flow process, since it is lost
in case of financial distress.15 Hence, a proper valuation of tax shield can be
done only in a risk-neutral setting.16 Moreover, the interest tax shield can
be positive (for a supra-marginal firm, τ c > τm) or negative (for an infra-
marginal firm, τ c < τm) as a consequence of the level of the equilibrium
marginal tax rate, τm.17 This makes the framework described in Section 2
appropriate for capital budgeting valuation.

3.1 Valuation of tax shields

Let there be given a firm/project,18 with marginal corporate tax rate τ c.
We assume that τ c is independent of earnings.

The firm/project has duration T p (possibly, infinite) and the EBIT
(Earning Before Interest and Taxes, i.e. a before-corporate taxes free cash
flow) rate, Xt. The EBIT rate follows the adapted process, under the EMM

dXs = g(Xs, s)ds + σ(Xs, s)dZs, Xt = x, (3.1)

where g is the instantaneous CE growth rate and σ is the diffusion.
For convenience, we derive first the value of the firm/project assuming

it is unlevered. The after-personal tax total cash flow from the firm/project
is Xt(1 − τ c

t )(1 − τ e
t ). Since in Propositions 1 and 4 we established the

equivalence of a before- and after- personal taxes valuation for equity in-
come, assuming that the after corporate tax earning are immediately paid
to equity-holders, the value of the unlevered firm/project, denoted U , by
straightforward applications of the pricing relations is Section 2, is

U(t, x) = Bz
t Êt

[∫ T p

t

Xs(1− τ c
s )

Bz
s

ds

]
(3.2)

for 0 ≤ t ≤ T p.
15This is witnessed also by Leland (1994, p. 1220): under the U.S. tax code, the tax

benefit on coupon payment is allowed only if EBIT is grater than coupon.
16Of course, there can be other contingent claims in capital budgeting, like real options.

The extension of the results of this section to real options are in Section 4.
17Although we will focus on the supra-marginal case, our results holds true also for the

infra-marginal case.
18Note that, for the time being, and in the sake of simplicity, our setting is different

from the case of an ongoing company with its own capital structure and growth options.
We will show that the cost of capital for the option to delay investment in the project is
independent of the current capital structure of the company, so our choice is legitimate.
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In what follows we determine the Adjusted Present Value (APV), i.e.
the value of the firm/project including the value of the tax advantage to
debt, in case operations are financed also with debt: we will analyze first
the default-free case and than we will consider the case with defaultable
debt.

3.2 Default-free debt

In this section we will assume also that there is no default, because of the
ability of the management to constantly adapt, at zero adjustment costs,
the debt level in order to avoid default. This implies that the coupon rate
for corporate bonds is the risk free rate.

Since the firm/project is financed also by issuing coupon bonds, assuming
interest on debt is paid out immediately, given the total coupon rate paid
to bond-holders Rt, then the (instantaneous) cash flow to equity-holders is
(Xt−Rt)(1− τ c

t )(1− τ e
t ) and to debt-holders is Rt(1− τ b

t ), so that the total
cash flow from the project is, after-personal taxes,

(Xt −Rt)(1− τ c
t )(1− τ e

t ) + Rt(1− τ b
t )

= Xt(1− τ c
t )(1− τ e

t ) + τ∗t Rt(1− τ e
t ), (3.3)

for 0 ≤ t ≤ T d, where τ∗ = τ c−τm and τm is the marginal tax rate defined in
(2.1). We assume that the principal is paid back at T d ≤ T p. Alternatively,
if we are valuing an infinite-horizon project we will assume that it is financed
by issuing consol bonds (T d = ∞). Moreover, for simplicity we assume that
debt is always valued at par. Since debt is default-free, Rt = rf

t D(t, x),
where D(t, x) is the market value of debt. Hence, Rt is an adapted process.

In equation (3.3), while Xt(1− τ c
t )(1− τ e

t ) coincides with the after per-
sonal taxes flow for an all-equity financed project, the (net) tax shield, τ∗t Rt,
is taxed at the equity rate because it accrues to equity-holders.19 Hence, the

19Sick (1990) was the first to point out this fact. A possible interpretation of (3.3)
is the following: a bond can be interpreted as a swap between equity-holders and the
marginal investor, who is indifferent between receiving cash flow from equities and cash
flows from bonds. At t = 0, equity-holders swap B dollars of equity for an equivalent
amount (at the market value) of debt, so, the initial net position for equity-holders is
equal to 0. At every coupon date, they save to pay a required rate of return rzB and pay
rf (1− τ c)B to debt-holders, so the net position for equity-holders is rzB − rf (1− τ c)B.
Since the generalized Miller equilibrium relation (2.6) holds for the marginal investor,
the net position for equity-holders is rfB(τ c − τm), where rfB is the CE coupon (which
coincides with the actual coupon at the current date), derived from the valuation equation
for debt.
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right-hand-side of (3.3) must be discounted using the after-personal taxes
discount factor for stocks, Bz,at. From Propositions 1 and 4, we know that
this is equivalent to a before-personal taxes valuation using the discount
factor Bz. This intuition is made precise in the subsequent proposition. We
denote V the APV of the levered firm/project. Hence, the levered project
(and in particular, the tax shield) is a contingent claim of the free cash flow.

Proposition 5. The APV, incorporating the value of the tax shield, satisfies
equation

1
2
σ2(X, t)

∂2V

∂X2
+ g(X, t)

∂V

∂X
+

∂V

∂t
+ Xt(1− τ c

t ) + τ∗t Rt = rz
t V. (3.4)

with boundary conditions V (T d, XT d) = U(T d, XT d) and U(T p, XT p) = 0,
and is

V (t, x) =Bz
t Êt

[∫ T d

t

Xs(1− τ c
s ) + τ∗s Rs

Bz
s

ds +
U(T d, XT d)

Bz
T d

]

= U(t, x) + Bz
t Êt

[∫ T d

t

τ∗s Rs

Bz
s

ds

]
,

(3.5)

for 0 ≤ t ≤ T d, where the second term in the right-hand-side is the tax
shield.

The APV in (3.5) can be computed in the general case, for general
processes for Xt and Rt, for the risk-free rate and for the tax rates, using
some numerical methods.20 Nevertheless, to obtain a default-free debt, we
have to properly define the debt policy: in particular, we assume that D(t, x)
is a linear function of APV : D = LV, where L is the constant debt ratio,
0 ≤ L < 1. This is the Miles and Ezzel (1980, 1985) (M-E) debt policy.21

By replacing this condition in equation (3.4) we obtain

1
2
σ2(X, t)

∂2V

∂X2
+ g(X, t)

∂V

∂X
+

∂V

∂t
+ Xt(1− τ c

t ) = ρtV (3.6)

where
ρt = rz

t − τ∗rf
t L = (1− L)rz

t + L(1− τ c
t )rf

t (3.7)

is the tax-adjusted certainty equivalent cost of capital, i.e., the cost of capital
under the EMM that incorporates also the effect of tax shield. From the

20Monte Carlo simulation is particularly suited for solving this types of problems.
21We will prove below that M-E debt policy is actually consistent with the assumption

of absence of default.
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right-hand-side of equation (3.7) we notice that ρt is also a weighted average
cost of capital (wacc) under the EMM. This is an extension of the tax-
adjusted rate of return in Sick (1990) to a continuous-time setting.

Applying conditions V (T d, XT d) = U(T d, XT d) and U(T p, XT p) = 0,
and considering that, for t > T d, D ≡ 0 (since R ≡ 0),22 we have that the
APV of the firm/project is

V (t, x) = Bw
t Êt

[∫ T d

t

Xs(1− τ c
s )

Bw
s

ds

]
+ Bz

t Êt

[
U(T d, XT d)

Bz
T d

]
, (3.8)

for 0 ≤ t ≤ T d, where Bw
t = exp

∫ t
0 ρudu is the time-t value of one dollar

accrued at the tax-adjusted CE cost of capital. Equation (3.8) when com-
pared to (3.2) clarifies the role of the tax-adjusted CE cost of capital, ρt, as
the stochastic instantaneous discount rate that generates the levered asset
value when applied to the unlevered cash flow process.23 In particular, the
randomness of ρt derives from the randomness of rz

t and rf
t , but not from

the leverage ratio. Hence, equation (3.8) provides a time-consistent pricing
operator for levered cash flows.

Equation (3.8) can be use, employing some numerical methods, to com-
pute the APV of the firm/project using a stochastic wacc under general
hypotheses on the relevant stochastic processes.

For convenience of analysis, in what remains of this part we derive some
closed-form formulas for the tax shield under more restrictive assumptions
on the stochastic process for X and the model parameters. In details: the
corporate (τ c) and the personal (τ e and τ b) tax rates are constant; the CE
rates for bonds (rf ) and equities (rz) are constant;24 for the EBIT process
in (3.1), the growth rate, g(X, t) = gX, and the volatility, σ(X, t) = σX,
where g and σ are given constant.

Under these hypotheses, the value of the unlevered firm/project in (3.2)
becomes

U(t, x) = x(1− τ c)
1− e−(rz−g)(T p−t)

rz − g
. (3.9)

In order to derive the APV of the firm/project, we observe that the solution
is of the type

V (t, x) = U(t, x) + k(t)x (3.10)
22The argument is the same used in the proof of Proposition 5.
23Grinblatt and Liu (2002) have an analogue definition of wacc, although they limit the

analysis to a less general setting with constant rate of returns and with τm ≡ 0.
24This hypothesis implies in particular that the yield curve for bonds is flat and hence

maturity for corporate bonds is irrelevant.
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(where k is a function of time to be determined) and hence debt tax shield
at t is related to the current value of Xt. By replacing (3.10) in (3.4) (and
considering that D = LV ) we have25

k(t) = (1− τ c)rfτ∗L

(
1− e−(rz−g)(T d−t)

)
(rz − g)(rz − rfτ∗L− g)

+

+ (1− τ c)e−(rz−g)(T d−t)

(
1− e(rf τ∗L)(T d−t)

)
(rz − rfτ∗L− g)

(3.11)

for 0 ≤ t ≤ T d. We remark that for a marginal firm/project τ c = τm (or
τ∗ = 0), and hence k ≡ 0. Replacing k(t) from (3.11) in (3.10) and after
few manipulations we obtain

V (t, x) = x(1− τ c)
1− e(ρ−g)(T d−t)

ρ− g

+ e−(rz−g)(T d−t)x(1− τ c)
1− e−(rz−g)(T p−T d)

rz − g
(3.12)

with ρ = ρt for all t from equation (3.7), which is the analogue of equation
(3.8) under the current more restrictive assumptions.

Equation (3.12) and condition D = LV permit us to prove that the M-E
debt policy is consistent with the assumption of absence of default, since
Rt is a linear function of Xt: Rt = γ(t)Xt, where γ(t) is determined by the
results stated above. Hence, in case X → 0, also R → 0, and the debt is
default-free.

In capital budgeting it is customary to use the (current) wacc to discount
expected free cash flows in order to obtain the levered asset value. Under
the current more restrictive hypotheses, wacc from equation (3.7) is non-
stochastic and hence it can be used for valuation purposes as long as the
firm/project is financed also with debt.26

25To obtain equation (3.11) we note that U from equation (3.2) satisfies the pde

1

2
σ2(X, t)

∂2U

∂X2
+ g(X, t)

∂U

∂X
+

∂U

∂t
+ Xt(1− τ c) = rz

t U.

Moreover, we consider the terminal condition k(T d) = 0.
26This is in contrast with the conclusions of Grinblatt and Liu (2002), who show that

the circumstances for a non-stochastic wacc are, besides the fact that debt is default-free,
X following a geometric Brownian motion with constant parameters and constant risk-
free rate, that the firm/project is perpetual. Here we have just proved that the constant
(initial) wacc can be used, under the M-E scheme, also if debt has finite maturity.
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If the firm/project (and debt) is infinite-lived, T d = T p = ∞, assuming
that the conditions for convergence, rz− rfτ∗L > g and rz > g,27 hold true,
then from equation (3.12) (note that D = LV and Rt = rfD(x))

V (x) = U(x) +
τ∗Rt

rz − g
, (3.13)

with U(x) = x(1− τ c)/(rz− g). Equation (3.13) is the analogue of equation
(3.5) when debt is default-free, using the M-E constant leverage ratio and
the EBIT process is a geometric Brownian motion with constant parameters.

3.3 Defaultable debt

If default can be prevented, the effect of debt for a supra-marginal firm is
always positive, and only the equilibrium of the financial market (and po-
tential agency costs and tax laws) prevents the realization of a tax arbitrage,
as in Miller (1977). On the other hand, if default can actually happen, then
the cost of debt is influenced by the credit risk and this tends to reduce the
tax advantage to debt. We will show that this affects also the investment
policy.

We will limit the analysis to the case of exogenous default; i.e., we assume
that there is a given barrier, denoted xD, such that, when the EBIT process
Xt breaches the barrier, the firm is in default.28 In this case, the bond-
holders file for bankruptcy and receive the value of the unlevered asset net
of bankruptcy costs. Bankruptcy costs are assumed to be proportional to
the unlevered asset value, with known proportion α.

As long as the EBIT process Xt is above the default threshold xD, the
total cash flow generated by the firm is, after personal taxes, as in equation
(3.3). On the other hand, if at date t, Xt = xD, the firm defaults on the
coupon payment and so the tax shield is lost. In this case, the value of
the levered asset is used to pay bond-holders, who receive (1− α)U(t, xD).
When bond-holders file for bankruptcy, they become owners of the firm.
Hence they receive the present value of EBIT after corporate taxes and after
personal taxes for equity flows. From Proposition 1 and 4, the valuation on
an after personal tax basis is equivalent to a before-personal taxes valuation
using the discount factor Bz. This is stated in the following proposition.

Proposition 6. The APV, incorporating the value of tax shield, satisfies
equation (3.4) with boundary conditions V (T d, x) = U(T d, x) and U(T p, x) =

27 Note that, for a supra-marginal firm, rz − rfτ∗L > g implies rz > g.
28See Leland (1994) for a discussion on what a plausible level for xD should be.
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0 and V (s, xD) = (1− α)U(s, xD) for all t ≤ s ≤ T d ≤ T p and is, assuming
x > xD,

V (t, x) = U(t, x) + Bz
t Êt

[∫ TD∧T d

t

τ∗s Rs

Bz
s

ds

]

− αBz
t Êt

[
χ{∃s∈[t,T d],Xs=xD}

U(TD, xD)
Bz

TD

]
(3.14)

where TD = inf
{
s ∈ [t, T d], Xs = xD

}
, is the first time Xt = xD, and χA is

the indicator function for event A.29

In the right-hand-side of equation (3.14), the second term is the tax
shield taking into account the risk it is lost in case of default, i.e. the first
time the process Xt hits xD from above; the third term is the value of the
bankruptcy costs incurred at the date of default, which are proportional
to the current value of the unlevered asset. Equation (3.14) can be easily
implemented using some numerical methods.

In subsequent sections we will need also D, the market value of corporate
bonds, in the generalized Miller equilibrium economy. As above, we denote
R the coupon payment and P the principal payment (face value) paid back
at maturity T d. Under the assumption of exogenous default at the threshold
xD, debt is a contingent claim on X, the EBIT of the firm. The next propo-
sition determines, under the hypothesis of a generalized Miller equilibrium,
the value of defaultable debt.

Proposition 7. The market value of debt satisfies equation

1
2
σ2(X, t)

∂2D

∂X2
+ g(X, t)

∂D

∂X
+

∂D

∂t
+ Rt = rfD (3.15)

with boundary conditions D(T d, XT d) = P , D(s, xD) = (1− α)U(s, xD) for
all t ≤ s ≤ T d ≤ T p and, assuming x > xD, is

D(t, x) = Bf
t Êt

[∫ TD∧T d

t

Rs

Bf
s

ds

]
+ Bf

t Êt

[
χ{∀s∈[t,T d],Xs>xD}

P

Bf
T d

]

+ (1− α)Bf
t Êt

[
χ{∃s∈[t,T d],Xs=xD}

U(TD, xD)

Bf
TD

]
(3.16)

where TD ≤ T d is the first time Xt = xD.
29χA(ω) = 1 if ω ∈ A, χA(ω) = 0 otherwise. We denote x ∧ y = inf{x, y}.
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As in the default-free case, we will introduce more restrictive assumptions
on our model in order to derive convenient closed-form formulas for the sake
of the subsequent analysis. Hence, τ c, τ e, τ b, rf , rz are constant; moreover,
in (3.1) g(X, t) = gX, σ(X, t) = σX, and g and σ are constant; lastly, we
assume that the operations are financed with a coupon bond with constant
coupon payment, R, and principal, P , payable at maturity T d ≤ T p. This
is the Modigliani and Miller (1958) constant debt extended to the case of
defaultable debt.

Under these assumptions, from (3.14) and considering the analytic for-
mula for the density of the hitting time TD, the value of the firm is, for
x > xD,30

V (t, x) = U(t, x) +
τ∗R

rz
−
(

τ∗R

rz
+

αxD(1− τ c)
rz − g

)
G(T d, xD, x, t, rz)

+
αxD(1− τ c)

rz − g
e−(rz−g)(T p−t)G(T d, xD, x, t, g)

− τ∗R

rz
e−rz(T d−t)

(
1−H(T d, xD, x, t)

)
(3.17)

where U(t, x) is defined in equation (3.9),

H(T d, xD, x, t) = N (−p1)) +N (−p2)
(

x

xD

)2g/σ2−1

(3.18)

p1 =
log x

xD
+
(
g − σ2

2

)
(T p − t)

σ
√

T d − t
,

p2 =
log x

xD
−
(
g − σ2

2

)
(T p − t)

σ
√

T d − t
,

with N (·) denoting the cumulative Normal distribution, and where

G(T d, xD, x, t, r) =
(

x

xD

)β1(r)

N (−q1(r)) +
(

x

xD

)β2(r)

N (−q2(r)) ,

(3.19)
with

β1(r) = −
(

g

σ2
− 1

2

)
+

√(
g

σ2
− 1

2

)2

+ 2
r

σ2
> 1,

30This formula is derived in Appendix A.
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β2(r) = −
(

g

σ2
− 1

2

)
−

√(
g

σ2
− 1

2

)2

+ 2
r

σ2
< 0,

q1(r) =
log x

xD
+

√
2rσ2 +

(
g − σ2

2

)2
(T d − t)

σ
√

T d − t
,

q2(r) =
log x

xD
−
√

2rσ2 +
(
g − σ2

2

)2
(T d − t)

σ
√

(T d − t)
.

Note that in equation (3.17), for x > xD, V (t, x) > 0.
In Section 5 we will need also the value of the tax shield and debt in the

defaultable case under the more restrictive assumptions introduced above.
As for the tax shield, from equation (3.17) we have

TS(t, x) =
τ∗R

rz
− τ∗R

rz
G(T d, xD, x, t, rz)

− τ∗R

rz
e−rz(T d−t)

(
1−H(T d, xD, x, t)

)
(3.20)

where H and G are defined respectively in (3.18) and (3.19).
As for debt, from Proposition 7:

D(t, x) =
R

rf
− R

rf
G(T d, xD, x, t, rf )

+ e−rf (T d−t)

(
P − R

rf

)(
1−H(T d, xD, x, t)

)
+

(1− α)xD(1− τ c)
rz − g

(
G(T d, xD, x, t, rf )

+e−(rz−g)(T p−t)G(T d, xD, x, t, g + rfτm)
)

(3.21)

where H and G are defined respectively in (3.18) and (3.19). The valuation
formula for bond in (3.21) should be compared to the ones in Leland (1994,
Eq. (7)) and Leland and Toft (1996, Eq. (3)). The first difference with
respect to those formulas are that here the value driver is the EBIT pro-
cess, whereas there the driver is the value of the asset. More important is
the difference induced by the differential taxation of equity flows and bond
flows.31

31In Leland (1994, Footnote 27), personal taxation is introduced into the model, and
the effective tax advantage to debt, τ∗, is used in place of the corporate tax rate, τ c.
Nevertheless, the same risk-free rate is used for valuing equity flows, like the tax shield,
and bond flows, like the coupon payment.
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If the firm/project and the debt are perpetual, T d = T p = ∞, then
(3.17) simplifies to32

V (x) = U(x)+
τ∗R

rz

(
1−

(
x

xD

)β2(rz)
)
− αxD(1− τ c)

rz − g

(
x

xD

)β2(rz)

(3.22)

for x > xD and where U(x) = x(1− τ c)/(rz − g), and (3.21) is reduced to33

D(x) =
R

rf
+
(

(1− α)xD(1− τ c)
rz − g

− R

rf

)(
x

xD

)β2(rf )

(3.23)

for x > xD.34

4 Valuation of real options when the debt policy
is exogenous

This section addresses real options valuation under the general framework
introduced in Section 2, assuming that an exogenous debt policy is given
and the tax shield may be valuable according to the analysis of Section 3.
In particular, we will differentiate our analysis according to the cases of
default-free debt and defaultable debt.

We have the opportunity to delay investment in a project,35 whose in-
32 Alternatively, equation (3.22) can be derived also considering that, under the sim-

plifying assumptions introduced above and since V is independent of time because the
horizon is infinite, then the valuation pde in (3.4) reduces to

1

2
σ2X2

t Vxx + gXtVx + Xt(1− τ c) + τ∗R = rzV.

where subscripts of V denote partial derivatives. The general solution for this pde is
V (x) = Axβ2(rz)+(1−τ c)x/(rz−g)+τ∗R/rz. By imposing the value-matching condition,
for Xt = xD, V (xD) = (1 − α)(1 − τ c)xD/(rz − g), we solve for A and, by replacing A
into the expression of the general solution we obtain (3.22).

33The derivation of equation (3.23) can be done following the same argument used in
Footnote 32.

34It is possible to extend the discussion of the infinite horizon case to incorporate an
endogenous default, by selecting a threshold xD such that the value of equity is maximized.
This entails first the valuation of debt and next the valuation of equity. Then by imposing
the smooth-pasting condition on equity, the optimal value of xD would be determined.
For brevity we skip this part. The related equations are available from the Authors on
request.

35For definiteness, we will discuss the prototypical case of the option to delay an invest-
ment decision, although our approach can be applied to a broader class of real options.
See Dixit and Pindyck (1994) and Trigeorgis (1996) for a general classification of real
options.
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cremental EBIT follows the stochastic process in (3.1) under the EMM. The
project has duration T p (possibly, T p = ∞), so that the project starts from
the date the option is exercised, TI , and ends at TI + T p. The cost to im-
plement the project is I (an adapted process) and we have the opportunity
to delay the investment until date T o (possibly, T o = ∞).36

We assume that the capital expenditure to implement the project is
financed also with incremental debt, and the incremental debt is issued if and
when the option to invest is exercised.37 This assumption is realistic since
there would be no reason to raise capital before investment, so incurring in
a (useless) opportunity cost of capital. The optimal exercise policy depends
on Xt, the EBIT process, and consequently the date we will issue debt is a
stopping time. Issuance of incremental debt is contingent on the decision to
invest, so yielding that the financing decision is influenced by the investment
decision. On the other hand, the investment decision is influenced by the
financing decision, since the former is made if the expected free cash flow
from the project can remunerate the cost of capital. The debt policy is
alternatively the one in Section 3.2 (default-free) or the one in Section 3.3
(defaultable). The debt has duration T d, so that it is issued at TI and is
paid-back at TI + T d.

The value of the levered project, at the date it is implemented, is V (t, Xt)
from equation (3.5) in the case with default-free debt or from equation (3.14)
with defaultable debt. In case default is possible, given the above assumption
that debt is issued conditional on the investment decision, we assume that
default can happen only after the investment date. Let Π denote the payoff
of the option at the exercise date,

Π(t, Xt) = max{V (t, Xt)− I, 0}, (4.1)

and let F (t, Xt) denote the value of the investment project including the
time-value of the option to postpone the decision.

36To simplify our analysis, we assume perfect information of shareholders and equity-
holders and the absence of agency costs between shareholders and equity-holders and
equity-holders and management. Hence, investment is implemented under a first-best
investment policy (i.e., a policy aiming at maximizing the total project/firm value as
opposed to a policy in the sole interest of shareholders) by the managers. The role of
agency costs of debts on investment decisions have been analyzed among others by Mello
and Parsons (1992), Mauer and Ott (2000) and Childs et al. (2000).

37Mauer and Ott (2000) and Childs et al. (2000) assume that the incremental investment
is financed only with equity. Their assumption is included in our framework by posing
that no incremental debt is issued at the time the investment decision is made.
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Proposition 8. The value of the option to invest satisfies equation

1
2
σ2(Xt, t)

∂2F

∂X2
+ g(Xt, t)

∂F

∂X
+

∂F

∂t
= rzF. (4.2)

with boundary condition F (TI , XTI
) = Π(TI , XTI

), and is

F (t, x) = Bz
t sup

TI

Êt

[
Π(TI , XTI

)
Bz

TI

]
, (4.3)

where TI ≤ T o is the investment (stopping) time, i.e., the first time F (t, Xt) =
Π(t, Xt).

If the investment option is owned by an ongoing firm, the CE discount
factor for equity flows, Bz, is used to discount the expectation of the payoff
independently of the financial structure while the option to delay investment
is kept unexercised, which can be different from the capital structure of the
firm after the project is implemented and from the current capital structure
of the firm.

Equation (4.3) suggests that the option to invest in a marginal project
(i.e., a project with corporate tax rate, τ c, equal to the marginal tax rate,
τm, and no tax shield τ∗ = 0) is evaluated according to Black, Scholes, and
Merton’s formula, but using rz instead of rf . Note that in our setting, since
a project cannot be all-debt financed, rf is never used but when τ e = τ b

(which implies τm = 0).

5 Debt and the investment policy

In this section we will analyze the impact of the exogenous debt policy on the
time-value of the option to delay investment and hence on the investment
policy. Differently from the previous sections, the analysis in the current
section will rely as much as possible on closed-form formulas for the value
of the tax shields and for the value of the options. For this reason we will
confine ourselves to the case with τ c, τ e, τ b, rf , rz constant, and in (3.1),
g(X, t) = gX, σ(X, t) = σX, with constant g and σ. This is done in the
interest of simplicity, since otherwise we would have to present numerical
valuations with no substantial additional economic insight. Moreover, since
the tax shield is valuable when τ c > τm, we will spell out the results for
a supra-marginal firm/project, noticing that the result are of the opposite
sign for an infra-marginal firm/project (τ c < τm).
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Starting from Proposition 8, which states the valuation principle for the
option to delay investment assuming that the project is financed also with
debt, we provide an approximate solution for equation (4.3) applying an
analytic approximation akin the one MacMillan (1986) and Barone-Adesi
and Whaley (1987) proposed for American options.

Assuming that the maturity of debt is equal to the maturity of the
project, T d = T p, given V (t, x), the value of the levered project from equa-
tions (3.10) and (3.11) (or, if the M-E debt policy is assumed, D = LV ,
from (3.12)) in the default-free case or from equation (3.17) in the default-
able case, we can approximate the value of the option to invest, F (t, x) in
(4.3), with payoff Π(t, Xt) from (4.1) with constant I and maturity T o, us-
ing an analytic approximation. In the default-free case, we assume also that
k(t) in (3.11) is strictly positive, so that V (t, x) > 0.38 In defaultable case,
we assume that x > xD, so that V (t, x) > 0.

Proposition 9. The value of the option to invest is approximated by

F̃ (t, x) =

{
f(t, x) + ϕxη

(
1− e−rz(T o−t)

)
if x < x∗t

V (t, x)− I if x ≥ x∗t
(5.1)

for given constants η > 1, ϕ > 0 and x∗t > 0, where

f(t, x) = e−(rz−g)(T o−t)N (m1)V (t, x)− erz(T o−t)N (m2)I

is the value of the (related) European option with maturity T o and payoff
Π(t, Xt) from (4.1), with

m1 =
log V (t,x)

I +
(
g + σ2

2

)
(T o − t)

σ
√

T o − t
, m2 = m1 − σ

√
T o − t.

Note that x∗t in Proposition 9 depends on t. This means that the above
approximation must be done at any time 0 ≤ t ≤ T o to properly define a
time-dependent investment policy, {x∗t }.

To analyze also the effect of the debt policy on the exercise policy, we
compute the probability of investing (assuming that currently the opportu-
nity is still available) within the time horizon T o. Since the probability we
are interested in is under the actual measure, and not under the EMM, we
have to compute the risk premium, denoted Φ, for the stochastic process

38Sufficient conditions for k(t) > 0 for a supra-marginal firm/project are rz−rfτ∗L > g
and τ∗ > 0. See also footnote 27.
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Xt.39 We will denote ĝ = g + Φ the drift for process Xt under the actual
probability measure.

At t, assuming that the option to defer has not been exercised yet, this
is equivalent to compute the probability that Xt touches (from below) the
investment threshold {x∗s | t < s ≤ T}, as computed using the approxima-
tion introduced in Proposition 9. According to Harrison (1985, pp. 11–14)
this probability is40

H(T o, x∗t , x, t) = N (p1) +N (p2)
(

x∗t
x

)2ĝ/σ2−1

(5.2)

where

p1 =
log x

x∗t
+
(
ĝ − σ2

2

)
(T o − t)

σ
√

T o − t
, p2 = p1 −

(
2ĝ

σ2
− 1
)

σ
√

T o − t.

Equations (5.1) and (5.2) simplify if we assume that the time-horizon
for the project, the debt, and the investment option is infinite: T p = T d =
T o = ∞.

In the default-free case, (5.1) becomes41

F (x) =

{
Kx∗

η

(
x
x∗

)η
x < x∗

Kx− I x ≥ x∗
, where x∗ =

η

η − 1
I

K
, (5.3)

where K = (1− τ c)/(ρ− g) from equation (3.12) when assuming T p = T d =
T o = ∞.

In case debt is defaultable, (5.1) becomes

F (x) = 1
β1

(
x(1−τc)

rz−g − β2

(
x

xD

)β2
(

τ∗R
rz + αxD(1−τc)

rz−g

))(
x
x∗

)β1 if xD ≤ x < x∗

V (t, x)− I if x > x∗,

(5.4)

39In Appendix A, we present a way to determine the risk premium for the EBIT process,
Xt.

40Actually, eP is the probability of the first time Xt = x∗t , with initial condition xt < x∗t .
Nevertheless, x∗t is the current investment threshold. Since x∗s is decreasing over time, H
in equation (5.2) is actually a lower bound for the probability of investing.

41Note that in this case the solution is exact and not approximated: F∞ = F .
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where V (t, x) is defined in equation (3.22) and x∗ is the root of equation42

1
β1

(
x(1− τ c)

rz − g
− β2

(
x

xD

)β2
(

τ∗R

rz
+

αxD(1− τ c)
rz − g

))
= V (t, x)− I,

and is independent of t.
Also (5.2) considerably simplifies when T p = T d = T o = ∞. By straight-

forward algebra, the actual probability of investing simplifies to43

H(x∗, x) =

{
1 if ĝ − σ2/2 ≥ 0(

x∗

x

) 2ĝ

σ2−1
if ĝ − σ2/2 < 0,

(5.5)

when x < x∗, with ĝ = g + Φ, where x∗ can be either the one in (5.3) in the
default-free case or the one in (5.4) in the defaultable case.

In the infinite horizon case (T p = T d = T o = ∞), it is easy to check that,
for a supra-marginal project/firm (τ∗ > 0), assuming that debt is default-
free, the value of the option to invest and the probability of investing are
increasing function of leverage, L. Actually, F and x∗ in equation (5.3)
are respectively increasing and decreasing with respect to K, and K is an
increasing function of L. Moreover, H from equation (5.5) is a decreasing
function of x∗. The opposite is true for an infra-marginal project. As we can
see from subsequent numerical analysis, this is confirmed also in the finite
horizon case. Things are completely different in the case with defaultable
debt. To show this we will resort to numerical analysis.

In the finite horizon case, we will analyze the effect of debt and uncer-
tainty on the APV, on the value of the option to defer and on the exercise
policy, in the supra-marginal case τ∗ > 0, by discussing a numerical example
and running a sensitivity analysis of the APV, of the value of the real option
and of the probability of investing on the uncertainty of EBIT, σ, and on
the level of debt. It is easy to check that F̃ and P̃ are not affected by the
debt policy when τ∗ = 0.44 Although we chose a specific set of parameters
for presentation purposes, the results we show are general. The base case
parameters are in Table 1.

[Table 1 about here]
42This equation must be solved numerically.
43Since the investment threshold, x∗, is independent of t, the valuation formula for

probability is exact.
44This is a motivation for having introduced the general Miller equilibrium framework

where tax shields may be valuable.
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For these parameters, τ∗ = τ c − τm > 0. Moreover, the APV of the
project in the default-free case is, from equation (3.12), V = 5.014 and the
market value of debt is D = L · V ≈ 2.858. On the other hand, in the
defaultable case, the APV of the project, from equation (3.17), is V = 5.197
and the market value of debt is, from equation (3.21), D = 2.960. We set
the face value of debt P ≈ R/rf . To make the values in the defaultable case
comparable to the values in the default-free case, we set the same initial debt
proportion (at market values), L = D/V = 0.569 ≈ 0.57, for both cases.

In the subsequent analyses we will make debt (i.e., total coupon payment,
R) vary in a given range: accordingly, in the defaultable case, we will assume
that the default threshold xD is always equal to R. Hence, for the given
EBIT rate, x = 1, the higher R the closer to default is the firm/project.

The first analysis concerns the effect of uncertainty and debt on the
APV and on the value of the tax shield. From Figure 1 (above) we can see
that in the default-free (M-E) case, leverage has always a positive effect and
uncertainty has no role in valuation.45 The outcome is completely different
in the defaultable case, Figure 1 (below). Here both uncertainty and leverage
have a role: for any level of uncertainty, there is a debt level (represented
by total coupon payment, R) that maximizes the APV. Moreover, the lower
the uncertainty the higher the optimal level of debt. For high uncertainty
and debt, the APV becomes negligible. For further clarification, in Figure 2
(above) we plot the tax shield from equation (3.20) for the same range of
values for σ and R. This shows that the humped-shape of the APV is due
to the tax shield. Actually, the base value (Figure 2 (below)), defined as
the APV less the tax shield, is almost constant when R is low and default is
unlikely and become negligible when R is large and default is almost certain.
The above represents a generalization of the results provided by Brennan
and Schwartz (1978).

[Figure 1 about here]

[Figure 2 about here]

We next explore the effect of uncertainty and debt on the value of the
real option to invest. From Figure 3 (above), it can be seen that, in the
default-free case, both volatility and leverage have a positive effect on the

45In our computations we are assuming that the additional uncertainty does not affect
the risk premium, and hence does not change the value of the project. On the other
hand, if there was an increment in systematic risk, the APV would be reduced. We are
not interested here to capture this effect in our analysis and concentrate on the effect of
uncertainty on the tax shield.
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value of the real option to invest. This can be easily explained by observing
that a higher leverage increases the tax shield and the APV of the project, so
increasing also the value of the option. On the other hand, as usual, higher
volatility increases the time value of the option. In case of defaultable debt
(see Figure 3 (below)), the effect of debt and uncertainty is different from
the default-free case. Still, for every level of uncertainty, there is an optimal
debt level which maximizes the value of the option to invest. This is mostly
due to the effect of the tax shield on the APV of the project, which is
the underlying asset of the option. Yet, for low leverage, the value of the
option to invest is an increasing function of volatility, since the increased
time value dominates the reduction of value of tax shield due to the higher
probability of default. On the other hand, for high leverage, the value of the
option to delay investment is not a monotonic function of volatility of EBIT:
when volatility is low, it is the positive effect of lower default probability
that dominates; when volatility is high, it is the higher time value that
dominates. By comparing Figure 1 (below) and Figure 3 (below), we can
see that the additional value is the time-value of the option.

[Figure 3 about here]

Lastly, we analyze the probability of exercising the real option to delay
investment. As noted above, both in the default-free case and in the default-
able case, uncertainty increases the time-value of the option, so it is natural
to ask whether also the probability of investing is increased. In Figure 4
we plot the probability of investing before maturity in the default-free case
(above) and defaultable case (below). In the first case, leverage increases the
probability of investing for any level of uncertainty, because the higher the
leverage, the more risk is transferred to bond-holders; on the other hand, for
a given leverage, uncertainty first has a positive and then a negative effect
on the probability of investing.46 In the defaultable case (Figure 4 (below)),
the effect of debt is positive only when σ is low. Otherwise we have that,
when the probability of default is large (high coupon), more debt reduced
the probability of investing and uncertainty has only a negative effect.

[Figure 4 about here]

46This behavior of the probability of investing with respect to volatility of the value-
driver is well know. See Sarkar (2000) and Cappuccio and Moretto (2001) for more details.
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A Proofs of propositions

Proof of Proposition 1

For simplicity, we first prove the Proposition for equity assuming that no
dividend is paid. Then we extend the result to the case that dividend are
actually paid. Finally, we extend the result to the money market account.

If there is no dividend (X = 0), we first observe that setting t = T ′ in
equation (2.8) establishes that the two stock price processes are the same
at time T ′: ST ′ = Sat

T ′ . We will show that the price in (2.7) and the price in
(2.8) obey the same dynamic equation (under Q) with the riskless discount
rate for equity rz:

Êt [dSt] = rz
t Stdt (A.1)

and

Êt

[
dSat

t

]
= rz

t S
at
t dt . (A.2)

Then, by the Feynman-Kac solution to the valuation equation (see, e.g.
Duffie (2001, Ch. 5)), the security prices at a date t ≤ T ′ are the risk-
neutral expectations of the common terminal value Sat

T ′ = ST ′

St = Bz
t Êt

[
ST ′

Bz
T ′

]
= Sat

t .

The proof that St in equation (2.7) satisfies condition (A.1) is the standard
martingale result. Thus, it remains to prove that Sat

t defined in equation
(2.8) satisfies the equivalent relation (A.2). From equation (2.8) we have,
for small ∆t,

Êt

[
Sat

t+∆t

]
= Êt

[
Bz,at

t+∆tÊt+∆t

[
ST ′

Bz,at
T ′

−
∫ T ′

t+∆t

τ e
u

Bz,at
u

dSat
u

]]

= Êt

[
Bz,at

t+∆t

(
ST ′

Bz,at
T ′

−
∫ T ′

t

τ e
u

Bz,at
u

dSat
u +

∫ t+∆t

t

τ e
u

Bz,at
u

dSat
u

)]

=
(
1 + rz,at

t ∆t
)(

Sat
t + Bz,at

t Êt

[∫ t+∆t

t

τ e
u

Bz,at
u

dSat
u

])
+ o(∆t) .

(A.3)
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Here o(∆t) denotes terms that converge to zero as ∆t → 0. The second
equality comes from breaking out the tax term for the interval [t, t+∆t] and
applying Êt

[
Êt+∆t[·]

]
= Êt[·]. The third equality comes from substituting

for Sat
t from (2.8) after using the following Taylor approximation for the

riskless equity account value:47

Bz,at
t+∆t = exp(rz,at

t ∆t)Bz,at
t + o(∆t)

= Bz,at
t

(
1 + rz,at

t ∆t
)

+ o(∆t) .

Since the tax rate τ e
u varies continuously over time, we have that∫ t+∆t

t

τ e
u

Bz,at
u

dSat
u =

τ e
t

(
Sat

t+∆t − Sat
t

)
Bz,at

t

+ o(∆t) ,

so we can rewrite (A.3) as:

Êt

[
Sat

t+∆t

]
=
(
1 + rz,at

t ∆t
)(

Sat
t + τ e

t Êt

[
Sat

t+∆t − Sat
t

])
+ o(∆t) .

Rearranging, we get

(1− τ e
t ) Êt

[
Sat

t+∆t − Sat
t

]
= rz,at

t Sat
t ∆t + o(∆t)

= rz
t (1− τ e

t )Sat
t ∆t + o(∆t) .

Since τ e
t < 1, dividing by (1− τ e

t ) gives

Êt

[
Sat

t+∆t − Sat
t

]
= rz

t ∆tSat
t + o(∆t) .

By taking ∆t → 0 we get condition (A.2).
If dividends are paid, (X 6= 0), the only thing that changes in the proof

is that instead of (A.1), the dynamic condition is

Êt [dSt] + Xtdt = rz
t St.

We must establish the analogue of (A.2), which is

Êt

[
dSat

t

]
+ Xtdt = rz

t S
at
t .

47We are also using the fact that rz,at
t and τe

t are adapted.
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Inserting the after-tax dividend term in the analogue of (A.3) yields

Êt

[
Sat

t+∆t

]
=
(
1 + rz,at

t ∆t
)(

Sat
t

+Bz,at
t Êt

[
−
∫ t+∆t

t

(1− τ e
u)Xu

Bz,at
u

du +
∫ t+∆t

t

τ e
u

Bz,at
u

dSat
u

])
+ o(∆t)

=
(
1 + rz,at

t ∆t
)(

Sat
t

+Bz,at
t Êt

[
−(1− τ e

t )
∫ t+∆t

t

Xu

Bz,at
u

du +
∫ t+∆t

t

τ e
u

Bz,at
u

dSat
u

])
+ o(∆t) .

The first equality follows from the development of (A.3) and the second
comes from the continuity of the tax rate τ e

u.
Rearranging as before, we have

(1− τ e
t ) Êt

[
Sat

t+∆t − Sat
t +

∫ t+∆t

t

Xu

Bz,at
u

du

]
= rz

t (1− τ e
t )Sat

t ∆t + o(∆t) .

Dividing by (1− τ e
t ) and letting ∆t → 0 gives the desired result.

For the money market account, it is now straightforward to follow the
same steps as above and show that

Êt [dBt] = dBt = rfBtdt (A.4)

and
Êt

[
dBat

t

]
= rfBat

t dt (A.5)

The first is simply our definition of bond price dynamics. The second proof
comes from appropriate modifications of the analogous result we just estab-
lished for stocks. Since we defined the after-all-tax bond value so that it
equals the bond value at T ′ (i.e. BT ′ = Bat

T ′ , we can take the risk-neutral
expectations to get the desired result:

Bt = BtÊt

[
BT ′

BT ′

]
= Bat

t
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Proof of Corollary 2

Note that the proof of Proposition 1 started with a risk-neutral measure Q
for stock St before personal taxes and evaluated payoffs after personal taxes
to derive a process of after-personal-tax stock prices Sat

t using the same risk-
neutral measure. This means that the CE operator is the same before and
after tax.

Proof of Proposition 4

We will phrase the proof for a stock, but the argument is the same also for
a money market account.

Since the argument for proving holding-period neutrality is not affected
by the presence of dividends, because they are taxed at the date they are
paid, we will assume for simplicity X = 0 in equation (2.8). We define the
tax account at t as the value of the taxes on capital gains accrued until t at
the after-tax rate of return:

At = Bf,at
t

∫ t

0

τ e
u

Bf,at
u

dSu.

By definition, equation (2.8) can be written as

St

Bf,at
t

− At

Bf,at
t

= Êt

[
ST

Bf,at
T

− AT

Bf,at
T

]
. (A.6)

Assume that at the (arbitrarily chosen) stopping time t, 0 ≤ t < T the
investor decides to liquidate the position. The net proceeds are the price
of the stock net of the taxes on capital gains accrued from t = 0 until that
date: St −At.

If At > 0, then he can borrow an amount At at an after-personal tax
cost48 {rf

u(1 − τ b
u)}T

u=t and with the proceeds he can buy the same stock
at St. At T , by liquidating the position in the stock, he will receive ST −
Bf,at

T

∫ T
t τ e

u/Bf,at
u dSu (i.e., the stock price less the tax on capital from t to

T ), and paying back the loan, −AtB
f,at
T /Bf,at

t , so that the net payoff is

ST −Bf,at
T

∫ T

t

τ e
u

Bf,at
u

dSu −At
Bf,at

T

Bf,at
t

= ST −Bf,at
T

∫ T

t

τ e
u

Bf,at
u

dSu −Bf,at
T

∫ t

0

τ e
u

Bf,at
u

dSu = ST −AT

48This means that borrowing generates a tax saving proportional to τ b. Note that, from
equilibrium, the after tax cost of borrowing is equal to rz(1− τe).
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which is equal to the payoff of the buy-and-hold strategy over the interval
[0, T ].

On the other hand, if At < 0, then by liquidating the position at t, the
amount −At can be invested at the (after-personal tax) rate {rf

u(1−τ b
u)}T

u=t

over the interval [t, T ] and St can be used to buy the same stock. By applying
the same argument, at T the net payoff is again ST −AT , which is the same
of the buy-and-hold strategy.

Proof of Proposition 5

Consider the process for EBIT, under the actual probability measure,

dXt = ĝ(Xt, t)dt + σ(Xt, t)dZt.

Since the EBIT process is not traded, for valuation purposes we assume that
there is a spanning (twin) security/portfolio, whose price is denoted S, with
process, under the actual probability measure,

dSt = α(Xt, t)Stdt + β(Xt, t)StdZt (A.7)

and dividend rate δ(Xt, t). Moreover, a money market account is available,
with value Bf , following the process dBf = rf

t Bf
t dt.

To derive the valuation equation

1
2
σ2(X, t)

∂2V

∂X2
+ g(X, t)

∂V

∂X
+

∂V

∂t
+ Xt(1− τ c

t ) + τ∗Rt = rz
t V. (3.4)

we employ the standard replicating argument introduced by Modigliani
and Miller (1958) and extended to a continuous-time framework by Mer-
ton (1973), but on an after personal tax basis.

The rate of return of V ,49 using Itô’s Lemma, is (for notational simplicity,
we drop functional dependence when it is clear)

dV + X(1− τ c) + τ∗R

V
(1− τ e) =

1
V

(
X(1− τ c) + τ∗R +

∂V

∂t
+ ĝ

∂V

∂X
+

1
2
σ2 ∂2V

∂X2

)
(1− τ e)dt

+
1
V

∂V

∂X
σ(1− τ e)dZt. (A.8)

49Note that, from (3.3), the value of the levered asset accrues to equity-holders, and
hence is taxed at the tax rate for equity flows, τe.
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Taking a long position in a portfolio with price W = n1B
f + n2S we obtain

a rate of return(
1− n2S

P

)
rf (1−τ b)dt+

n2S

W

(
α +

δ

S

)
(1−τ e)dt+

n2S

W
β(1−τ e)dZt (A.9)

Putting
n2S

W
=

σ

β

∂V/∂X

V

in (A.8), given the generalized Miller equilibrium relation (2.5) and after
some manipulations, we have

1
2
σ2 ∂2V

∂X2
+
(

ĝ − σ
α + δ/S − rz

β

)
∂V

∂X
+

∂V

∂t
+ X(1− τ c) + τ∗R = rzV.

Considering the unit risk premium computed from the twin security/portfolio

λ =
α + δ/S − rz

β
(A.10)

we obtain equation (3.4) under the EMM, with g = ĝ − λσ.
With condition V (T d, XT d) = U(T d, XT d) and using the Feynman-Kac

solution of (3.4), see Duffie (2001, pp. 340–346), we have (3.5).

Proof of Proposition 6

The proof that the APV satisfies equation (3.4) while Xt > xD is the same as
in Proposition 5. Considering the boundary conditions V (T d, x) = U(T d, x)
and U(T p, x) = 0 and V (s, xD) = (1 − α)U(s,X) for all t ≤ s ≤ T d, the
existence of the solution of this problem follows from the application of
a version of Feynman-Kac result for partial differential equations on open
bounded sets, see Lamberton and Lapeyre (1996, Th. 5.1.9).

For verification of (3.14), we define

Ys =
Bz

t

Bz
s

V (s,Xs).

By applying Itô’s Lemma, we have

YTD∧T d = V (t, x) +
∫ TD∧T d

t

Bz
t

Bz
s

(
1
2
σ2 ∂2V

∂X2
+ g

∂V

∂X
+

∂V

∂t
− rzV

)
ds

+
∫ TD∧T d

t

Bz
t

Bz
s

∂V

∂X
σdZs. (A.11)
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We take expectations of both sides of (A.11) and note that:

Et

[∫ TD∧T d

t

Bz
t

Bz
s

∂V

∂X
σdZs

]
= 0;

Et

[∫ TD∧T d

t

Bz
t

Bz
s

(
1
2
σ2 ∂2V

∂X2
+ g

∂V

∂X
+

∂V

∂t
− rzV

)
ds

]

= −Et

[∫ TD∧T d

t

Bz
t

Bz
s

(Xt(1− τ c
t ) + τ∗t Rt) ds

]
,

from equation (3.4), and

Et

[
YTD∧T d

]
= Et

[
χ{∀s∈[t,T d],Xs>xD}

Bz
t

Bz
T d

V (T d, XT d)

]

+ Et

[
χ{∃s∈[t,T d],Xs=xD}

Bz
t

Bz
TD

V (TD, XTD
)

]
.

Hence, from equation (A.11) and the boundary conditions of the problem,
we have

V (t, x) = Et

[
χ{∀s∈[t,T d],Xs>xD}

Bz
t

Bz
T d

U(T d, XT d)

]

+ (1− α)Et

[
χ{∃s∈[t,T d],Xs=xD}

Bz
t

Bz
TD

U(TD, XTD
)

]

+ Et

[∫ TD∧T d

t

Bz
t

Bz
s

Xt(1− τ c
t )ds

]
+ Et

[∫ TD∧T d

t

Bz
t

Bz
s

τ∗t Rtds

]

that is, after few manipulations, equation (3.14).

Proof of Proposition 7

To derive the valuation pde (3.15) for D, we follow the same argument
we used in the proof of Proposition 5 and create a portfolio whose return
replicates the return of the bond.
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The return of the bond is, by Itô’s Lemma

dD + Rdt

D
(1− τ b) =

1
D

(
1
2
σ2 ∂2D

∂X2
+ ĝ

∂D

∂X
+

∂D

∂t
+ R

)
(1− τ b)dt

+
1
D

∂D

∂X
σ(1− τ b)dZt

A long position in a portfolio with price W = n1B
f + n2S, where Bf is

the value of the money market account and S, as of (A.7), is the price of a
(twin) security/portfolio for X have a rate of return as in equation (A.9).
Putting

n2S

W
=

∂D/∂X

D

σ

β

(1− τ b)
(1− τ e)

we obtain, after few manipulations and using the generalized Miller equilib-
rium relation (2.5),

1
2
σ2 ∂2V

∂X2
+
(

ĝ − σ
α + δ/S − rz

β

)
∂V

∂X
+

∂V

∂t
+ R = rfV

that is (3.15) when g = ĝ − λσ in (A.10).
The existence of the solution for this problem can be derived from Lam-

berton and Lapeyre (1996, Th. 5.1.9).
To verify (3.16), let

Ys =
Bf

t

Bf
s

D(s,Xs).

By Itô’s Lemma, we have

YTD∧T d = D(t, x) +
∫ TD∧T d

t

Bf
t

Bf
s

(
1
2
σ2 ∂2D

∂X2
+ g

∂D

∂X
+

∂D

∂t
− rfD

)
ds

+
∫ TD∧T d

t

Bf
t

Bf
s

∂D

∂X
σdZs. (A.12)

We take expectations of both sides of the above equation. We note the
following facts:

Et

[∫ TD∧T d

t

Bf
t

Bf
s

∂D

∂X
σdZs

]
= 0;
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since D satisfies the pde (3.15), then

Et

[∫ TD∧T d

t

Bf
t

Bf
s

(
1
2
σ2 ∂2D

∂X2
+ g

∂D

∂X
+

∂D

∂t
− rfD

)
ds

]

= −Et

[∫ TD∧T d

t

Bf
t

Bf
s

Rsds

]
;

Et

[
YTD∧T d

]
= Et

[
χ{∀s∈[t,T d],Xs>xD}

Bf
t

Bf
T d

D(T d, XT d)

]

+ Et

[
χ{∃s∈[t,T d],Xs=xD}

Bf
t

Bf
TD

D(TD, XTD
)

]
.

From the above equations, using the boundary conditions D(T d, XT d) = P
and D(s, xD) = (1−α)U(s, xD) for all t ≤ s ≤ T d, with XTD

= xD, we have

Et

[
χ{∀s∈[t,T d],Xs>xD}

Bf
t

Bf
T d

P

]

+ Et

[
χ{∃s∈[t,T d],Xs=xD}

Bf
t

Bf
TD

(1− α)U(TD, xD)

]

= D(t, x)− Et

[∫ TD∧T d

t

Bf
t

Bf
s

Rsds

]
that is, equation (3.16).

Derivation of equation (3.17)

Under the restrictive assumptions that: τ c, τ e, τ b, rf , rz are constant; in
(3.1) g(X, t) = gX, σ(X, t) = σX, with g and σ constant; constant coupon
payment, R, and principal, P , from (3.14)

V (t, x) = x(1− τ c)
1− e−(rz−g)(T p−t)

rz−g

+ τ∗R

∫ T d

t
e−rz(s−t) (1−H(s, xD, x, t)) ds

−
∫ T d

t
e−rz(s−t)αxD(1− τ c)

1− e−(rz−g)(T p−s)

rz − g
h(s, xD, x, t)ds
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where h(s, xD, x, t) is the density and H(s, xD, x, t) is the cumulative distri-
bution function of the first hitting time s to xD for a geometric Brownian
motion, under the EMM, with starting point Xt = x.

Integrating by parts the second term in the right-hand-side of the above
equation and after few manipulations we obtain

V (t, x) = U(t, x)+
τ∗R

rz
−
(

τ∗R

rz
+

αxD(1− τ c)
rz − g

)∫ T d

t
e−rz(s−t)h(s, xD, x, t)ds

+
αxD(1− τ c)

rz − g
e(rz−g)(T p−t)

∫ T d

t
e−g(s−t)h(s, xD, x, t)ds

− τ∗R

rz
e−rz(T d−t) (1−H(s, xD, x, t))

where U is defined in (3.9). We denote

G(T d, xD, x, t, r) =
∫ T d

t
e−r(s−t)h(s, xD, x, t)ds. (A.13)

G is explicitly computed in equation (3.19) (details in Reiner and Rubinstein
(1991)) and H from equation (3.18) can be found in Harrison (1985, pp. 11–
14).

Derivation of equation (3.21)

Under the same restrictive assumptions of equation (3.17), from (3.16) we
have

D(t, x) = R

∫ T d

t
e−rf (s−t) (1−H(s, xD, x, t)) ds

+ e−rf (T d−t)P (1−H(T d, xD, x, t))

+
(1− α)xD(1− τ c)

rz − g

∫ T d

t
e−rf (s−t)

(
1− e−(rz−g)(T p−s)

)
h(s, xD, x, t)ds.
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Integrating by parts the first term in the right-hand-side of the equation
above and after few manipulations, we obtain

D(t, x) =
R

rf
− R

rf

∫ T d

t
e−rf (s−t)h(s, xD, x, t)ds

+ e−rf (T d−t)

(
P − R

rf

)(
1−H(T d, xD, x, t)

)
+

(1− α)xD(1− τ c)
rz − g

(∫ T d

t
e−rf (s−t)h(s, xD, x, t)ds

+e−(rz−g)(T p−t)

∫ T d

t
e−(rf−rz+g)(s−t)h(s, xD, x, t)ds

)
.

Using definition (A.13) and from the generalized Miller equilibrium relation
in (2.6), we have (3.21).

Proof of Proposition 8

The proof that F satisfies equation (4.2) is the same as for the proof of
Proposition 5. The solution in (4.3) is derived using standard results (see
Duffie (2001, pp. 182–186)).

Proof of Proposition 9

The value of the European option with maturity T o and payoff Π(t, Xt) from
(4.1) is

f(t, X) = e−(rz−g)(T o−t)N (m1)V (t, x)− erz(T o−t)N (m2)I

with

m1(x) =
log V (t,x)

I +
(
g + σ2

2

)
(T o − t)

σ
√

T o − t
, m2 = m1 − σ

√
T o − t.
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where V (t, x) = xK(t) from equations (3.9), (3.10) and (3.11) in the default-
free case, with

K(t) = (1− τ c)
1− e−(rz−g)(T p−t)

rz − g

+ (1− τ c)rfτ∗L

(
1− e−(rz−g)(T d−t)

)
(rz − g)(rz − rfτ∗L− g)

+ (1− τ c)e−(rz−g)(T d−t)

(
1− e(rf τ∗L)(T d−t)

)
(rz − rfτ∗L− g)

,

and V (t, x) as defined in equation (3.17) in the defaultable case.
The early-exercise premium of the real option to delay investment, de-

noted E(t, x) = F (t, x)− f(t, x), satisfies equation

1
2
σ2X2

t

∂2E

∂X2
+ gXt

∂E

∂X
+

∂E

∂t
= rzE. (A.14)

E is approximated by

Ẽ(t, x) = ϕxηh(T o − t),

where h(s) = 1 − e−rzs and ϕ and η are parameters to be determined. By
replacing Ẽ in equation (A.14), we get

η(η − 1) + 2
g

σ
η − 2

rz

σ2h(T o − t)
= 0.

η is known and is the positive root of the above equation:

η(rz) = η =
1
2
− g

σ2
+

√(
1
2
− g

σ2

)2

+ 2
rz

σ2h(T o − t)
> 1. (A.15)

At the critical level for the cash flow rate, denoted x∗t , the value of the real
options, F , must satisfies the value-matching and smooth-pasting condi-
tions. Hence, for the approximation F̃ (t, x) = f(t, x) + Ẽ(t, x) the following
conditions hold:

f(t, x∗t ) + ϕ (x∗t )
η h(T o − t) = V (t, x∗t )− I (A.16)

∂f(t, x)
∂X

∣∣∣∣
x=x∗t

+ ϕη (x∗t )
η−1 h(T o − t) =

∂V (t, x)
∂X

∣∣∣∣
x=x∗t

. (A.17)
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We solve the above system for ϕ and x∗t . In the defaultable case, we have to
rely on a numerical solution for both ϕ and x∗t . Existence and uniqueness
of solution is given by the strict monotonicity of V (t, x) with respect to x,
for x > xD.

On the other hand, in the default-free case, equation (A.17) can be
simplified as follows

e−(rz−g)(T o−t)N (m1(x∗t ))K(t) + ϕη (x∗t )
η−1 h(T o − t) = K(t). (A.18)

From (A.18) we solve for ϕ:

ϕ =
K(t)

(
1− e−(rz−g)(T o−t)N (m1(x∗t ))

)
(x∗)η−1ηh(T o − t)

.

By replacing this in (A.16) we solve equation

f(t, x∗t ) +
(
1− e−(rz−g)(T o−t)N (m1(x∗t ))

) K(t)x∗t
η

= V (t, x∗t )− I

for x∗t (using a numerical method).
This completely determines the approximation F̃ as in equation (5.1).

46



Table 1: Option to delay: base case parameters
rz CE return for stocks 0.07
τ c corporate tax rate 0.4
τ e tax rate for equity flows 0.1
τ b tax rate for bond flows 0.2
x current EBIT rate 1
g risk-neutral growth rate of Xt 0.02
σ volatility of Xt 0.35
Φ risk-premium rate for Xt 0.05
T p duration of the project 10 (years)
T d duration of debt 10 (years)
T o expiry of the option to delay 1 (years)
α bankruptcy (proportional) costs 0.25
L leverage (in M-E) 0.57
R total coupon payment (in M-M) 0.3 ($)
P face value of bond (in M-M) 3.8 ($)
xD exogenous default threshold (in M-M) 0.3
I capital expenditure 5 ($)

For these parameters, from (2.1), τm = 0.111, τ∗ = τ c − τm = 0.289, from (2.6),

rf = 0.079, and, from equation (3.7), ρ = 0.057.

The APV of the project in the default-free case is, from equation (3.12), V = 5.014

and the market value of debt is D = L · V ≈ 2.858.

The APV of the project in the defaultable case is, from equation (3.17), V = 5.197

and the market value of debt is, from equation (3.21), D = 2.960. Note that the

face value is set so that P ≈ R/rf . The initial leverage in the defaultable case is

L = D/V = 0.569 ≈ 0.57, that is the same for the the default-free case.

47



0.2

0.3

0.4

0.5

0.6
Volatility

0.2

0.4

0.6

0.8

Leverage

4.8

4.9

5

5.1

5.2

APV

0.2

0.3

0.4

0.5

0.6
Volatility

0.2

0.3

0.4

0.5

0.6

Volatility

0.2

0.4

0.6

0.8

Coupon

4

4.5

5

5.5

APV

0.2

0.3

0.4

0.5

0.6

Volatility

Figure 1: APV of the project. Value of the project, V , including the debt
tax shield, vs volatility of EBIT process, σ, and debt level (represented by
the coupon payment, R, in the defaultable case and by leverage, L, in the
default-free case). Default-free case is above and defaultable case is below.
The other parameters are from Table 1.
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Figure 2: Tax Shield and Base Value - defaultable case. Value of the
tax shield, TS, and base value (defined as the APV net of the tax shield),
vs volatility of EBIT process, σ, and debt level (represented by the coupon
payment, R). The other parameters are from Table 1.
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Figure 3: Option to invest. Value of the option to invest, F̃ , vs volatility
of EBIT process, σ, and debt level (represented by the coupon payment, R,
in the defaultable case and by leverage, L, in the default-free case). Default-
free case is above and defaultable case is below. The other parameters are
from Table 1.
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Figure 4: Probability of investing. Probability of exercising the option
to invest, H, vs volatility of EBIT process, σ, and debt level (represented by
the coupon payment, R, in the defaultable case and by leverage, L, in the
default-free case). Default-free case is above and defaultable case is below.
The other parameters are from Table 1.
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