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Abstract

In this paper we investigate the functional form and temporal dy-
namics of the price impact function. Knowledge of the form and dy-
namics of the price impact function is important because it has serious
implications for optimal liquidation strategies of large investors. Our
empirical analysis shows that the functional form as well as the level
of liquidity exhibits considerable variation over time. Furthermore,
we find strong predictability in changes of the price impact function.
Among competing models to predict future price impact functions a
two parameter power function with the dynamics of the parameters
modeled by a VAR(1) process shows the best forecast accuracy.
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1 Introduction

Transaction costs in the trading process can seriously affect the performance
of the trading strategies of institutional investors. The most significant trad-
ing cost institutional investors bear is price impact associated with large
trades. Institutional investors therefore typically split their orders to avoid

large price impact costs. Evidence for this behavior can be found for example
in Chan and Lakonishok (1995) or Keim and Madhavan (1995).

In order to optimally split the order and to assess the corresponding trans-
action costs, investors must assess the specific characteristics of the liquidity
of the market. Especially, the functional form and temporal dynamics of the
price impact function have important implications for the optimal strategy.
If, for example, the functional form of the price impact function is concave,
incentives to split the order are weaker than in the case of a convex relation-
ship.! As the decision problem requires the investor to evaluate the trade off
between current and future price impact, it is not sufficient to know the cur-
rent price impact function. In addition, the investor has to form expectations
about the future price impact function. If, for example, an investor expects
liquidity to increase in the future, he will ceteris paribus postpone some of

his trades to avoid trading costs.

In this paper we analyze the functional form and temporal dynamics of the
whole price impact function in order to address two questions. Firstly, how
does the shape of the price impact function look like? Secondly, how pro-
nounced are temporal variations of the price impact function and to what

extent can changes in liquidity be predicted from the past? To answer these

!The theoretical literature on optimal order splitting strategies restricts price impact
to be linear in trade size and to be deterministic, see for example Huberman and Stanzl
(2003), Bertsimas and Lo (1998) and Almgren and Chriss (1998). Huberman and Stanzl
(2004) argue that price impact should be linear in trade size to rule out (quasi-) arbitrage
opportunities.



questions, we model and predict the price impact function employing order
book data from the XETRA automated exchange. In the XETRA limit or-
der market, the whole price impact function is visible to market participants.
The data are therefore especially well suited. They reflect the relevant trad-
ing opportunities of investors and allow to analyze temporal variations of the

price impact function.

We contribute in two ways to the existing literature. Firstly, we provide
evidence of the functional form of the price impact function for different
points of time. In this respect we differ from the large number of empirical
studies which analyze the functional form of the price impact by employing
transaction data.? These studies are not able to characterize the price impact
function at a point of time and, as we argue, may be misleading in the context
of a trader assessing the potential price impact of his order. We also differ
from studies who employ order book data to analyze the functional form.

These studies only investigate the shape of the average order book.?

Secondly, we propose different approaches to predict the whole price impact
function. The dynamics of the price impact function has not been addressed
in the literature so far. In addition we compare the accuracy of different

forecasting models for the price impact function.

The main results of the empirical analysis can be summarized as follows.
There is considerable time variation of the price impact function. This holds
true for the level of liquidity as well as for the functional form. The functional
form of the price impact function shows strong variation, with the shape being
concave in about 50% of the cases and convex in about 50%. In addition we
find strong predictability in liquidity. This holds true for the level as well as

the shape of the price impact function. When evaluating the out of sample

2See for example Hasbrouck (1991), Hausman, Lo, and MacKinlay (1992) or Kempf
and Korn (1999).
3See for example Maslov and Mills (2001) or Weber and Rosenow (2003).



forecast accuracy of different models, a linear price impact function with the
parameter modeled as an AR(p) process works well in predicting the future
price impact function. However a power function with the dynamics of the
parameters modeled by a VAR(1)-process is shown to be significantly more

accurate in predicting future price impact functions.

The paper is organized as follows: In section 2 we survey the empirical lit-
erature on nonlinearity of the price impact function and the literature on
the dynamics of liquidity measures over time. In section 3 we derive opti-
mal trading strategies for nonlinear price impact functions. In section 4 we
describe the data. In section 5 we explain the empirical methodology and

present, the results. Section 6 concludes.

2 Literature Review

In this section we review the empirical literature which investigates the func-
tional form of the price impact function as well as the empirical literature

which investigates the dynamics of liquidity measures.
Empirical evidence on the functional form

There are numerous empirical studies which analyze the functional form of
the price impact function. A common feature is that these studies almost
solely rely on transactions data. Typically these studies employing trans-
actions data detect a significantly concave relationship between order size
and price impact, see among others Hasbrouck (1991), Madhavan and Smidt
(1991), Hausman, Lo, and MacKinlay (1992), Kempf and Korn (1999), Knez
and Ready (1996), Keim and Madhavan (1996), Algert (1990), Chen, Stanzl,
and Watanabe (2002) or Spierdijk, Nijman, and Soest (2004). Only a small
minority of studies find no significant deviation from linearity, see for exam-
ple Engle and Lange (2001), Breen, Hodrick, and Korajczyk (2002) or Sadka
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(2003). The studies which analyze the price impact from order book data get
completely different results. Maslov and Mills (2001), Weber and Rosenow
(2003) and Coppejans, Domowitz, and Madhavan (2003) detect a convex
shape of the order book employing limit order book data from the ISLAND
ECN respectively from the Swedish stock exchange. Interestingly Weber and
Rosenow (2003) find a concave function when they rely on transactions data.
Biais, Hillion, and Spatt (1995) detect no systematic deviation from linearity

using order book data from the Paris Bourse.

We argue that the results of studies based on transactions data may be mis-
leading in the context of a trader assessing the potential price impact of his
order. The reason is that these studies are based on realized transactions and
not on trading opportunities. The concentration on realized transactions may
lead to systematically biased estimates of potential price impact. If liquidity
is time varying and predictable for traders, they respond to variations in lig-
uidity and place orders when the price impact is small. So it is not clear if
the results from transactions data are of relevance for an optimizing trader,
rather they may already reflect optimized behavior.* A further shortcoming
of liquidity assessment based on transactions data is that temporal variations
in liquidity can not be captured adequately, as the price impact function has
to be estimated from the price impact of transactions of different size at

different points of time.

The existing studies analyzing order book data aggregate the data over time
in order to analyze the functional form. They do therefore not analyze the

functional form at different points of time or the variability and dynamics of

4Such optimizing behavior is analyzed for example in Admati and Pfleiderer (1988). In
Admati and Pfleiderer (1988) liquidity traders can choose the timing of their transactions
in order to minimize the expected cost of their transactions. They prefer to trade more
when their trading has little effect on prices. Coppejans, Domowitz, and Madhavan (2003)
and Gomber, Schweickert, and Theissen (2004) provide empirical evidence that traders
time their market orders, i.e. they trade more when liquidity is high.



the functional form.
Empirical evidence on liquidity dynamics

Recent empirical studies show that liquidity varies substantially over time
and that liquidity changes seem to be at least partially predictable. These
studies employ various liquidity measures and investigate quite different re-

search questions.

Huberman and Halka (2001) study the commonality in unexpected changes
of several liquidity proxies across different groups of stocks. These daily lig-
uidity proxies, as spread or depth at the best quotes, show up to be highly
autocorrelated. In order to decompose the changes in liquidity into expected
and unexpected components Huberman and Halka (2001) estimate time series
models for the liquidity proxies (averaged across different groups of stocks),

notably AR(p) processes.

Amihud (2002) studies the effect of expected market illiquidity on expected
stock excess returns in a time series context. His liquidity proxy is the daily
ratio of absolute stock return to dollar trading volume (averaged across
stocks) and is interpreted as a measure of price impact. Expected illiquidity
is obtained by estimating an AR(1)-model for the liquidity measure. The

liquidity measure is highly autocorrelated.

There are a few studies which use limit order book data to study the dynamics
of liquidity measures. These data allow especially for an intraday analysis of

the variation of liquidity.

Coppejans, Domowitz, and Madhavan (2003) study the dynamics of liquidity
and its relation to returns and volatility employing limit order book data for
Swedish stock index futures. They examine the time variation in depth of
the limit order book at a 5-minute-frequency. They document considerable

variation in observed depth as well as mean reversion in liquidity.



Beltran-Lopez, Giot, and Grammig (2002) extensively analyze time vary-
ing means and variances of a trading cost measure constructed from limit
order book data from the XETRA automated exchange. They measure
liquidity as hypothetical bid-ask returns which are closely related to the
Irvine/Benston/Kandel(2000) cost of round trip measure and takes into ac-
count the price impact of a market order of given volume to get executed im-
mediately. They model the dynamics of their liquidity measure by an AR(p)
process with time varying volatility to account for conditional heteroscedas-
ticity. In their analysis they also consider the effect of time of day patterns

and international stock markets on the dynamics of the liquidity measure.

Kumar (2003) focuses on the forecast of a price impact cost measure employ-
ing a limit order book dataset from the Indian stock exchange. The impact
costs are calculated for a given market order volume as the percentage change
between the weighted average execution price and the quote midpoint. The
dynamics of impact cost (sampled at hourly frequency) is captured by an
ARMA(1,1)-model. He conducts out of sample tests in which the time se-
ries model of impact cost is shown to perform better compared to the naive

forecast.

These studies give important insights into the time varying nature of liquidity
and the possibility to forecast transaction costs. However, these studies leave
open important aspects of liquidity dynamics and give an investor limited
guidance when he is concerned with optimally breaking up his order. Only
the measures in Beltran-Lopez, Giot, and Grammig (2002) and Kumar (2003)
depend on the size of an order and assess liquidity from the relevant trading
opportunities for investors, the limit order book. The major shortcoming
of all of the employed liquidity measures is that they are valid only for a
specific order size. For a trader concerned with the splitting of his order to

minimize price impact, the order size is a decision variable. For this decision



he needs to know the hypothetical prices for all possible order sizes today and
a prediction of the prices for all possible order sizes tomorrow.® We therefore
differ from the previous literature in that we do not only model the time
series properties of a price impact measure for a fixed order size but model

the functional form and the dynamics of the whole price impact function.b

3 Optimal liquidation strategies

In this chapter we show that the optimal strategy of an investor crucially
depends on the shape of the price impact function. We consider an investor
who wants to acquire a block of Q shares over two trading dates.” With
his purchases the investor affects the transaction prices. The effect of trade
size ¢; in period ¢ on the marginal price p; is captured by the price impact
function. We specify the price impact function as a power function with

general exponent \s:

Dt :ﬁt+)\1%\2 (1)

py is the price which would prevail in the absence of any market impact
(reservation price). For Ay = 1 the price impact function (1) is linear in trade

size, for Ay > 1 it is convex and for A\ < 1 it is concave.

°If the price impact function was linear all the time, then the measure of Kumar (2003)
e.g. would be a sufficient statistic to characterize the price impact function.

6The measures in Kumar (2003) and Beltran-Lopez, Giot, and Grammig (2002) consider
the average price impact costs for a given order size. For an optimizing trader the marginal
cost of the last unit is relevant for his decision. For this reason we model the price impact
function in terms of marginal prices and not in terms of average costs.

"In order to develop the main consequences of different price impact functions, we
restrict the analysis in this section to two periods. For the T period problem, we only
obtain numerical results for concave and convex price impact. The second motivation for
the restriction to two trading dates is that for T > 2 manipulation possibilities as discussed
in Huberman and Stanzl (2004) arise.



Since the market order of size ¢, is executed against limit orders with different
prices along the price impact function (1), the total cost of acquiring ¢ is

given by:®

qt . ‘ _ )\
/0 (pe + Alx’\z)dx = (p + Tilqt)\?)% (2)

Since investors are able to split orders over time, we have to specify the
dynamics of the reservation price. We assume that trade size has a permanent
effect on the reservation price. A fraction « of the price impact is temporary
and vanishes after one period so that (1 — «) of the price impact is reflected

in the reservation price of the next period:

Pt =pi—1 + (1 — a)(pr—1 — pr—1) + &4 (3)

€¢ is news incorporated into the price. €; is assumed to be white noise. The

trader does know £; when he submits his market order in ¢.
The investor’s objective is to minimize the expected cost C; of acquiring Q:
Mm{qt}Cl (4)

with

Cl = EI[Z Aqt(ﬁt + )\1;[;>‘2)d1‘] (5)

8In this respect we differ to Huberman and Stanzl (2003), Bertsimas and Lo (1998) or
Almgren and Chriss (1998) who assume the execution price of the whole order of size g
is the marginal price. The assumption of a unique execution price is more appropriate for
a dealer market. As will be seen later, our assumption has consequences for optimal order
splitting.



subject to (3) and the constraint

Z%ZQ (6)

t=1

The problem is to find the optimal trading strategy {¢:} that minimizes

expected total cost. The first order condition is given by:®

oC :
El - )\1Qi\2 + (1 - a)AlQi\2_1()\2Q — et Da) = (@ —-g)* =0 (7)
1

Closed form solutions for ¢; can be obtained only for some parameter values.'’
To analyze the consequences of different shapes of the function on the optimal
strategy, we present closed form solutions for linear price impact, concave
price impact with Ay = 1/2 and convex price impact with Ay = 2.1

Linear price impact

If the price impact is linear according to

Pe=Dc+ M\ (8)

the naive strategy of evenly splitting the order turns out to be the optimal

strategy for o > 0:'2

1

qQ = 5@ (9)

9For a derivation see the appendix.

0These special cases are Ay = 1/4,1/3,1/2,2/3,3/4,1,4/3,3/2,2,3, 4, see the appendix.

1\ = 1/2 is the estimate Maslov and Mills (2001) get, when they use transactions data
and Ay = 2 when they estimate the price impact from order book data.

2For a derivation see the Appendix.
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The minimum expected costs V) are an explicit function of the total traded
quantity (Q, the reservation price p;, the price impact parameter \; and the

fraction of the temporary price impact «:

- 1 a
Vi=pQ + 5)\1Q2 — ZMQQ (10)

For the special case of solely permanent price impact (o = 0), the splitting
across trading dates is arbitrary.'?

Concave price impact

For a square root price impact function

P = D + Aisgn(q) vV || (11)

the optimal trade size for a > 0 is given by:

. 3—da+30”+2V1—2a+2a?

12
Q 5+ 9a2 — 6a ¢ (12)

1

It can be shown that the investor trades now more in period 1, i.e. ¢f > 3

if @ < 1. ¢f decreases with the fraction of temporary price impact, o, and

approaches ¢ = % for a = 1.

The minimum of expected costs is characterized by:

3
2

(SIS

+2M(Q —gp): (13)

W N

V= 5@+ (- MG + (o — D)Ni(a)

For the special case a = 0 the investor is indifferent between trading the

total volume in period 1 or period 2:

13This result differs from Bertsimas and Lo (1998) and is a consequence of different
execution prices as reflected in (2).
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¢ €{0,Q} (14)

Convex price impact

For a power function with exponent 2

Pe=D+ M Sgn(qt)th (15)

the optimal trade size is given by:

. 2+a+Vli-a+a?
h= 3(a—1)

Q (16)

The investor trades more in the second period, ¢j < % ¢i increaes with the

fraction of temporary price impact, «, and approaches ¢ = % for a = 1.

The minimum of expected costs is given by:

Vi=pQ+ g)\lql3 +(1— ) (Q — qf) + g)‘l(Q - q)° (17)
In figure 1, the optimal fraction traded in the first date is plotted against the
fraction of temporary price impact a. We distinguish between convex, linear

and concave price impact functions.

Our example with three stylized price impact functions shows that the shape
of the price impact function has a significant impact on the optimal strategy.
For a concave price impact the investor trades more in the first period, linear
price impact leads to evenly distributed trade sizes and for a convex price
impact the investor trades more in the second period. Temporary price impact
favors splitting the order more equally. If the price impact is solely temporary,

the naive strategy is optimal irrespective of the specific functional form. Of
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Figure 1: Optimal fraction ¢; /@ for different price impact functions

course, a false assessment of the shape of the price impact function and the

fraction of temporary price impact leads to increased trading costs.

4 Data

In our empirical analysis we use data from the automated auction system

Xetra which is maintained by the German Stock Exchange.

Our dataset contains complete information about XETRA order book events,
i.e. entries, cancellations, revisions, expirations and executions of market and

limit orders for the three blue chip stocks DaimlerChrysler, Deutsche Telekom
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and SAP.' XETRA is the dominating system in the provision of liquidity for
German blue chip stocks. A floor system competing with XETRA operates
at the Frankfurt stock exchange. In 1999 the relative share of trading volume
for XETRA was about 90% for the three stocks in our sample.!®

The sample covers the 65 trading days from August 2, 1999 to October
29,1999. During this period in XETRA the whole content of the order book
was visible for the market participants. This implies that the potential price
impact of a market order is exactly known to the trader before submitting
his market order.'® Market orders at the XETRA system hit the order book
until complete fill. 17 XETRA trading hours lasted from 8.30 a.m. to 5.00
p.m. In the middle of the sample period (September 20,1999) trading hours
were shifted to 9.00 a.m. to 5.30 p.m.

Trading on XETRA is based on a continuous double auction mechanism. A
computerized order book keeps track of all incoming market and limit orders.

Orders are automatically matched based on clearly defined rules of price and

4We are grateful to Joachim Grammig and Helena Beltran-Lopez for providing us
with the data and the programs to reconstruct the order book. Beltran-Lopez, Giot, and
Grammig (2003) provide a very detailled descritption of the XETRA trading mechanism
and the data.

15In 1999 there was no separate block trading system implemented for the XETRA
trading system. In March 2001 a crossing system for the trading of large blocks called
XETRA XXL was introduced.

16Since October 2000 hidden orders (often referred to as iceberg orders) were allowed in
XETRA. Hidden orders are not visible in the displayed order book. This change in market
transparency has the implication that a trader submitting a market order cannot asses the
price impact of his order exactly ex ante due to the fact that his order may be executed
against a hidden order. In this case the trader has to form expectations about the hidden
part of the order book.

7 This differs from e.g. the Paris Bourse where market orders are not necessarily im-
mediately and fully executed. At the Paris Bourse market orders are executed at the best
price. If the entire quantity of a market order is not filled at the best price in the order
book, the remaining shares are transformed into a limit order at the transaction price.
In October 2000 XETRA introduced so called market to limit orders which are executed
against the best prices and then transformed into a limit order.
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time priority. !® Based on these rules of the XETRA trading protocol and
the event histories a real time reconstruction of the order book sequences is
performed. Starting from an initial state of the order book, each change in the
order book implied by entry, partial or full fill, cancellation and expiration of
market and limit orders is tracked. From the resulting real-time sequences of
order books, snapshots at ten minute intervals during the continuous trading

hours were taken.

5 Empirical analysis

The former section illustrated that the investor needs to have an estimate
about the price impact function for each point of time. In this section we
model the price impact function and allow for time varying price impact
functions. Our basic concern is to get a good prediction concerning the future

price impact function.

A good model of order book dynamics is able to reproduce the different
possible shapes of the price impact function and to predict future liquidity
accurately. In the following chapter different ways to model and predict the
price impact function will be presented. We evaluate the models by their
forecast accuracy and conduct test to discriminate between the competing

models.

Our approach to predict the price impact function resembles a new approach
for the prediction of yield curves. Diebold and Li (2003) predict the yield
curve by modeling the three factors of Nelson and Siegel (1987) as autore-
gressive processes. The prediction of the parameters is utilized for a prediction
of the yield curve. The approach of Diebold and Li (2003) works especially

well when applied to out of sample predictions of the yield curve.

'8In addition there are call auctions at the open, at mid-day and at the close.
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The approach of modeling the form and dynamics of the price impact function
consists of two steps. In the first step the order book is approximated by a
parsimonious parametrized function at each point of time. In section 5.1 we
consider a linear function, in section 5.2 a more flexible nonlinear function
according to (1). In the second step we model the time series behavior of the
parameters which characterize the price impact function with the aim to get
a prediction of the price impact function. In the case of the linear model we
estimate autoregressive models for the slope parameter, in the case of the
nonlinear model we estimate vector autoregressive models for the two model

parameters.

The separate analysis of the more restrictive linear function is justified by
the fact that a priori it is not clear if the more flexible nonlinear function
has superior forecast ability concerning the price impact function. It is well
known that more parsimonious models often show superior forecast ability. In
addition the linear model can serve as a benchmark model for the nonlinear

model.

In each section we evaluate the performance of the models by comparing the
predicted price impact functions to the actual price impact functions employ-
ing several measures of forecast accuracy. The forecast accuracy measures in
section 5.1 and 5.2 are defined for various order sizes and indicate no strict
dominance of either model. Therefore in section 5.3 we propose a measure
which is independent of order size and employ a statistical test to directly

compare the predictive ability of the linear model to the nonlinear model.

It is well known that liquidity measures exhibit time of the day patterns.
Therefore we also estimated different models to incorporate seasonality into
the linear and the nonlinear model. The basic results concerning the size
and the significance of the parameter estimates of the autoregressive struc-

ture were not affected by the incorporation of time of the day effects. More
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importantly when evaluated by their predictive power none of the extended
models showed superior forecast accuracy, often the forecast accuracy was

even worse. We therefore abstain from presenting the results.

5.1 The linear model

In this section we will examine a linear price impact function which serves
as a benchmark for the analysis of a more flexible functional form of the
price impact function in 5.2. In 5.1.1 we will first outline the methodology in
modeling and forecasting the price impact function. In 5.1.2 we present the

results.

5.1.1 Methodology

Fitting the price impact function

We take 3315 ten minute snapshots of the order book to fit a linear price

impact function according to:'

Dri =Dt + MG + Vi (18)

pr,i are the hypothetical marginal transaction prices for different trade sizes
¢; which are to be calculated from the state of the order book at time ¢. The
midquote before the trade takes place serves as a proxy for the reservation
price p;. v, is the disturbance which is assumed to be N(0,02). As the or-
der book has different slopes at different points of time, we allow for time

variation of the liquidity parameter \.

YEquation (18) could be extended to account for a spread at zero quantity (see Glosten
(1994), Proposition 3 for the existence of a spread at zero quantity in a limit order market).
We do not consider this because the zero quantity spread is negligible in practice.
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We estimate A; from (18) each period by OLS, treating the hypothetical
price impacts p;; — p; for 2 ex ante specified equidistant order sizes ¢y, ..., ¢,

as observations.

In implementing the approach we have to define the order sizes ¢, ...,q, in
advance. They are chosen to be the same for all dates. We choose ¢, =
100000 shares for Daimler Chrysler and Deutsche Telekom and ¢, = 10000
shares for SAP, which amounts to roughly 3% of daily turnover in these
shares. Alternatively the maximum order size ¢, could be chosen for example
according to the average depth of the order book or a decile of the distribution
of market order sizes. We calculate the hypothetical price impacts for z = 10
equidistant order sizes. For our choice of ¢(z), the order book has sufficient

depth at each point of time.
Dynamics of the parameter

As our aim is to get a prediction of the whole future price impact function,
a model for the dynamics of the function is needed. In addition to the linear
specification of the price impact function we specify a time series model for
the slope parameter A. To capture the dynamics, we estimate AR(p) processes

for the liquidity parameter estimates \: 2°

p
AN =c+ Z ViM—j + Er (19)
j=1
With ¢ = (1 -, — ... —y,) Ao, where )g is the long term mean of the process.

£;.¢ s the noise term. We estimate (19) from the 3315 observations by least

squares.

The one-step-prediction can be calculated as: 2!

20The order of the AR(p)-process is selected by the common model selection criteria
Akaike Information Criterion and Schwarz Criterion.
2'Hamilton (1994), p.260. The s-step-prediction could be calculated iteratively, see
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Atp1je = C+ MM+ oo F VpNppa (20)

Evaluating the accuracy of the price impact curve forecast

We split the sample period in two parts and estimate the AR(1)-model in
the first half. Then we use the estimated parameters ¢ and 7 to make out of
sample forecasts in the second period. 22 To assess the forecast accuracy, we
calculate the common statistics mean average error (ME), root mean squared
error (RMSE) and Theils U (U) for the predicted price impacts at different

order sizes:

T
1 N
ME; = ~ ;(pt,i — D) (21)
1 T
RMSE; = | = ;(pt,i — Pri)? (22)

% ZtT:1(pt,i - ﬁt,i)2
T
% >t p%,i

U; =

Where p;; is given by: 23

Hamilton (1994), p.81.

22Tt would be inappropriate to run in sample time series regression of the liquidity
parameters and compare the fitted and the actual value of the price impact curve due to
the fact that the investor does not know the parameter values of the time series model. We
therefore estimate the time series model for the liquidity parameters in the first half of the
sample period and use the estimated coefficients to make out of sample predictions in the
second half of the sample period. Instead of splitting the sample period in an estimation
period and and evaluation period, we could run a rolling regression.

23To focus on the accuracy of the forecast of the price impact function, we do not try
to forecast p; and assume it to be known at date ¢t — 1.
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5.1.2 Results

~ ~

Pri = Pt + Nji—1Gi

(24)

To get an impression of the suitability of the linear model we calculate the

average price impact across the 65 trading days for different order sizes. From

this average price impact function we estimate a slope parameter \.

H A ‘ R? ‘ Std. error of est.
DaimlerChrysler | 1.0740- 107 | 0.959 0.074
SAP 6.3759 - 10~* | 0.947 0.506
Deutsche Telekom | 6.1623-107°% | 0.991 0.018

Table 1: Liquidity of the aggregated price impact curve

Table 1 shows that the linear price impact function fits the aggregated data

quite well with the adjusted R? ranging from 0.959 to 0.991. As we will see one

is ill-advised to take the average price impact parameter as an estimate for

the price impact parameter at a point of time. There is a lot of time variation

in liquidity measured by the price impact parameter \. Table 2 presents some

descriptive statistics of the variation of the price impact parameter over the

3315 ten minute intervals.

The time variation in liquidity is substantial. The ratio of the maximum

H Mean A Median A | Minimum A\ | Maximum A ‘ std(\) ‘
DaimlerChrysler | 1.0740-107> | 8.361-107% | 1.3182-107° | 8.7816-10~° | 0.8174 - 107
SAP 6.3759 - 1071 | 4.4506 - 10=* | 3.1338-107° | 8.49-107% | 7.2372-10~*
Deutsche Telekom || 6.1623 - 107° | 5.2013 - 107% | 5.6360 - 10~ | 4.7275- 107" | 3.9750 - 107°

Table 2: Variability of the price impact parameter estimate P\
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| H c vl R
DaimlerChrysler || 1.6381 -107% | 0.8208 | 0.7474

SAP 1.1639 - 10~* | 0.7854 | 0.6976
Deutsche Telekom | 1.3403-10°° | 0.7557 | 0.6534

Table 3: Time series model for the price impact parameter estimates 3\\, AR(1)
specification.

estimate and the minimum estimate is 67 for DaimlerChrysler, 271 for SAP
and 84 for Deutsche Telekom. The standard deviation relative to the mean
estimate is 76 % for DaimlerChrysler, 113 % for SAP and 65 % for Deutsche

Telekom, emphasizing the importance of the time variation in liquidity.

For the investor it is important, if future liquidity measured by A is purely
random or if the changes in liquidity are predictable and how accurate the
predictions are. Table 3 presents the parameter estimates of the time series
model (19) for the three different stocks. ¥ The v estimated over the whole
sample period lies in the range between 0.75 and 0.82. In each case 7 is sig-
nificantly different from zero and significantly different from one. The slope
coefficient is therefore strongly autocorrelated. In addition the fact that ~
differs from one implies that changes in liquidity are predictable. This pre-
dictability gives rise to the possibility of minimizing price impact costs by
timing their market orders. If A is above the long term mean, the investor
will expect liquidity to increase (A to decrease) and will postpone some of

his trades.

To give an interpretation of the estimates v we calculate halflifes, i.e. the
time it takes after liquidity shocks have vanished by half. The halflife can be

calculated as follows:2°

24In each case the AR(1)-specification performs best according to the information cri-
teria
25For a derivation see the Appendix.
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‘ H Std. dev. of prediction error ‘ R? out of sample

DaimlerChrysler 0.3380 - 10~ 0.6897
SAP 2.4441 - 10~* 0.4716
Deutsche Telekom 2.7683 - 10~° 0.6249

Table 4: Forecast accuracy of the AR(1) model

In(0,5)
In(7)

The estimated parameter values imply halflifes of liquidity shocks from 25 to

Tr ¢ —

(25)

35 minutes.

The investor is concerned how well the predicted parameters fit the realized
parameter estimates. The high in sample R? in table 3 already indicates that
the AR-model can explain a significant part of the variation of the slope
parameter A. To assess the accuracy of the AR(1)-model, we evaluate out of
sample forecasts. We split the sample period in two parts and estimate the
AR(1)-model in the first half. Then we use the estimated parameters ¢ and
~ to make out of sample forecasts in the second period. 2® As one can see
from Table 4, the forecast accuracy of the AR(1)-model is high. Between 47%
and 69% of the variation of the liquidity parameter A\ can be explained by
the time series models. The unexplained variation of the liquidity parameter
indicated by the standard deviation of the prediction error in table 4 can be

explained as a measure of liquidity risk.

So far we only evaluated the forecast accuracy concerning the liquidity pa-
rameter A. But the aim is to get a good forecast for the whole price impact
function. In fact we have a joint hypothesis about the functional form and the

dynamics of the parameters of this functional form. An adequate test of fore-

26The parameter estimates of the time series model for the first 35 trading days can be
found in table 15.
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| ME | std [RMSE | Theils U |
10000 || 0.0014 | 0.0839 [ 0.0840 [ 0.6736
20000 | -0.0294 | 0.1496 | 0.1524 | 0.7275
30000 | -0.0584 | 0.2076 | 0.2157 | 0.7194
40000 | -0.0809 | 0.2513 | 0.2640 | 0.6598
50000 | -0.0976 | 0.2934 | 0.3093 | 0.6006
60000 | -0.0965 | 0.3332 | 0.3469 | 0.5054
70000 | -0.0746 | 0.3777 | 0.3850 | 0.4295
80000 | -0.0282 | 0.4337 | 0.4346 | 0.3843
90000 | 0.0634 | 0.5464 [ 0.5501 | 0.3819
100000 || 0.1801 | 0.7572 [ 0.7784 | 0.4335

Table 5: Accuracy of the linear price impact curve forecast, Daimler Chrysler,
estimation period

cast accuracy lies in the comparison of the predicted price impact function

and the real shape of the order book.

Table 5 and Table 6 evaluate the accuracy of the AR(1)-based price impact
function forecast for Daimler Chrysler.?” As one can see, the forecast accuracy
measured by the Theils U is high. In general for larger order sizes, the forecast
accuracy increases monotonically (except for the largest order size). The
mean error is positive for small and for large order sizes, indicating some
form of non-linearity. Therefore it seems promising to estimate a more flexible
function than the linear model. In Figure (2) (see the Appendix) we plot the
average price impact function for Daimler Chrysler. The plot indicates that

the functional form of the average price impacts is slightly convex.

2TThe results for SAP and Deutsche Telekom can be found in the Appendix in tables
16 to 19.
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| ME | std [RMSE | Theils U |
10000 ]| 0.0088 | 0.0690 | 0.0696 | 0.5595
20000 | -0.0148 | 0.1115 | 0.1125 | 0.5390
30000 | -0.0356 | 0.1494 | 0.1536 | 0.5144
40000 | -0.0507 | 0.1801 | 0.1871 | 0.4694
50000 | -0.0569 | 0.2073 | 0.2150 | 0.4196
60000 | -0.0553 | 0.2316 | 0.2381 | 0.3770
70000 | -0.0450 | 0.2405 | 0.2447 | 0.3207
80000 | -0.0192 | 0.2779 | 0.2786 | 0.2993
90000 | 0.0231 [ 0.3745 [ 0.3752 | 0.3341
100000 || 0.0862 | 0.4736 | 0.4813 | 0.3585

Table 6: Accuracy of the linear price impact curve forecast, Daimler Chrysler,
evaluation period

5.2 The power function model
5.2.1 Methodology

In this section we fit a power function according to (1) to the price impact
function which is more flexible in representing different shapes of the price
impact function. This function has the property that it increases monotoni-
cally with order size (for A;, Ay > 0), concave, convex as well as linear forms
are possible. Ay = 1 represents a linear function, Ay < 1 a concave function
and XAy > 1 a convex function. As the order book looks different at different

points of time, we allow for time varying liquidity parameters A\; and \,.

~ e
Pri = Pt + Ai,44; 2 Ut (26)

We estimate (26) by nonlinear least squares. The estimation is done in
GAUSS employing the Levenberg-Marquardt variation of the Gauss-Newton
method.
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In the case of the power function the dynamics of the two parameters of the
function which fits the order book have to be modeled. The dynamics of the
parameters could be modeled univariatly. For each parameter an AR(p) pro-
cess could be estimated and employed for prediction. However, this approach
neglects joint dynamics of the parameters. To capture the joint dynamics of

the parameters A\; and Ay, we specify the following VAR(1)-system:

log(A c log( A4 €
g ) _ e ) | o me ghe-1) ) [ e (27)
A2t C2 V2,1 V2,2 Aoji1 €2t
We transform the variable \; using a logarithm (with base 10). This spec-
ification of the VAR is justified by the fact that the relationship between

log Ay and Ay, is approximately linear, as can be seen from Figure 3 (see
the Appendix) where (contemporaneous) values of log A; and Ay are plotted.

A model with untransformed variables has very poor predictive ability.

In short notation (27) is given by:

P
M=c+> Tidj+e (28)

7=1
c= (I —Ty—..—=Tp)N, where \g is the vector of long term means. The

noise terms ¢;; are assumed to be only contemporary correlated. Equation

(27) can be estimated for each single equation by least squares.?

The one-step-prediction can be calculated as: 2°

28Gee for example Hamilton (1994), p. 294.
ZNote that we predict log(A1.¢), so we have to retransform it to calculate the predicted
price impact function.
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Aerafe = Ao+ T1(Ae = Ao) + oo + Tp( A pat — Ao) (29)

5.2.2 Results

Asin the case of the linear model, we first estimate the parameters of the price
impact function from the aggregated price impact curve. Table 7 presents the
results for the parameter estimates /):1 and /):2. For Daimler Chrysler and SAP,
the parameter estimate 3\\2 is significantly greater than one. The adjusted R?

is higher compared to Table 1, indicating a fit superior to the linear model.

H )/\\1 ‘ )/\\2 ‘ R ‘ Std. error of est.
DaimlerChrysler | 3.056-107 | 1.3166 (***) | 0.988 0.041
SAP 2.684 - 107° | 1.3542 (***) | 0.979 0.316
Deutsche Telekom | 3.037-107° 1.0630 0.992 0.017

Table 7: Liquidity of the aggregated price impact curve, power function

Again it has to be considered, that the price impact function is not con-
stant over time, and it is not convex at each point of time. We estimate the
price impact function for the 3315 ten minute snapshots. Table 8 presents

descriptive statistics on the estimated exponent of the power function.

In each case the median lies around one, which means that in about half of

the periods the price impact is convex, in the other half concave. The high

H mean Ay | median Ay | Min. Ay | Max. Ay ‘ std()s) ‘

DaimlerChrysler 1.2523 1.0460 0.0803 | 8.5285 | 0.7648
SAP 1.1762 0.9319 0.0155 | 16.5754 | 0.9500
Deutsche Telekom 1.0533 0.9713 0.0417 5.0856 | 0.4648

Table 8: Variability of the price impact parameter estimate )/\\2
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standard deviation of Ay implies that the deviations from linearity are sub-
stantial. To get an idea if the variation of the functional form implied by the
parameter )\, is systematic or purely random, Table 9 gives the unconditional
probability of a convex relationship as well as the conditional probability of
observing a convex relationship given that the last price impact function was

convex.

| POG>1) [ POG> 1 >1) |

DaimlerChrysler 0.550 0.788
SAP 0.451 0.727
Deutsche Telekom 0.466 0.712

Table 9: Probability of a convex price impact function

In each case this conditional probability is more than 70 percent which
strongly deviates from the unconditional probability, indicating predictability

for the shape parameter.

Table 10 presents the results of the VAR(1)-model. In each case all parame-

ters for the lagged variables log(\;) and A, are significant. 3°

Again we split the sample in two parts to assess the accuracy of the VAR-
model to forecast future price impact parameters. The out of sample R? of
the time series model for second period is presented in Table 11.3! The out
of sample R? is in each case higher than for the univariate time series model

(we do not report the results for the univariate models here).

Since the forecast accuracy indicated by the out-of-sample R? of the VAR-
model for the two liquidity parameters cannot be compared directly to the

forecast accuracy of the linear model, we again compare the whole predicted

30Gtability of the system requires that the roots of the polynomial (1—~1;L)(1—~22L) —
(712721 L?) lie outside the unit circle. See e.g. Enders S. 297ff. As can be checked the
stability condition is met for each stock.

31Table 21 in the Appendix reports the parameter estimates for the first 35 trading days.
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c Yia Vi R?

Daimler Chrysler | logA; | -2.8476 | -1.9549 | -12.5400 | 0.4730
A2 0.5703 | 0.5675 | 3.3882 | 0.4974
SAP log Ay | -0.6843 | -1.1337 | -6.7207 | 0.3972
A2 0.1962 | 0.4956 | 2.5272 | 0.4329
Deutsche Telekom | log Ay | -3.4590 | -1.0140 | -7.3060 | 0.2917
A2 0.6800 | 0.3679 | 2.2868 | 0.3360

Table 10: Time series model for the price impact parameter estimates A\; and
Aot VAR(1)

R? out of sample
DaimlerChrysler | log A 0.4026
A2 0.4311
SAP log A\ 0.1991
A2 0.2191
Deutsche Telekom || log A\ 0.2547
A2 0.3008

Table 11: Forecast accuracy of the VAR(1) model

price impact function and the real shape of the order book. Tables 12 and
13 present the results for Daimler Chrysler. 3> When compared to tables 5
and 6, the power function model is superior when evaluated by the measures
Theils U, root mean squared error and standard deviation of prediction error
for most of the order sizes. This holds also true for the mean absolute error.
In general the estimate of the price impact function in the power function

case seems to be biased downwards as the mean errors are always positive.

32The results for SAP and Deutsche Telekom can be found in the Appendix in tables
20 to 24.
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[ ME [ std | RMSE | Theils U |

10000 || 0.0481 | 0.0646 | 0.0805 | 0.6461
20000 | 0.0557 | 0.0941 | 0.1093 | 0.5218
30000 | 0.0544 | 0.1210 | 0.1326 | 0.4425
40000 | 0.0482 | 0.1446 | 0.1525 | 0.3810
50000 || 0.0354 | 0.1805 | 0.1839 | 0.3572
60000 | 0.0267 | 0.2669 | 0.2682 | 0.3907
70000 || 0.0236 | 0.3625 | 0.3632 | 0.4053
80000 | 0.0277 | 0.4421 | 0.4429 | 0.3917
90000 | 0.0577 | 0.5281 | 0.5312 | 0.3688
100000 || 0.0907 | 0.6444 | 0.6507 | 0.3625

Table 12: Accuracy of the power function price impact curve forecast, Daimler
Chrysler, estimation period

| ME | std [RMSE | Theils U |
10000 ]| 0.0470 [ 0.0606 [ 0.0767 | 0.6169
20000 || 0.0509 | 0.0870 | 0.1008 | 0.4831
30000 | 0.0477 [ 0.1112 | 0.1210 | 0.4053
40000 | 0.0411 | 0.1410 | 0.1468 | 0.3683
50000 || 0.0345 | 0.1749 | 0.1783 | 0.3479
60000 | 0.0270 [ 0.2044 | 0.2062 | 0.3264
70000 || 0.0195 | 0.2243 | 0.2252 | 0.2952
80000 | 0.0189 | 0.2767 | 0.2774 | 0.2980
90000 | 0.0260 | 0.3708 | 0.3718 | 0.3310
100000 || 0.0450 [ 0.4522 | 0.4544 | 0.3384

Table 13: Accuracy of the power function price impact curve forecast, Daimler
Chrysler, evaluation period
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5.3 Testing for the difference in forecast accuracy of

the competing models

The evaluation of the forecast accuracy of the linear and the nonlinear model
in the former sections indicated a superiority of the nonlinear model. How-
ever, the forecast accuracy measures in section 5.1 and 5.2 were defined for
various order sizes and indicated no strict dominance of either model. There-
fore we propose a measure which is independent of order size and employ a
statistical test to directly compare the predictive ability of the linear model

to the nonlinear model.

To test for difference in forecast accuracy we employ the Diebold and Mariano
(2002) test. ** The Diebold and Mariano (2002) t- statistics for the one step

ahead forecast is calculated as:

DM =T —1—— (30)
std(d)
_ 1 T
t=R+1
dt = L(l/j\l,t) - L(i/\Q’t) (32)

R is the number of observations used to estimate the parameters. 7, is the
vector of price impact forecast errors for model 1 for different order sizes
observed at time ¢ associated with forecasts from time ¢ — 1. We specify the

loss function as the sum of squared forecast errors:3*

33This test is used for example in Goyal and Welch (2004).

34The specification of the loss function is somewhat heuristic since the economic loss
associated with a forecast error of a particular size and sign need not have this specific
form.
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‘ Daimler Chrysler H linear, AR ‘ linear,n.f. ‘ linear, h.a. ‘

power function, VAR(1) || -4.0377 (***) | -4.8721 (***) | -8.3026 (***)
linear, AR - 15523 (F%) | -6.8634 (FF%)
linear, n.f. - - -6.2380 (***)

‘ SAP H linear, AR ‘ linear,n.f. ‘ linear, h.a. ‘
power function, VAR(1) -1.3851 -2.4118 (***) | -11.1958 (***)
linear, AR - 2.0007 (FFF) | -15.0647 (F*%)
linear, n.f. - - -12.9956 (***)

‘ Deutsche Telekom H linear, AR ‘ linear,n.f. ‘ linear, h.a. ‘
power function, VAR(1) || -2.6525 (***) | -3.2786 (***) | -6.6936 (***)
linear, AR - 27663 (F%) | -6.2932 (FF%)
linear, n.f. - - -5.4183 (***)

Table 14: Out-of-sample forecast accuracy comparisons

z

LWi) = Y Ve (33)
i=1

For example, in the case of the linear model the forecast error 7 ;; is calcu-

lated as:

771,t,z‘ = Z(pt,i — Dt — /)\\tQi) (34)

i=1
where the forecast /)\\t is either the naive forecast A\;_;, the historical average
X or is calculated from the time series model for A according to (29).

The DM-test allows for forecast errors which are non gaussian, have nonzero
mean, are serially and contemporaneously correlated. In the estimation of

the standard deviation we make a correction for serial correlation according
to Newey and West (1987).

The null hypothesis is that the two forecasts have the same predictive ability
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with respect to the loss function L. Under the null hypothesis of equal fore-
cast accuracy, the DM statistic is asymptotically normally distributed when
testing non nested models. In our case the models are nested so the test
statistic is not normally distributed. Therefore we use the corrected critical
values from Table 3 in McCracken (1999).

In table 14 for each stock the forecast accuracy of the two models is com-
pared. The results show that in each case the power function model shows
the best predictive power relative to the linear model. This difference in fore-
cast accuracy is significant except for the case of SAP. In the class of linear
models we also consider alternative models of using the average liquidity
level as predictor of future liquidity and the naive prediction of using the
last observation of the liquidity parameter as our estimate.?> As a result the
AR(1) specification is superior to the naive prediction. In each case the mean
specification is clearly beaten. This shows that one is ill- advised to take the

average historical liquidity as predictor for future liquidity.

6 Conclusion

In this paper we investigated the form and temporal dynamics of the price

impact function.

To motivate our empirical analysis we demonstrated theoretically the impact
of different forms of the price impact function on optimal order splitting
strategies. The optimal strategy looks completely different if the price impact

function is concave or convex.

To study empirically how the functional form and the temporal dynamics of

35Underlying this approach is the idea that the current order book constitues the best
predictor for the future order book. How well this model performs depends apparently on
the length of the horizon of the prediction and the extent of unsystematic changes of the
order book.
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the price impact function look like, we employed order book data from the
XETRA automated exchange. These data are especially well suited for our
analysis as they reflect the relevant trading opportunities of investors and
allow to analyze temporal variations of the whole price impact function. In
our empirical analysis we documented that the functional form as well as the
level of liquidity exhibits considerable variation over time. The functional

form is in about 50% of the cases concave and in about 50% convex.

Most importantly, the strong variation in the price impact function is not
purely random but we find strong predictability in liquidity. This holds true
for the level as well as the shape of the price impact function. When evalu-
ating the out of sample forecast accuracy of different models, a linear price
impact function with the parameter modeled as an AR(p) process works well
in predicting the future price impact function. However, a power function
with the dynamics of the parameters modeled by a VAR(1)-process is shown

to be significantly more accurate in predicting future price impact functions.

Our study leaves open several important questions for further research. From
a theoretical point of view it is of interest to analyze the consequences of
the complex dynamics of the price impact function explored in this paper
for optimal trading strategies of large investors in more detail than in the
stylized examples in this paper. Especially the incorporation of stochastically
time varying price impact functions has not been addressed in the literature
so far. This would allow to assess the possible gains from exploiting the

predictability of liquidity by means of timing market orders.

Concerning the empirical analysis we predicted the order book solely based on
its own history. A more complete analysis would consider the joint dynamics
of liquidity supply (represented by the order book) and liquidity demand
(represented by market orders). If incorporating this common dynamics into

the model adds significantly to the forecast ability is left for further research.
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7 Appendix

Price Impact with general exponent

The price impact function is given by a power function with general exponent
)\22
pr =D+ Mg;” (35)

The price update function is given by:

pe=ap1+ (1 —a)p1+e (36)

In £ = 2 the trading volume is determined by the trading restriction:

©=0Q:=Q—q (37)

The value function in ¢ = 2 is given by:

Q2 A
Vs Qa) = [ ot M = (ot Qe (39)
0 )\2 + ].
The value function in ¢ =1 is given by:
Vi Q) = min Bl [ G+ e+ Vo Q)] (39)
1 0

The expected costs are:

(40)
¢ = B /0 By + Mz + Va(pr, Q)

0*)qr + (apr + (1 — a)py +22 + A (@Q— 1)) (Q — q)]

= Eil(p1 + Nt 1

1
Ao +1
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- N A
= E(p + " jL 1Q1A2)Q1 + (p1 + (1 — a))q%AQ + &9+ p jL 1 (Q— %)Az)(Q —q1)]
e Bt (B (- g Q- )™ (Q - 1)
Ao+ 1 Ao+ 1

The first order conditions is then given by:

oC _ .
Hl =i + (1= 0)hg]? ' (@ — e+ @) — M(Q — @)™ =0 (41)
1

Rearranging yields:

0C

S (1= (1=a) I+ X)) Mgt + (1= ) XQMi g™ =M (Q—a1)™ = 0 (42)

A closed form solution for ¢; can be obtained only for some special cases.

This can be shown if we rewrite (7) as

a1y’ + asq” "+ a3(Q — )M =0 (43)

where Ay = ™, with m and n positive integers. Subtracting the third term,
taking the exponent n and multiplying with quz[n*m’o} yields a polynomial
of order max(m,n). Closed form solutions can only be given for polynomials
of order not higher than 4. Accordingly the special cases with closed form
solutions are: Ao = 1/4, Ay = 1/3, Ay = 1/2, \y = 2/3, Ay = 3/4 Xy = 1,
Ay =4/3 X =3/20 =2, Ny =3\ =4.

Concave price impact with exponent 1/2

If Ay = %, the first order condition becomes:
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5C ) ) |

The minimum of expected costs is associated with:3%

*_3—4a+3a2+2\/1—2a+2a2Q

@ 5+ 902 — 6a

From (40) it follows that the value function V; takes the form:

Vi Q) = Bi@+ (o — DAY+ A0 - )(a)Q + A@ - )

Linear price impact

For Ay = 1, the first order condition becomes:

dCy

o= oM (@ = 20) =0

The optimal order size is:

From (40) and (46) it follows that the value function V; is given by:

- 1 a
Vi=pQ+ 5)\@2 — Z)\QZ

Convex price impact with exponent 2

36The second solution to (44) corresponds to the maximum of expected costs.
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For A\ = 2, the first order condition becomes:

~ = )\1(]% + (1 - 04))\16]1(262 - 36]1) - )‘I(Q - CJ1)2 =0 (48)

The optimal order size is given by:3"

. 2+a+Vl-a+a?
h= 3(a—1)

Q (49)

The value function V; takes the form:

Vi=p@Q+ 5)\‘113+ (1 _a))“hQ(Q_‘h) + g)‘(Q_%)?’ (50)

Calculating the halflife
We look for T, so that

E(Ars) — Xo
——— =105 51
N (51)
The dynamics of the parameter is given by:
Atr1 = C+ YA + €41 (52)

The long term mean of the process is given by Ay = ¢/(1 — ). We rewrite
(52):

Atp1 = )\0(1 - 'Y) + YA+ Ep1 = Ao + 'Y()\t - )\0) + €11 (53)

Taking expectations yields:

3TThe second solution to (44) corresponds to the maximum of expected costs.
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E(At41) = Ao+ 7(Ae — Ao) (54)

A2 can be accordingly rewritten as:

Air2 = Ao+ Y (Ae — Ao) + Veir1 + Er12 (55)

The two step ahead forecast can be calculated as:

E(Air2) = Ao + 77 (A — Ao) (56)

If we proceed in this fashion, the 7' — t step ahead forecast can be calculated

as:

E(\r) = Xo+7" " (A = Xo) (57)

The fraction of the deviation from the mean which is expected to vanish in

the period T"—t is given by:

E(Ar) — o T—t

= 58
N (58)
From (51) and (58) we get the halflife:
|
e — ¢ = 1005) (59)
In(v)

As 7 has to be estimated, we calculate HL as:

In(0,5
In(7)

~—

o

(60)
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| H c | 7 | B ]
DaimlerChrysler 1.5210-107°% | 0.8355 | 0.7686

SAP 1.3070 - 10~% | 0.7943 | 0.7128
Deutsche Telekom || 1.2981-107% | 0.7333 | 0.6796

-~

Table 15: Time series model for the price impact parameter estimates \ ,
AR(1) specification, estimation period.

| ME | std [RMSE | Theils U |

10000 || 0.0230 | 0.0451 | 0.0506 | 0.5656
20000 || 0.0158 | 0.0646 | 0.0665 | 0.4719
30000 | 0.0100 | 0.0797 | 0.0803 | 0.4177
40000 | 0.0034 | 0.0902 | 0.0903 | 0.3707
50000 || -0.0020 | 0.1009 | 0.1009 | 0.3407
60000 | -0.0070 | 0.1094 | 0.1096 | 0.3124
70000 || -0.0093 | 0.1173 | 0.1177 | 0.2880
80000 || -0.0056 | 0.1288 | 0.1289 | 0.2736
90000 | 0.0000 | 0.1456 | 0.1456 | 0.2705
100000 || 0.0064 | 0.1648 | 0.1650 | 0.2722

Table 16: Accuracy of the linear price impact curve forecast, Deutsche
Telekom, estimation period
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[ ME [ std | RMSE [ Theils U |
10000 | 0.0178 | 0.0534 | 0.0563 | 0.5848
20000 || 0.0062 | 0.0826 | 0.0829 | 0.5291
30000 | -0.0026 | 0.1060 | 0.1061 | 0.4812
40000 | -0.0096 | 0.1246 | 0.1250 | 0.4358
50000 | -0.0107 | 0.1415 | 0.1419 | 0.3917
60000 | -0.0091 | 0.1598 | 0.1601 | 0.3622
70000 || 0.0003 | 0.1896 | 0.1896 | 0.3532
80000 | 0.0196 | 0.2224 | 0.2233 | 0.3484
90000 | 0.0503 | 0.2771 | 0.2816 | 0.3676
100000 || 0-0991 | 0.3670 | 0.3802 | 0.4108

Table 17: Accuracy of the linear price impact curve forecast, Deutsche
Telekom, evaluation period

| | ME | std | RMSE | Theils U |
1000 || 0.0601 | 0.7549 [ 0.7573 [ 0.7557
2000 || -0.2127 | 1.3382 | 1.3550 | 0.8629
3000 | -0.4836 | 1.8903 [ 1.9512 | 0.9011
4000 | -0.7067 | 2.2910 | 2.3976 | 0.8346
5000 || -0.8146 | 2.6522 | 2.7745 [ 0.6945
6000 | -0.7983 | 3.0777 [ 3.1796 | 0.6037
7000 || -0.6488 | 3.5821 | 3.6404 | 0.5333
8000 | -0.1800 | 4.2550 | 4.2588 | 0.4611
9000 | 0.6011 | 5.8372 [ 5.8681 | 0.4790
10000 || 1.4065 | 6.9944 | 7.1345 [ 0.4842

Table 18: Accuracy of the linear price impact curve forecast, SAP, estimation
period
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| [ ME [ std | RMSE [ Theils U |
1000 | 0.1868 | 0.4439 | 0.4816 | 0.5875
2000 || 0.0518 | 0.6620 | 0.6640 | 0.5415
3000 | -0.1076 | 0.8507 | 0.8574 | 0.5341
4000 | -0.2640 | 1.0513 | 1.0840 | 0.5412
5000 || -0-3845 | 1.2639 | 1.3211 | 0.5404
6000 | -0.4720 | 1.4134 | 1.4902 | 0.5047
7000 || -0.4726 | 1.6169 | 1.6846 | 0.4563
8000 | -0.4213 | 2.0825 | 2.1247 | 0.4717
9000 | -0.3469 | 2.5080 | 2.5319 | 0.4663
10000 | -0.0700 | 3.8204 | 3.8211 | 0.5419

Table 19: Accuracy of the linear price impact curve forecast, SAP, evaluation
period

| ME | std [RMSE | Theils U |
10000 ]| 0.0240 [ 0.0458 [ 0.0517 | 0.5779
20000 || 0.0212 | 0.0626 | 0.0661 | 0.4688
30000 | 0.0193 | 0.0750 | 0.0775 | 0.4030
40000 | 0.0160 | 0.0854 | 0.0869 | 0.3571
50000 || 0.0134 | 0.0964 | 0.0974 | 0.3287
60000 | 0.0105 | 0.1074 | 0.1079 | 0.3075
70000 || 0.0096 | 0.1165 | 0.1169 | 0.2862
80000 | 0.0141 [ 0.1251 | 0.1259 | 0.2672
90000 | 0.0200 | 0.1372 | 0.1386 | 0.2575
100000 || 0.0260 | 0.1504 [ 0.1526 | 0.2519

Table 20: Accuracy of the power function price impact curve forecast,
Deutsche Telekom, estimation period
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Figure 2: Average Price impact function for DaimlerChrysler
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Figure 3: Daimler Chrysler
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c Yia Vi R?
DaimlerChrysler | logA; | -3.0030 | -2.3950 | -14.7135 | 0.4935
A2 0.6012 | 0.6576 | 3.8336 | 0.5172
SAP log Ay | -0.3113 | -1.3396 | -7.7606 | 0.4653
A2 0.0983 | 0.5514 | 2.8076 | 0.5057
Deutsche Telekom || log Ay | -3.0275 | -0.6470 | -5.7026 | 0.3016
A2 0.5894 | 0.2921 | 1.9559 | 0.3416

Table 21: Time series model for the price impact parameter estimates A\; and
Ag: VAR(1), estimation period

| ME | std [RMSE | Theils U |
10000 | 0.0314 | 0.0495 | 0.0586 | 0.6091
20000 [ 0.0301 [ 0.0737 | 0.0796 | 0.5085
30000 [ 0.0277 [ 0.0939 | 0.0979 | 0.4441
40000 [ 0.0237 [ 0.1113 [ 0.1138 | 0.3968
50000 | 0.0225 | 0.1312 | 0.1331 | 0.3675
60000 [ 0.0211 [ 0.1529 | 0.1543 | 0.3491
70000 | 0.0247 | 0.1878 | 0.1894 | 0.3529
80000 [ 0.0355 [ 0.2212 [ 0.2241 | 0.3497
90000 [ 0.0552 [ 0.2755 | 0.2810 | 0.3668
100000 || 0.0906 | 0.3544 | 0.3659 | 0.3953

Table 22: Accuracy of the power function price impact
Deutsche Telekom, evaluation period
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| [ ME | std | RMSE | Theils U |
1000 ] 0.4013 [ 0.6215 | 0.7399 | 0.7383
2000 || 0.4590 | 0.8500 | 0.9661 | 0.6152
3000 || 0.4478 | 1.0615 | 1.1521 | 0.5321
4000 || 0.3993 | 1.3131 | 1.3725 | 0.4778
5000 || 0.3673 | 1.9461 | 1.9804 | 0.4957
6000 | 0.3459 | 2.5493 | 2.5727 | 0.4885
7000 || 0.3280 | 3.3075 | 3.3237 | 0.4869
8000 || 0.4803 | 4.3557 | 4.382L | 0.4744
9000 | 0.7744 | 5.6003 | 5.6536 | 0.4615
10000 || 0-8968 | 5.8767 | 5.9448 | 0.4035

Table 23: Accuracy of the power function price impact curve forecast, SAP,
estimation period

| | ME | std [RMSE | Theils U |
1000 ]| 0.2666 | 0.4580 [ 0.5300 | 0.6466
2000 || 0.2601 | 0.5838 | 0.6392 | 0.5213
3000 | 0.2132 | 0.6627 | 0.6962 | 0.4336
4000 | 0.1468 | 0.7589 | 0.7730 | 0.3859
5000 || 0.0896 | 0.8938 | 0.8982 | 0.3674
6000 | 0.0346 | 1.0723 | 1.0729 | 0.3634
7000 || 0.0305 | 1.4541 | 1.4544 | 0.3939
8000 | 0.0362 | 2.0183 | 2.0187 | 0.4482
9000 | 0.0153 | 2.5969 | 2.5969 | 0.4788
10000 || 0.1378 | 3.9256 | 3.9280 | 0.5571

Table 24: Accuracy of the power function price impact curve forecast, SAP,
evaluation period
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