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Abstract: 

Most credit portfolio models currently used by the banking industry rely on Monte Carlo 
simulations for calculating the probability distribution of the future credit portfolio value, 
which can be quite computer time consuming. Adding market risk factors, such as stochastic 
interest rates or credit spreads, as additional ingredients of a credit portfolio model, the com-
putational burden of full Monte Carlo simulations even increases and the need for efficient 
methods for calculating credit risk measures becomes even more obvious. In this study, based 
on a version of the well-known credit portfolio model CreditMetrics extended by correlated 
interest rate and credit spread risk, it is analyzed whether the use of characteristic functions 
and inverse Fourier transformation can be an efficient tool for calculating risk measures in the 
context of integrated credit portfolio models. Unfortunately, the characteristic function of the 
credit portfolio value at the risk horizon can not be calculated in closed-form, but has to be 
computed by Monte Carlo simulations. However, this method can be much faster than a full 
Monte Carlo simulation of the future credit portfolio distribution. The accuracy of the method 
depends on the composition of the portfolio. 
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I. Introduction 

 

For calculating risk measures of credit portfolios, such as Value-at-Risk or expected shortfall, 

a range of models have been developed. Prominent examples are CreditMetrics by J.P. Mor-

gan Chase, CreditPortfolioView by McKinsey, Portfolio Manager by KMV or CreditRisk+ by 

CSFP. With the exception of CreditRisk+ and one version of the Portfolio Manager all these 

models rely on Monte Carlo simulations for calculating the probability distribution of the fu-

ture credit portfolio value, which can be quite computer time consuming, especially for port-

folios with many obligors and when percentiles corresponding to high confidence levels have 

to be estimated with sufficient accuracy. 

 

A typical shortcoming of most credit portfolio models currently used in the banking industry 

is that relevant risk factors, such as interest rates or credit spreads, are not modeled as stochas-

tic terms and hence are ignored during the revaluation of the credit sensitive instruments at 

the risk horizon. For example, fixed income instruments, such as bonds or loans, are revalued 

at the risk horizon using the current forward rates and (rating class specific) forward credit 

spreads for discounting future cash flows. Thus, the stochastic nature of the instrument’s 

value in the future which results from changes in factors other than credit quality is ignored, 

and the riskiness of the credit portfolio at the risk horizon can be underestimated. An addi-

tional consequence is that correlations between changes of the credit quality of the debtors 

and changes of market risk factors and hence the exposure at default cannot be integrated into 

the credit portfolio model. This is especially a problem for market-driven instruments, such as 

interest rate derivatives. Finally, correlations between the exposures at default of different in-

struments, which depend on the same or correlated market risk factors, cannot be modeled, 

too. Various studies1 showed that the missing stochastic modeling of market risk factors or 

credit spread risk causes a severe underestimation of economic capital, especially for high 
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grade credit portfolios with a low stochastic dependence between the obligors’ credit quality 

changes. 

 

Adding market risk factors, such as stochastic interest rates or credit spreads, as additional in-

gredients of a credit portfolio model, the computational burden of full Monte Carlo simula-

tions increases and the need for efficient methods for calculating credit risk measures be-

comes even more obvious. The aim of this study is to analyze whether the use of characteris-

tic functions and inverse Fourier transformation can be an efficient tool for calculating risk 

measures in the context of a credit portfolio model with integrated market risk. This technique 

has already been successfully applied to market risk portfolio models.2 But there are only a 

few papers which are concerned with the application of this method to credit risk portfolio 

models, especially with integrated market or credit spread risk.3 However, it is certainly be-

yond the scope of this paper to present a full comparison of all methods which might improve 

the efficiency of risk measure calculations in credit portfolio models with integrated market 

risk factors. Possible further candidates would be saddle-point methods4, granularity adjust-

ment techniques5 or Monte Carlo simulations combined with suitable variance reduction tech-

niques6. 

 

This paper is structured as follows: In section II a short overview of the computational ap-

proach is given. Then, in section III a general version of an integrated market and credit port-

folio model is presented. Afterwards it is shown how industry standards fit into this general 

model and, finally, as a special case of the general framework the CreditMetrics model is ex-

tended by correlated interest rate and credit spread risk. The use of characteristic functions 

and inverse Fourier transformation is explained when this specific modeling framework is ap-

plied to a portfolio of defaultable zero coupon bonds. Section IV contains a discussion of nec-

essary changes of the approach when some of the assumptions of the previous section are 
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modified. In particular, the case that the portfolio is composed of European call options with 

counterparty risk is analyzed. The differences between the percentiles of the future credit 

portfolio distribution when calculated either by a full Monte Carlo simulation or by the 

method proposed in sections III and IV are presented within a numerical example in section 

V. Finally, in section VI the main results are summarized. 

 

 

II. General Computation Approach 

 

The characteristic function of a continuous random variable X  with density function ( )f x  is 

a complex-valued function defined as:7 

 ( ) : ( ) cos( ) ( ) sin( ) ( )i s X i s x
X s E e e f x dx s x f x dx i s x f x dxϕ

∞ ∞ ∞
⋅ ⋅ ⋅ ⋅

−∞ −∞ −∞

 = = ⋅ = ⋅ ⋅ + ⋅ ⋅  ∫ ∫ ∫ , (2.1) 

where s ∈ !  and 1i = −  is the imaginary unit. Up to the real argument s  which is replaced 

by i s⋅  the characteristic function equals the moment generating function, but it has the ad-

vantage that, as a consequence of the boundedness of i s xe ⋅ ⋅ , it always exists. In a non-

probabilistic context the characteristic function ( )X sϕ  (up to a factor 1 2π ) is called the 

Fourier transform of the (density) function ( )f x . Two fundamental properties of characteris-

tic functions are used in the following. First, the characteristic function of a sum of independ-

ent random variables equals the product of the characteristic functions of the individual ran-

dom variables. Second, the characteristic function of a random variable uniquely determines 

its probability distribution, which can be recovered from the characteristic function for exam-

ple by the following inversion formulas:8 

 
0

( ) ( )1 1( ) ( )
2 2

i s x i s x
X Xe s e sP X x F x ds

i s
ϕ ϕ

π

∞ ⋅ ⋅ − ⋅ ⋅⋅ − − ⋅< ≡ = +
⋅∫ , (2.2) 

or9 
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0

( )1 1( ) ( ) Im
2

i s x
Xe sP X x F x ds

s
ϕ

π

∞ − ⋅ ⋅ ⋅< ≡ = −  
 

∫ , (2.3) 

and, supposed ( )X sϕ  is integrable, the density function of the random variable X  is given 

by 

 1( ) ( )
2

i t x
Xf x e t dtϕ

π

∞
− ⋅ ⋅

−∞

= ⋅∫ , (2.4) 

which is also called (up to a factor 1 2π ) the inverse Fourier transform. 

 

 

III. The Integrated Market and Credit Portfolio Model 

 

III.1 General Approach 

 

It is assumed that the credit portfolio consists of N  market and credit risk sensitive instru-

ments issued by N  different corporates. The risk horizon H  of the credit portfolio model is 

one year and P  denotes the real world probability measure. The number of possible credit 

qualities at the risk horizon is K , where for default mode credit portfolio models we have 

2K =  and for mark-to-market credit portfolio models 2K > . 

 

The central part of most credit portfolio models currently used is the definition of the obli-

gors’ conditional default and transition probabilities. Denoting by {1, , }n
H Kη ∈ …  the credit 

quality of obligor n  at the risk horizon H  and by 0
nη  the respective rating at 0t = , the condi-

tional default (transition) probabilities are formally defined as: 

 ( )0 1 1 , , 1, , , : ( , , )n n
H C C n i k CP k i Z z Z z f z zη η= = = = =… …  with , , : [0,1]C

n i kf →!  (3.1) 

 ( {1, , }k K∈ … , {1, , 1}i K∈ −… , {1, , }n N∈ … ). 
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The set of variables 1Z ( , , ) C
CZ Z F= … ∼  are systematic credit risk factors that might be 

thought of as changes in equity indices or macro-economic variables within the risk horizon, 

and which influence credit quality changes of all obligors within the risk horizon. This vector 

is assumed to evolve according to the multivariate distribution CF . Given the realization 

1 1( , , )C CZ z Z z= =…  of the systematic credit risk factors and hence of the conditional default 

(transition) probabilities, credit quality changes of all obligors are assumed to be stochasti-

cally independent. Thus, this is a classical ‘conditional independence’-framework for describ-

ing joint credit quality changes within a credit portfolio. Sampling from the N  discrete distri-

butions (3.1), the credit quality of all obligors at the risk horizon can be simulated for a spe-

cific scenario 1 1( , , )C CZ z Z z= =… . 

 

The price of the instrument ni  (e.g. defaultable (zero) coupon bonds or options with counter-

party risk) at the risk horizon H , whose issuer n  has not already defaulted before H  and ex-

hibits the rating {1, , 1}n
H Kη ∈ −… , is denoted by 

 1 n( ; , , ;P )n
n H Mp X Xη … , (3.2) 

where the stochastic vector 1X ( , , ) M
MX X F= … ∼  represents the value of relevant market 

risk factors, such as e.g. risk-free interest rates, at the risk horizon. This vector is assumed to 

evolve according to the multivariate distribution MF . nP  denotes a vector of additional pa-

rameters relevant for the pricing of the respective instrument ni  at the risk horizon. Note that 

the set of systematic credit risk factors 1, , CZ Z…  and the set of market risk factors 1, , MX X…  

can overlap, e.g. if a risk-free interest rate is also a relevant credit risk driver. The joint distri-

bution of the stochastic vector 1 1( , , ; , , )C MZ Z X X… …  is denoted by F . 

 



 7

If the issuer n  of the instrument ni  has already defaulted ( n
H Kη = ) before the risk horizon 

H , its value, in the case this value is positive, is set equal to a fraction δ  of the value the in-

strument would have at the risk horizon, when its issuer would be free of default risk. If the 

market value of this instrument is negative, nothing is changed, because the bank whose credit 

portfolio is considered is a debtor of the defaulted issuer. The shape of the distribution of the 

recovery rate can vary with the seniority of a claim and the value of individual collaterals. For 

all defaulted issuers the recovery rate is drawn individually which ensures independence of 

the recovery rates across the different exposures. Usually, it is assumed that the recovery rate 

is beta-distributed and independent from all other stochastic variables of the respective model, 

such as the systematic credit risk drivers or the market risk factors, but it could also be a func-

tion of these risk factors.10 

 

Finally, the value ( )HΠ  of the entire portfolio at the risk horizon H  is just the sum over the 

individual values: 

 1 n
1

( ) ( ; , , ;P )
N

n
n H M

n
H p X Xη

=
Π =∑ … . (3.3) 

 

III.2 Industry Standards as Special Cases 

 

Industry standards, such as the well-known credit portfolio models CreditMetrics by J.P. 

Morgan, CreditPortfolioView by McKinsey or CreditRisk+ by CSFP, can be seen as a special 

case of the general modeling approach described above. All of these models have in common 

that stochastic fluctuations of market risk factors are not considered for the re-pricing of the 

instruments at the risk horizon: 

 1 n n( ; , , ;P ) ( ;P )n n
n H M n Hp X X pη η=… . (3.4) 
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For example, for pricing a corporate bond random interest rates are ignored and instead risk-

adjusted forward rates are employed for discounting future cash flows of the bond which are 

due beyond the risk horizon. However, these models also differ in the assumptions concerning 

the functional form , , ( )n i kf ⋅  of the conditional default (transition) probabilities and the distri-

bution of the systematic credit risk factors 1, , CZ Z… . 

 

For example, in the CreditMetrics model all risk factors are normally distributed, 

1Z ( , , ) (0, )C ZZ Z N= Σ… ∼  with the diagonal elements of C C
Z

×Σ ∈ !  equal to one, and the 

conditional transition probabilities for migrating from credit quality i  to one of the K  credit 

qualities, which correspond to rating grades, within the risk horizon are given by: 

 ( )0 1 1, , ,n n
H C CP k i Z z Z zη η= = = =…

 

,
1

, 1

, 1 ,
1 1

, 1 , 1

2 ,
1

, 1

for

for {2, , 1}

1 for 1,

C
i
K n i i

i

n C

C C
i i
k n i i k n i i

i i

n C n C

C
i

n i i
i

n C

R z
k K

R z R z
k K

R z
k

ω

ω

ω ω

ω ω

ω

ω

=

+

+
= =

+ +

=

+

  − ⋅  Φ =     


    − ⋅ − ⋅    = Φ − Φ ∈ −           
  − ⋅  − Φ =     

∑

∑ ∑

∑

…   (3.5) 

where ( )Φ ⋅  denotes the cumulative distribution function of the standard normal distribution 

and 1 is the best and K  the worst credit quality, namely the default state. The thresholds i
kR  

appearing in the above formula for the conditional transition probabilities are derived from an 

one-year transition matrix 1 1,1( )ik i K k KQ q ≤ ≤ − ≤ ≤= , whose elements ikq  specify the unconditional 

probability that an obligor migrates from the rating grade i  to the rating grade k  within one 

year (see table 1). The thresholds i
kR  (1 1i K≤ ≤ − , 2 k K≤ ≤ ) are computed by ensuring that 

the probability for the realization of a standardized normally distributed random variable nR , 
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a latent variable, which is usually interpreted as the (standardized) return on firm n ’s assets 

within the risk horizon, to be in the interval 1[ , ]i i
k kR R+  coincides with the probability ikq  from 

the migration matrix:11 

 1
K

i
k il

l k
R q−

=

 = Φ  
 
∑ , (3.6) 

where 1( )−Φ ⋅  denotes the inverse of the cumulative density function of the standard normal 

distribution. The weights ,1 ,, ,n n Cω ω…  are from a representation of the latent variable nR  as a 

linear combination of the systematic credit risk factors 1, , CZ Z…  and a standard normally dis-

tributed idiosyncratic risk factor nε  specific to firm n . The size of these weights corresponds 

to the importance of the respective systematic credit risk factors for explaining the standard-

ized volatility of the latent variable nR . The weight , 1n Cω +  for the idiosyncratic risk factor is 

chosen as a residual term in order to guarantee that the standard deviation of the normally dis-

tributed latent variable is one. 

- insert table 1 about here - 

 

In the MACRO-version of the model CreditPortfolioView the conditional default probability 

of a speculative grade obligor n  belonging to a segment {1, , }s S∈ …  is assumed to be: 

( )
,0 ,1 1, ,2 2, , , ,0 1, 1, , ,

1{ , , }, , , : ,
1 s s H s H s C C H s H

n n
H H H C H C H b b z b z b zP K BB C Z z Z z

e υη η + ⋅ + ⋅ + + ⋅ += ∈ = = =
+ …… … (3.7) 

where the correlated systematic credit risk factors 1, , CZ Z…  are modeled by AR(2)-processes 

and ,s Hυ  ( {1, , }s S∈ … ) are normally distributed noise terms with mean zero, which are corre-

lated across sectors. All obligors who belong to the same sector (e.g. a specific country and 

industry combination) are assumed to be statistically identical. In CreditPortfolioView the 

systematic credit risk factors 1, , CZ Z…  are usually macroeconomic variables, such as the 

GDP growth rate, the unemployment rate or the inflation rate. The factor weights have to be 
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estimated by conducting a logit regression. The conditional default probability of speculative 

grade obligors is used for shifting the transition probabilities into the non-default states: If the 

conditional default probability is below its unconditional counterpart, downgrades become 

more probable and vice versa. These conditioned transition probabilities are then used for 

simulating the credit quality changes of the obligors in the portfolio within the risk horizon. 

 

Finally, in the actuarial default mode model CreditRisk+ the conditional default probability of 

obligor n  is defined by: 

    ( ) 1
0 1, 1, , , , ,1 ,

1

, , , : ,
[ ] [ ]

n n C
H H H C H C H n K n n C

C

zzP K K Z z Z z q
E z E z

η η ω ω
 

= ≠ = = = ⋅ ⋅ + + ⋅ 
 

… …  (3.8) 

where the systematic credit risk factors 1, , CZ Z…  are independent gamma distributed, ,n Kq  is 

obligor n ’s unconditional default probability and ,
1

1
S

n s
s

ω
=

=∑ , , 0n sω ≥  {1, , }n N∀ ∈ … , 

{1, , }s S∈ … . The CreditRisk+ model works with the additional assumption that, conditional 

on a scenario 1, , CZ Z… , the number of defaults in the portfolio can be approximated by a 

Poisson distribution (instead of employing the exact binomial distribution), whose intensity 

parameter equals the sum of the above individual conditional default probabilities. As a con-

sequence, the unconditional distribution of the total number of defaults until the risk horizon 

can be calculated in closed-form and equals the negative binomial distribution. 

 

III.3 CreditMetrics with Integrated Correlated Interest Rate and Credit Spread Risk 

 

As a special case of the general integrated model described in section III.1, in this section the 

usual CreditMetrics framework is extended by correlated interest rate and credit spread risk 

and applied to a credit portfolio consisting of N  zero coupon bonds with identical face value 

F  and maturity date T  issued by N  different corporates. This specification of the general in-
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tegrated model will be used in the following as a working example in order to demonstrate the 

use of the Fourier inversion method. 

 

It is assumed that the return nR  on firm n ’s assets can be described by a normally distributed 

random variable, which is – without loss of generality – standardized: 

 2
, , 1n V r V r V r V nR Z Xρ ρ ρ ρ ε= − ⋅ + ⋅ + − ⋅       ( 2

,r V Vρ ρ≤ , {1, , }n N∈ … ),12 (3.9) 

where 1, , , ,r NZ X ε ε…  are mutually independent standard normally distributed stochastic 

variables. The stochastic variables Z  and rX  represent systematic credit risk, by which all 

firms are affected, whereas the nε ’s stand for idiosyncratic credit risk. 

 

The risk-free short rate is modeled for simplicity as a mean-reverting Ornstein-Uhlenbeck 

process introduced already by Vasicek (1977): 

 ( ) ( ( )) ( )r rdr t r t dt dW tκ θ σ= ⋅ − ⋅ + ⋅ , (3.10) 

where , ,κ θ σ +∈ !  are constants and ( )rW t  is a standard Brownian motion under P . The 

process ( ( ))tr t
+∈ !  always tends back to the mean level θ ; the higher the value κ  the more 

unlikely are deviations from this level. The solution of the stochastic differential equation 

(3.10) is: 

 ( )
2

2

[ ( )]

( ) ( (0) ) 1
2

P

t tr
r

E r t

r t r e e Xκ κσθ θ
κ

− ⋅ − ⋅ ⋅

=

= + − ⋅ + ⋅ − ⋅$%%%&%%%' , (3.11) 

where (0,1)rX N∼  enters the definition (3.9) of the firms’ asset returns. As it can be easily 

seen, the definition (3.9) of the asset returns implies that all pairs of asset returns exhibit a 

correlation parameter of Vρ  and that the asset returns nR  and the interest rate factor rX  (and 

hence the short rate ( )r H ) are correlated with parameter ,r Vρ . In this section, it is assumed 
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that the correlation Vρ  between each pair of asset returns as well as the correlation ,r Vρ  be-

tween each asset return and the risk-free short rate are identical. 

 

As in the CreditMetrics methodology, the rating n
Hη  of the N  obligors at the risk horizon 

t H=  is simulated by the N -variate normally distributed random vector 1( , , )NR R R= … , 

whose components exhibit means zero, variances one and equal pairwise correlations Vρ . An 

obligor n  with current rating i  is assumed to be in rating class k  at the risk horizon if the re-

alization of nR  lies between two thresholds 1
i
kR +  and i

kR  with 1
i i
k kR R+ < .13  

 

The price of a zero coupon bond at the risk horizon H , whose issuer n  has not already de-

faulted until H  and exhibits the rating {1, , 1}n
H Kη ∈ −… , is given by: 

 
( )( , , ) ( , )

( , , , )
r n

H
R X H T S H T T H

n
r Hv X H T F e ηη

 − + ⋅ − 
 = ⋅ , (3.12) 

where ( , , )rR X H T  denotes the stochastic risk-free spot yield for the time interval [ , ]H T , and 

( , )n
H

S H T
η

 is the stochastic credit spread of rating class n
Hη  for the time interval [ , ]H T . In the 

Vasicek model the stochastic risk-free spot yield ( , , )rR X H T  can easily be calculated in 

closed-form14 and is a linear function of the risk factor rX  appearing in (3.11). The rating 

specific credit spreads ( , )n
H

S H T
η

 ( {1, , 1}n
H Kη ∈ −… ) are assumed to be multivariate normally 

distributed random variables.15 Furthermore, it is assumed that the random variable rX , 

which drives the term structure of risk-free interest rates, and the systematic credit risk factor 

Z  respectively are both correlated with the credit spreads. For the sake of simplicity, these 

correlation parameters are set equal to constants ,rX Sρ  and ,Z Sρ  respectively, regardless of the 

rating grade. Besides, it is assumed that the idiosyncratic credit risk factors nε  ( {1, , }n N∈ … ) 

are independent of the credit spreads ( , )kS H T  ( {1, , 1}k K∈ −… ). 
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If the issuer n  of a zero coupon bond has already defaulted ( n
H Kη = ) until the risk horizon 

H , the value of the bond is set equal to a beta-distributed fraction nδ  of the value 

( , , )rp X H T  of a risk-free but otherwise identical zero coupon bond:16 

 ( , , , ) ( , , )n r n rv X K H T p X H Tδ= ⋅ , (3.13) 

where [ ]nE δδ µ=  and 2( )nVar δδ σ= . These first two moments of the distribution of the re-

covery rate can vary with the seniority of a claim and the value of individual collaterals. For 

simplicity, we use a uniform recovery rate distribution for all issuers, but for each defaulted 

issuer a beta-distributed recovery rate is drawn individually which ensures independence of 

the recovery rates across the different exposures. The recovery rate is assumed to be inde-

pendent from all other stochastic variables of the model, e.g. the systematic credit risk factors 

Z  and rX , the idiosyncratic risk factors nε  and the credit spreads ( , )kS H T  

( {1, , 1}k K∈ −… ). 

 

The value ( )HΠ  of the entire portfolio of defaultable zero coupon bonds at the risk horizon 

H  is: 

 
1

{ } { }
1 1

( ) ( , , , ) 1 ( , , ) 1n n
H H

N K

r n rk K
n k

H v X k H T p X H Tη ηδ
−

= =
= =

Π = ⋅ + ⋅ ⋅∑∑  

 ( ) ( )( )1
( , , ) ( , )

{ } { }
1 1

1 1 ,r k
n n
H H

N K
R X H T T H S H T T H

nk K
n k

F e e η ηδ
−

− ⋅ − − ⋅ −
= =

= =
= ⋅ ⋅ ⋅ + ⋅∑∑  (3.14) 

where the indicator function 
{ }

1 n
H kη =

 is one if obligor n  is in the rating class k  at t H=  and 

zero otherwise. 

 

The probability of migrating from rating class i  to {2, , 1}k K∈ −…  until the risk horizon H , 

conditional on the realizations of the systematic credit risk factors Z  and rX , is given by 



 14

 ( ) ( ), 0 1( , ) : , , ,n n i i
i k r H r r k n k r rf z x P k i Z z X x P R R R Z z X xη η += = = = = = < ≤ = =  

 

, , 1

2 2
, , 1 , ,

: ( , ) : ( , )

1 1

i k r i k r

i i
k V r V r V r k V r V r V r

V V

t z x t z x

R z x R z xρ ρ ρ ρ ρ ρ
ρ ρ

+

+

= =

   − − ⋅ − ⋅ − − ⋅ − ⋅
   = Φ − Φ
   − −   $%%%%%&%%%%%' $%%%%%%&%%%%%%'

. (3.15) 

The conditional default probability is 

 ( )
,

2
, ,

,

: ( , )

( , ) : ,
1

i K r

i
K V r V r V ri

i K r n K r r
V

t z x

R z x
f z x P R R Z z X x

ρ ρ ρ
ρ

=

 − − ⋅ − ⋅
 = ≤ = = = Φ
 − $%%%%%&%%%%%'

, (3.16) 

and the conditional probability of being in the best rating class 1 equals 

 ( )
,2

2
2 , ,

,1 2

: ( , )

( , ) : , 1 .
1

i r

i
V r V r V ri

i r n r r
V

t z x

R z x
f z x P R R Z z X x

ρ ρ ρ
ρ

=

 − − ⋅ − ⋅
 = > = = = − Φ
 − $%%%%%&%%%%%'

 (3.17) 

As (3.15), (3.16) and (3.17) show, the specification (3.9) of the multi-factor model for the in-

dividual asset returns implies that the transition process and the term structure of risk-free in-

terest rates are correlated. The degree of correlation is determined by the value of the sensitiv-

ity ,r Vρ . As it is assumed that the random variable rX  and the systematic credit risk factor Z  

respectively are correlated with the credit spreads, we even have a model, in which the transi-

tion process, the risk-free interest rates and the credit spreads are all pairwise correlated.17 

 

III.4 Application of Inverse Fourier Transformation 

 

Next, the method of characteristic functions and inverse Fourier transformation are applied to 

the model and the portfolio described in section III.3 in order to accelerate the computation of 

the probability distribution of ( )HΠ .18 Conditional on the realizations of the stochastic vari-

ables Z , rX  and 1( ( , ), ,S S H T= …  1( , ))KS H T−  all N  summands of the outer sum in (3.14) 

are independent because the only remaining stochastic variables are the independent idiosyn-
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cratic risk factors nε  and the independent recovery rates nδ  ( {1, , }n N∈ … ). Hence, at first the 

conditional characteristic function of the value of a single instrument is computed, where the 

initial rating of all obligors is assumed to be {1, , 1}j K∈ −… : 

( ) ( )
1

( , , ) ( , )
{ } { }

1

1 1 , ,
( )K

R X H T T H S H T T Hr k
n n n rk KH Hk

F e e Z X S
s

η η
δ

ϕ −
− ⋅ − − ⋅ −

= =
=

 ⋅ ⋅ ⋅ + ⋅ 
 

∑
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η η

δ
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   ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅    
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…
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1
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{ } { } { },2 , 1 , ,
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−∞

∑
= ⋅ ⋅∫ ∫ ,19 

where ( )nφ ε  and ( )nβ δ  denote the density functions of the random variables nε  and nδ  re-

spectively. Splitting up the integration path of nε  yields: 
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∫
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( ) ( )

( ( , , ) ( , ))

( ( , , ) ( , ))1

1
( , , )

, , , 1
2

,2

( ) ( ) ( )

1 ( ) ,

R x H T s H T T Hr k
r

R x H T s H T T Hr

K
R x H T T H i s F e

j K j k j k
k

i s F e
j

s F e t e t t

e t
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− +⋅ ⋅ −
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− ⋅ − ⋅ ⋅ ⋅

+
=

⋅ ⋅ ⋅

= ⋅ ⋅ ⋅Φ + ⋅ Φ − Φ

+ ⋅ − Φ

∑
 (3.18) 

where ( )δϕ ⋅  denotes the characteristic function of the beta-distributed recovery rate nδ .20 

Note that as a consequence of the homogeneity assumption the term (3.18) does not depend 

on the identity of the obligor. Because of the conditional independence of the summands in 

the outer sum of (3.9) the conditional characteristic function of ( )HΠ  can be written as: 
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− + ⋅ −

−
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+
=

⋅ ⋅ ⋅

= ⋅ ⋅ ⋅Φ + ⋅ Φ − Φ


+ ⋅ − Φ

∑
 (3.19) 

Finally, the unconditional characteristic function of ( )HΠ  is the expectation of the condi-

tional characteristic function ( ) , , ( )
rH Z X S sϕ Π : 

 ( ) ( ) , ,( ) ( )
rH H Z X Ss E sϕ ϕΠ Π

 =   . (3.20) 

Unfortunately, the above expectation can not be calculated in closed-form, but has to be com-

puted by Monte Carlo simulations. Of course, with one drawn sample of Z , rX  and 

1 1( ( , ), , ( , ))KS S H T S H T−= …  the conditional characteristic function ( ) , , ( )
rH Z X S sϕ Π  can be 

computed for several values of s . Finally, having calculated ( ) ( )H sϕΠ , we get the distribution 

function of the credit portfolio value ( )HΠ  via formula (2.3) and numerical integration. Of 

course, it is not completely satisfying that we still have to employ simulation methods in order 

to compute the characteristic function (3.20), but, as the numerical example in section V will 

show, this method can be much faster than a full Monte Carlo simulation of the future credit 

portfolio value. However, the speed gain depends on the number of grid points s  needed for 

the numerical integration in (2.3) because with a large number of grid points also a large 

number of expectations has to be calculated and hence a large number of function evaluations 

has to be done, which is a potential drawback of the method described above. Thus, the use of 

an numerical integration rule which only needs a moderate number of grid points for a suffi-

cient accuracy is essential. 
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IV. Extensions 

 

The purpose of this section is to discuss the computational consequences which result from 

changes of some of the assumptions made above. First, we want to analyze the consequences 

of giving up the homogeneity assumptions concerning the composition of the credit portfolio, 

i.e. we want to deal with inhomogeneous exposures, inhomogeneous initial ratings and inho-

mogeneous asset return correlations. 

 

Beginning with inhomogeneous exposures and assuming that there are E  different exposure 

buckets with respective face values 1, , EF F… , formula (3.19) would have to be altered as fol-

lows: 

( ) , , ( )
rH Z X S sϕ Π  

( )( ) ( ) ( )
( ) ( ))

( ( , , ) ( , ))

( ( , , ) ( , ))1

1
( , , )

, , , 1
21

,2

( ) ( ) ( )

1 ( ) ,

R X H T S H T T Hr k
r e

eR X H T S H T T Hr
e

E K
R X H T T H i s F e

e j K j k j k
ke

n
i s F e

j

s F e t e t t

e t

δϕ
− + ⋅ −

− + ⋅ −

−
− ⋅ − ⋅ ⋅ ⋅

+
==

⋅ ⋅ ⋅

= ⋅ ⋅ ⋅Φ + ⋅ Φ − Φ


+ ⋅ − Φ

∑∏
 (4.1) 

where en  ( {1, , }e E∈ … ) denotes the number of obligors whose zero coupon bond has a face 

value of eF . Thus, within each simulation run of the conditional characteristic function 

( ) , , ( )
rH Z X S sϕ Π  E  conditional characteristic functions (instead of 1) have to be calculated for 

each grid point s  so that the computational burden increases with the number of exposure 

buckets rising. However, the probability terms, which include the calculation of the cumula-

tive distribution function of the standard normal distribution, have only to be computed once 

for each simulation run. 

 

For inhomogeneous initial ratings the adapted formula (3.19) is: 

( ) , , ( )
rH Z X S sϕ Π  
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( )( ) ( ) ( )
( ) ( ))

( ( , , ) ( , ))

( ( , , ) ( , ))1

1 1
( , , )

, , , 1
21

,2

( ) ( ) ( )

1 ( ) ,

R X H T S H T T Hr k
r

jR X H T S H T T Hr

K K
R X H T T H i s F e

j K j k j k
kj

n
i s F e

j

s F e t e t t

e t

δϕ
− + ⋅ −

− + ⋅ −

− −
− ⋅ − ⋅ ⋅ ⋅

+
==

⋅ ⋅ ⋅

= ⋅ ⋅ ⋅Φ + ⋅ Φ − Φ


+ ⋅ − Φ

∑∏
 (4.2) 

where jn  ( {1, , 1}j K∈ −… ) now denotes the number of obligors whose initial rating is j . 

Note that only the thresholds ,j kt  depend on the initial rating index j , which implies that 

within each simulation run the exp-terms, which depend on s , have not to be recalculated for 

each rating grade j . 

 

Finally, assuming G  different groups of obligors, in which each pair of asset returns exhibits 

a correlation parameter 
gVρ  ( {1, , }g G∈ … ), yields an adapted formula (3.19) which resem-

bles (4.2), but with 1K −  replaced by G  in the upper index of the product. Again, only the 

thresholds ,
g
j kt  depend on the asset return correlation index g . 

 

Another kind of modification could concern the probability distribution for the risk factors. 

However, using e.g. a multivariate t –distribution for the asset returns, is not problematic. We 

only would have to use the inverse of the cumulative density function of the respective prob-

ability distribution when calculating the thresholds ,j kt  and use its cumulative density 

function instead of ( )Φ ⋅  in (3.19). 

 

Furthermore, correlated recovery rates depending on the systematic credit risk factors as well 

as on the individual asset returns could easily be introduced, for example by the following 

representation:21 

( , , , )r n nZ Xδ ε η ( )2 2 21
: min ;1r n nZ X R

e
µ σ α β γ α β γ η+ ⋅ ⋅ + ⋅ + ⋅ + − − − ⋅ =  

 
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 ( ) ( )2 2 2 2
, ,) 1 1

min ;1V r V r V r V n nZ X
e

µ σ γ ρ ρ α γ ρ β γ ρ ε α β γ η + ⋅ ⋅ − + ⋅ + ⋅ + ⋅ + ⋅ − ⋅ + − − − ⋅ 
 

 
=  

 
, (4.3) 

where ,α γ +∈ ! , β ∈ ! , 2 2 2 1α β γ+ + ≤  and the (0,1)n Nη ∼  ( {1, , }n N∈ … ) are independ-

ent of each other as well as from all other random variables in the model, especially Z , rX  

and the nε . As the recovery rates ( , , , )r n nZ Xδ ε η  are independent conditional on the realiza-

tions of Z  and rX , the conditional characteristic function of the credit portfolio value equals 

(3.19) with ( )( )( , , )
,( )rR x H T T H

j Ks F e tδϕ − ⋅ −⋅ ⋅ ⋅Φ  replaced by the integral 

 
( )

,
( , , )( , , , ) ( ) ( )

j K
R x H T T Hr

r

t
i s z x F ee d dδ ε η φ ε φ η ε η

− ⋅ −
+∞

⋅ ⋅ ⋅ ⋅

−∞ −∞

⋅ ⋅∫ ∫ , (4.4) 

which has to be solved numerically. 

 

A third kind of modification could concern the type of credit-sensitive instrument the portfo-

lio is composed of. Here, we want to consider the two examples of coupon bonds and Euro-

pean call options with counterparty risk on (default) risk-free zero coupon bonds. Let us first 

assume that the portfolio consists of N  coupon bonds with identical face value F , maturity 

date T , coupon c  and coupon dates 1 MH t t T≤ < < =…  issued by N  different corporates. 

The vector of stochastic credit spreads 

 ( )1 1 1 1 1 2 1 1 1 1( , ), , ( , ), ( , ), , ( , ), ( , ), , ( , )K K M M K MS S H t S H t S H t S H t S H t S H t− − − −= … … …  

now consists of ( 1)K M− ⋅  components where M  denotes the number of coupon dates. Thus, 

now we also need to know the intertemporal correlations of credit spreads of different rating 

grades. Assuming a recovery payment of ( )n F cδ ⋅ +  in t H=  in the case of a default until the 

risk horizon, the conditional characteristic function of the credit portfolio value is 

( )
1

( ( , , ) ( , )) ( ) ( ( , , ) ( , )) ( )
{ } { }

1 1

( ) , ,
1 1 , ,1

( ) ( )K Mr R X H t S H t t H R X H T S H T T Hr m k m m r k
n n n rk KH Hk m

N

H Z X S
c e F e c F X Z Sn

s s
η η

δ
ϕ ϕ −

− + ⋅ − − + ⋅ −
= =

= =

Π  
 ⋅ + ⋅ ⋅ + ⋅ + ⋅=  
 

=
∑ ∑

∏  
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

 

  (4.5) 

As now each exp-term has M  (instead of 1) exp-terms in its exponent, the computational 

burden increases with the number of coupon dates, but these additional exp-terms in the ex-

ponents have only to be calculated once (and not for each value of s ) within a simulation run. 

 

Next, let us assume that the portfolio consists of N  European call options issued by N  dif-

ferent corporates with identical expiration date CT , identical exercise price X  and identical 

underlying (default) risk-free zero coupon bond ( ( ), , )p r t t T  with face value F  and maturity 

date CT T≥ . Working within the term structure model of Vasicek (1977), the t H= -price 

( ( ), , , , )CC r H H X T T  of a European call option on a risk-free zero coupon bond without any 

counterparty risk is given by:22 

( ( ), , , , )CC r H H X T T { }
( )

max ( ( ), , ) ,0

CT

H

r s ds
P C CE e p r T T T X

−
 

∫ = ⋅ − 
  

(  

1 2( ( ), , ) ( ) ( ( ), , ) ( )Cp r H H T d X p r H H T d= ⋅Φ − ⋅ ⋅Φ  (4.6) 

with 

1
1 ( ( ), , ) 1ln

( ( ), , ) 2C
p r H H Td

X p r H H T
υ

υ
 

= ⋅ + ⋅ ⋅ 
, 

2 1d d υ= − , 

( ) ( )
2 2 2

( ) ( ) ( )
3

1 1
2

C CT T T H T He e eκ κ κσυ
κ

− ⋅ − − ⋅ − − ⋅ − = ⋅ ⋅ − − − 
 

, 
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where P(  denotes the risk-neutral probability measure relevant for pricing purposes. In order 

to price a European call option on a (default) risk-free zero coupon bond with counterparty 

risk, we assume that a default is only possible at the maturity date CT  of the option,23 and that 

in this case the recovery payment is a fixed exogenous fraction δ  of the options regular pay 

off. Furthermore, for simplicity we assume for the pricing of the options independence be-

tween the movements of the risk-free interest rates and the credit quality changes of the coun-

terparties.24 With these assumptions the price of a call written by counterparty n , whose rat-

ing at the risk horizon is {1, , 1}n
H Kη ∈ −… , is given by: 

( ( ), , , , , )def n C
HC r H H X T Tη  

 ( )( ( ), , , , ) (1 ) ( ( ), , , , )C C C n
n HC r H H X T T C r H H X T T P Tδ δ τ η= ⋅ + − ⋅ ⋅ >( , (4.7) 

where nτ  denotes the default time of counterparty n . Assuming that a default is an absorbing 

state under P( , the event { }C
n Tτ >  is equivalent to the event { }C

n
T

Kη ≠ , whose probability 

can simply be calculated by summing up all individual risk-neutral probabilities for a rating 

change from n
Hη  to a non-default state within the time interval [ , ]CH T . Given the – for pric-

ing purposes – assumed independence between the risk-free interest rates and the rating tran-

sitions, the transition probabilities under P(  can easily calculated out of the prices of default-

able bonds of the respective counterparty.25 However, for the ease of exposition, we do not 

differ between the real-world probability measure P  and the risk-neutral probability measure 

P( , but instead assume also for pricing purposes that the transition processes of all counterpar-

ties can be modeled by a time-homogeneous Markov chain with (real-world) one year transi-

tion matrix Q  (see table 1), which is also used for modeling the rating transitions in the time 

interval [0, ]H . Of course, it has to be stressed that this approach does not reflect reality be-

cause the two measures will typically differ, especially over longer risk horizons used for 
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credit risk management. The probabilities of rating changes within a T  year horizon are then 

simply given by the matrix product 

 T

T times

Q Q Q= ⋅ ⋅…$%&%'  (4.8) 

of the one year transition matrix Q . The value ( )HΠ  of the entire portfolio of long positions 

in European call options with counterparty risk at the risk horizon H  is: 

 
1

{ } { }
1 1
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H H

N K
def C C

k K
n k

H C r H k H X T T C r H H X T Tη ηδ
−

= =
= =

Π = ⋅ + ⋅ ⋅∑∑  (4.9) 

where the second summand in the inner sum of (4.9) is the t H= -value of the recovery pay-

ment due at Ct T= . Conditional on the realizations of the stochastic variables rX  and Z  all 

N  summands of the outer sum in (4.9) are independent because the only remaining stochastic 

variables are again the independent idiosyncratic risk factors nε  ( {1, , }n N∈ … ). Hence, we 

proceed as before. The initial rating of all obligors is assumed to be {1, , }j K∈ … :26 
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where ( )nφ ε  again denotes the density function of a standard normal distribution. Splitting up 

the integration path of nε  yields: 
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Because of the conditional independence of the summands in the outer sum of (4.9) the condi-

tional characteristic function of ( )HΠ  can be written as: 

1

{ } { }
1

( ) ,
( , , , , , ) 1 ( , , , , ) 1 ,1
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∑
 (4.10) 

Finally, the unconditional characteristic function ( ) ( )H sϕΠ  of ( )HΠ  is again the expectation 

( ) , ( )
r

P
H Z XE sϕ Π

 
   of the conditional characteristic function ( ) , ( )

rH Z X sϕ Π . Unfortunately, this 

expectation again can not be calculated in closed-form, but has to be computed by Monte 

Carlo simulations. 

 

Duffie and Pan (2001) propose to use a delta-gamma approximation for the option values at 

the risk horizon, which – together with additional assumptions – allows them to calculate the 

unconditional characteristic function of the credit portfolio value in closed-form. In the nu-

merical example of section V we want to test whether the delta-gamma approximation ap-

proach is also appropriate for a risk horizon of one year and percentile calculations corre-

sponding to high confidence levels as they are usual in credit risk management. For this pur-

pose the t H= -price ( ( ), , , , )CC r H H X T T  of the European call without counterparty risk and 

the t H= -price ( , , , , , )def C
rC X k H X T T  of the corresponding option with counterparty risk 

respectively are approximated by a second order Taylor series expansion around the expected 

future value of the risk-free short rate ( )r H  at t H= :27 

 
(3.3)

( ) [ ( )] ( (0) )P Hr H E r H r e κθ θ − ⋅≡ = + − ⋅ . (4.11) 
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In order to shorten the notation the prices ( ( ), , , , )CC r H H X T T  and 

( ( ), , , , , )def n C
HC r H H X T Tη  are abbreviated by ( ( ), )C r H H  and ( ( ), , )def n

HC r H Hη  respec-

tively. This yields: 

 

( )

( )

,

( ) ( )

2
2

2
( ) ( )

( ( ), )( ( ), ) ( ( ), ) ( ( ), ) ( ) ( )
( )

1 ( ( ), ) ( ) ( ) ,
2 ( ( ))

r H r H

r H r H

C r H HC r H H C r H H C r H H r H r H
r H

C r H H r H r H
r H

∆ Γ

=

=

∂≈ = + ⋅ −
∂

∂+ ⋅ ⋅ −
∂

 (4.12) 

and 

 ( )
, ,

, ,

( ( ), , ) ( ( ), , )

( ( ), ) (1 ) ( ( ), ) .
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C r H H C r H H P T

η η

δ δ τ η

∆ Γ

∆ Γ ∆ Γ

≈

= ⋅ + − ⋅ ⋅ >(  (4.13) 

The value ( )HΠ  of the entire portfolio of long positions in European call options with coun-

terparty risk at the risk horizon H  is now approximated by: 

 
1
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{ } { }

1 1
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N K
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k K
n k
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−

∆ Γ ∆ Γ ∆ Γ
= =

= =
Π ≈ Π = ⋅ + ⋅ ⋅∑∑  (4.14) 

and the conditional characteristic function of ,( )H ∆ ΓΠ  is: 
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 (4.15) 

In a pure market risk context, one advantage of the delta-gamma approximation in the case of 

multivariate normally distributed risk factors is that the portfolio value can be expressed by a 

linear polynomial of independent chi-squared and normally distributed random variables. 

Based on this representation the characteristic function of the portfolio value at the risk hori-

zon can be calculated in closed-form and the inversion theorem (2.3) can directly be applied. 

Unfortunately, this advantage is lost in the credit portfolio context (at least in the extended 

CreditMetrics model described in section III.3) and the (unconditional) characteristic function 

of the credit portfolio value ,( )H ∆ ΓΠ  has to be computed again by Monte Carlo simulations. 
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V. Numerical Example 

 

V.1 Parameters 

 

In this section a numerical example is presented which demonstrates the differences in accu-

racy and speed when the percentile values are calculated on the one hand with a full Monte 

Carlo simulation and on the other hand by an application of characteristic functions and the 

inversion theorem (2.3). For both methods we calculate the expectation of ( )HΠ  and the 

%p -percentiles % ( ( ))p Hα Π  of the credit portfolio distribution with {0.1%,1%,5%,p ∈  

20%, 40%,60%}. The percentiles corresponding to the probabilities 20%, 40% and 60% are 

only computed in order to check each method’s accuracy for the body of the probability dis-

tribution. 

 

First, it is assumed that the portfolio consists of 500N =  defaultable zero coupon bonds, 

which are issued by N  different obligors, but are otherwise identical. The face value is cho-

sen to be 1F = . The simulations are done for the homogeneous initial ratings 

0 {Aa, Baa, B}η ∈ . The parameters of the Ornstein-Uhlenbeck process (3.2) modeling the 

risk-free short rate are from Lehrbass (1997), who estimated these parameters using the 

DEM-LIBOR overnight rates within the period July 31, 1991 to May 31, 1995. The market 

price of interest rate risk λ , which is needed for calculating the price of a risk-free zero cou-

pon bond, is the average of the values given by Lehrbass (1997). For simplicity, the recovery 

rate is set equal to a constant 53.80%δµ = , which is Moody’s mean recovery rate of senior 

unsecured bonds during 1970 to 1995.28 The employed transition matrix (see table 1) is also 

from Moody’s. The time to maturity of the zero coupon bonds is chosen as 3T = , implying a 

remaining time to maturity of two years at the risk horizon. The value of the correlation pa-
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rameter Vρ  of the asset returns is chosen as 10% , which is within the range of values pro-

posed by the Basle Committee on Banking Supervision for corporate exposures in the Internal 

Ratings-based approach29, and 40%  respectively. The parameter ,r Vρ , which determines the 

correlation between the firms’ asset returns and the term structure of risk-free interest rates, is 

set equal to , 0.05r Vρ = −= −= −= − . Taking into consideration recent empirical studies of structural 

credit risk models30 this value seems reasonable. The means and standard deviations of the 

multivariate normally distributed rating grade specific credit spreads ( , )kS H T  ( {1, , }k K∈ … ) 

as well as their correlation parameters, which are used for simulating the credit spreads, can 

be seen in table 2 for 2T H− = . These values are taken from Kiesel, Perraudin and Taylor 

(2003). The correlation coefficient ,rX Sρ  between the credit spreads and the risk-free interest 

rate factor is set equal to 0.1− . The correlation coefficient ,Z Sρ  between the systematic credit 

risk factor Z  and the credit spreads, which is also independent of the rating grade, is assumed 

to be 0.1− , too. 

- insert table 2 about here - 

 

Afterwards, it is assumed that the portfolio consists of 500N =  European call options with 

counterparty risk on (default) risk-free zero coupon bonds, which are written by N  different 

counterparties. The parameters of the short rate process (3.2), the recovery rate, the transition 

matrix, the asset return correlation parameter as well as the correlation parameter between the 

asset returns and the risk-free interest rates are chosen as above. Again, the simulations are 

done for the homogeneous initial ratings 0 {Aa, Baa, B}η ∈ . The expiration date of the options 

is set equal to 2CT = , and the exercise price is chosen as 0.92190X = , which is the 2t = -

forward price of the underlying risk-free zero coupon bond. The numerical values of the first 

and the second derivative of the option pricing formula appearing in (4.12) are 0.09795−  and 

1.18128  respectively.31 
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V.2 Portfolio of Zero Coupon Bonds 

 

In order to use the inversion formula (2.3), we have to calculate 
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where x ∈ !  denotes the argument of the probability distribution of ( )HΠ . As the calculation 

of the expectation is done by Monte Carlo simulation, for each realization 

1( , , ( ( , ),r rZ z X x S s H T= = = … 1, ( , )))Ks H T−  we have to compute for all grid points s  of the 

numerical integration rule, which we employ later: 
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( ) ( )( ) ( ) ( ): Re ( ) Im ( ) ( )w w wu s i u s u s= + ⋅ ≡ , (5.1) 
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where we have used the Euler formula cos( ) sin( )ie iϑ ϑ ϑ⋅ = + ⋅  and w  denotes the w th simula-

tion run. Next, we represent the complex number ( )( ) wu s ∈ )  by ( ) ( ) ( )( ) ( )w w i su s u s e ϑ⋅= ⋅ , 

where the absolute value is 

 ( ) ( )2 2( ) ( ) ( )( ) Re ( ) Im ( )w w wu s u s u s= +  (5.2) 

and the argument ( ) ( , ]sϑ π π∈ −  is 
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, (5.3) 

so that we can calculate a realization of the conditional characteristic function 
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As we have 

 ( ) ( )( ) , , ( ) , , ( ) , ,( ) Re ( ) Im ( )
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   = + ⋅     

a Monte Carlo estimate of the real and the imaginary part of the unconditional characteristic 

function can be calculated by summing up all realizations of the real and the imaginary part of 

the conditional characteristic function respectively (for each grid point s ) and dividing by the 

number of realizations, which is chosen as 50,000 . After having generated an estimate of the 

unconditional characteristic function ( ) ( )H sϕΠ ∈ ) , which is the most computer time consum-

ing part of the calculations, we represent – using (5.2) and (5.3) – this complex number also 
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as ( )
( ) ( )( ) ( ) i s
H Hs s e ϑϕ ϕ ⋅

Π Π= ⋅  so that the integrand of the inversion formula (2.3) can be writ-

ten as: 
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Thus, we have to calculate numerically the following integral: 

 ( ) ( )( )

0

( )1 1( ) sin ( )
2

H s
P H x s s x ds

s
ϕ

ϑ
π

∞
ΠΠ < = − ⋅ − ⋅∫ , (5.4) 

which is done by employing first Gaussian integration with 96n =  grid points applied on 

each of the intervals [0,1] , (1,3] , (3,10]  and (10,50] 32 and second the trapezoidal rule with 

step size 0.01h =  applied on the interval [0,50]. Truncating the integration interval [0, )∞  in 

(2.3) at 50s =  ensures – for the chosen parameter values – that the absolute value of the os-

cillating integrand is usually smaller than 410− . For applying the trapezoidal rule we need the 

value of the integrand at 0s = , which is obtained by l’Hôpital’s rule: 
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∑  (5.5) 

Finally, the various percentiles are calculated by using the bisection method, where the itera-

tion is stopped when the difference between two following arguments of the probability dis-

tribution is smaller than 910− . Computing percentiles of the credit portfolio distribution the 

way described above, three types of errors are introduced: First, the simulation error affecting 
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the unconditional characteristic function; second, the truncation error caused by cutting the in-

tegration interval in (2.3) at 50s =  and, third, the discretization error introduced by choosing 

a finite number of grid points for the numerical integration. In order to check for the magni-

tude of these possible error sources we compare the percentiles calculated by the method de-

scribed above with those which result from a Monte Carlo simulation with a very high num-

ber of simulation runs. 

 

Table 3 shows the percentiles resulting from Monte Carlo simulation with 1,000,000  simula-

tion runs and from application of the inversion formula (2.3) combined either with Gaussian 

integration or with the trapezoidal rule. For all three methods the (mean) percentile values are 

close together indicating that the discretization and the truncation error of the inversion 

method is, at least for the considered portfolio composition, not too large. 

 

In order to roughly estimate the accuracy of the Monte Carlo simulation approach, the 

1,000,000 simulations are split into 10 groups, with 100,000 for each group, and the respec-

tive percentiles are estimated for each group separately by sorting the generated realizations 

of ( )HΠ  in ascending order and taking for example the 1000th of these sorted values as an es-

timate of the 1%-percentile. Then, the mean and the standard deviation of these 10 percentile 

estimates (for each confidence level) are calculated. In order to estimate the standard error of 

the percentile estimators associated with 1,000,000 simulation runs, these standard deviations 

are scaled down by the factor 10 . For the inversion method combined with Gaussian inte-

gration, the calculation of the mean and the standard error of the percentile estimators is based 

on 50 repetitions of the percentile computations. Due to the longer computation time for the 

inversion method combined with the trapezoidal rule, the mean and the standard error of the 

percentile estimators are calculated in this case based on only 10 repetitions. For all methods, 

the percentile values presented in table 3 equal the mean percentile estimates. Furthermore, 
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table 3 shows the percentage confidence interval for the percentiles, which is two times the 

standard error of the percentile estimator divided by the (mean) percentile value. Given an as-

sumed normality of the percentile estimator this is the maximum percentage error of the per-

centile estimator which is not exceeded with a probability of 95.4%. Of course, the standard 

errors and the confidence intervals of the percentiles are themselves estimates only, which 

would change with each new repeated simulation. 

 

As table 3 shows, the standard error of the percentiles increases with decreasing probability 

p , worsening credit quality and rising asset return correlation (only for the initial rating Aa 

this latter observation is not unambiguous). 

 

The standard error resulting from an application of the Monte Carlo simulation is smaller than 

that one resulting from an application of the inversion formula (2.3), but, as table 4 shows, the 

inversion method combined with Gaussian integration is, at least for the considered portfolio, 

seven times faster than the Monte Carlo simulation. Thus, as the standard error is in both 

cases within acceptable bounds, the inversion method seems to be superior. 

 

With respect to the accuracy, both integration rules applied to the inversion formula (2.3), the 

Gaussian integration and the trapezoidal rule, perform equally well. But as the Gaussian inte-

gration employs (in our implementation) only 384 grid points in contrast to 5,000 for the 

trapezoidal rule, the Gaussian integration rule is preferred because much fewer time consum-

ing calculations of the unconditional characteristic function as the expectation of the condi-

tional counterpart are needed. This fact is also reflected by table 4: Applying the trapezoidal 

rule the computation is even slower than the Monte Carlo simulation. We also tested (not in 

the table) the application of the trapezoidal rule with a larger step size, for example with a 

step size 0.01h =  applied on the interval [0,3]  and with step size 0.1h =  applied on the in-
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terval (3,50] , where the integrand of (2.3) is already very small. In this case, the accuracy 

was comparable with the two other integration rules, but the computation time was still longer 

than that one resulting from an application of the Gaussian integration rule. Reducing the step 

size h  further, for example using an uniform step size of 0.1h =  on the whole interval 

[0,50], reduces the computation time, but leads to problems when computing the percentiles 

for portfolios with the low credit quality B. 

– insert tables 3 and 4 about here – 

 

V.3 Portfolio of European Call Options with Counterparty Risk 

 

The inversion formula (2.3) is applied to the portfolio of European calls with counterparty 

risk analogously to the way described before for the portfolio of defaultable zero coupon 

bonds. Table 5 shows the percentiles resulting from a Monte Carlo simulation with 1,000,000  

simulation runs and from an application of the inversion formula (2.3) combined with Gaus-

sian integration, both using either the exact option pricing formula (4.7) or the delta-gamma 

approximation (4.13). 

 

Generally, the fit between the mean Monte Carlo based estimates of the percentiles and those 

estimates based on the inversion formula (2.3) is not as good as in the previous case of a port-

folio of defaultable zero coupon bonds, but still acceptable; only for the low credit quality B 

the fit is bad. This indicates that the error induced by the usage of the numerical integration 

rule increases for a portfolio composed of options. 

 

Unfortunately, also the simulation error gets larger: For both methods, the percentage confi-

dence intervals of the percentile estimates increase compared to the portfolio of defaultable 

zero coupon bonds. Especially in the case of the inversion method, the absolute deterioration 
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is unsatisfactorily high. At least, the inversion method combined with Gaussian integration is, 

as before, seven times faster than the Monte Carlo simulation (see table 6). 

 

Employing a delta-gamma approximation for the option price at the risk horizon instead of the 

exact option price (4.7) leads for both methods to substantial differences in the percentile es-

timates. Thus, the use of this approximation can not be recommended, especially as this loss 

in precision is not rewarded by a significant reduction of the computation time (see table 6). 

Furthermore, these differences between the “true” percentiles and those calculated with the 

Monte Carlo simulation approach or the inversion formula (2.3) respectively combined with a 

delta-gamma approximation of the option price are expected to get larger with rising interest 

rate volatility rσ  or with the introduction of jumps in the interest rate process (3.2) as pro-

posed for example by Duffie and Pan (2001). 

– insert tables 5 and 6 about here – 

 

 

VI. Conclusions 

 

Most credit portfolio models currently used by the banking industry rely on Monte Carlo 

simulations for calculating the probability distribution of the future credit portfolio value, 

which can be quite computer time consuming, especially for portfolios with many obligors 

and when percentiles corresponding to high confidence levels are needed with sufficient accu-

racy. Adding market risk factors, such as interest rate or credit spread risk, as additional in-

gredients of a credit portfolio model, the computational burden of full Monte Carlo simula-

tions even increases and the need for efficient methods for calculating credit risk measures 

becomes even more obvious. 
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In this study it is analyzed whether the use of characteristic functions and inverse Fourier 

transformation, which formerly have already been successfully applied to market risk portfo-

lio models, can be an efficient tool for calculating risk measures in the context of a credit 

portfolio model with integrated market risk factors. Fur this purpose, based on a version of the 

well-known credit portfolio model CreditMetrics extended by correlated interest rate and 

credit spread risk, the percentiles corresponding to various confidence levels of the probabil-

ity distribution of a portfolio of defaultable zero coupon bonds and European call options with 

counterparty risk respectively are calculated by this method. Unfortunately, the characteristic 

function of the credit portfolio value at the risk horizon can not be calculated in closed-form, 

but has to be computed by Monte Carlo simulations. However, depending on the integration 

rule applied, this method can be much faster than a full Monte Carlo simulation of the future 

credit portfolio distribution. For the portfolio of defaultable zero coupon bonds also the accu-

racy is satisfactory, but for the portfolio of European call options with counterparty risk the 

relatively high standard error of the percentile estimators is unsatisfactory. Perhaps, this prob-

lem can be resolved by an application of variance reduction techniques when simulating the 

characteristic function of the credit portfolio value. 
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TABLES 

 
Table 1: Transition Matrix 
 

rating after one year initial rat-
ing Aaa Aa A Baa Ba B Caa-C default 
Aaa 91,80 7,37 0,81 0,00 0,02 0,00 0,00 0,00 
Aa 1,21 90,73 7,67 0,28 0,08 0,01 0,00 0,02 
A 0,05 2,49 91,97 4,84 0,51 0,12 0,01 0,01 
Baa 0,05 0,26 5,45 88,55 4,72 0,72 0,09 0,16 
Ba 0,02 0,04 0,51 5,57 85,42 6,71 0,45 1,28 
B 0,01 0,02 0,14 0,41 6,69 83,37 2,57 6,79 
Caa-C 0,00 0,00 0,00 0,62 1,59 4,12 68,04 25,63 
Default 0 0 0 0 0 0 0 100 

 

 

 

 

 

The above transition matrix is based on Moody’s Investors Service (2002, p. 31). The 
elements ijq  of the transition matrix specify the probability (in %) that an obligor mi-
grates from the rating class i  to the rating class j within one year. These probabilities 
are average values of all corporates in the period 1970-2001. The category ‘rating with-
drawn’ has been eliminated by distributing its probability mass among all other catego-
ries, corresponding to their individual weights. 
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Table 2: Descriptive Statistics for the Multivariate Normally Distributed Credit 
Spreads (Maturity: 2 years) 
 

rating AAA AA A BBB BB B CCC 
means 

35.6 41.0 58.2 86.0 189.6 331.2 1320 
standard deviations 

14.3 14.8 21.5 30.6 74.0 117 480 

 

correlation matrix 
AAA 1.00 0.92 0.84 0.72 0.70 0.64 0.64 
AA 0.92 1.00 0.86 0.70 0.75 0.61 0.64 
A 0.84 0.86 1.00 0.89 0.81 0.67 0.61 
BBB 0.72 0.70 0.89 1.00 0.77 0.69 0.67 
BB 0.70 0.75 0.81 0.77 1.00 0.65 0.69 
B 0.64 0.61 0.67 0.69 0.65 1.00 0.65 
CCC 0.64 0.64 0.61 0.67 0.69 0.65 1.00 
 
 
 
 
 

The means, volatilities and correlation parameters are from Kiesel, Perraudin and Taylor (2003, 
table 1, p. 10, and table 2, p. 18, the procedure to estimate the values for the rating class CCC is 
explained in their Appendix, pp. 32). The means are sample means of spread levels in basis points. 
The standard deviations are sample standard deviations of changes in 2 year maturity spreads over 
a one year horizon in basis points. The correlation coefficients are sample correlation coefficients 
for the different 2 year maturity spread changes over a one year horizon. 
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Table 3: Percentiles of the Portfolio of Defaultable Zero Coupon Bonds 
 

 [ ( )]PE HΠ  0.1% ( ( ))Hα Π  1% ( ( ))Hα Π  5% ( ( ))Hα Π  20% ( ( ))Hα Π  40% ( ( ))Hα Π  60% ( ( ))Hα Π  
 Aa, 10%Vρ =  

(1) 427.3366 409.0518 413.5736 417.5523 422.2835 425.7839 428.8157 
 (0.5987%) (7.1210%) (1.9850%) (1.0971%) (1.0307%) (0.7160%) (0.9285%) 
 *0.0028% *0.0348% *0.0096% *0.0053% *0.0049% *0.0034% *0.0043% 
        

(2) 427.3429 409.1305 413.5760 417.5508 422.2914 425.7902 428.8265 
 (2.9298%) (27.0460%) (9.5413%) (5.8456%) (3.9577%) (3.3561%) (2.8834%) 
 *0.0137% *0.1322% *0.0461% *0.0280% *0.0187% *0.0158% *0.0134% 
        
(3) 427.3314 409.0934 413.5225 417.5283 422.2656 425.7806 428.8024 

 (1.9847%) (20.8014%) (8.6656%) (4.2272%) (3.0127%) (2.6987%) (3.4261%) 
 *0.0093% *0.1017% *0.0419% *0.0202% *0.0143% *0.0127% *0.0160% 
        
 Aa, 40%Vρ =  

(1) 427.3431 408.7868 413.4926 417.5303 422.2797 425.7933 428.8357 
 (0.6012%) (4.7999%) (1.6606%) (0.8165%) (0.5351%) (0.5040%) (0.4356%) 
 *0.0028% *0.0235% *0.0080% *0.0039% *0.0025% *0.0024% *0.0020% 
        

(2) 427.3422 408.7376 413.4679 417.5154 422.2790 425.7898 428.8327 
 (3.1264%) (37.2488%) (10.3504%) (5.8198%) (4.2015%) (3.8830%) (3.7492%) 
 *0.0146% *0.1823% *0.0501% *0.0279% *0.0199% *0.0182% *0.0175% 
        

(3) 427.3438 408.7578 413.4893 417.5086 422.2844 425.8018 428.8425 
 (2.9837%) (24.4194%) (10.3324%) (5.8113%) (4.2183%) (3.7300%) (2.7797%) 
 *0.0140% *0.1195% *0.0500% *0.0278% *0.0200% *0.0175% *0.0130% 

        
 Baa, 10%Vρ =  

(1) 422.8689 402.5797 407.8331 412.2592 417.4714 421.2390 424.4950 
 (0.6451%) (4.8110%) (4.3209%) (1.1671%) (0.6921%) (0.5037%) (0.6589%) 
 *0.0031% *0.0239% *0.0212% *0.0057% *0.0033% *0.0024% *0.0031% 
        

(2) 422.8704 402.6901 407.8096 412.2595 417.4537 421.2410 424.5017 
 (2.5422%) (28.0524%) (10.3822%) (5.7183%) (3.8045%) (2.6905%) (3.3453%) 
 *0.0120% *0.1393% *0.0509% *0.0277% *0.0182% *0.0128% *0.0158% 
        

(3) 422.8956 402.6606 407.8412 412.3098 417.4810 421.2679 424.5184 
 (1.9122%) (32.9432%) (9.2254%) (4.1382%) (2.2524%) (2.8603%) (3.4838%) 
 *0.0090% *0.1636% *0.0452% *0.0201% *0.0108% *0.0136% *0.0164% 
        
 Baa, 40%Vρ =  

(1) 422.8549 388.9061 405.3018 411.6891 417.4392 421.3626 424.6793 
 (0.6921%) (20.8514%) (4.5073%) (1.8088%) (0.8911%) (0.8205%) (0.8216%) 
 *0.0033% *0.1072% *0.0222% *0.0088% *0.0043% *0.0039% *0.0039% 
        

(2) 422.8508 388.5830 405.2514 411.6786 417.4327 421.3592 424.6760 
 (2.9066%) (131.8661%) (22.6387%) (5.4471%) (3.7987%) (3.8422%) (3.2904%) 
 *0.0137% *0.6787% *0.1117% *0.0265% *0.0182% *0.0182% *0.0155% 
        

(3) 422.8636 388.7386 405.3431 411.6811 417.4551 421.3848 424.6873 
 (2.5787%) (123.8244%) (20.8250%) (6.8985%) (4.4086%) (3.2757%) (2.8484%) 
 *0.0122% *0.6371% *0.1028% *0.0335% *0.0211% *0.0155% *0.0134% 
        
 B, 10%Vρ =  

(1) 390.9386 337.8536 353.7773 366.2635 379.4226 388.1275 395.1686 
 (1.4267%) (16.2142%) (7.7565%) (2.5812%) (1.3697%) (1.3561%) (1.8436%) 
 *0.0073% *0.0960% *0.0438% *0.0141% *0.0072% *0.0070% *0.0093% 
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(2) 390.9304 337.9016 353.6273 366.2740 379.4219 388.1235 395.1524 

 (6.3298%) (78.9189%) (24.2021%) (14.2867%) (9.0151%) (7.3852%) (7.6737%) 
 *0.0324% *0.4671% *0.1369% *0.0780% *0.0475% *0.0381% *0.0388% 
        

(3) 390.9295 337.8860 353.5980 366.2038 379.4167 388.1180 395.1556 
 (4.2030%) (68.7533%) (25.9366%) (5.8492%) (9.6533%) (7.0277%) (4.5036%) 
 *0.0215% *0.4070% *0.1467% *0.0319% *0.0509% *0.0362% *0.0228% 
        
 B, 40%Vρ =  

(1) 390.9590 270.5614 309.0435 345.7822 377.6273 391.1795 399.7319 
 (2.2866%) (32.6563%) (25.0781%) (11.4919%) (1.8110%) (1.7789%) (1.5502%) 
 *0.0117% *0.2414% *0.1623% *0.0665% *0.0096% *0.0091% *0.0078% 
        

(2) 390.9362 270.8610 309.3076 345.8114 377.5437 391.1714 399.7091 
 (10.2512%) (140.3692%) (85.8495%) (49.3674%) (16.0783%) (10.0392%) (7.1406%) 
 *0.0524% *1.0365% *0.5551% *0.2855% *0.0852% *0.0513% *0.0357% 
        

(3) 390.9121 271.7079 309.0354 345.9979 377.5251 391.1150 399.6588 
 (6.8077%) (159.7397%) (41.8969%) (42.2782%) (10.2027%) (5.9831%) (5.8092%) 
 *0.0348% *1.1758% *0.2711% *0.2444% *0.0541% *0.0306% *0.0291% 

 
(1) Monte Carlo simulation with 1,000,000 simulation runs 
(2) Inversion formula (2.3) computed with Gaussian integration with 96n =  grid points applied on the in-

tervals [0,1] , (1,3] , (3,10]  and (10,50]  
(3) Inversion formula (2.3) computed with the trapezoidal rule with step size 0.01h =  applied on the inter-

val [0,50]  
For applying the inversion formula the unconditional characteristic function of the credit portfolio value 
has to be calculated by means of Monte Carlo simulations. For the above values 50,000 simulation runs 
have been used. The bisection method employed for finding the respective percentiles stopped when the 
difference between two arguments of the cumulative density function was smaller than 10-9. 

() Standard error of the mean credit portfolio value and the percentile estimators respectively. In order to 
estimate the accuracy of the Monte Carlo simulation approach (1), the 1,000,000 simulations are split 
into 10 groups, with 100,000 for each group, and the respective percentiles are estimated for each group 
separately by sorting the generated realizations of ( )HΠ  in ascending order and taking for example the 
1000th of these sorted values as an estimate of the 1%-percentile. Then, the mean and the standard de-
viation of these 10 percentile estimates (for each confidence level) are calculated. In order to estimate 
the standard error of the percentile estimators associated with 1,000,000 simulation runs, these standard 
deviations are scaled down by the factor 10 . For method (2), the calculation of the mean and the stan-
dard error of the percentile estimators is based on 50 repetitions of the percentile computations. Due to 
the longer computation time for method (3) caused by the use of the trapezoidal rule, the mean and the 
standard error of the percentile estimators are calculated in this case based on only 10 repetitions. For all 
methods, the presented percentile values equal the mean percentile estimates. 

* Two times the standard error of the percentile estimator divided by the (mean) percentile value. Given 
an assumed normality of the percentile estimator this the maximum percentage error of the percentile 
estimator which is not exceeded with a probability of 95.4%. 

 
Parameters: 

500=N , 1F = , 3T = , 1H = , , 0.05ρ = −r V , , 0.1ρ = −
rX S , , 0.1ρ = −Z S , 0.538δ = , 1.169κ = , 0.061θ = , 

0.029rσ = , 0.88λ = , (0) 0.061r = . 
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Table 4: Computation Times for the Portfolio of Defaultable Zero Coupon Bonds 
 
 

Portfolio of Defaultable Zero Coupon Bonds 
(1) (2) (3) 
1 7.21 0.65 

 
 
Computation times for the expected credit portfolio value and the percentiles of the portfolio of defaultable zero 
coupon bonds calculated with various methods. The computation time for the Monte Carlo simulation (1) is 
taken as the base, which is divided by the computation times of the other methods. Values larger than one indi-
cate speed gains, values smaller than one indicate speed losses compared to the Monte Carlo simulation. For the 
explanation of the methods see table 3. Parameters: initial rating Baa, 0.1Vρ = , other parameters see table 3. 
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Table 5: Percentiles of the Portfolio of European Call Options with Counterparty Risk 
on Risk-Free Zero Coupon Bonds 
 

 [ ( )]PE HΠ  0.1% ( ( ))Hα Π  1% ( ( ))Hα Π  5% ( ( ))Hα Π  20% ( ( ))Hα Π  40% ( ( ))Hα Π  60% ( ( ))Hα Π  
 Aa, 10%Vρ =  

(1) 2.5563 0.6214 0.9219 1.2689 1.7864 2.2447 2.6926 
 (0.0890%) (0.2569%) (0.1372%) (0.1202%) (0.1297%) (0.1164%) (0.1284%) 
 *0.0696% *0.8269% *0.2977% *0.1894% *0.1452% *0.1037% *0.0954% 
        

(2) 2.5548 0.6236 0.9197 1.2674 1.7866 2.2438 2.6904 
 (0.3947%) (1.3252%) (0.8187%) (0.6338%) (0.4219%) (0.4613%) (0.5335%) 
 *0.3089% *4.2504% *1.7802% *1.0002% *0.4723% *0.4111% *0.3966% 
        

(3) 2.5577 0.6518 0.9297 1.2699 1.7870 2.2448 2.6913 
 (0.0893%) (0.2926%) (0.0987%) (0.1282%) (0.0979%) (0.0869%) (0.1377%) 
 *0.070% *0.8978% *0.2124% *0.2019% *0.1096% *0.0775% *0.1023% 
        

(4) 2.5565 0.6503 0.9254 1.2667 1.7859 2.2435 2.6905 
 (0.4206%) (1.0943%) (0.8043%) (0.5704%) (0.4595%) (0.4829%) (0.5834%) 
 *0.3291% *3.3656% *1.7383% *0.9007% *0.5146% *0.4305% *0.4336% 
        
 Aa, 40%Vρ =  

(1) 2.5548 0.6235 0.9229 1.2693 1.7869 2.2441 2.6906 
 (0.0889%) (0.2056%) (0.1606%) (0.0824%) (0.1144%) (0.0908%) (0.1168%) 
 *0.0696% *0.6594% *0.3481% *0.1299% *0.1280% *0.0809% *0.0868% 
        

(2) 2.5554 0.6195 0.9212 1.2701 1.7874 2.2440 2.6907 
 (0.3355%) (1.5225%) (0.7937%) (0.5725%) (0.4119%) (0.4192%) (0.5078%) 
 *0.2626% *4.9156% *1.7232% *0.9014% *0.4608% *0.3736% *0.3775% 
        

(3) 2.5572 0.6506 0.9275 1.2707 1.7861 2.2441 2.6904 
 (0.0893%) (0.2551%) (0.1628%) (0.1002%) (0.1089%) (0.0920%) (0.1166%) 
 *0.070% *0.7844% *0.3512% *0.1576% *0.1219% *0.0820% *0.0867% 
        

(4) 2.5573 0.6484 0.9271 1.2703 1.7870 2.2442 2.6905 
 (0.3409%) (1.3121%) (0.7789%) (0.5630%) (0.3947%) (0.4511%) (0.4816%) 
 *0.2666% *4.0468% *1.6805% *0.8864% *0.4417% *0.4020% *0.3580% 
        
 Baa, 10%Vρ =  

(1) 2.5505 0.6133 0.9185 1.2647 1.7824 2.2377 2.6862 
 (0.0889%) (0.2445%) (0.1215%) (0.1018%) (0.0997%) (0.1045%) (0.1346%) 
 *0.0697% *0.7972% *0.2645% *0.1610% *0.1118% *0.0934% *0.1002% 
        

(2) 2.5513 0.6222 0.9199 1.2668 1.7835 2.2397 2.6867 
 (0.3467%) (1.2193%) (0.7682%) (0.4809%) (0.3624%) (0.3475%) (0.4222%) 
 *0.2718% *3.9193% *1.6701% *0.7592% *0.4064% *0.3103% *0.3143% 
        

(3) 2.5519 0.6489 0.9253 1.2651 1.7817 2.2385 2.6863 
 (0.0892%) (0.3004%) (0.1617%) (0.0880%) (0.1062%) (0.1226%) (0.1149%) 
 *0.0699% *0.9260% *0.3496% *0.1391% *0.1192% *0.1096% *0.0855% 
        

(4) 2.5532 0.6509 0.9263 1.2666 1.7829 2.2395 2.6871 
 (0.3409%) (0.9946%) (0.7414%) (0.4875%) (0.3581%) (0.3384%) (0.4208%) 
 *0.2670% *3.0562% *1.6009% *0.7698% *0.4017% *0.3022% *0.3132% 
        
 Baa, 40%Vρ =  

(1) 2.5520 0.6229 0.9197 1.2676 1.7843 2.2406 2.6878 
 (0.0888%) (0.2491%) (0.1141%) (0.1117%) (0.0962%) (0.0900%) (0.1050%) 
 *0.0696% *0.7999% *0.2482% *0.1763% *0.1078% *0.0803% *0.0781% 
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(2) 2.5513 0.6194 0.9208 1.2668 1.7828 2.2399 2.6873 
 (0.4219%) (1.6086%) (0.7131%) (0.5717%) (0.4958%) (0.4975%) (0.5063%) 
 *0.3307% *5.1943% *1.5490% *0.9026% *0.5562% *0.4442% *0.3768% 
        

(3) 2.5528 0.6471 0.9243 1.2661 1.7835 2.2396 2.6861 
 (0.0892%) (0.1175%) (0.1167%) (0.0835%) (0.0769%) (0.0592%) (0.0498%) 
 *0.0699% *0.3633% *0.2524% *0.1320% *0.0862% *0.0528% *0.0371% 
        

(4) 2.5528 0.6479 0.9263 1.2670 1.7824 2.2397 2.6865 
 (0.4610%) (1.2713%) (0.6492%) (0.5552%) (0.5167%) (0.5451%) (0.5660%) 
 *0.3611% *3.9245% *1.4018% *0.8765% *0.5797% *0.4868% *0.4214% 
        
 B, 10%Vρ =  

(1) 2.3611 0.5605 0.8338 1.1550 1.6383 2.0655 2.4848 
 (0.0838%) (0.2053%) (0.2022%) (0.1021%) (0.0843%) (0.1018%) (0.1008%) 
 *0.0709% *0.7325% *0.4851% *0.1767% *0.1030% *0.0986% *0.0811% 
        

(2) 2.4036 0.5736 0.8569 1.1847 1.6726 2.1061 2.5306 
 (0.3942%) (1.3770%) (0.6341%) (0.3872%) (0.4979%) (0.4732%) (0.4992%) 
 *0.3280% *4.8011% *1.4800% *0.6537% *0.5953% *0.4494% *0.3945% 
        

(3) 2.3633 0.5838 0.8398 1.1553 1.6368 2.0651 2.4862 
 (0.0842%) (0.2240%) (0.0960%) (0.0865%) (0.0969%) (0.1113%) (0.1101%) 
 *0.0713% *0.7675% *0.2287% *0.1498% *0.1184% *0.1078% *0.0885% 
        

(4) 2.4055 0.6016 0.8626 1.1851 1.6726 2.1061 2.5307 
 (0.3662%) (1.1255%) (0.5849%) (0.3865%) (0.4777%) (0.4259%) (0.4696%) 
 *0.3045% *3.7414% *1.3561% *0.6523% *0.5712% *0.4045% *0.3711% 
        
 B, 40%Vρ =  

(1) 2.3610 0.5221 0.8017 1.1288 1.6226 2.0585 2.4877 
 (0.0855%) (0.2709%) (0.1782%) (0.0800%) (0.0599%) (0.0845%) (0.0942%) 
 *0.0725% *1.0378% *0.4446% *0.1417% *0.0738% *0.0821% *0.0758% 
        

(2) 2.4034 0.5667 0.8472 1.1748 1.6661 2.1021 2.5312 
 (0.3216%) (1.2493%) (0.6882%) (0.6678%) (0.4419%) (0.3846%) (0.4355%) 
 *0.2676% *4.4087% *1.6248% *1.1368% *0.5304% *0.3660% *0.3441% 
        

(3) 2.3640 0.5498 0.8120 1.1332 1.6244 2.0605 2.4900 
 (0.0857%) (0.1936%) (0.0982%) (0.1313%) (0.0823%) (0.0951%) (0.1204%) 
 *0.0725% *0.7042% *0.2419% *0.2316% *0.1013% *0.0923% *0.0967% 
        

(4) 2.4052 0.5920 0.8517 1.1749 1.6657 2.1022 2.5309 
 (0.3128%) (1.1983%) (0.6243%) (0.6278%) (0.4520%) (0.3829%) (0.4075%) 
 *0.2601% *4.0480% *1.4659% *1.0687% *0.5427% *0.3643% *0.3220% 

 
(1) Monte Carlo simulation with exact option pricing formula (4.7) and 1,000,000 simulation runs 
(2) Inversion formula (2.3) with exact option pricing formula (4.7) computed with Gaussian integration 

with 96n =  grid points applied on the intervals [0,1] , (1,3] , (3,10]  and (10,50]  
(3) Monte Carlo simulation with delta-gamma approximation (4.13) and 1,000,000 simulation runs 
(4) Inversion formula (2.3) with delta-gamma approximation (4.13) computed with Gaussian integration 

with 96n =  grid points applied on the intervals [0,1] , (1,3] , (3,10]  and (10,50]  
For applying the inversion formula the unconditional characteristic function of the credit portfolio value 
has to be calculated by means of Monte Carlo simulations. For the above values 50,000 simulation runs 
have been used. The bisection method employed for finding the respective percentiles stopped when the 
difference between two arguments of the cumulative density function was smaller than 10-9. 

(), * See table 3. 
 
Parameters: 500=N , 1F = , 3T = , 2CT = , 1H = , 0.92190X = , , 0.05ρ = −r V , 0.538δ = , 1.169κ = , 

0.061θ = , 0.029rσ = , 0.88λ = , (0) 0.061r = . 
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Table 6: Computation Times for the Portfolio of European Call Options with Counter-
party Risk on Risk-Free Zero Coupon Bonds 
 
 

Portfolio of European Call Options with Counterparty Risk 
on Risk-Free Zero Coupon Bonds 

(1) (2) (3) (4) 
1 7.06 1.04 7.13 

 
 
Computation times for the expected credit portfolio value and the percentiles of the portfolio of European call 
options with counterparty risk on risk-free zero coupon bonds calculated with various methods. The computation 
time for the Monte Carlo simulation (1) is taken as the base, which is divided by the computation times of the 
other methods. Values larger than one indicate speed gains, values smaller than one indicate speed losses com-
pared to the Monte Carlo simulation. For the explanation of the methods see table 5. Parameters: initial rating 
Baa, 0.1Vρ = , other parameters see table 5. 
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ENDNOTES 
                                                           
1 Studies, which analyze the effect of integrating an additional risk factor, such as stochastic interest rates or 

stochastic credit spreads, into a credit portfolio model are from Barth (2000), Kijima and Muromachi 
(2000), Barnhill and Maxwell (2002), Kiesel, Perraudin and Taylor (2003) and Grundke (2004a, b). There 
are also first attempts to create an integrated market and credit risk portfolio framework for commercial 
credit portfolio models, for example that one developed by the risk management firm Algorithmics (see Is-
coe, Kreinin and Rosen (1999)). 

2 See e.g. Rouvinez (1997) or El-Jahel, Perraudin and Sellin (1999). 
3  Exceptions are Merino and Nyfeler (2002), Laurent and Gregory (2003), Duffie and Pan (2001) and Reiß 

(2003) (the two latter ones with additionally integrated market risk factors). 
4  See e.g. Martin, Thompson and Browne (2001) and Barco (2004). 
5  See e.g. Wilde (2001), Martin and Wilde (2002), Gordy (2003) or Pykhtin (2004). 
6 See e.g. Glasserman and Li (2003), Kalkbrener, Lotter and Overbeck (2004), Merino and Nyfeler (2004) or 

Tchistiakov, de Smet and Hoogbruin (2004). 
7  See Stuart and Ord (1994, pp. 125). 
8  See Gil-Pelaez (1951, p. 481), Stuart and Ord (1994, p. 126). 
9  See Davies (1973, p. 415). In the above representation the symmetry of the integrand has been used. 

Im( )⋅ denotes the imaginary part of the complex argument. 
10  See e.g. Frye (2000, 2003) and Pykhtin (2003). 
11  For details concerning this procedure see Gupton, Finger and Bhatia (1997, pp. 85). 
12  It will be assumed that the interest rate factor rX  and the systematic credit risk factor Z  are correlated 

with the credit spreads, which implies a non-zero correlation between the transition process and the credit 
spreads. Kiesel, Perraudin and Taylor (2003, p. 7, fn 9) already hint at the possibility of introducing the lat-
ter correlation by allowing the latent variables driving the transitions to be correlated with the credit 
spreads. 

13 See the explanation of the CreditMetrics model in section III.2. 
14  See de Munnik (1996, p. 71); Vasicek (1977, pp. 185). 
15  Kiesel, Perraudin and Taylor (2003) show that the joint distribution of credit spread changes is approxi-

mately normal, at least for longer horizons such as one year, which are usually employed in the context of 
credit portfolio modeling. 

16  This is the so-called Recovery-of-Treasury assumption used for example in the credit risk pricing models of 
Jarrow and Turnbull (1995), Jarrow, Lando and Turnbull (1997) or Longstaff and Schwartz (1995). See 
Duffie and Singleton (1999) for a discussion of various recovery assumptions. 

17  This is the modeling framework recently used by Grundke (2004b). Beside this base case specification, 
Grundke (2004b) also studies the influence of various inhomogeneities in the portfolio composition, differ-
ent distributional assumptions for the risk factors, and a recovery model, in which the recovery rate depends 
on the realization of the common systematic credit risk factors Z  and rX  and the individual asset return 
realizations nR . In each case, the effect that an integration of interest rate and credit spread risk into the 
model has on the credit portfolio distribution is analyzed. However, the focus of this paper is another one so 
that we deal only with the base case model described before. 

18  Using moment generating functions, Finger (1999) describes a similar approach for the original CreditMet-
rics™ framework without integrated correlated interest rate and credit spread risk. 

19  In order to simplify the notation, the dependence of the conditional thresholds ,j kt  on the realizations of Z  
and rX  is suppressed. 

20  See Johnson, Kotz and Balakrishnan (1995, p. 218) for the characteristic function of a beta-distributed ran-
dom variable, which can be expressed as a confluent hypergeometric function. 

21  See Pykhtin (2003). 
22  See de Munnik (1996, pp. 74). 
23  This assumption can also be found for example in Klein (1996) and Klein and Inglis (2001). See the latter 

paper (pp. 997) also for an attempt to justify this at first sight rather restrictive assumption. 
24  There are also – much more lengthy - analytical pricing formulas for European options with counterparty 

risk available when the credit quality of the counterparty and the underlying of the option are correlated (see 
e.g. Klein (1996)). 

25  See for example Jarrow, Lando and Turnbull (1997). 
26  The dependence of the price of the European call with counterparty risk on the risk-free interest rate ( )r H  

at the risk horizon is replaced by rX  because the realization of this random variable determines ( )r H . 
27  For other kinds of quadratic approximations of portfolio values (e.g. interpolation or least squares approach) 

see e.g. Holton (2003, pp. 334). 
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28  See Moody’s Investors Service (1996). However, using Moody’s estimates of the mean ignores the fact that 

the rating agency defines the recovery rate as a percentage of par and not as a percentage of a risk-free but 
otherwise identical zero coupon bond. 

29  See Basel Committee on Banking Supervision (2004). 
30  See Eom, Helwege and Huang (2004, table 1, p. 505) and Lyden and Saraniti (2000, table 6, p. 38). 
31  The numerical values of the derivatives are calculated with MAPLE. 
32  The grid points and weights of the Gaussian integration for 96n =  are taken from Abramowitz and Stegun 

(1984, p. 397). The length of the intervals on which the Gaussian integration is applied increases because 
for rising values of s  the absolute value of the oscillating integrand decreases rapidly. 
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