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We develop a microstructure model which seeks to describe the way in which private information is 
incorporated into price via a bayesian learning process used by market agents. A novel innovation is 
the description of a dynamic latent process for the information arrival process which can be 
extracted from observed order flow variables by developing various filtering techniques. We also 
describe how a boundedly rational learning process by which agents use aggregated trade data to 
infer this latent process can be used to set prices. The implication of this specification is that it allows 
us to examine how various microstructure parameters including the probability of informational 
trading, the spread attributable to information asymmetry and the degree of information asymmetry 
vary over time. We adopt Bayesian MCMC methods to directly estimate the structural parameters 
and test the implications of the model. In relation to modelling trading behaviour, net order flow 
seems to be well described by a process in which the information state variable follows a simple 
Markovian process. This is achieved in part by modelling the probability of an information event as 
time varying.  
 
Introduction 
 

Understanding the way in information is incorporated into markets is of great interest 
to researchers. The first theoretical work in this area include Kyle (1985) and Glosten and 
Milgrom (1985). Investigating the predictions made by these theoretical models has also 
been actively pursued by researchers. 

Many previous studies on intraday price formation have relied on running reduced 
form equations to the test the implications of these microstructure models (see Madhavan 
(1992), Madhavan and Schmidt (1991), Madhavan et al (1997), Glosten and Harris (1988) 
and Huang and Stoll (1997)). The reason for this is that many underlying processes that drive 
such microstructure models are latent, and hence unobservable. 

This paper instead both develops and tests a model of intraday price formation in a 
prototypical quote driven market, where order flow acts as a signal of the security’s future 
value. Central to this model is the dynamic structure of the latent information process which 
uniquely characterise the arrival of trades and the learning process used by market agents to 
infer the underlying state of nature. This learning process in turn determines the trading and 
price setting behaviour of these market agents. This study pays special attention to the 
modelling and estimation of this dynamic process. A methodology is developed that uses 
observed prices and order flow to efficiently filter the latent variables and directly estimate 
and test the parameters of the structural model posited. This methodology is based on 
Markov Chain Monte Carlo strategies, namely via Gibbs sampling, to obtain the posterior 
densities of the structural parameters which can then be used to estimate and test the model. 
This allows us to make direct comparisons among various competing models of order flow 
through the implementation of Bayesian hypothesis testing and model selection techniques 
(see Han and Carlin, (2001), Kass and Raftery (1995) and Chib (1995)). 

The analysis examines the information content of trade direction and how net order 
flow or trade imbalance coupled with trading activity may be used by market agents to 
ascertain the underlying information state. A key feature of the model describes the way in 
which market agents infer the underlying state of the market. Unlike many previous market 
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microstructure models where agents update beliefs following each order arrival, the concept 
of bounded rational learning is introduced, whereby the market agent, namely the market 
maker, waits for a period of time observing the history and sequence of trades before 
updating his beliefs. This idea can be motivated by the fact that it can be too costly to 
efficiently update beliefs following each trade, particularly when it may be more informative 
to observe the trading activity in any given period of time. This will clearly have an impact 
on the relation between order flow and prices as represented by the quotes set by the market 
maker. 

Furthermore, few theoretical microstructure models developed thus far have 
considered the differential roles of trading frequency and net order flow in explaining the 
evolution of information and prices; as such we make a significant contribution to the 
existing body of research in this area of market microstructure and information theory.  

The primary motivation in adopting the MCMC methodology is the conceptual and 
computational simplicity afforded by these techniques when dealing with latent variables. 
The conceptual simplicities arise by treating the unobserved data in the same manner as the 
unobserved parameters, while the computational simplicity results from characterising 
analytically intractable densities using simulation. Excellent introductions to MCMC 
analysis include Casella and George (1992), Chib and Greenberg (1996) and Tanner (1996). 

The paper is organized as follows. The following section (Section 1) considers the 
theoretical foundations of the order flow model, the dynamic structure of information flow 
and the expectation formation mechanism used to set prices. Section 2 explains in detail the 
order flow specification and the MCMC techniques necessary to estimate the structural 
parameters and the stochastic process governing information flow. In sections 3 and 4, the 
price formation models and the MCMC procedures necessary to estimate the structural 
parameters are examined. Section 5 presents the results, and conclusions are drawn in section 
6.  

 
1. A Model of Information Flow, Net Order Flow and Leaning Behaviour in a     Quote 
Driven Market 
 
Dynamics Governing Information Flow and Trading Structure 
 

In this section we develop a theory of the stochastic processes governing information 
flow and trade structure by modelling order flow.  

As noted in the seminal works by Glosten and Milgrom (1985) and Easely and 
O’Hara (1992) there is difficulty in specifying the mechanics of the order arrival process as it 
would require specifying both individual trader behaviour and any frictions that might be 
present in the trading mechanism. This difficulty led both sets of research to adopt the 
convention of an exogenous order arrival process, whose parameters are static in nature. By 
better defining this process within a dynamic setting, we are able to model the evolution of 
state probabilities that are used by market agents to form their expectations about future 
order flow and the underlying value of the security. The formation of these expectations and 
their computation allows us to accurately construct the price quotations as set by the 
specialist. 

We begin by considering a prototypical trading structure as adopted by several 
market microstructure studies (See Kyle 1985, Glosten and Milgrom (1985) and Easly and 
O’Hara (1992)). Suppose that St is an unobserved discrete random variable with domain: {1, 
2, 3}. This variable represents a private signal observable to certain market traders as to the 
underlying value of the security. Specifically, St  represents whether at time t, no information 
event has occurred (St = 1), an information event with a high signal (a positive news event) 
has occurred (St = 2), or an information event with a low signal (a negative news event) has 
occurred (St = 3). This private signal will only be observed by a certain fraction of traders 
who are considered informed. These traders will act upon this information by deciding 
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whether to buy, sell or not to trade conditional on the signal observed. The remaining 
fraction of traders like the market maker are considered uninformed and do not observe the 
signal. These traders trade mainly for liquidity based reasons; this ensures that no-trade 
equilibria are avoided.  

Unlike previous studies, we assume St evolves according to a first-order Markov 
process such that the probability of a certain state of nature occurring is time varying, with 
its transition probability matrix given by 
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where  represents the information set thus available to economic agents at time t-1. 1−Φ t 1−Φ t  
can be thought of  as the history of past trading outcomes X t -1 = (Xt-1, Xt-2,…, X1), but can be 
generalised to include the history of all publicly available information. We postulate that 
economic agents adopt at least two measures to define the trade outcome variable; net order 
flow, Qt, and trade activity, nt, for the period t such that Xt = (Qt , nt). Net order flow, also 
known as net order imbalance, represents the difference between buyer initiated and seller 
initiated order flow over a given period, whereas trade activity represents the number of 
trades occurring over a given period. For the purposes of this study we consider the measure 
of order flow based upon a trade direction variable which equals 1 when a trade is buyer 
initiated and –1 when it is seller initiated.  
 
Specification of the Learning Process used by market agents 

 
In a vein similar to the market microstructure models that use the trade process as a 

learning tool (Easley and O’Hara, 1987, 1992 and Easely, Kiefer and O’Hara, 1997(a) and 
(b)), we utilise the probabilistic structure of the order arrival process to highlight how the 
market maker can infer the underlying state. The market maker is a Bayesian who knows the 
structure of the market, or more precisely the structural parameters governing the 
information and order flow process. Following a trading outcome the market maker updates 
his or her posterior sate probabilities using Bayes rule. Given that the probabilistic structure 
is one defined in terms of the state switching probabilities, we adopt the novel approach used 
by Gray (1996) and Hamilton (1994) to translate a model expressed in terms of state 
switching probabilities, Pr(St | St-1), to one in terms of regime probabilities, Pr(St | ). As a 
result we are able to construct the market maker’s posterior probability of each state 
conditional only on the history of order flow. 

1−Φ t

To represent the model in terms of these regime probabilities, define pt/t-1 = [p1t  p2t  p3t] 
where pit = Pr(St = i| ). Similarly, we define p1−Φ t t,t = [p1tt  p2tt  p3tt] where pit,t =  Pr(St = i 
| ). By the first order Markov property of StΦ t, we can write  
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it can be shown (see Hamilton, 1990 and1994) that, 
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by application of Bayes Rule. We can then utilise a recursive procedure in which to construct 
the likelihood function and hence conveniently compute expected value quantities. (See 
Appendix for details). 
 
2. Modelling Order Flow and its Bayesian Analysis 

 
In this section we construct a model of order flow in order to better describe its 

dynamics, as well as develop Markov Chain Monte Carlo (MCMC) strategies to permit a 
Bayesian analysis of the model.  

The idea developed in this study is that market participants observe the aggregate of 
trading behaviour in order to infer the underlying state of nature. By doing so, both trading 
activity as reflected by the number of trades and the net order imbalance in any given period 
become informative measures used by market agents to learn the state of the market.  

The models to be considered all belong to a general class where the distribution of 
observations depends upon a latent Markovian switching process in a discrete state space. A 
MCMC scheme is developed in order to construct a Bayesian analysis of the parameters and 
evaluate the performance of the various models considered. As with all mixture models, they 
potentially suffer from unidentifiability, in which case steps must be taken in order to 
directly estimate the state specific parameters of the model. This will be also considered in 
detail in later sections. 

 
Net Order Flow, Trade Activity and Bounded Rationality 

 
The weakness of most traditional sequential trade models, is that for the most part the 

timing convention relates to the ordinal sequence of trades and not periodic time intervals. 
These models are unable to characterize changes in the degree of trading activity which in 
itself would be informative to market participants. While this was a problem also considered 
by Easely and O’Hara (1992), they addressed this issue by modelling the number of no–trade 
outcomes and showing how the absence of trade could be used to infer the prevailing 
information state. They also described how the cumulative number of trades could act as a 
signal as to the existence of information, while the cumulative order imbalance (as reflected 
by the market maker’s inventory) could provide a signal of the direction of any new 
information. To adequately address these issues we move beyond a transaction level analysis 
and aggregate trades thereby allowing an analysis of the variation in trading activity.  

By modelling order flow in this fashion, we postulate a mechanism by which the 
market-maker uses trade sequence as well as the amount of trading in a given time interval to 
determine the state of nature. While quotes set by the market maker are still formed on a 
transaction-by-transaction basis, the state probabilities used to form their expectations about 
the underlying value of the security are updated on a periodic basis rather than following 
each transaction. This approach assumes a form of bounded rationality implicit in the market 
maker’s behaviour; in that it would be costly to update beliefs upon the arrival of every piece 
of new information (individual trades), and would prefer to observe a sequence of trades to 
infer the degree of trading activity. This section develops simple models of trading activity 
and shows how trading activity can be used as an informative variable by the market maker.  

To do this requires certain assumptions. In determining the appropriate time interval 
in which market agents use to aggregate trades, we assume that the state as described by the 
latent variable, St, prevails for that entire period and then may change according to its 
transition probability matrix defined by Π. We assume that the transition of St evolves 
independently over time. However, informed traders condition on the state signal they 
observe at the commencement of the period thus implying that trade activity and hence net 
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order flow is state dependent. We would expect that an information event/state would be 
associated with a high degree of trading activity over that period; with the sign of the trades 
determining direction of the information state (high or low).  

 
 Net Order Flow and Trading Activity in a Trade Direction Model 

 
In order to model aggregate volume, let [t-1, t] represent a fixed time interval. Denote 

the realised trade variable, , to represent the τth trade occurring during the time interval 
[t-1, t]. The random variable, n

tx  ,τ

t, represents the number trade outcomes in the interval [t-1, t]. 
Based upon these variables, we construct, Qt, the net order flow for the current period 

t. By definition, not order follow can be modelled as 

∑
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tt xQ
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τ . (5)

This variable, together with the trade frequency variable, nt, is used by the market 
maker to learn the prevailing state of nature. In order to describe its dynamic properties, we 
model Qt as a state contingent compound process. To do this we first need to model xt and nt. 

Given that nt represents the number of trades occurring in a given time interval, we 
can model the trade frequency variable as a state contingent poisson process: nt | st = i, 1−Φ t  ~ 
P(ϑi).  Hence nt can be described as a mixture of poisson distributions indexed by parameter 

iϑ : 
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This specification accommodates several features of the microstructure rather well. 
Given State 1 represents the no information state, trading during this period should be non-
informational or liquidity based. Thus the parameter, 1ϑ  captures the trading activity 
generated by liquidity traders; the difference between 2ϑ  and 1ϑ , reflects the trading activity 
generated by informed traders during positive states, and the difference between 3ϑ  and 1ϑ  
reflects the trading activity generated by informed traders during negative states. 

The trade indicator variable, , is modelled as a discretely distributed binary random 
variable dependent on S

tx  ,τ

t and available information, 1−Φ t : | Stx  ,τ t = i,  which is restricted 
to take on values of 1 (buyer initiated trade) and –1 (seller initiated trade).  The conditional 
distribution of can be written as  
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where the state contingent likelihoods are defined as  
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where . The structural parameters , can be interpreted as the parameters which 

translate trader’s latent demands into observed order flow. Specifically  is be interpreted 
as the probability that the next trade is buyer initiated given that the prevailing state, S
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equal to i.  A-priori, these parameters will vary across states to reflect the behaviour of 
informed and uninformed traders. For example, we would expect the probability of a buy, 

, to be larger in the positive event state (S1iq t =2) than in other states particularly during an 
negative information state to reflect the increased presence of informed trading activity. 

Having described the conditional distributions for nt and xτ,t , we can construct the 
conditional distribution for . We wish to determine and ultimately estimate the parameters 
governing the process,  (denoted by θ ). The aim then is to obtain the density function 
(likelihood) of the observed random variable Q

tQ

tQ
t, where this value represents the net order 

flow for period t. Given that nt and xτ,t are both random variables and that , the 
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This likelihood is difficult to use in order to sample the full conditional densities of 
the parameters, since the density is an infinite sum. One approach involves the application of 
Bessel functions and considering the formulation as a simple randomization problem when x 
is discrete (See Feller, Volume II, 1966). However, given that we require the joint density for 
the trade outcome process Xt  = (Qt  nt ) in order to construct the learning rule for the market 
maker, we consider an alternative approach that simplifies matters considerably. Given that 
we observe Qt and nt contemporaneously, we can model their joint distribution. Noting that 

) ,|,( θttt snQp  = )|( θ,s,nQp ttt . ),|( θtt snp , it is easy to establish the joint likelihood 
function given knowledge of the probability density function, )|( θ,s,nQp ttt . It can be 
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where nt – Qt = 2vt. (See Appendix for details). Hence the joint likelihood function can be 
written as 

ft ≡ p( , ntQ t | st = i)  = .ttt v
i

vQ
i

tt

tt qp
vQ
vQ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+ 2
!n

e
t

n
i

tiϑϑ−

.   (9)

This expression forms the basis of the likelihood function defined in (3) which is 
used by the market maker to form the posterior probabilities of each state as determined by 
the updating equation in (4). 

 
 Bayesian Analysis of Order Flow Model 

 
In this section we develop the MCMC techniques necessary to perform Bayesian 

inference for the order flow models developed thus far. Bayesian Analysis by contrast to 
classical methods, treats the parameter vector governing the model as a random variable and 
so a primary aim in Bayesian inference is to derive, or simulate iterates from, the joint 
posterior distribution of the parameter vector, θ . MCMC methods, namely via the Gibbs 
sampler, allows us to sample from what can often be analytically intractable densities by 
constructing a Markov chain on a general state space such that its limiting distribution is the 
joint distribution of interest. Often, the ability to perform inference using classical 
procedures such as maximum likelihood are constrained due to computational difficulties 
and thus leads to the analysis of simpler reduced form models rather than the structural 
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models whose parameters are directly interpretable. As such the primary motivation in 
adopting the MCMC methodology is the conceptual and computational simplicity afforded 
by these techniques particularly when dealing with models that contain latent variables (see 
Gelfand and Smith, 1990) and the ability directly describe the structural parameters of a 
model.  

The order flow models considered here all belong to a general class where the 
distribution of observations depends upon a latent Markovian switching process on a discrete 
state space (see Albert and Chib (1993), Carter and Kohn (1994) and Chib (1995)). For the 
purposes of the current model specifications, we define the following quantities: let θ  
represent the parameter vector for the model in question,  be the observable 
vector of data up to time t where we define 

),...,( 1 t
t XXX =

)  ,( ′= ttt nQX , and  represent the 
vector of the latent state variables up to time t. In this context we seek to derive the joint 
posterior of the parameter vector and the latent state vector given the set of observable 
data:

1( ,..., )t
tS S S=

( , | )f S Xθ . 
Although analytically intractable, by constructing a Gibbs sampler for the problem 

we can obtain draws of θ  and S which can be viewed as being drawn form the joint density 
of interest. By firstly augmenting the parameter vector by the latent vector S, the 
decomposition of the joint posterior density according to Bayes theorem, 

( , | )  ( | , ) ( | ) ( )f S X f X S f S fθ θ θ∝ θ , leads to the following algorithm: 
 

1. Initialise θ  
2. Sample S from f (S|θ ). 
3. Sample θ from f (θ |S, X). 
4. Repeat steps 2 and 3. 

 
Under mild regularity conditions, the iterates generated from this sampling algorithm will 
converge to their invariant target distribution. Given a sufficiently large number of draws, 
the parameters’ marginal posterior distributions can be constructed. Furthermore, by 
averaging subsets of these simulations Bayesian estimators of the parameters can also be 
formed. For details, refer to Casella and George (1992), Tanner (1996), and Chib and 
Greenberg (1996). 

As noted by several authors (see Stephens, 2000), Bayesian analysis of mixture 
models potentially suffer from parameter unidentifiability, due to the invariance and 
symmetry of the likelihood function, in which case steps must be taken in order to directly 
estimate the state specific parameters governing the model. This will be also considered in 
detail in this section.  

Obtaining the Bayesian estimators for the parameters governing the net order flow 
models entails sampling from the set of full conditional posterior distributions. Sampling 
from these full conditional distributions form the basis for the Gibbs Sampler which leads to 
the generation of iterates from the joint distribution of the parameters governing the models 
and are derived in the following sections. 

We first treat a discussion of sampling the latent state vector S, and the parameters 
governing the transition probability matrix, Π . Having done so we consider the parameters 
governing each order flow model in turn by deriving their full conditional distributions.  
 
Sampling Sn (St, t = 1,…, n) 

 
We can prescribe the following block-sampling scheme to generate the state variable 

. Suppressing nS θ  for notational convenience our aim is to generate  from the 
distribution Pr(

nS
nS  | Xn). We first note the decomposition   
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Pr( nS  | Xn ) = Pr(Sn | Xn )   ∏
−

=
+

1

1
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n

t
ttt SXS (10)

 
Following Carter and Kohn (1994) and Chib (1995), we construct an algorithm which 

samples the vector  as a block using the joint conditional distribution, Pr( |nS nS nX ), rather 
than from the set of individual full conditional distributions . Since the process Pr( | , )t n tS Y S−

{ }t
S  is Markov, and therefore correlated, such blocking will lead to faster convergence to 

the posterior distribution, and is therefore preferred to the single move sampling. The 
algorithm first generates Sn from Pr(Sn | Xn)  and then for t=n-1,  ,1 successively generates St 
from Pr(St | Xt, St+1) which from Bayes theorem, for t=n-1,…,1 can be computed from : 

 Pr(St | Xn , St+1) = 
)|Pr(

)|)Pr(|Pr(

1

1

tt

tttt

XS
XSSS

+

+ . (11)

The discrete filter to evaluate Pr(St | Xt) can then be described as a set of recursive 
equations used generate samples from Pr(Sn

 | Xn).  Details of this algorithm can be found in 
the appendix. 
 
Sampling the Transition Probability Matrix 

 
Having generated the latent state variable, S, it is a relatively straightforward task to 

sample from the full conditional distributions of the parameters that form the transition 
probability matrix, Π.  

Let Πi )  represent the ith row of Π ; the vector of state transition 
probabilities given S

( 1 iKi p,..,p≡

t = i. By construction, these probabilities must sum to unity. The full 
conditional distribution for Πi can be expressed as:  

Pr(Π i |Xn, ,nS θ /Π i)  = Pr(Πi | ), since ΠnS  i is independent of  Xn and θ −Π i  given 
. By Bayes Rule then Pr(ΠnS i | ) |ΠnS Pr( nS∝  i)Pr(Π i). 

Given that St evolves according to a first order Markov process, the joint likelihood 
for  can be expressed as a Dirichlet process. By adopting conjugate priors for Pr(ΠnS  i), the 
posterior denisty too will be a dirichlet, and so that parameters for Πi can be jointly sampled 
from the following Dirichlet distribution :  

Πi |  ~ Dir(dnS i1, di2,…, dik) (12)

 
where dij = nij + uij, nij  represents the number of transitions from state i to state j : 

 and u∑ = − ===
n

t ttij jsisn
2 1 )()( II ij are the hyperparameters of the Dirichlet prior. See 

Appendix for details. 
 
Sampling the Parameters Governing Trade Direction Based Model of Net Order Flow 

 
Given the trade direction model developed earlier, the parameter vector can be defined as 
( , , ( ))q vecθ ϑ Π= . Given the joint sampling density or conditional likelihood for Xt, we can 

construct joint density of the vector of observations conditional on state i. By defining itI  to 
represent an indicator function that equals one when St = i, and zero otherwise, we can 
express the conditional likelihood as:  

p( | , , ,T
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As shown in the appendix, using conjugate priors we are able to construct the full 

conditional densities of the trade direction parameters to which we sample from in the 
MCMC algorithm:  

Πi |  ~ Dir(δ
nS i1, δi2,…, δik) (14)

/| , ,
i

T
i Tq X S qθ ~  Beta (  )  )( 11t ∑+∑ ++ ==
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t t dTcn ++∑ = (16) 

 
 Modelling Issues in Bayesian Analysis: Label Switching in Mixture Models 

 
When conducting Bayesian analysis of mixture models, parameter estimation can be 

complicated by the inability of the Markov chain to generate parameter iterates that belong 
solely to a single mixture component. This so-called label switching problem generally arises 
when taking a Bayesian approach to parameter estimation within mixture models. The 
problem has been identified by several authors, including Diebolt and Robert (1994), 
Richardson and Green (1997), and Fruhwirth-Schnatter (2001) and Celeux et al (2000). The 
problem arises due to the fact the likelihood and hence posterior distribution of the model 
parameters under diffuse priors are symmetric and hence invariant under relabelling of the 
mixture components. The MCMC sampling thus produces posterior distributions that are 
multi-modal and highly symmetric, rendering useless inference methods that summarise the 
parameters by their marginal distributions (e.g. by computing the posterior mean and mode).   

Several attempts have been made to remove label switching, the most popular being 
those which impose artificial identifiability constraints (see Richardson and Green, 1997). 
Yet this approach does not always provide a satisfactory solution as noted by Celeux et al 
(2000), and Fruwirth-Schnatter (2001), particularly when there may be no prior knowledge 
as to how to label the parameters.  

The most promising approach however has been that developed by Stephens (2000) 
which attempts to relabel the iterates for each parameter by selecting the relabelling that 
minimises the posterior expected loss for a certain class of loss functions. An online 
algorithm has been adopted in this study, which attempts to relabel the parameters following 
each sweep of the Gibbs Sampler. All results reported in this study have been successfully 
relabelled using this algorithm. For details, the reader is referred to Stephens (2000).  

 
3. Bid/Ask Price Dynamics in a Model with Bounded Rational Learning 

 
In this section, we construct a model of asset price formation that synthesises the 

concepts of bounded rational learning behaviour and order flow dynamics. Central to this 
model is an expectation formation mechanism used by the market maker to determine the 
underlying value of the security. The adverse selection parameter or informational 
asymmetry with the system is modelled as a time varying, state dependent process, which 
allows the adverse selection component of the bid ask spread set by the market maker to 
reflect his or her time varying state uncertainty. The market maker’s event uncertainty is 
summarised by the state probabilities that are formed using the bounded rational learning 
procedure described in earlier sections. Bounded rationality is a result of the market maker 
updating these state probabilities using aggregated trades or net order flow to infer the degree 
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of trading activity, which acts as a signal to the market of whether an information event has 
occurred. In so doing we construct a positive model that describes the relationship between 
order flow, learning and prices.  

MCMC methods are again used to carry out Bayesian inference as they are particularly 
useful in dealing with the latent variable structure inherent to the model. While previous 
studies (see Manrique and Shephard, 1997, and Hasbrouck, 1999) have utilised Bayesian 
methods to investigate various microstructure effects, our study goes further by investigating 
the stochastic process of the latent variables acting upon prices and order flow. In so doing, 
issues such as those pertaining to persistence in the volatility of prices may be explained by 
the process in which the market learns about the prevailing latent information regime. This 
learning process coupled with the dynamics of the state variables can then be used to explain 
the observed behaviour of prices and volume.  
 
Model Development  

 
In order to develop the model, we first consider a simple a sequential trade model of 

price formation that employs several elements of the framework adopted by Madhavan, 
Richardson and Roomans, 1997 (MRR, 1997), and is considered in detail below.  

Consider a quote driven market for a security with a competitive market maker who 
provides liquidity and permits continuous trading by overcoming the asychnronous timing of 
investor orders.  These liquidity providers quote two prices: the bid price, at which they will 
buy securities and the ask price at which they will sell securities. The market maker posts bid 
and ask prices that are ex-post rational, so that the pre-trade ask (bid) price at ordinal time t 
represents the expected value of the security conditional on the history of all available 
information, , and a buyer (seller) initiated trade. The observed spread in the quotations 
also reflects the market maker’s compensation for liquidity provision. The formation of these 
conditional expectations and its revision are dependent on the specialist’s belief of the 
information content of incoming trades and any public information that arrives to the market. 
Given we are modelling time as an ordinal sequence, we re-define the order flow variable 
occurring at instant t to be x

1−Φ t

t.  
To model the revision in beliefs, denote Vt as the true underlying value of the security 

and let mt denote the post-trade expected value of a risky security conditional on public 
information and order flow at time t: 

 

ttttttt xExmVEm ελ +Φ−+=≡ −− ])|[()( 11  (17)

 
This equation describes how the revision in the expected value of the security arises 

from two sources; new public information and order flow. New public information 
announcements can cause revision in beliefs without trading volume. We let εt represent the 
innovation in beliefs occurring between t-1 and t due to the arrival of public information and 
we assume that εt ~ N(0, 2

εσ ).  The reaction by the market maker to private information is 
manifested by a revision in beliefs resulting from order flow. As in MRR (1997) as well as 
Hasbrouck (1991), we assume that the revision in beliefs due to order flow is given by 

])|[( 1−Φ− ttt xExλ , where ])|[( 1−Φ− ttt xEx  represents the market maker’s unexpected 
amount of order flow (or order flow innovation) given his information set , and 1−Φ t λ  
represents the price impact of the innovation or the degree of information asymmetry present 
in the market.  

Dependent upon the specification as described in earlier sections, the order flow 
variable, xt, can be defined in several ways. In a trade direction model the market considers 
the flow of buys and sells in order to learn the state of the market. At this stage however, the 
current model does not accommodate the market maker’s ability to observe the aggregate 

10 



trade outcome (net order flow), whereby trading frequency or the degree of trading activity 
in any one period can be used to infer the underlying state of nature. The information set 
available to the market maker and to the public, 1−Φ t , can now be thought of as the history of 
past trading outcomes (xt-1, xt-2,…, x1), and prices, but can be generalized to include the 
history of all publicly available information. 

We denote the bid and ask prices set by the market maker as  and  respectively. 
In establishing the ask and bid price, the market maker is subject to the non-negative costs, 

 per unit of trade, which will be reflected in the quotes set. In the absence of other 
costs or frictions, the market maker will quote a bid price of m

b
tp a

tp

ba ,φφ

t -  and an ask price of mbφ t 
+ . Given ex-post rationality, quotes at time t are set prior to observing the incoming trade, 
x

aφ
t. In a model where trades are characterized as a buy or sell (xt = 1 or -1), we can write the 

ask and bid prices as:  
 

a
t

a
tt

a
t x|VEp ξφ ++==   ]1[   

      =  ,                       (18) a
tt

a
ttt xEm ξεφλ +++Φ−+ −− ])|[1( 11

b
t

b
tt

b
t x|VEp ξφ +−−==   ]1[  

      = .                (19) b
tt

b
ttt xEm ξεφλ ++−Φ+− −− ])|[1( 11

 
The terms and are independent and identically distributed random variables 

distributed such that  ~ N(0, ), and  ~ N(0, ). These terms are included to 

account for the effect of stochastic rounding errors induced by price discreteness in the bid 
and ask price.  

a
tξ b

tξ
a
tξ 2

aξ
σ b

tξ 2
bξ

σ

In the model proposed by MRR (1997), the latent variable, mt is substituted out by 
assuming a simple specification for the temporal behaviour for order flow. This results in a 
reduced form equation that can then be estimated. This has been a common practice in 
several microstructure studies including Huang and Stoll (1997), Glosten and Harris (1988) 
and Madhavan and Schmidt (1991). As the focus of this study is on the mechanism in which 
information is incorporated in the trading process, we must develop an approach that allows 
us to explicitly model the latent information structure that in turn determines the stochastic 
process, xt. Observing the dynamics of xt, and its interaction with the posted bid and ask 
prices allow us as econometricians to infer the properties of the latent or state variables that 
drive the model. 

Given that the trade variable xt is modelled as a function of the latent information 
state variable, St, we can investigate how information is incorporated into prices by 
modelling learning behaviour of the market maker. In the sequential trade models of Glosten 
and Milgrom (1985) and Easley and O’Hara (1987, 1992), trade can arise from uniformed 
and or informed traders. Trade takes place in a sequential fashion with traders arriving to the 
market according to a probabilistic process. With the arrival of trades, the market maker uses 
Bayesian learning to form his expectation of next period’s order flow . This 
expectation is then fed into the ex-post rational quote setting process. 

]|[ 1−Φ ttxE

 
A General Model of Price Expectation Formation under Event Uncertainty  

 
The expectation formation mechanism characterised  in (17) assumes a form such 

that the bid ask spread attributable to private information effects is constant. A new 
formulation is developed whereby the bid-ask spread and thus the degree of information 
asymmetry is both time varying and state dependent. 

In this model we generalise the expectation formation mechanism of the market 
maker. If the market maker knew the state St with certainty then it is plausible to assume that 
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the trade impact parameter, λ, would be different across these states. A-priori, if St =1, then λ 
should be set to zero or a value commensurate with volume having a small impact on prices. 
When there is no information event, order flow should convey no new information and hence 
should have a minimal impact on price. Conversely if an information event occurs, the 
impact of a buy should be different to that of a sell depending on the direction of the signal; 
buys should only have an impact on prices if a positive information event is known with 
certainty, and sells should have an impact if a negative information event is known with 
certainty. 

This requires modelling the evolution of λ and more generally the error correction 
mechanism, ])|[( 1t −Φ− ttxExλ , over time and across states. Given event uncertainty and 
the learning behaviour of the market maker, we postulate the market maker forms an 
expectation of the appropriate price impact of the order flow innovation given his posterior 
probabilities as to the prevailing state given the trade outcome, )| Pr( ttit/t iSp Φ== . The 
post trade expected value of the stock can then be constructed.  

The idea rests upon treating λ as a conditionally monotonic function of order flow. 
However given state uncertainty, the unconditional behaviour of λ will display a non-
monotonic relation with order flow. Let itλ  represent the price impact parameter that is 
determined by the market maker at time t if state i were known with certainty. Under each 
state, itλ  has a specific functional form which is dependent on the order flow variable: 

 
3   if   )(
2   if   )(
1   if   )(

t3

t2

t1

⎪
⎩

⎪
⎨

⎧

=
=
=

=

t

t

t
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Sxg
Sxg
Sxg

λ  (20)

If order flow was modelled as a trade indicator variable, we can prescribe the 
following functional form: 

 
3   if   1)( 
2   if     1)( 

1   if                          

t31

t21

1

⎪
⎩

⎪
⎨

⎧

=−=+
==+
=

=

t

t

t

it

SxI
SxI
S

λλ
λλ

λ
λ  (21)

 
Many alternative specifications are however possible. λ1 represents the non-

informational impact of order flow. Since this value prevails under no-information states, we 
would expect this value to equal zero: a value greater than zero would reflect the effect of 
liquidity on price setting. Under state St = 2, only buy trades are strictly informative; as such 
λ2 reflects the additional informational impact of buy trades occurring; sells occurring when 
St = 2 are non-informative or liquidity based and so their price impact is reflected by the 
value λ1. Conversely under state 3, sells are strictly informative given the negative news 
state, and the price impact is reflected in λ3; λ1 reflects the price impact of non-informational 
buyer initiated trades occurring in a negative news state. We can specify the following 
expectation formation mechanism as follows: 

{ } t
i

titttttittt pisxExmm ελ +=Φ−+= ∑
=

−−

3

1
/11 ]),|[(  (22)

where . The above process can be a considered a 
generalisation of earlier mechanisms considered by MRR (1997) in that (33) reduces to their 
specification when one assumes 

] ,[  ][ t1 x|VE|VEm ttttt −Φ=Φ≡

itλ  = λ .  
 

The term ≡CEλ {∑ =Φ− −
i

titttttit pisxEx /1 ]),|[(λ } in equation (22) also has a 

straightforward interpretation; CEλ represents the weighted average of errors that would 
prevail under each state with the weights being the state probabilities. Under the assumption 
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of risk neutrality, this value reflects the certainty equivalent of the adverse selection 
component of prices: ])|[( 1t −Φ− ttxExλ . 
 
Quote Setting Under Various Trade Model Structures 

 
The quote-setting functions expressed thus far have only considered trade direction as 

the order flow variable. We now generalize the model of MRR (1997) to allow quote setting 
behaviour to be contingent either upon trade direction or order size. We also incorporate the 
generalized expectation formation mechanism described above, as well the bounded rational 
learning rule used by the maker, into the quote setting functions.  

To generalise the quote setting functions defined in MRR (1997) we allow the 
expectations mechanism used to set prices to be a function of signed trade size as opposed 
trade direction alone. This corresponds with several theoretical microstructure models 
including Kyle (1985) and Madhavan and Schmidt (1991) whereby the prices set by the 
market maker can be contingent on order size. In these cases, the market maker provides the 
trader with a price schedule in which the trader can then select whether and how much to 
trade. 

In order to avoid specifying full pricing functions for the market maker, Lee, 
Mucklow and Ready (1993) and Kavajecz (1999) note that the bid and ask quotes represent 
only one dimension of the quotation provided by the market maker. In markets such as the 
NYSE, complete quotes consist of the best price for the bid and ask, as well as the number of 
shares available at these prices (the depths). Hence we can interpret the actual quotes 
observed in a market by treating the ordered pairs (ask price, , and depth at the ask, ) 
and (bid price, , and depth at the bid, ) as two points on the ask and bid pricing 
functions: 

a
tp a

tx
b
tp b

tx
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ttt
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a
t xx|VExp ξφ ++==   ][)(  (23)

{ } a
tt
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itttt

a
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a
tt piSxExxm ξεφλ +++=Φ−+= ∑ −− ]),|[()( 11  (24) 

 
b
t

bb
ttt

b
t

b
t xx|VExp ξφ +−==   ][)(  (25)

= { } b
tt

b

i
itttt

b
tit

b
tt piSxExxm ξεφλ ++−=Φ−+ ∑ −− ]),|[()( 11  (26) 

where by convention, > 0 and   < 0. In order to maintain ex-post rationality, the 
quantities and represent price impact parameters conditioned on the market 
maker’s quoted depths for the forthcoming trade. 

a
tx b

tx
 )( a

txλ  )( b
txλ

The description of the above process is fully general as it can accommodate the case 
when trade direction alone is used as the conditioning agent by the market maker to form 
expectations. In the trade direction case, we simply define the bid and ask ‘depths’ to equal 

= -1 and  = 1, respectively. b
tx a

tx
Other features of the model are also worth noting. The spread attributable to 

information asymmetry is given by the difference between the quantities that represent the 
market maker’s response to order flow innovation in the bid and ask price: 

{ }∑ =Φ−≡∇ −
i

itttt
a
tit

a
tInfo piSxExx ]),|[()( 1λ   

                                            
{ }∑ =Φ− −

i
itttt

b
tit

b
t piSxExx ]),|[()( 1λ  (27) 

We can see that this quantity is a direct function of the posterior probabilities of the 
state variable St. This suggests that when the market makers’ posterior probability of an 
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information event increases, the spread will also adjust to reflect the higher degree of 
information asymmetry and the increased probability of the presence of informed trading. 
 
The Role of Bounded Rationality in Asset Price formation: The Impact of Net Order Flow 
and Trade Activity on Prices. 

 
Having specified the mechanism in which the market maker uses aggregated trades 

over discrete time intervals to infer the underlying state of nature, it is straightforward to see 
how this will affect pricing.  Dependent on which aggregated trade model is being 
considered, agents within this framework will form the probabilities of St not after each trade 
but after a discrete time period. While these probabilities are updated in a Bayesian fashion, 
the learning mechanism can be considered to be boundedly rational because the probabilities 
fail to adjust following the immediate arrival of each trade. A primary motivation for this to 
occur is that it may be more informative update their beliefs by conditioning on the degree of 
trade activity that occurs over a given time period. The pricing equations can easily 
accommodate this type of bounded rational learning process in that the quotes set by the 
market maker and the assessment of the underlying value are adjusted after each trade, 
however the probabilities as to which state of nature prevails is adjusted only periodically. 
This directly impacts upon the market makers expectation of order flow and the error 
correction mechanism used to form expectations about the security’s underlying value. This 
in turn affects the pricing equations described above.  

The model is thus complete. The model of quote setting can now be described as 
follows. Pricing equations (24), (26), the expectation formation mechanism (22) along with 
the updating procedure using net order and trade frequency described in Section 1, 
completely characterize the dynamics of the model.  

Given this structure, by observing the realised values for quotes ( , ), quoted 
depths ( , ) and actual order flow (x

a
tp b

tp
a
tx b

tx t), we can apply MCMC techniques to directly 
generate the posterior densities and perform Bayesian analysis of the structural parameters of 
the model.   
 
Bayesian Analysis of Bid/Ask Price Formation Models  

 
This section investigates the implementation of MCMC methods to perform Bayesian 

analysis on the price formation model described. Having obtained the parameters governing 
the order flow and state variables, we are in a position to investigate the parameters 
governing the typical pricing equations of (24), (25) and (22) which are re-expressed below: 
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where  εt 
iid
~  N(0, 2

εσ ),  ~ N(0, ), and  ~ N(0, ) and we define  and 

. 

a
tu 2

auσ b
tu 2

buσ b
tt

b
tu ξε +≡

a
tt

a
tu ξε +≡

 
Letθ be the parameter vector governing the pricing functions ( , , λ, bφ aφ

2
εσ , , ), where λ =2

au
σ 2

bu
σ )( 221 λλλ , and let Yn  = (y1,…, yn )′ be the vector of observable 

variables, where yt = ( , , xa
tp b

tp t ). Further let Mt = (m1,…, mt)′ be the vector of unobservable 
efficient prices.  The MCMC strategy augments the parameter space by generating during 
each sweep of the sampler the latent vector Mt, thereby allowing the full conditional 
distributions of the parameters to be easily derived. Owing to the linear Gaussian structure 
adopted in equation (28) to (30), we are able to utilise standard Kalman filtering results to set 
up an efficient sampling algorithm to sample from the density f(Mt| θ ,Yn). We can then 
implement the Gibbs Sampler to generate iterates from the joint conditional density f(θ , Mt | 
Yn) by drawing samples from f(θ | Mt, Yn). We first consider the problem of simulating the 
latent variable vector Mt followed by the derivation of the full conditional posterior densities 
for the parameter vector which are necessary to implement the Gibbs sampling strategy. 

 
 Generating mt; t = 1, …, n in a state space framework 

 
Following Carter and Kohn (1994), and Chib and Greenberg (1995) we construct an 

algorithm that  samples the vector Mn as a block using the joint conditional distribution, 
Pr( | ), rather than successively drawing from the set of individual full conditional 
distributions . Since the stochastic process of the latent variable, , as 
given in (22) is Markov, and therefore correlated, such blocking will lead to faster 
convergence to the posterior distribution, and is therefore preferred to the single move 
sampling. 

nM nY
),|Pr( tnt MYm − tm

Given the Gaussian structure of the model, and the timing convention adopted we 
may reformulate the model so that we can apply Kalman Filtering to generate the state 
variable. Let  
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Then, (28) – (30) can be equivalently expressed in the following state space form: 
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Further, given the model specification,  
ττ δεε tt QE =′ )( , ττ δ tt RwwE =′ )( , and ττ δε tt SwE =′ )( ,  
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σ [ ]00=S  and jkδ represents Kronecker’s delta which 

equals 1 if j = k, and 0 otherwise. 
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We construct an algorithm which samples the vector  as a block using the joint 
conditional distribution, Pr( | ), rather than from the set of individual full conditional 
distributions .  

nM

nM nY
),|Pr( tnt mYm −

Formally, we generate ),...,,( 21 nn mmmM ≡  given ,  and θ, where 
. Letting , and suppressing θ 

and  for notational convenience, the joint density of  can be written as:  
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To generate  from Pr( | ), we first generate  from Pr(nM nM nY nm nm  | ) and then for 

t = n-1,…,1 we generate  from  whose density can be derived using 
Bayes theorem: 
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since  is independent of  given . The density for   is ~ 

N( , Q). From the Kalman Filter, the density for  is Gaussian ~ N( , 

where  and =  for 

),( 21 ++ tt MY nm ) ,( 1+tt mY  ,|1 ttt Ymm +

tmF  | tt Ym ) , t|tt|t
ˆm̂ Σ

)|( sts|t YmEm̂ = s|tΣ̂ )|( st YmVar nts ≤≤  are obtained by running the 
following recursions (see Anderson and Moore, 1979):  
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After the required substitutions into (34), completing the square in  leads to the following 
algorithm to sample {

tm

tm~ } from the joint posterior distribution of states: 

1. Run the Kalman filter and compute the values tt|ttt|tt M~ˆM~ˆˆ ′Σ−Σ=Σ +1  and 

.  1
1

−
+ΣΣ= t|tt|tt

ˆˆM

2.  Simulate nm~ from N( ; then for t = n-1,…,1 generate ) , n|nn|n
ˆm̂ Σ  tm~ from N( , 

where 
) , tt

ˆm̂ Σ

) - (  1 t|tttt|tt m̂m~M~m̂m̂ ++= . 
 

 Generating θ | Yn, Mn, Sn
 

Once Mn (and Sn) have been generated, simulating the individual full conditional 
distributions for the parameters become relatively straightforward. Given Mn, the complete 
conditional distribution for the parameters ( , , λ, bφ aφ 2

εσ , , ) can be easily obtained 
given the specification of appropriate priors. We can construct the individual full conditional 
distributions for each parameter in turn, which form the basis of the Gibbs sampling 
algorithm. The derivations for each of these quantities can be found in the appendix:  
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4. Data and Results 
 
 Data Description 

 
The results reported in this study are based on a sample of transactions data taken 

from the TAQ database, made available by the NYSE. The data comprise of sequenced trade 
and quotes for the representative stock, Alcoa during the month of September 1994. The 
stock was selected as it has been the subject of previous microstructure studies (see 
Manrique and Shephard, 1997).  

Following Hasbrouck (1991), Lee and Ready (1991) and Foster and Viswanathan 
(1993) we adopt a strategy to sign trades whereby transactions at or closest to the bid are 
treated as seller initiated and hence are negatively signed; trades occurring closest to or at the 
ask price are considered buyer initiated and hence are positive. Following Easely, Kiefer and 
O’Hara (1997a,b), when a trade takes place at the midpoint of the quotes, it will be classified 
depending upon the price movement of the previous trade; if it still can not be determined we 
move back in the trade record to find the most recent price movement. By doing so we are 
able to classify every transaction in the sample. All trades during the sample period with the 
exception of opening trades are thus included for analysis. 

In order to implement the model, we must specify the time horizon which the market 
maker uses to determine the amount of trading activity or trade frequency. The model does 
not offer any suggestion as to an appropriate choice. So far as that we are studying intraday 
price dynamics, time intervals shorter than a day would be a logical starting point. As an 
initial choice 15 minutes was selected as a reasonable horizon. The choice was made based 
on investigating the average general trading pattern of Alcoa for 1994. The interval seemed 
to be long enough to preclude the effects of market frictions (such as delays in order 
submissions and execution, or time lags in the posting of quotes) but short enough to be 
informative for an intraday analysis. As this choice is arbitrary, the analysis can be carried 
out using various time horizons to determine the robustness of the model specification. 
While not reported, preliminary analysis was carried out using a variety of horizons ranging 
from 1 minute to 1 day. With the exception of the daily time horizon, we obtained 
qualitatively consistent results to those reported here. 
 
Estimation Results from Net Order Flow Models 

 
We first consider the estimation results obtained by fitting the order flow models to 

the data using the Gibbs sampling schemes described earlier. An unconditional model was 
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estimated where it was assumed there was no mixture process and compared to the 
conditional mixture model presented in this study. The MCMC sampler for each model was 
run for 6000 iterations with the first 1000 discarded.  

The posterior means and numerical standard errors for the simulated densities of  the 
models were computed and presented. The numerical standard of the estimates are computed 
using the heteroskedastic autocorrelation consistent estimator derived by Newey West (1987) 
to deal with  serial correlation in the draws. Other techniques were investigated, including 
spectral density estimation with Parzen kernels and found the results were similar. We also 
evaluate the mixture model by comparing the log likelihood and marginal likelihood 
estimates evaluated at the posterior means using the method developed by Chib (1995). We 
investigate the efficacy of the Markov mixture representation by comparing them to their 
respective unconditional specifications. By doing so we can then determine whether the state 
variable dynamics (St) can be adequately described as a Markov mixture (regime switching) 
process. 
 
Results from Trade Direction Model 

 
Results from the Gibbs sampling scheme for the unconditional and Markov mixture 

models are presented in Figure 1. Inspection of these plots suggest that the iterates for each 
parameter have converged to their exact small sample posterior distributions. 

Table 1 presents the results of these simulated posteriors for the trade direction model 
jointly defined by (1) (6) (7) and (9). The results of the Markov mixture model are presented 
in Panel A with the unconditional model results presented in Panel B. The posterior mean 
and standard error for the unconditional parameter q (the unconditional probability that 
incoming trade is a buy) is 0.569 and 1.02 x 10-4 respectively. The posterior mean for the 
average arrival rate of trades per 15 minute period (ϑ ) in the unconditional model is 10.68.  
For the Markov mixture representation the posterior mean of q under a positive information 
state (St=2)  is 0.68 , whereas the mean  in the negative state  (St=3)  is 0.275. This suggests 
greater buying pressure in positive states and greater selling pressure during negative states 
as expected. The posterior mean for ϑ   under (St=1) ( no information event) is 5.30 trades 
per period which is unambiguously lower than the values reported for St=2 and St=3 
Comparison of the log likelihoods and log marginal likelihoods reported in Panel C of Table 
1 overwhelmingly suggests evidence in favour of the mixture model over the unconditional 
model. 

The simulation results for the transition probabilities governing the mixture model 
are displayed in Figure 2, and Panel A of Table 1. The results suggest that the system 
remains in state 1 more often than in states 2 and 3. Persistence of the negative state is 
relatively small as measured by the low transition probability 33π  = 0.25. Of particular 
interest are the transition probabilities once an information event has occurred. The results 
suggest that the probability is high when moving from sate 3 to state 1. However when in 
state 2 (the positive information state), the probability of moving to state 1 (the no 
information state) is lower than the probability of moving to sate 3 (the negative information 
state). These asymmetric results suggest that negative information events are typically 
followed by periods of calmer trading activity and no news. However when a positive 
information state prevails, the market is more likely to overshoot and move to a negative 
state given that the market may have overvalued the security. This notion of over- 
exuberance during the positive state is also demonstrated by the significantly higher amount 
of trading activity observed during in these periods; the trade arrival rate in state 2 is roughly 
60% higher than the trade arrival rate in state 3.  

Figure 3 presents the plots of net order flow and trade activity and the posterior 
probabilities for each state. By focussing on a smaller sub-period (1 trading week) we can 
identify the positive information states as those occurring at the beginning and end of a 
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trading day. The probability of no information is low during these periods. No information 
states are generally found during the middle of the trading day.  
 
 Results from Price Formation Model 

 
The price formation model was estimated using one week of trade and quote data 

during the month of September 1995. A Gibbs sampler was run using 7000 iterations, with 
the first 2000 iteration discarded. The results of the model estimation using the trade 
direction are presented in Table 2. The Gibbs sampling posterior densities for these two 
models are also reproduced in Figures 4 and 5. 

Examining the trade direction, we find that the mean estimates for the parameters 
governing the bid and ask equations produce sensible results; the order processing costs for 
the ask and bid ( and ) are approximately 5.95 cents and 5.21 cents per share 
respectively . These values correspond with the values reported by MRR (1997) with respect 
to their sample of NYSE stocks. The variances of the bid and ask prices (  and ) are 
0.138 and 0.187 cents respectively which are typically small. The variance of the public 
order flow innovation is 1.85 cents per share and also appears quite small but more 
significant that the rounding effects implied by  and .  The information asymmetry, or 
price impact parameters 

aφ bφ

2
bu

σ 2
au

σ

2
bu

σ 2
au

σ

1λ 2λ  3λ  are worthy of note. 1λ  represents the base value that prevails 
across states and is reported to be 0.038.  The marginal price impact parameter values 
observed under negative and positive states ( 3λ  = 0.046 and  2λ  = 0.0017) are strictly 
positive suggesting greater price sensitivity to trades arriving in information states. The 
increase in the information asymmetry under these states reflects the greater reliance in the 
signal content of order flow due to the fact that it indicates the greater possibility of informed 
trading. 

We can observe the price sensitivity of net order flow over time as predicted by the 
model. The efficient price series obtained using the Kalman filter under each model are 
presented along with the price sensitivity following each trade in Figure 6, as represented 
by CEλ the information spread as well as the probability of no information as predicted by 
each model.  What is immediately obvious is that model seems to highlight the increased 
probability of informed trading at the start and end of each trading day where the probability 
of no information is low. Investigation of the information spread suggests that the 
information asymmetries are greatest at the start and end of each trading day as information 
spreads are higher during those periods.  This coincides with the higher probabilities of 
informed trading observed during these periods. This intraday behaviour is also observed for 
the certainty equivalent information asymmetry parameter, CEλ .  
 
Conclusions 
 

This study has sought to investigate the way in which information dynamics, order 
flow and learning combine to influence the formation of prices in financial markets. The 
notion that market agents condition their learning on a variety of variables has been 
highlighted by many microstructure studies. In this paper we demonstrate how this can be 
achieved using a Markov mixture representation of order flow and trade frequency.  This 
representation can in turn be used to describe the dynamics of the latent information process 
which drives the system. A Bayesian learning mechanism is also introduced to allow market 
agents to infer the prevailing state of nature given the trading history.  

In order to understand how this process affects prices, a simple quote setting and 
expectation formation model is specified which incorporates the learning mechanism. A 
major tenet of this model is that agents do not update their beliefs as to the underlying state 
of nature following the immediate arrival of new information, but after observing the history 
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of trading outcomes over a certain time horizon. This implies that trade activity or the 
number of trades in a given period is informative. We describe this type of learning as 
boundedly rational and we test to see if it is an accurate representation pricing behaviour in 
financial markets.  

Upon investigation of these models several conclusions can be drawn. Taken 
together, the results of the net order flow model suggest that the Markov mixture 
representation is appropriate in describing the dynamics of information flow. In periods 
where there is no new private information, the model predicts that trading activity as well as 
the volatility in order flow will be low. Conversely, during information events, the models 
predict greater trade activity, and higher volatility, with the sign of net order flow indicating 
the type of information that is arriving to the market. We find however that the market tends 
to “over react” following positive information states since negative states are more likely to 
immediately follow. The converse does not appear to be true with regards to trading 
behaviour following negative states.  

The current approach to modelling order flow and prices has many potential 
applications in relation to studying market phenomenon over time. In particular, the model 
can be used to describe how the degree of information asymmetry behaves during certain 
market events where private information flow is potentially large; such as earnings 
announcements, M&A announcements and seasoned equity offerings. The model can be 
extended to other asset classes; in particular bond and derivatives markets. The 
methodologies developed here can also be applied to existing microstructure models which 
previously could not be tested directly owing to their latent variable structure. In particular 
the microstructure model can be extended following Easley and O’Hara (1992) to consider 
the relative impact of informed and uniformed traders on the price formation process.  

In so doing, through the development of more realistic models of price formation, it 
is hoped that there will be a better understanding of the way in which information and 
trading behaviour can explain the variation of returns over time and across assets.  
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Appendices 
 
Appendix 1: Recursive Equations for Construction of Regime Probabilities 
 
Following Gray (1996), we proceed as follows. First note that if the information set 
comprises only of the history of trading outcomes, then, 1−Φ t  and we 
can equivalently express the regime probabilities as Pr(S

),...,( 11
1 XXX t

t
−

− =≡

t = i | 1−Φ t ) = Pr(St = i | 1−tX ). We 
can then rewrite the probabilities by conditioning on the state at t-1: 
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for St = 1; similar expressions can be obtained for Pr(St = 2 | 1−tX ) and Pr(St = 3 | 1−tX ). In 
vector notation, the vector of probabilities, Pr(St | 1−tX ) can be obtained directly from: 
 Pr(St | 1−tX ) = Π’ .         1
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We can then form the vector of probabilities,  by computing )|Pr( 1
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where ft-1 represents the vector of likelihoods , for i= 1,2,3 at t-1, and p),|( 2
11

−
−− = t

tt Xisxf t-

1 is the vector of probabilities Pr(St-1 = i | 2−tX ). By substituting (A1.2) into (A1.3) then 
yields the desired expression to generate the regime probabilities, pit = Pr(St = i| 1−tX ) for i = 
1,2,3, as given by equation (3.4)  
 
Appendix 2:  Deriving the Conditional Distribution for Net Order Flow in A Trade 
Direction Model 
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In order to derive the distribution for this variable, we can view Qt =  as a simple 

binomial random walk process where the order flow variable { } is a sequence of 
mutually independent identically distributed random variables. The possible values of the 
random variable, Q
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t, after nt trials are k = 0, 1± … tn± . In order to derive the probability that 
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where we define nt – Qt = 2vt, such that the probability vanishes for odd k when nt is even 
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It can be shown (see Feller, 1966, pg 59) that the marginal pdf for Qt without conditioning on 
nt is given by  
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where we define the function for all real x as the modified Bessel function:  ρI
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We note that under the special case that nt = 0 (which implies Qt = 0), both the joint and 
marginal densities are well defined, thus allowing an analysis of cases of when no trade 
intervals occur.  

 

Appendix 3:  Full Conditional Distributions for the  parameters and Latent Variables 
in Net Order Flow Model 
 
A3.1 Block Sampling Algorithm For The Generation of Discrete State Vector, S 
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Following Carter and Kohn (1994), the algorithm first generates Sn from Pr(Sn | Xn)  and then 
for t = n-1,…,1 successively generates St from Pr(St | Xt , St+1) which from Bayes theorem, 
for  t = n-1,…,1 can be computed from : 
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In order to compute this quantity, Pr(St | Xt) must be generated. The discrete filter to evaluate 
Pr(St | Xt) can then be described as a set of recursive equations used generate samples from 
Pr(Sn

 | Xn). Noting that , the discrete filter to 
obtain  and  can be obtained as follows for t = 1,…,n : 
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These results can then be fed into the Bayes expression (A3.1) to sample  from Pr(nS nS  | 
Xn).  
 
A3.2 Full Conditional Distribution of Πi
 
From Bayes Rule we can express the posterior density of Πi as  
  Pr(Πi | ) |ΠnS Pr( nS∝  i)Pr(Π i).      
Given that St evolves according to a first order Markov process, the joint likelihood for  is 
Dirichlet. By adopting conjugate priors for Pr(Π

nS
 i), the posterior denisty too will be a 

dirichlet, and so that parameters for Πi can be jointly sampled from the following Dirichlet 
distribution :  
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Hence the posterior is a Dirichlet distribution Dir(di1,di2,…,dik) where dij = nij + uij. 
 
A3.3  Full Conditional Distribution of qi 
 
From Bayes theorem the posterior for qi can be expressed as : 
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In order to obtain the posterior density, an appropriate prior must be chosen for pi. A useful 
choice for the vector would be the conjugate beta prior given that each element of pi  
represents a probability bounded between zero and one and that the vector must sum to one; 
i.e. pi is distributed as Beta (bi , si) with hyperparameters, bi , si . Thus  from the joint 
sampling density and the prior we obtain the posterior density; 
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A3.4  Full Conditional Distribution of iϑ  
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From Bayes theorem the posterior for iϑ  can be given by : 
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In order to obtain the posterior density, an appropriate prior must be chosen for iϑ . A useful 
choice would be a conjugate gamma prior: )( ip ϑ iii dc
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Appendix 4:  Full Conditional Distributions for the parameters and Latent Variables 
in Price Formation Models 
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A.4.2  Full Conditionals of  |Y2
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A.4.3  Full Conditional Distribution of λ  |Yn, Mn, Sn, λθ−  
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The functions gi(.) will depend upon whether we are dealing with a trade indicator variable 
for xt or a signed trade size variable. On substitution of (A4.4) into this (A4.5) and 
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To obtain the full conditional for and , we focus on pricing equations:  aφ bφ
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Table 1. Summary of Posterior Parameter Distributions for Trade Direction Based 
Model of Net Order Flow 
 
This table reports summary statistics for the simulated posterior distributions of the model of net order 
flow where direction is used as the basis for the order flow variable. The probability that an incoming 
trade is buyer initiated is given by q, and the mean arrival rate of trades over a 15 minute trading 
interval is given by ϑ . For the Markov mixture model, these parameters are subscripted to reflect each 
regime. Transition probabilities, πij, for the Markov mixture model are also presented. The posteriors 
were constructed using a Gibbs sampler over 6000 iterations, with the first 1000 discarded. Panel A 
reports the posterior mean, posterior 95% intervals, and numerical standard error for the posterior mean 
estimate under the 3 regime Markov Mixture Model. Panel B reports the estimation results for the 
unconditional model. Panel C compares the two specifications by reporting the log of the marginal 
likelihood and log likelihood evaluated at the posterior means for each model. Numerical Standard 
Errors are computed using a heteroskedastic autocorrelation consistent estimator (Newey-West). 
 
Panel A (Mixture Model) 
 
Parameter Posterior Mean Posterior 95% Interval Numerical Standard Error 

1q   0.642 0.5839 0.7103 1.36 x 10-3 

2q  0.679 0.6511 0.7022 4.83 x 10-4 

3q  0.275 0.2292 0.3220 7.42 x 10-4 

1ϑ  5.300 4.6989 6.1304 0.016 

2ϑ  17.614 16.1438 19.8605 0.045 

3ϑ  11.322 9.8498 12.7600 0.031 

11π  0.644 0.5454 0.7285 1.19 x 10-3 

12π  0.169 0.1048 0.2458 1.01 x 10-3 

13π  0.187 0.1034 0.3021 1.86 x 10-3 

21π  0.177 0.1064 0.2604 7.98 x 10-4 

22π  0.519 0.4258 0.6130 8.52 x 10-4 

23π  0.303 0.2087 0.4045 9.13 x 10-4 

31π  0.405 0.2860 0.5351 1.84 x 10-3 

32π  0.260 0.1878 0.4751 2.90 x 10-3 

33π  0.260 0.1400 0.3843 1.99 x 10-3 
 
Panel B (Unconditional model) 
 
Parameter Posterior Mean Posterior 95% Interval Numerical Standard Error 
 q 0.569 0.5559 0.5824 1.02 x 10-4 
ϑ  10.680 10.3918 10.9750 1.73 x 10-3 
 
Panel C (Comparison of Mixture and Unconditional Models) 
 
 Mixture Unconditiona Modell  
Log Marginal Likelihood -5063 -5840 
Log Likelihood -4712 -5730 
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Table 2. Summary of Posterior Parameter Distributions for Quote Setting Model with 
Trade Direction  as basis for Net Order Flow 
 
This table reports summary statistics for the simulated posterior distributions of the quote setting model 
of net order flow where trade direction is used as the basis for the order flow variable. The posteriors 
were constructed using a Gibbs sampler over 3000 iterations, with the first 1000 discarded. The log 
likelihood evaluated at the posterior means of the parameters is also reported. Numerical Standard 
Errors are computed using a heteroskedastic autocorrelation consistent estimator (Newey-West). 
 
 
Parameter Posterior Mean Posterior 90% Interval Numerical Standard Error 
     
Bid and Ask Equation 
Parameters     

aφ   0.05946 0.05302 0.06585 0.00024 
bφ  -0.05208 -0.05814 -0.04621 0.00024 
2

auσ  0.00187 0.00163 0.00212 7.560 x 10-6 
2

buσ  0.00138 0.00118 0.00159 6.713 x 10-6 
     
Expectation Formation 
Parameters     

2
εσ  0.01847 0.01588 0.02108 2.833 x 10-5 

1λ  0.03832 0.03125 0.04565 7.317 x 10-5 

2λ  0.04550 0.03416 0.05689 9.947 x 10-5 

3λ  0.00169 0.00153 0.00187 2.526 x 10-6 
 
Marginal Log Likelihood 4773.33  
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Figure 1. Simulated Parameters for the Unconditional Model of Net Order Flow, ∑
=

=
tn

tt xQ
1

 ,
τ

τ   

(Informative Variable: xτt = Trade Direction).  
This figure reports the simulated posterior distributions for the parameters of the unconditional net order 
flow model. The results are based on a Gibbs sampler run of 6000 iterations with the first 1000 discarded. 
For each parameter we report the iterates and the histograms of the marginal distributions resulting from 
the Markov Chain. Panel A  reports the posterior density for the unconditional probability of buyer 
initiated trade q.  Panel B reports the posterior density for the unconditional Poisson parameter, ϑ ,  that 
governs the trade activity variable, nt. 
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Figure 2. Simulated Parameters for the Markov Mixture Model of Net Order Flow, ∑
=

=
tn

tt xQ
1

 ,
τ

τ   

(Informative Variable: xτt = Trade Direction).  
This figure reports the simulated posterior distributions for the parameters of the Markov mixture model of net 
order flow under each regime St = i; where i can take on the values: 1 (no information event), 2 (positive 
information event) , and 3 (negative information event). The results are based on a Gibbs sampler run of 6000 
iterations with the first 1000 discarded. For each parameter, we report the iterates and the histograms of the 
marginal distributions resulting from the Markov Chain. Panel A  reports the posterior densities for the conditional 
probability of buyer initiated trade qi  Panel B reports the posterior densities for the conditional Poisson parameters, 

iϑ ,  that govern trade activity variable, nt. 
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Figure 2 continued. 

Iterates from Gibbs Run Histogram 
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Figure 3. Posterior densities of the transition probabilities for trade direction based model of Net 

Order Flow.  

The figure is based on a Gibbs sampler run of 6000 iterations with the first 1000 discarded. The histograms 
presented are the resulting marginal distributions for each π ij  where π ij   = Pr(St = j | St -1 = i). 
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Figure 4.  Net Order Flow, Trade Activity and the Posterior Probabilities for Alcoa for all trading 
days during the month of September, 1995. 

The figures below chart the order flow variables and the corresponding posterior probabilities for each state 
)( 1-tt |iSp Φ= . The probabilities are constructed using the Markov Mixture Model of Net Order Flow conditioning 

on trade direction. The left side graphs represent the set of trading intervals for the entire month of September 
1995. The right side graphs are simply an enlargement of a subset of this period, which represents 1 week of 
trading during September. The vertical lines mark the start and end of a trading day. 
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Probability of positive Information Event
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Figure 5. Posterior densities for the parameters of the Quote Setting Models using trade direction 
based model of Net Order Flow.  

The figure is based on a Gibbs sampler run of 5000 iterations with the first 2000 discarded.  Panel A 
reports the parameters governing the bid and ask setting functions. Panel B reports the parameters 
governing the expectation formation mechanism. 
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Figure 5, Panel A continued. 
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Figure 5, Panel B continued 
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Figure 6.  Efficient price series constructed from the combined Quote Setting Bounded 
Rational Learning Models. 

The quote setting models are analysed using the parameter estimates which result from the Net Order 
Flow and the Bid and Ask quotes for Alcoa during 1 week of September in 1995. The first panel 
represents the bid and ask quotes and the bid/ask spread and the efficient price series constructed from 
the Kalman filter based on the parameter estimates obtained from the Gibbs sampler when using trade 
direction as the informative variable. The second panel charts the probability of no information over time 
as predicted under the trade specification. The third and fourth panels chart the actual spread and the 
spread attributable to information asymmetry respectively.   
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