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Abstract

This paper compares the asset pricing ability of the traditional consumption
based capital asset pricing model to models from two strands of literature at-
tempting to improve on the poor empirical results of the C-CAPM. One strand
is based on the intertemporal asset pricing model of Campbell (1993, 1996) and
Campbell and Vuolteenaho (2004). The model takes the traditional C-CAPM as
its starting point, but substitutes all references to consumption out, as empirical
consumption data is assumed to be error ridden.
The other strand to be investigated is based on the premise that the C-

CAPM is only able to price assets conditionally as suggested by Cochrane (1996)
and Lettau and Ludvigson (2001b). The unconditional C-CAPM is rewritten
as a scaled factor model using the approximate log consumption-wealth ratio
cay, developed by Lettau and Ludvigson (2001a), as scaling variable.
The models are estimated on US data and the resulting pricing errors are

compared using average pricing errors and a number of composite pricing error
measures. The conditional C-CAPM and the two beta I-CAPM of Campbell and
Vuolteenaho (2004) result in pricing errors of approximately the same size, both
average and composite. Thus, there is no unambigous solution to the pricing
ability problems of the C-CAPM. Models from both the alternative literature
strands are found to outperform the traditional C-CAPM on average pricing
errors. However, when weighting pricing errors by the full variance-covariance
matrix of returns or the moment matrix of returns, the traditional C-CAPM
actually outperforms the models from both the two new litterature strands.
JEL classification: G12
Keywords: C-CAPM, intertemporal asset pricing, conditional asset pricing,

pricing errors.



I Introduction

The consumption-based capital asset pricing model (C-CAPM) introduced by
Lucas (1978), Breeden (1979), and Grossman and Shiller (1981), determines
asset risk by the covariance of the asset’s return with marginal utility of con-
sumption. However, empirical investigations have lent little support to the
relations obtained from the model. Tests of the C-CAPM have led to rejec-
tion of the model as well as unrealistic parameter estimates resulting in the
establishment of the so-called ”equity premium puzzle” (Hansen and Singleton
(1983), Mehra and Prescott (1985), Kocherlakota (1996)). This in spite of the
fact that the model is of an intertemporal nature, in the spirit of the I-CAPM
of Merton (1973). In fact, the model is found to be outperformed by the static
CAPM (Mankiw and Shapiro (1986)) and unrestricted multifactor models, when
it comes to explaining cross sectional asset returns.
Despite the empirical failures of the consumption based model, the economic

intuition underlying the model is so intuitively appealing that it would be a
mistake to dismiss it completely. It also has the property that models such as
the CAPM and the APT, can be mapped into the framework as special cases,
as pointed out by Cochrane (2001). The relation linking the marginal utility of
consumption to asset returns still holds, but additional assumptions are made
enabling other variables to be used in place of consumption.
So if the model can’t be dismissed, why is it failing empirically? This pa-

per looks at two strands of literature addressing the poor empirical findings
of the C-CAPM. One is the I-CAPM of Campbell (1993, 1996) and Campbell
and Vuolteenaho (2004). This is an intertemporal model, based on the same
framework as the C-CAPM, but rephrased without reference to consumption
data. The other strand looks at the conditional pricing ability of the C-CAPM
in a scaled factor setup, as in Cochrane (1996), Ferson and Harvey (1999), and
Lettau and Ludvigson (2001b).
These models take two different directions, but with the common goal of

improving on the empirical performance of the C-CAPM. The question is, do
they succeed? This paper will compare the asset pricing ability of the traditional
C-CAPM with that of these alternative models as well as evaluating the relative
pricing ability of the two new model strands. In addition, we include estimates
of the static CAPM and the Fama and French (1993) three factor model, to give
an idea of the pricing error level of the consumption based framework compared
to other well known asset pricing models.
The first strand to be investigated is based on the argument of Campbell

(1993), that the poor empirical performance of the C-CAPM may be due to
problems inherent in the empirical consumption data used to test the model,
rather than with the theoretical assumptions underlying. Firstly, aggregate
consumption data are measured with error and are time-aggregated (Grossman
(1987), Wheatley (1988), and Breeden et al. (1989)). Secondly, the consumption
of asset-market participants may be poorly proxied by aggregate consumption
(Mankiw and Zeldes (1991)).
To address these issues Campbell (1993) develops an intertemporal model,
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which uses the same building blocks as the C-CAPM, but makes no references
to consumption data. Using a first order Taylor expansion of the intertempo-
ral budget constraint of the representative investor and combining it with a
log-linear Euler equation, one is able to express unanticipated consumption as
a function of expectational revisions in current and future returns to wealth,
thereby eliminating all references to consumption. The model can thus be esti-
mated empirically without running into consumption data issues usually faced
when testing the C-CAPM. In Campbell and Vuolteenaho (2004), the model
is rewritten in a two-beta notation and is found to give an explanation for the
size and value anomalies found when estimating traditional asset pricing models
such as the CAPM and C-CAPM. Campbell and Vuolteenaho (2004) compare
the pricing errors of their model to the CAPM and find these to be significantly
lower in the two beta model. The pricing ability is not compared to that of the
traditional C-CAPM with consumption data.
The other strand of literature treated in this paper looks at the conditional

pricing ability of the C-CAPM in a scaled factor setup. That is, it is assumed
that the cause of the poor empirical performance of the C-CAPM is that the
model is in fact only able to price assets conditionally. This would allow for
recent empirical evidence of time variation in expected returns. By estimating
the models conditionally, we can incorporate time-varying risk premia into the
models. Lettau and Ludvigson (2001b) find that the conditional version of the
C-CAPM, using the approximate log consumption-wealth ratio cay as scaling
variable, outperforms the unconditional C-CAPM. The scaled consumption fac-
tor has significant pricing ability, and the model results in much lower average
pricing errors than those found from traditional models. It performs about as
well as the three factor model of Fama and French (1993).
Both strands of literature have had some success in explaining the empirical

anomalies the C-CAPM fails to fit. But how do the models compare to each
other? Is one of the model strands unequivocally better than the other at fitting
the historical data? Do we have a clear cut empirical replacement for the C-
CAPM? To answer these questions we first look at the statistical significance of
the pricing errors resulting from the various models. In order to look into the
relative pricing ability, we compute a number of pricing error measures which
allow us to compare the pricing ability across models. Both the average squared
pricing errors and a composite pricing error, created by weighting pricing errors
by the variance of the respective asset returns, are investigated. These measures
will give us an idea of the economic magnitude of the pricing errors of the
models. Finally, the distance measure of Hansen and Jagannathan (1997) is
also computed.
Estimation of the traditional asset pricing models undertaken in this paper

supports the findings of previous research. The CAPM and C-CAPM result
in insignificant coefficient estimates and high pricing errors. The three-factor
Fama-French model results in a high R2, however the risk price on the market
return beta is negative and unstable over subsamples.
Turning to the two new model strands, our empirical results are less sup-

portive of previous findings. Unlike Lettau and Ludvigson (2001), we find no
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significance of the scaled consumption factor in the conditional version of the C-
CAPM. This coefficient is very sensitive to the time period over which the model
is estimated. Eliminating the final two years of observations in our time-series
results in the risk price of scaled consumption becoming significantly positive.
There is generally no distinct difference in the pricing ablity of the condi-

tional C-CAPM and the I-CAPM of Campbell and Vuolteenaho. Despite the
lack of significant coefficients, average pricing errors from both models are lower
than those of the traditional C-CAPM. However, when weighting pricing errors
by the full variance-covariance matrix or the moment matrix of asset returns,
the traditional C-CAPM outperforms the models from both the new literature
strands. The pricing improvement of the new models is thus not consistent
across pricing error measures.
The paper is structured in the following manner. Section II will present the

different asset pricing models to be considered. Section III describes the empir-
ical estimation techniques used. The data is described in section IV, empirical
results in section V and finally in section VI we conclude.

II The Models

In the absence of arbitrage, a stochastic discount factor Mt+1 exists, such that
any asset return Ri,t+1 obeys the following relation

1 = Et [Mt+1Ri,t+1] (1)

Ri,t+1 is the gross return on asset i from time t to t+ 1, Mt+1 is the stochastic
discount factor or pricing kernel, and Et is the conditional expectation operator.
The question we face is, how is the stochastic discount factor to be expressed?
The economic argument of the consumption based asset pricing model (C-

CAPM) is that Mt+1 should be a measure of the marginal rate of substitution.
In order for an agent to invest in a given asset at time t, the expected return at
time t+ 1 must compensate for the consumption possibilities given up at time
t. In the C-CAPM, the stochastic discount factor is thus given by

Mt+1 = δ
u0 (Ct+1)

u0 (Ct)
. (2)

δ is the subjective rate of time preference discount factor, u (•) is the utility
function, and Ct denotes consumption. Despite the strong underlying economic
intuition, the empirical performance of this model has been poor. If we don’t
wish to disregard the model completely, we have to look at what factors may be
causing the empirical problems. Are there some deviations between the simple
economic theory presented in (1) and (2) and the empirical estimates. If we look
at where problems could arise, three places spring to mind. Firstly, to estimate
the C-CAPM we must choose an operational form of the utility function. Many
utility functions have been suggested, but the traditional C-CAPM is based on
the power utility function. This may however be an inaccurate description of the
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utility function of agents and hence the model may be failing on these grounds.
Secondly, the functional forms of (2) traditionally associated with the C-CAPM
assume constant risk premia. Evidence of time-variation in expected returns,
on the contrary, makes it desirable to allow for time-variation in the risk premia
of the model. The problem with the C-CAPM may thus be, that in actuality
it only holds conditionally. Finally, estimation of the C-CAPM requires the use
of an empirical measure of the consumption of the marginal investor ct. This is
most often proxied by some measure of aggregate consumption in the economy,
often based on expenditures on goods and services. Any deviations between the
theoretical consumption measure and the empirical data may be resulting in the
poor empirical performance of the C-CAPM.
Attempts have been made to rectify the empirical struggles of the C-CAPM,

by developing factor models with SDF’s that form good proxies for the right
hand side of (2), and take the three problems described above into consideration.
In this paper we will look at whether these attempts help or harm the pricing
ability of the C-CAPM.
The models treated in the following can all be mapped into the linear factor

model framework. In this case, Mt+1 is quantified as a linear combination of a
number of factors determined by the underlying theory of the given model. Let
F0t+1 =

£
1, f 0t+1

¤
, where f 0t+1 is the vector of factors included in the model. The

stochastic discount factor is given by

Mt+1 = cFt+1 (3)

where c = [α,b0] and b is the vector of coefficients on the variable factors
of the model. As noted by Cochrane (2001), all factor models are in reality
specializations of the consumption-based model. Some additional assumptions
are made, allowing marginal utility growth to be replaced by other economically
relevant factors, such that the right hand side of (2) is proxied by the right hand
side of (3).
In order to estimate the factor models cross-sectionally, we rewrite them in

a beta representation. Inserting (3) into the general pricing equation (1), taking
unconditional expectations and applying a variance decomposition results in the
following cross-sectional multifactor model1

E [Ri,t+1 −Rf,t+1] = β0iλ (4)

βi ≡ cov (f , f 0)
−1

cov (f , Ri,t+1) (5)

λ ≡ −E [Rf,t+1] cov (f , f
0)b (6)

Rf,t+1 is the risk-free rate of return, for which it holds that Rf,t+1 =
1

E(Mt+1)
.

We have now introduced the general linear factor model framework and next
it is time to look at which factors are included in the specific models studied in

1The derivation follows that of Cochrane (1996).

4



this paper.

II.1 Traditional asset pricing models

As noted in the previous section, the stochastic discount factor of the C-CAPM
is based on the marginal rate of substitution of consumption. To estimate the
model, one in principal needs to decide how to model the utility function. Often
power utility is applied. However extensions using the more general Epstein-
Zin-Weil utility and habit based functions have also been introduced. To avoid
being constrained by the choice of utility function, it is assumed that M can be
proxied by a linear function of log consumption growth ct+1

Mt+1 ≈ a+ b∆ct+1 (7)

This approximation imposes few restrictions on the functional form of the in-
vestors utility. As is evident, (7) is a linear factor model with log consumption
growth as the sole factor. It is also referred to as the log-linear C-CAPM. Tra-
ditionally, the parameters a and b are taken to be time invariant, which will also
be the case for the base model of this paper. From (4) we find the cross-sectional
asset pricing model, in beta representation

E [Ri,t+1 −Rf,t+1] = βi,∆cλ∆c (8)

This is the model that forms the basis of our investigation. A simple equation
which relates asset returns to the consumption growth beta2.
Although the focus of this paper is on the C-CAPM, and attempts to improve

on its poor empirical performance, we also include two other well known asset
pricing models. This allows us to get a sense of the level of pricing errors we
are experiencing in the consumption based setup, compared to other models
traditionally estimated in the literature. The two models are the CAPM and
the three factor Fama-French (1993) model.
The SDF of the CAPM with time invariant parameters can be written as

Mt+1 ≈ a+ bRm,t+1 (9)

where Rm,t+1 is the return on the aggregate market. In beta representation we
have

E [Ri,t+1 −Rf,t+1] = βi,RmλRm (10)

2For the traditional time-separable power utility function with constant relative risk aver-

sion u (Ct) =
C
1−γ
t −1
1−γ , which implies Mt+1 = δ

Ct+1
Ct

−γ
. We can use a first-order Tay-

lor expansion of Mt+1 around Ct+1 = Ct to rewrite the SDF as Mt+1 ≈ δ(1 − γ∆ct+1).
As we are estimating the model using excess returns, the mean of the SDF is not defined
and we therefore set δ = 1 and E(Mt+1) = 1. The cross-sectional model thus becomes
E Ri,t+1 −Rf,t+1 = γvar(∆ct+1)βi,∆c
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As Cochrane (2001) points out, the CAPM is in fact contained in the C-CAPM
as a special case, adding additional motivation for the introduction of the
CAPM.
The Fama-French model is slightly different from the other models investi-

gated, in that it is empirically, not theoretically, driven. The factors are chosen
based on patterns observed in data, rather than being derived from an under-
lying economic theory, although Fama and French (1996) argue that the model
can be seen as a three-factor version of Merton’s (1973) I-CAPM or the APT-
model of Ross (1976). The three factors of the model are the return on the
aggregate market Rm,t+1, known from the CAPM, the return on the ”small
minus big” portfolio (SMB), and the return on the ”high minus low” portfolio.

Mt+1 ≈ a+ b1Rm,t+1 + b2SMBt+1 + b3HMLt+1 (11)

SMB and HML are constructed in Fama and French (1993), and are based on
6 portfolios of US stocks sorted on size and the ratio of book equity to market
equity (BE/ME) of the assets. SMB is the difference in returns between the
small and big stock portfolios, sorted by size. HML is the difference in returns
on the high- and low-BE/ME portfolios.
Finally, we estimate a two factor model which combines the factors of the

C-CAPM and the CAPM

Mt+1 ≈ a+ b1Rm,t+1 + b2∆ct+1 (12)

The motivation for this model, should become evident when the I-CAPM of
Campbell and Vuolteenaho (2004) is introduced. In order to develop that model,
Campbell (1993) bases his derivations on a C-CAPM with Epstein-Zin-Weil
(EZW) utility. A log-linearization of the EZW C-CAPM results in a two factor
model of the form presented in (12). Hence, when we compare the I-CAPM to
the original consumption based asset pricing framework, it makes sense to use
the functional form on which the I-CAPM is based.

II.2 Conditional models

The models presented so far, have all been assumed to price assets uncondition-
ally. However, the cause of the empirical failure of the C-CAPM may be that
the model is in fact only able to price assets conditionally. In recent years there
has been increasing evidence indicating predictability in excess stock returns.
Predictability implies that expected returns can vary over time. This variation
in investors’ expectations of asset returns may be due to time varying risk pre-
mia. The risk premia can become state dependent if agents require a higher risk
premium to invest in stocks in times of recession for example as proposed by
Campbell and Cochrane (1999). The traditional C-CAPM and CAPM do not
allow for such time variation in risk premia and Lettau and Ludvigson (2001b)
suggest this to be a reason for the empirical failure of the models.
To model time-variation in risk premia, we need to let the weights on the

factors in the pricing kernel become time dependent
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Mt+1 = at + btft+1. (13)

In order to estimate this model, Cochrane (1996) and Ferson and Harvey (1999)
show that we can scale the factors in the SDF with the vector of instruments zt
containing time t information about the state of the economy, allowing us once
more to estimate the model unconditionally. In the following we will assume
the state of the economy to be described by a single state variable zt.
First, model the parameters as linear functions of the instrument zt

at = γ0 + γ1zt

bt = η00 + η01zt

The pricing kernel with time varying coefficients can then be rewritten as

Mt+1 = at + btft+1

= (γ0 + γ1zt) + (η
0
0 + η01zt) ft+1

= γ0 + γ01zt + η00ft+1 + η01 (ztft+1) (14)

and we are back in the unconditional framework with time invariant coefficients.
For the consumption based model this results in

Mt+1 = at + bt∆ct+1 = γ0 + γ1zt + η0∆ct+1 + η1 (zt∆ct+1) (15)

Equivalently, if we substitute Rm,t+1 into the above equation instead of ∆ct+1
we obtain the conditional CAPM.
In matrix notation

Mt+1 = c
0Ft+1 (16)

with Ft+1 =
£
1, zt, f

0
t+1, f

0
t+1zt

¤0
=
h
1, f

0
t+1

i
, f t+1 =

£
zt, f

0
t+1, f

0
t+1zt

¤0
, where ft+1

is a k×1 vector of k factors, c = [γ0,b0]
0
where γ0 is a scalar and b = [γ1,η

0
0,η

0
1].

Analogously to the case without scaling variables, inserting these terms into
the general pricing equation (1), taking unconditional expectations and applying
a variance decomposition results in the following cross sectional multifactor
model in beta representation

E [Ri,t+1 −Rf,t+1] = β0iλ (17)

βi ≡ cov
³
f , f

0´−1
cov

¡
f , Ri,t+1

¢
λ ≡ −E [Rf,t+1] cov

³
f , f

0´
b

where β is the vector of regression coefficients stemming from regressing returns
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Ri,t+1 on Ft+1, λ is a free parameter vector and Rf,t+1 is the return on the zero-
beta portfolio or risk-free rate of return.
In order to estimate conditional factor models, we need to choose a vector

zt of scaling variables. The conditional models state that the coefficients on the
factors in the SDF of the factor model are dependent on the investors infor-
mation set at time t. Hence the scaling variables need to describe the state of
the business cycle at time t. As it would be impossible to include all informa-
tion in the investors information set in an empirical estimation, we need to find
variables that summarize all relevant effects. We also need to take into account
the tractability of empirical estimation when choosing the scaling variables. To
avoid an explosion in the number of parameters to be estimated, relative to
the length of the time-series of data used in this paper, we limit the number of
scaling variables to one.
Lettau and Ludvigson (2001b) suggest using the variable cay as the scaling

variable in the conditional factor models. cay can be described as a proxy
for the log consumption-aggregate wealth ratio and it may be used to forecast
excess stock market returns. It is calculated as cayt = ct − ωat − (1− ω) yt,
where ct is consumption, at is asset wealth, and yt is labour income. ω is the
average share of asset wealth in total wealth. The three variables are assumed
to be cointegrated and ω is computed as a cointegrating coefficient. Lettau
and Ludvigson (2001a, 2005) show that cayt is able to forecast excess stock
returns, better than traditional forecasting variables such as p/d and p/e ratios
at short to intermediate horizons. Hence it makes a good choice as conditioning
instrument. Hodrick and Zhang (2001) also use this variable to test conditional
factor pricing models.

II.3 The Campbell I-CAPM

One of the major problems in estimating the C-CAPM is the quality of the
empirical consumption data needed to estimate the model. If there is a large
divide between the theoretical measure of consumption growth of the model and
the empirical data, then it is natural to expect poor empirical results for the
model. Not because the model as such is faulty, but merely due to data issues.
Campbell (1993) suggests a way out of this problem, by substituting con-

sumption out of the C-CAPM, but still keeping the model tractable for empirical
estimation. Under the assumption of homoskedasticity and joint lognormality
of asset returns and consumption, Campbell shows that

covt [ri,t+1,∆ct+1] = covt [ri,t+1, rm,t+1 −Etrm,t+1]

+ (1− ψ) covt

⎡⎣ri,t+1, (Et+1 −Et)
∞X
j=1

ρjrm,t+1+j

⎤⎦
where ri,t+1 is the log return on asset i, rm,t+1 is the log market return, ψ is
the elasticity of intertemporal substitution. Thereby, one is able to transform
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a log linearized C-CAPM into a cross-sectional asset pricing model, making no
references to consumption:

Etri,t+1 − rf,t+1 +
Vii
2

= θ
Vic
ψ
+ (1− θ)Vim (18)

= γVim + (γ − 1)Vih (19)

Vii ≡ vart [ri,t+1]

Vic ≡ covt [ri,t+1,∆ct+1]

Vim ≡ covt [ri,t+1, rm,t+1 −Etrm,t+1]

Vih ≡ covt

⎡⎣ri,t+1, (Et+1 −Et)
∞X
j=1

ρjrm,t+1+j

⎤⎦
(18) states the log-linearized C-CAPM, assuming Epstein-Zin-Weil utility, and
(19) introduces the Campbell I-CAPM, in which all references to consumption
growth have been eliminated. γ is the coefficient of relative risk aversion and
θ = 1−γ

1− 1
ψ

. The model states that the excess return on asset i is determined

by a weighted average of the asset return’s covariance with the current market
return and the return covariance with news about future market returns.
Campbell and Vuolteenaho (2004) develop the model further and rewrite it

in beta representation as a two factor intertemporal model. Starting with the
basic loglinear approximate decomposition of asset returns from Campbell and
Shiller (1988), the following expression obtains:

ri,t+1 −Etri,t+1 = (Et+1 −Et)
∞X
j=0

ρj∆di,t+1+j (20)

− (Et+1 −Et)
∞X
j=1

ρjri,t+1+j

≡ Ni,CF,t+1 −Ni,DR,t+1

where ri,t+1 is the log return on asset i, di,t+1 is the log dividend on asset i, and
ρ is a discount coefficient3. The identity (20) states that unexpected returns
are linked to changes in expected cash flows or changes in expected discount
rates. Increases in expected cash flows imply positive unexpected returns today.
Increases in the expected future discount rate, on the other hand, have a negative
effect on current returns. If future discount rates rise, we must discount cash
flows by a higher rate thus resulting in a downward revision in prices today and
thereby returns. This downward revision will however be reversed in the future
as increases in future discount rates also imply improved future investment

3ρ is the average ratio of the stock price to the sum of the stock price and the dividend. ρ
will be fixed at 0.987 in the empirical estimates of this paper.
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opportunities. Unlike shocks stemming from cash flow revisions, the return
shocks stemming from revisions in forecasts of discount rates are thus of a
transitory nature.
Let the return rm,t+1 be given by the aggregate market return, Nm,CF,t+1 ≡

(Et+1 −Et)
P∞

j=0 ρ
j∆dm,t+1+j, andNm,DR,t+1 ≡ (Et+1 −Et)

P∞
j=1 ρ

jrm,t+1+j .
The unrestricted SDF of Campbell and Vuolteenaho (2004) is

Mt+1 = a+ b1Nm,CF,t+1 + b2Nm,DR,t+1 (21)

In order to determine Nm,CF,t+1 and Nm,DR,t+1 empirically, a VAR ap-
proach is used and estimated with OLS. st is a K-element state vector. The
first element of st is the market return. The remaining elements are variables
relevant in forecasting future stock index returns. All variables have been de-
meaned as the constants, that would otherwise arise, just capture the lineariza-
tion constraints. It is assumed that st follows a first-order VAR

st+1 = Ast + ²t+1. (22)

This is not restrictive, since higher order VAR systems can be written in com-
panion form. The VAR methodology enables us to express multiperiod forecasts
of future returns in the following manner

Etst+1+j = A
j+1st. (23)

Define e1 as a K-element vector with first element one and the remaining el-
ements zero. This vector is used to pick out the return on the market from
the state vector st. The discounted sum of forecast revisions in returns on the
market can now be found as

Nm,DR,t+1 = (Et+1 −Et)
∞X
j=1

ρjrm,t+1+j (24)

= e10
∞X
j=1

ρjAj²t+1

= e10ρA (I−ρA)−1 ²t+1
≡ e10Λ²t+1,

where I is the K ×K identity matrix. Since rm,t+1 −Etrm,t+1 = e1
0²t+1

Nm,CF,t+1 = rm,t+1 −Etrm,t+1 +Nm,DR,t+1 (25)

= (e10 + e10Λ) ²t+1

The Campbell (1993) I-CAPM of (19) can now be restated in terms of the two
factors Nm,CF,t+1 and Nm,DR,t+1 derived by Campbell and Vuolteenaho (2004).
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Etri,t+1−rf,t+1+
Vii
2
= γcovt [ri,t+1,Nm,CF,t+1]−covt [ri,t+1, Nm,DR,t+1] (26)

Finally, we need to rephrase the model of (26) in a beta representation. Define
two beta terms based on Nm,CF,t+1 and Nm,DR,t+1

4

βi,CFm,t ≡
covt (ri,t+1, Nm,CF,t+1)

vart (Nm,CF,t+1)
=

σi,CFm,t

σ2CFm,t

(27)

βi,DRm,t ≡
covt (ri,t+1,−Nm,DR,t+1)

vart (Nm,DR,t+1)
=
−σi,DRm,t

σ2DRm,t

(28)

Substitute these expressions into (26) and we obtain the following cross-sectional
asset pricing model

Etri,t+1 − rf,t+1 +
σ2i,t
2
= γσ2CFm,tβi,CFm,t + σ2DRm,tβi,DRm,t (29)

By taking unconditional expectations and rewriting the left hand side of the
relation in simple expected returns form, E [Ri,t+1 −Rf,t+1], we get the two
beta I-CAPM of Campbell and Vuolteenaho (2004)

E [Ri,t+1 −Rf,t+1] = γσ2CFmβi,CFm + σ2DRmβi,DRm (30)

The model will also be estimated in an unconditional, unrestricted version:

E [Ri,t+1 −Rf,t+1] = λCFβi,CFm + λDRβi,DRm (31)

Finally, in the spirit of Hodrick and Zhang (2001) we also estimate a linear SDF
with a constant and those variables included in the state vector st of Campbell
and Vuolteenaho (2004) as factors. This is not an intertemporal model as the
I-CAPM, but a factor model in the spirit of the APT model. The factors
used are not innovations, but pure factors and it has none of the parameter
restrictions imposed on the Campbell and Vuolteenaho model. A comparison
with this model will tell us, if any improvements the I-CAPM results in over
the C-CAPM are a result of the merit of the theory and techniques underlaying
Campbell and Vuolteenaho (2004) or if a simple model containing the state
variables of their VAR does equally well. When comparing the models, we
must take into account the fact that the pure factor model contains more free
parameters than the Campbell and Vuolteenaho model. We should therefore
not be surprised to see some improvement in the pricing ability when using this
model, even if the restrictions of the I-CAPM are valid.

4The beta definition is slightly different than that rapported in Campbell & Vuolteenaho
(2004). Campbell & Vuolteenaho define their betas relative to the variance on the total market
return instead of the variance of NCF and NDR respectively. As the variance of NCF and
NDR are both invariant across time and estimation portfolios, this change of definition will
not affect the pricing ability of the model.
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III Estimation technique

To estimate the β and λ parameters of (17) a number of econometric method-
ologies could be applied. This paper uses the approach suggested by Fama and
MacBeth (1973). The method is advantageous in this study due to the small
number of time series observations relative to the number of cross sectional port-
folios treated. The dataset consists of 200 quarterly observations and 25 asset
return portfolios. Instead of estimating the models with the Fama-MacBeth
methodology, one could estimate the models by GMM. However, to get stable
GMM estimates we would most likely have to reduce the number of portfolios
investigated. The ratio of moment restrictions to time series observations, would
simply be too high with all 25 portfolios. Fama-MacBeth estimation is akin to
1. stage GMM with an identity matrix as weighting matrix. All 25 portfolios
investigated are given equal importance when attempting to fit the model to
the data. Alternatively one could use GMM with the optimal matrix of Hansen
(1982) and iterate. This would mean placing different weights on the various
portfolios dependent on the variance of the returns. We would like the mod-
els treated here to be able to price all 25 Fama-French portfolios equally well,
which such an approach would not take into account. One of the main problems
with the traditional models has been their inability to price the extreme portfo-
lios. Small stocks and value stocks have historically realized higher returns than
predicted by the betas of the traditional CAPM and C-CAPM. So to take an
econometric approach that allows the models to place varying weights on these
portfolios, would eliminate some of the effects we are trying to investigate. We
want to see how well the different models price these specific 25 portfolios.
The Fama-MacBeth estimation technique for a factor model is as follows.

First, run time-series regressions of portfolio excess returns on the factors of the
respective models to find estimates of β.

Rei
t = ai + β0ift + εi,t, t = 1, 2, ...., T for each i. (32)

This gives us a vector of beta estimates for each asset portfolio. Now run one
cross-sectional regression for each time period of excess returns on the time
series regression betas

Rei
t = β0iλt + αi,t, i = 1, 2, ....., N for each t. (33)

The Fama-MacBeth estimates λ and αi are then found as the time series average
of the parameters estimated in the cross-sectional regressions and the residuals
resulting.

bλ = 1

T

TX
t=1

bλt bαi = 1

T

TX
t=1

bαi,t
Standard errors of the parameter estimates are obtained in the following manner
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σ2
³bλ´ =

1

T 2

TX
t=1

³bλt − bλ´2 (34)

cov (bα) =
1

T 2

TX
t=1

(bαi,t − bαi) (bαi,t − bαi)0 (35)

Cochrane (2001) shows that the parameter estimates from the Fama-MacBeth
procedure will be equivalent to those found from a pure cross-sectional OLS
estimate, given time-invariant βi and estimation errors εi,t which are uncorre-
lated over time. However, the OLS distribution assumes that the right-hand
variables in β are constant. This is not the case in the Fama-MacBeth regres-
sion as we are estimating β in the time-series regression. Hence, we need a
correction for the sampling error in β. Shanken (1992) shows that the correc-

tion can be made using a multiplicative term given by
³
1 + λ0Σ−1f λ

´
. Σf is

the variance-covariance matrix of the factors. The resulting corrected standard
errors are given by

σ2
³bλSH´ =

1

T

h¡
β0β

¢−1
β0Σβ

¡
β0β

¢−1 ³
1 + λ0Σ−1f λ

´
+Σf

i
= cov

³bλ´³1 + λ0Σ−1f λ
´
− 1

T
Σf

³
λ0Σ−1f λ

´
(36)

cov (bαSH) =
1

T

³
IN − β

¡
β0β

¢−1
β0
´
Σ
³
IN − β

¡
β0β

¢−1
β0
´³
1 + λ0Σ−1f λ

´
= cov (bα)³1 + λ0Σ−1f λ

´
(37)

Σ is the residual covariance matrix from the time-series regression, IN is the
N×N identity matrix. Jagannathan and Wang (1998) find that Fama-MacBeth
standard errors may not overstate the precision of the estimated coefficients
when conditional heteroskedasticity is present. For this reason we also present
uncorrected standard errors.
To test for zero pricing errors we can run the test³

1 + λ0Σ−1f λ
´−1 bα0cov (bα)−1 bα˜χ2N−K (38)

where bα is the vector of pricing errors from the Fama-MacBeth procedure, N is
the number of assets, and K is the number of factors in the model5.
In addition to just testing whether the pricing errors resulting from the

various models estimated in the paper are statistically different from zero, we

5Due to singularity of the covariance matrix of pricing errors, we use a Penrose Moore

pseudo inversion. The singularity can be seen by noting that IN − β (β0β)−1 β0 in (36) is

idempotent and hence singular.
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also want to be able to compare the magnitude of the pricing error across models.
Firstly we report average squared pricing errors. In this case, pricing errors from
all portfolios investigated are thus given equal weighting. We also compute a
composite pricing error given by

dCE = £bα0Ω−1bα¤ 12 (39)

where bα is the vector of estimated residuals from the cross-sectional regression
and Ω−1 is the variance-covariance matrix of asset returns. Here the weight
given to the pricing error of each portfolio is dependent on the precision with
which the average returns on that portfolio are measured. As is evident, the
weighting matrix in the CE measure is invariant between the different fac-
tor models. This allows comparison of the magnitude of the pricing errors
across models. There are concerns with the accuracy of the estimate of the
full variance-covariance matrix of asset returns given the high number of asset
portfolios relative to time-series observations. Hence we also report composite
pricing errors based on a diagonal variance matrix. The diagonal elements of
the matrix contain the variance of returns and the remaining elements are set
to zero.
Finally, the Hansen-Jagannathan distance measure is also reported. This is

computed as

dHJ =
hbα0E ¡RR0¢−1 bαi 12 (40)

So in this case we weight the vector of estimated residuals from the cross-
sectional regression by the moment matrix of asset returns to achieve a measure
of model pricing ability. Hansen and Jagannathan (1997) show that this measure
can be interpreted as the maximum pricing error pr. unit payoff norm.
To calculate asymptotic standard errors of the four pricing error measures

we follow the delta method. First construct the time series

νt = α0t
bζ (41)

where αt is the vector of pricing errors from the model at time t. bζ is the
sample estimate of ζ, defined as follows for each pricing error measure.
For the Hansen-Jagannathan measure

ζ = E (RtR
0
t)
−1 bα (42)

For the average pricing error measure

ζ = (i0i)
−1 bα (43)

where i is a N × 1 vector of ones. N is the number of assets over which the
pricing error is computed. For the composite pricing error measure with the full
variance-covariance matrix of asset returns ΩF as weighting matrix
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ζ = Ω−1F bα (44)

Finally, for the composite pricing error measure with the diagonal variance
matrix ΩD as weighting matrix

ζ = Ω−1D bα (45)

The sample mean of νt for each ζ equals the sample estimate of the respective

pricing error measure squared,dPE2. Let s2 be the variance of the sample mean
of νt. From the delta method it then follows that the asymptotic standard error
of the estimated pricing error measure dPE is consistently estimated by s

2PE
.

IV Data

This paper estimates the models described on US data at a quarterly frequency
for the time period running from the 1. quarter of 1952 to the 4. quarter of
2001. For the return on the stock market portfolio the return on the CRSP value
weighted stock index (NYSE/AMEX/NASDAQ) is used. The risk-free rate is
obtained as the return on T-bills with three months maturity, taken from CRSP.
Consumption growth is based on seasonally adjusted, real pr. capita, quarterly
expenditure on nondurables and services, taken from the Bureau of Economic
Analysis, U.S. Department of Commerce.
The factors NCF and NDR, which form the basis of the CV model, are based

on a VAR model using the same state variables as those used in Campbell
and Vuolteenaho (2004)6. The state variables used for the main estimation
will be the log excess return on the market portfolio, the yield spread between
long-term and short-term bonds, the smoothed price-earnings ratio from Shiller
(2000), and the small-stock value spread. The value spread is based on data
from the website of Kenneth French and is defined as the difference between the
log book-to-market ratio of small value and small growth stock. The NCF and
NDR estimates are based on VAR estimations over the full sample of Campbell
and Vuolteenaho (2004) which is 1929-2001. The four factors are also used to
estimate a simple linear factor model.
In a recent paper Chen and Zhao (2005) estimate the I-CAPM of Campbell

and Vuolteenaho using a variety of alternative state variables in the VAR model.
The paper shows the cash flow and discount rate betas to be sensitive to changes
in the composition of the state variable vector. However, only when the number
of state variables is significantly increased is an improvement in the adjusted R2

of the cross sectional regression observed. We therefore keep the state variable
vector of Campbell and Vuolteenaho (2004) when estimating the models cross
sectionally and comparing the pricing ability of this model to the C-CAPM and
conditional models.

6The data is available on the webpage of Vuolteenaho:
http://post.economics.harvard.edu/faculty/vuolteenaho/papers.html
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The conditioning variable used in the conditional factor models is the cay
variable developed in Lettau and Ludvigson (2001a). The data is available on
the website of Sydney Ludvigson7. The scaling variable is demeaned as in Lettau
and Ludvigson (2001b).
For the cross-sectional asset pricing model estimation, equity return data is

based on the excess returns of 25 portfolios sorted by the Fama and French
(1993) factors. These are returns on US stocks (NYSE/AMEX/NASDAQ)
sorted into 25 portfolios. The portfolios are constructed on the basis of size
and the book equity to market equity ratio (BE/ME) quantiles. The portfolio
returns are available on the website of Kenneth French8. Returns are measured
in excess of the 3-month T-bill rate. Data on the SMB and HML factors of the
3 factor Fama-French model are also taken from the website of Kenneth French.

V Empirical Results

The assets used for the empirical cross-sectional estimations of this paper are
the 25 Fama-French portfolios. As noted in the previous section, these consist
of returns on US stocks grouped into 25 portfolios based on a sorting by size
and BE/ME.
Summary statistics are shown in table 1. The portfolios show a clear pattern

of increasing average returns as we move from growth to value stocks, within
a size quantile. Growth stocks are defined as stocks with a low BE/ME ratio,
whereas value stocks have high BE/ME ratios. Growth stocks have good future
prospects expressed in the form of high stock prices and low current returns.
The opposite is the case for value stocks, thus giving rise to the pattern of rising
average returns when moving from portfolios of growth stocks to value stocks. In
the small stock case we go from an annualized return of 4.8% for growth stocks
to 14.3% for value stocks. The standard deviation of growth stocks are higher
than those of value stocks. The least volatile portfolios are those in the mid
quantiles, based on the BE/ME sorting. This is where the largest concentration
of stocks is placed, whereas the extreme portfolios are based on relatively few
cross sectional observations. Apart from the five growth portfolios, there is a
general tendency for falling average returns when moving from small to large
stock portfolios. For value stocks average annualized returns fall from 14.3%
for small stocks to 9% for large stocks. For the growth portfolios, the pattern
is slightly different. Unlike the other portfolios, we observe a tendency towards
rising average returns when moving from small to large stock portfolios.
The question is now, how well the various models fit these return patterns.
The following sections present results from the cross sectional Fama-MacBeth

model estimations. We use excess returns on the 25 Fama-French portfolios.
Models are estimated both without a constant, i.e. with the zero-beta rate re-
stricted to equal the T-bill return, and with a constant, allowing the zero-beta

7http://www.econ.nyu.edu/user/ludvigsons/
8http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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rate to be freely estimated. When estimated without a constant, we are asking
the model to fit the unconditional equity premium, in addition to fitting across
the 25 stock return portfolios.

V.1 Traditional models

The second stage of estimation gives us the λ coefficients of the cross-sectional
models. In table 2 we present estimates of the base case C-CAPM, the tradi-
tional CAPM, and the Fama-French three factor model.
The models generally do a poor job of explaining the equity premium. The

constant is significantly different from zero, when included, even though we are
estimating the models on excess returns. In this case, the theory behind all the
models would predict the constant to be zero.
Estimation of the CAPM with unrestricted zero-beta rate results in a neg-

ative coefficient on the market return beta. This is one of the classic problems
seen in empirical estimates of the model. Unlike that predicted by theory, this
implies that assets with high return covariance with the market give lower ex-
cess returns, than assets with low market betas. The coefficient is insignificant
and the low R2 emphasizes the poor performance of the static CAPM, as has
also been found in previous studies (Fama and French (1992), Lettau and Lud-
vigson (2001b)). When we restrict the zero-beta rate to equal the risk-free rate,
a significant positive market return beta coefficient results. This stems from
the aggregation of the coefficient estimate on the constant in our unrestricted
model and the market return beta term. As the market return beta structure
is relatively flat across average portfolio returns, this term behaves almost as a
constant in the cross sectional regression. Hence, when the zero beta rate is re-
stricted to equal the risk free rate, much of that which was previously captured
by the intercept term is compounded into the market return beta term.
The C-CAPM performs marginally better than the static CAPM. Looking

at the consumption beta coefficient estimates in table 3 we see a relatively high
degree of variation across the 25 portfolios, in line with the average return pat-
tern observed in table 1. However, we also observe relatively high standard
errors on these estimates, indicating time variation in the realized beta pattern.
These patterns are compounded into the cross sectional model estimates. The
adjusted R2 for the unrestricted zero-beta model rises to 13%, compared to 7%
for the CAPM, though the consumption coefficient is statistically insignificant.
Only when the zero-beta rate is restricted to equal the risk-free rate, does con-
sumption growth obtain a significant positive coefficient. Thus, even without
imposing a structure on the model in the form of a specific utility function, we
observe poor empirical performance. Only when we look at the pricing errors of
the C-CAPM without a constant and with the Shanken correction can we not
reject the hypothesis of zero pricing errors. This none rejection is mainly due
to the large Shanken correction factor imposed.
Estimates of the risk aversion coefficient γ, based on the linearized C-CAPM

with power utility derived in section II.1, are 117 for the unrestricted zero-beta
model and 351 for the restricted zero-beta case. These are extremely high,
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highlighting the well known equity premium puzzle of the C-CAPM. The results
are in line with similar estimates of Cochrane (1996).
The third model of the table can be seen as a log linearized version of the

C-CAPM with Epstein-Zin-Weil (EZW) utility. This model contains the market
return factor of the CAPM and the consumption growth factor of the C-CAPM.
It is included, because it is this version of the C-CAPM that forms the basis
of the Campbell and Vuolteenaho (2004) model, to be estimated shortly. The
parameter estimates are similar to those found in the previous models. We still
obtain a negative coefficient on the market return, when the zero-beta rate is
unrestricted. However, the consumption growth factor becomes significantly
positive in both cases. There is a rise in the adjusted R2 to 43% in the unre-
stricted case. Again, we can compute estimates of γ following equation (18).
The EZW C-CAPM results in a γ of 98 and -117 for the unrestricted and re-
stricted zero-beta models respectively. So we still observe values of the risk
aversion parameter which go against those predicted by theory.
For the Fama-French model, the pattern for the market return mirrors that

found in the CAPM, with a λ estimate of -1.1196. The additional factors of
the Fama-French model are thus not able to explain the negative market return
coefficient, when the zero-beta rate is allowed to vary freely. However the HML
factor is consistently significantly positive and the adjusted R2 has risen to
around 65%. This is contrary to evidence from Lettau and Ludvigson (2001b),
where a positive coefficient is estimated for the market return beta. There is
a slight difference in the time periods on which our model estimates and those
of Lettau and Ludvigson (2001b) are based. If we instead estimate the Fama-
French model on our data, but using the time period from the third quarter of
1963 to the third quarter of 1998, corresponding to that of Lettau and Ludvigson
(2001b), we obtain estimates similar to those found in their paper with a positive
coefficient estimate on the market return beta of 1.3198. The coefficient estimate
on the market return of the Fama-French model thus appears to be extremely
unstable. In fact, we need only add four to five quarters of data to the Lettau
and Ludvigson subsample, in either the preceding or succeeding period, to go
from a positive coefficient estimate to a negative coefficient estimate. Fama and
French (1992) also find a negative coefficient on the market return beta when
estimating a similar 3 factor model including size and BE/ME factors.
The basis for this pattern can easily be found if we take a quick look at the

market return beta values computed in our first stage estimates with the full
sample. The market return betas across the 25 test portfolios are presented in
table 3. As is evident, there is very little variation in the beta values across
assets. The estimated value is close to 1 for all assets. When we come to
estimating the cross sectional regression the market beta regressor will mimic
the features of a constant regressor with value 1. In our unrestricted zero beta
model, the pure constant will capture the intercept value of the series. As there
is only very little variation left in the market return beta, the estimated cross
sectional coefficient becomes insignificant and unstable across subperiods. If we
restrict the zero beta rate to equal the risk-free return, the market return beta
steps in and acts almost as a constant. This is exactly the same pattern as that
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observed for the CAPM. If we take this to the extreme and completely eliminate
the market return factor from the Fama-French model, the adjusted R2 actually
rises compared to the three factor Fama-French model9.

V.2 I-CAPM

This section treats estimates of the Campbell and Vuolteenaho I-CAPM in both
its restricted and unrestricted form as stated in table 5. Additionally, a simple
model based on the factors included in the VAR of the I-CAPM is estimated.
To start with, we look at estimates of the two betas of the I-CAPM for all 25

portfolios as presented in table 4. If we look at the beta pattern across assets, we
find that the discount rate beta is higher for growth than value stocks. On the
contrary, the cash flow beta is higher for value than growth stocks. Given our
expectation of higher risk premia on cash flow shocks than discount rate shocks,
these patterns would be in-line with the empirical observation of higher average
returns on value than growth stocks. For both beta there is a pattern of higher
values for small stocks than large stocks, thereby explaining the tendency for
small stocks to have higher average returns than large stocks. These patterns
imply that the cross-sectional model should be better at fitting asset return
variation across the 25 portfolios than the CAPM and C-CAPM, which tend to
show a relatively flat beta structure across the size and BE/ME sorted portfolios.
Turning now to the cross sectional model estimates of table 5, the first

general tendency we observe, across all three models, relates to the effect of
allowing the zero-beta rate to vary freely versus restricting it to equal the risk-
free rate. The coefficient on the constant, when this is included, is insignificant
in all cases, resulting in only small differences between the two model versions.
The models thus appear relatively good at handling the equity premium. Only
for the restricted CV model is there an observable difference in the R2 and
pricing errors between the restricted and unrestricted zero-beta rate versions.
The unrestricted CV model obtains an adjusted R2 of 54%, which is much higher
than the 9% observed for the traditional C-CAPM.
If we look at the coefficient estimates on the risk factors of the I-CAPM,

the risk price on the cash flow beta is positive and significantly different from
zero. It is also much higher than that placed on the discount rate beta. This is
the case both when the risk price on the discount rate beta is freely estimated
and when it is restricted to be equal to the variance on NDR. In fact, when the
risk price on the discount rate beta is freely estimated a negative, but highly
insignificant, coefficient is obtained. Campbell and Vuolteenaho (2004) refer to
this pattern as the story of the good beta and the bad beta. Namely, that it is
risk associated with cash flows, which is priced highest by investors. Investors
require higher excess returns on stocks with a high cash flow beta or ”bad beta”,
as shocks to cash-flows are of a permanent nature in contrast to the transitory
behavior of discount rate shocks. As we observed above, the pattern of beta

9estimates are available from the author on request.
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estimates across the 25 Fama-French portfolios, indicates that the value and size
puzzles found previously in the literature, are in fact not puzzles at all. The
excess returns on value stocks over growth stocks is due to a higher exposure of
the value stocks to the cash flow beta, for which investors require a higher return
premium. Similarly, small stocks have higher exposures to both cash flow and
discount rate betas than large stocks, thereby giving a risk based explanation
for the excess returns observed hereon.
The risk price estimates are similar to those found by Campbell and Vuolteenaho,

but with slightly different magnitudes. This is due to our use of traditional
beta estimates as factors in the cross-sectional model, where Campbell and
Vuolteenaho use betas measured relative to the market return variance. In
both the restricted and unrestricted case with a constant, we cannot reject the
hypothesis of zero pricing errors based on Shanken standard errors.
The risk aversion coefficient γ can be derived from the lambda estimates of

the restricted I-CAPM, following equation (30). When the model is estimated
with a constant γ is 31 and for the case with the zero-beta rate restricted to
equal the riskfree rate γ is 16. These estimates are in line with those found
by Campbell and Vuolteenaho at a quarterly data frequency. Compared to the
γ of the C-CAPM computed previously, the risk aversion coefficient has been
greatly reduced. However, it is still above the levels generally referred to as
theoretically sound.
The final two columns of table 5 present estimates of the VAR factor model.

Unlike the CAPM and Fama-French models, the beta on the market return is
positive in this case, as predicted by the theory. We observe that the value
spread factor is not statistically different from zero in the model. This de-
spite the high importance placed on this variable by Campbell and Vuolteenaho
(2004). The beta of the factor, from the first stage estimate, does however seem
to vary greatly across asset portfolios10. When the zero-beta rate is freely esti-
mated, only the term yield factor is significant. We do find an adjusted R2 of
0.82. The low degree of significance in the coefficient estimates on the factors
included suggests that this may be more due to the high number of free factors
in this model, rather than an actual ability of the factors to explain the asset
return patterns found.

V.3 Conditional models

The final set of models to be estimated, are conditional versions of the CAPM
and C-CAPM. The models are estimated as scaled factor models using the log
consumption-wealth ratio proxy cay as scaling factor and results are presented
in table 611.

10Beta estimates from the first stage of Fama-MacBeth estimation are available from the
author upon request.
11The conditional models have also been estimated with alternative conditioning variables.

Estimates of the conditional C-CAPM using the yield spread, the log dividend price ratio,
a default risk premium, and the price-output variable of Rangvid (2005) as conditioning
variables all result in similar conclusions.
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Across all the models, the time-varying component of the intercept has little
power in explaining average excess returns. However, the coefficient on the
constant is statistically significant for all three models. This indicates that even
when we allow for time variation in the factor coefficients the zero-beta rate
does not equal the risk-free rate.
Contrary to the findings of Lettau and Ludvigson, we find no significance of

the scaled consumption factor in the conditional C-CAPM, when the zero-beta
rate is freely estimated. The explanation for this divergence in results can, once
again, be found in the sample period used. Lettau and Ludvigson’s estimates
are based on a sample ending in the third quarter of 1998, whereas our sample
runs through the fourth quarter of 2001. If we exclude the last two years of data
from our sample, we obtain a highly significant positive coefficient on the scaled
consumption factor, as was the finding of Lettau and Ludvigson (2001). The
scaled consumption factor is unable to capture the developments of the stock
market in the first years of the 21st century.
When the zero-beta rate is restricted to equal the risk-free rate, the scaled

factor does become significant. In this case we find a significant positive coeffi-
cient on scaled consumption growth. The pattern is similar to that observed in
the unconditional model, where a significant positive coefficient on consumption
growth was found.
Compared to the unconditional C-CAPM the adjusted R2 of the conditional

model has gone from 0.09 to 0.53 for the unrestricted zero-beta model. So we
do see a large improvement in the ability of the model to explain the observed
asset returns over that of the traditional C-CAPM. The improvement is similar
to that found when estimating the two beta model of Campbell and Vuolteenaho
(2004).
The conditional CAPM performs much better than the unconditional model.

For the CAPM, the scaled factor is significantly positive. It thus appears,
that part of the problems of the static CAPM can be solved by allowing time-
variation in the market return coefficient.
The conditional EZW model with a constant only results in significant co-

efficient estimates for the constant. The remaining parameters are found to be
insignificant and it results in a lower adjusted R2 than the conditional C-CAPM.

V.4 Pricing errors

In addition to looking at the credibility of the coefficient estimates of the mod-
els, we want to measure the pricing ability by investigating the magnitude of
the pricing errors resulting from the empirical estimates. To look at the com-
parative magnitude of pricing errors across models, four numbers are presented
in table 7. These are the square root of average squared pricing errors, the
Hansen-Jagannathan distance measure, and two measures of variance weighted
pricing errors. The weighting matrices are the full variance-covariance matrix
of portfolio returns and a diagonal matrix of the variances of portfolio returns.
If we look at the magnitude of pricing errors across the traditional models,

the Fama-French model results in the lowest average pricing errors. The aver-
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age pricing error is 0.32 and 0.34 in the unrestricted zero-beta and restricted
zero-beta case respectively. Average pricing errors are slightly smaller for the
C-CAPM than for the CAPM. For the unrestricted zero-beta case the C-CAPM
has an average pricing error of 0.56 and the CAPM has 0.58. The improvement
in pricing ability resulting from moving from the static CAPM to the intertem-
poral C-CAPM is thus marginal, in accordance with previous empirical findings.
In all cases, the restricted zero-beta versions of the models perform worse than
the unrestricted case. On the one hand this is to be expected, as we have more
free parameters in the unrestricted case. On the other hand, if we are to follow
the theory underlying the models, the constant should be zero. So the fact that
the models perform better with a constant indicates a failure of the underlying
theory. When weighting pricing errors by portfolio variances, using the diago-
nal matrix results in exactly the same comparative pattern as simple average
pricing errors. With the full variance-covariance matrix, the CAPM has lower
pricing errors than the C-CAPM.
Looking at the I-CAPM of Campbell and Vuolteenaho (CV), the restricted

CV model performs slightly worse than the unrestricted version. The unre-
stricted model results in an average pricing error of 0.39 in both the case when
a constant is included and when the zero-beta rate is constricted to equal the
risk-free rate. For the restricted model average pricing errors are 0.42 and
0.49 with unrestricted and restricted zero-beta rate respectively. This is to be
expected given the additional free parameter in the unrestricted model. The
relative pricing ability of the two models is consistent across pricing error mea-
sures.
The final set of models presented are the conditional models. For these we

observe lower pricing errors, across all measures, for the conditional C-CAPM
than the conditional CAPM, when a constant is included. Average pricing errors
for the conditional C-CAPM are 0.38 and 0.42 for the conditional CAPM. As
was the case for the unconditional models, when the constant is eliminated, the
CAPM outperforms the C-CAPM.
Next we compare the pricing ability of the two new asset pricing strands to

each other. First we will look at models where a constant has been included.
The average squared pricing error of the conditional EZW C-CAPM is slightly
smaller than that of both the restricted and unrestricted CV-model. So when
giving equal weight to the pricing errors from the 25 portfolios, the conditional
EZW C-CAPM outperforms the Campbell and Vuolteenaho setup. The condi-
tional C-CAPM, that is the model without the market return factor, also has
slightly lower average squared pricing errors than the CV-models. When pric-
ing errors are weighted by the diagonal variance matrix of returns, the pattern
is similar to that found using an equal weighting. Using the moment matrix
as in the Hansen-Jagannathan distance measure shows a slightly different pat-
tern. Now the best performance is achieved using the unrestricted CV-model,
followed by the conditional C-CAPM and EZW C-CAPM. The highest H-J mea-
sure is obtained from the restricted CV-model. The same pattern is found when
comparing pricing errors using the full variance-covariance matrix of returns as
weighting matrix.
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Next we look at models where we restrict the zero-beta rate to equal the risk-
free rate of return by working without a constant in our cross-sectional models.
Based on average squared pricing errors, the unrestricted CV-model outperforms
the conditional C-CAPM and EZW C-CAPM. The restricted CV-model has
lower pricing errors than the conditional C-CAPM, but not the conditional
EZW C-CAPM. The same pattern is observed when weighting pricing errors by
the diagonal variance matrix of returns. When using the full variance-covariance
matrix, the restricted and unrestricted CV-models both clearly outperform the
conditional C-CAPM and EZW C-CAPM. If we evaluate the pricing ability of
the model by weighting pricing errors by the moment matrix as suggested by
the Hansen-Jagannathan distance measure, the same pattern is observed.
All in all, based on the four pricing error measures investigated here, there

is no clear pattern of one of the two alternative strands dominating the other.
Which model offers the best pricing ability is dependent on which pricing error
measure we investigate. And even then, the differences are marginal.
Finally, we compare the pricing ability of the traditional models to the new

models, to see if any improvement over the pricing ability of the C-CAPM has
been achieved. If we focus on average pricing errors these fall from 0.56 for
the unconditional C-CAPM to around 0.4 for the conditional C-CAPM and
CV models, in the unrestricted zero-beta rate case. This is the measure fo-
cused on by Lettau and Ludvigson (2001b) when comparing the pricing ability
of a conditional and unconditional C-CAPM. We thus find the same support
for price improvement as is the case in their paper. Similarly, if we compare
pricing ability by looking at the composite pricing errors weighted by the diag-
onal variance matrix of asset returns, we find improved pricing ability from the
conditional C-CAPM and the I-CAPM of Campbell and Vuolteenaho, over the
traditional C-CAPM and CAPM. This is similar to the findings of Campbell
and Vuolteenaho (2004), who compare their model to the CAPM using this
pricing error measure. However, when looking at composite pricing errors using
the full variance-covariance matrix there is only a small difference in the pric-
ing ability of the new models and the unconditional C-CAPM. In fact, when
weighting pricing errors by the moment matrix of asset returns in the H-J dis-
tance measure, the unconditional C-CAPM has lower pricing errors than both
the conditional C-CAPM and the two CV-models.
The overall picture resulting from the comparison of the two new literature

strands is thus, that they both offer improved pricing ability over the traditional
C-CAPM when looking at average pricing errors. However, this improvement in
pricing ability is not consistent across pricing error measures. When using the H-
J distance measure, the C-CAPM outperforms the new models and we are thus
no further in solving the empirical asset pricing problems of the consumption
based literature. The Fama-French three factor model is still the model that
results in the lowest pricing errors, across all error measures.
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V.5 Pricing ability

To give a more visual description of the pricing capability of the models inves-
tigated, the graphs presented in figure1, figure 2, figure 3, and figure 4 show
plots of average realized excess returns and the average excess returns obtained
from the respective models. Realized returns are plotted along the horizontal
axis and estimated returns along the vertical axis. If a given model were to fit
the empirical data perfectly, all observations would lie along the 45◦ line.
From the plots of the four traditional models in figure1 and figure 2, it is

clear that the Fama-French model has the best performance. The points are
relatively close to the 45◦ line and there are no extreme outliers. It is also
obvious that the CAPM fits the data poorly. In fact, the portfolios with the
lowest realized excess returns obtain the highest estimated excess returns from
the CAPM. These are the small growth portfolios. The extreme outliers below
the 45◦ line are also from the small size quantile, but are on the other end of
the BE/ME spectrum as value stocks. This is the well documented value-effect,
which the static CAPM is unable to handle. The C-CAPM does slightly better,
but is still unable to fit the realized excess return of the small growth portfolio.
As the CAPM documents, there is little pricing ability in the market return
factor. Including this along with the consumption growth factor, as is done
with the EZW C-CAPM, thus results in plots closely mimicking the C-CAPM.
The intertemporal models of Campbell and Vuolteenaho perform somewhat

better than the traditional C-CAPM and CAPM, as can be seen in figure 3. In
the unrestricted case particularly, realized and estimated excess returns line up
relatively well. The restricted CV model faces some of the same problems as the
static CAPM. Estimated excess returns for the small growth and small value
stock portfolios are very close, especially when the zero-beta rate is restricted
to equal the risk-free rate. This contradicts the empirical observations of a
realized annualized excess return of 4.8% for the small growth portfolio and
14.3% in the small value portfolio case. Both the CV-models have problems
fitting the small growth portfolio situated as the left most point on both plots.
The models predict higher returns than the empirically realized excess return of
1.2% per quarter. The best fit is found when estimating the four factor model
that includes the VAR factors of the Campbell and Vuolteenaho I-CAPM. The
plots of portfolio returns lie very close to the 45◦ line and there is no value or
size effect issues. As could be expected, the more free factors, the better model
fit results.
The final models investigated are the conditional CAPM and C-CAPM. As

can be seen from figure 4, there is still some dispersion in the plots around
the 45◦ line. In comparison to the unconditional models however, a clear im-
provement can be noted. Especially in the case of the CAPM. The conditional
C-CAPM fits the small growth portfolio slightly better than the CV-models.
The conditional EZW C-CAPM without a constant also fits this portfolio rela-
tively well, but on the other hand has problems with the small value portfolio
located at the right most point on the figure. There thus still seems to be some
problems in fitting the value premium.
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VI Concluding remarks

The consumption based capital asset pricing model (C-CAPM) has had an im-
portant place in the finance research literature over the past 25 years, despite
its poor empirical performance. The reason it has maintained the interest of the
academic world, is the simplicity and intuitive appeal of the theory underlying
the model. We are thus not interested in dismissing the model completely. In-
stead focus is on the assumptions made to get from the basic idea of the priced
risk of an asset being determined by the asset’s covariance with the marginal
utility of consumption, to the risk measures estimated empirically. Can the
empirical problems of the C-CAPM be solved by revising these assumptions?
A number of alternative models attempting to improve on the pricing ability

of the C-CAPM have been developed. Two strands of the literature are inves-
tigated in this paper. The intertemporal CAPM of Campbell and Vuolteenaho
(2004) and the conditional C-CAPM of Cochrane (1996) and Lettau and Lud-
vigson (2001b).
The first model is based on the assumption that empirical consumption data

is a poor proxy for the measure of consumption referred to in the theoretical
C-CAPM. If the deviations between the theoretical and empirical measures of
consumption are large, these data issues may be the root of the poor empirical
performance of the C-CAPM. From this observation Campbell and Vuolteenaho
(2004) develop a two beta intertemporal model, based on the same framework
as the C-CAPM, but without reference to consumption. Instead the asset risk
premium is determined by a cash-flow and a discount-rate beta.
The second set of models investigated, focus on the conditional pricing ability

of the C-CAPM. The reasoning behind this setup is recent empirical evidence
of time variation in expected returns. If the cause of this is time-varying risk
premia, then we must incorporate it into the model. This can be achieved
by restating the C-CAPM conditionally, in a scaled factor model setup. The
approximate log consumption-wealth ratio cay of Lettau and Ludvigson (2001a)
is used as conditioning variable.
The traditional C-CAPM, as well as the CAPM and the well known three

factor Fama-French model are estimated on quarterly US data. These are then
compared to estimates of the models from the two alternative strands of litera-
ture, to investigate whether any quantifiable improvements have been made in
the empirical asset pricing ability. The assets priced are the 25 size and BE/ME
sorted Fama-French portfolios.
The empirical results of this paper underline previous research showing the

poor performance of the C-CAPM as well as the static CAPM. The estimated
coefficients are insignificant or of the wrong sign, compared to that predicted by
the underlying theory. The C-CAPM has slightly lower average pricing errors
than the CAPM, but is still unable to explain the value and size effects.
Compared to the C-CAPM the intertemporal model of Campbell and Vuolteenaho

(2004) has much higher R2 and lower average pricing errors. The two betas of
the model do a better job than the traditional models of fitting the uncondi-
tional equity premium, even though only the rsik price of the cash-flow beta
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is significant. However, there are still some problems in matching the realized
returns on the extreme small growth stock portfolio. Especially when we restrict
the price of discount-rate risk to equal the sample variance of the discount rate.
When scaling the consumption growth factor of the C-CAPM to obtain an

estimate of the conditional C-CAPM, a similar pattern is observed. With an
unrestricted zero-beta rate, average pricing errors fall from 0.55 for the un-
conditional C-CAPM to 0.4 for the conditional model. However, neither the
consumption growth nor the scaled consumption growth factor are statistically
significant, imploring one to be cautious when interpreting the improved pricing
ability found.
Unlike previous research into the pricing improvement of these two new

model strands, we delve futher into the pricing ability of the models estimated by
looking at a number of weighted pricing error measures. Comparing the result-
ing observations for the two new model strands can only lead one to the conclu-
sion, that there is no clear cut winner. None of the models from the alternative
literature strands perform significantly better than the others. In fact, which
strand results in the lowest weighted pricing errors, is very much dependent on
the weighting matrix chosen. Generally the Campbell and Vuolteenaho (2004)
framework has the lowest pricing errors when using a full variance-covariance
matrix of returns or the moment matrix. The picture becomes more blurred
when looking at average squared pricing errors or errors weighted by the diag-
onal variance matrix of returns.
The most damning evidence against the two new model strands is found

when looking at pricing errors weighted by the full variance-covariance matrix
of asset returns or the moment matrix of the returns. Based on these two pricing
error measures we actually find that the traditional C-CAPM outperforms the
new models.
On the basis of these observations it thus seems wise to continue the search,

as it were, if we wish to improve on the pricing ability of the consumption-based
asset pricing model.
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Table 1: Summary statistics for 25 Fama-French portfolio returns
The table presents average quarterly excess returns and standard errors for the
25 Fama-French portfolios. The time series data run from the 1. quarter of
1952 through the 4. quarter of 2001. Returns are measured in excess of the

3-month T-bill rate. Standard deviations are in parentheses.

Growth 2 3 4 Value Value-Growth

Small 1.1888 2.5099 2.6682 3.3000 3.5871 2.3983
(15.5616) (13.3429) (11.8208) (11.3130) (12.2051)

2 1.4924 2.2801 2.8382 3.0223 3.2880 1.7956
(14.0166) (11.7393) (10.3388) (10.2094) (10.9666)

3 1.7851 2.3729 2.3846 2.8640 3.0160 1.2309
(12.5797) (10.2430) (9.5581) (9.3997) (10.3032)

4 1.9518 1.8021 2.4781 2.6302 2.8606 0.9088
(11.4247) (9.5816) (8.8473) (8.8734) (10.3074)

Large 1.7223 1.7071 1.9978 2.0347 2.2393 0.5170
(9.0670) (8.0063) (7.2724) (7.8221) (8.6240)

Large-Small 0.5335 -0.8028 -0.6704 -1.2653 -1.3478
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Table 2: Unconditional models. Excess returns. With and without constant.
The table presents λ estimates from the cross-sectional Fama-MacBeth regressions E [Ri,t+1 −Rf,t+1] = β0iλ. The test assets are the 25
size and BE/ME sorted portfolios of Fama and French. Returns are measured in excess of the risk free rate. Rm is the return on the
CRSP value weighted stock index and ∆c denotes consumption growth. Standard errors are presented in parentheses. The top set are
uncorrected Fama-MacBeth standard errors and below are standard errors modified with the Shanken (1992) correction. Alpha and

alpha-Shanken are χ2 tests of the hypothesis of zero-pricing errors. A star (*) denotes significant at a 5% level.

C-CAPM CAPM EZW C-CAPM Fama-French 2 factor Fama-French

constant 1.6390 3.3280 3.1284 2.9508 2.1558
(0.5762)∗ (0.9317)∗ (0.9357)∗ (1.2870)∗ (0.5164)
(0.6545)∗ (0.9366)∗ (1.3455)∗ (1.3331)∗ (0.5322)

Rm -0.8332 2.0682 -0.8088 1.8972 -1.1196 1.7297
(1.0754) (0.6174)∗ (1.0769) (0.6057)∗ (1.3899) (0.5812)∗

(1.0795) (0.6201)∗ (1.4307) (0.6492)∗ (1.4313) (0.5824)∗

∆c 0.2467 0.7367 0.4600 0.5480
(0.1882) (0.2135)∗ (0.1663)∗ (0.1648)∗

(0.2131) (0.4011) (0.2367)∗ (0.2544)∗

SMB 0.4283 0.5058 0.4417 2.0266
(0.4156) (0.4164) (0.4163) (0.5424)∗

(0.4165) (0.4186) (0.4172) (0.5649)∗

HML 1.2949 1.3701 1.3160 1.2043
(0.4343)∗ (0.4345)∗ (0.4343)∗ (0.4351)∗

(0.4360)∗ (0.4382)∗ (0.4357)∗ (0.4395)∗

R2 0.1332 -0.4360 0.0734 -0.8443 0.4305 -0.3730 0.7185 0.6690 0.7148 -1.3050
R2
adj 0.0955 -0.4360 0.0331 -0.8443 0.3788 -0.4327 0.6783 0.6389 0.6889 -1.4052

alpha 71.25∗ 97.77∗ 69.51∗ 92.38∗ 68.79∗ 90.78∗ 59.67∗ 75.90∗ 62.55∗ 94.04∗

alpha-Shanken 55.22∗ 27.23 68.79∗ 86.74∗ 33.27 37.24∗ 55.62∗ 65.39∗ 58.89∗ 79.11∗
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Table 3: Beta estimates from traditional models
The table presents time-series estimates of the consumption growth beta of the
C-CAPM and the market return beta of the Fama-French 3 factor model for

the 25 size and BE/ME sorted portfolios of Fama and French.bβ∆c Growth 2 3 4 Value Value-Growth

Small 4.5895 5.3624 3.7071 3.9913 4.3175 -0.2720
(2.3877) (2.0308) (1.8115) (1.7288) (1.8650)

2 3.1068 2.9144 3.4219 2.9458 3.8994 0.7926
(2.1593) (1.8061) (1.5825) (1.5671) (1.6755)

3 2.9968 2.4610 2.8261 2.7729 3.3448 0.4512
(1.9364) (1.5766) (1.4665) (1.4422) (1.5777)

4 2.3813 2.2463 2.0008 2.5116 3.9361 1.5548
(1.7611) (1.4752) (1.3627) (1.3625) (1.5715)

Large 2.6319 1.5746 2.0922 1.9735 3.2097 0.5778
(1.3916) (1.2348) (1.1163) (1.2032) (1.3159)

Large-Small -1.9576 -3.7878 -1.6149 -2.0178 -1.1078bβRm Growth 2 3 4 Value Value-Growth

Small 0.9998 0.9929 0.9061 0.9128 0.9975 -0.0023
(0.0520) (0.0343) (0.0327) (0.0281) (0.0301)

2 1.0776 1.0059 0.9649 0.9934 1.0467 -0.0309
(0.0336) (0.0285) (0.0262) (0.0261) (0.0255)

3 1.0803 1.0065 0.9924 1.0107 1.0329 -0.0474
(0.0292) (0.0282) (0.9924) (0.0301) (0.0318)

4 1.0522 1.0271 1.0098 1.0119 1.1042 0.0520
(0.0280) (0.0336) (0.0311) (0.0303) (0.0403)

Large 1.0505 1.0008 0.9209 1.0188 1.0646 0.0141
(0.0224) (0.0269) (0.0309) (0.0287) (0.0370)

Large-Small 0.0507 0.0079 0.0148 0.1060 0.0671
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Table 4: Beta estimates from Campbell model
The table presents time-series estimates of the cash flow and discount rate
beta of the Campbell and Vuolteenaho (2004) I-CAPM for the 25 size and

BE/ME sorted portfolios of Fama and French.bβCF Growth 2 3 4 Value Value-Growth

Small 0.9986 1.0504 1.0495 1.1404 1.2779 0.2793
(0.2260) (0.1869) (0.1709) (0.1613) (0.1869)

2 0.9407 0.9848 1.1201 1.1724 1.2754 0.3347
(0.1786) (0.1537) (0.1316) (0.1393) (0.1596)

3 0.8067 1.0760 1.1878 1.2546 1.3058 0.4991
(0.1448) (0.1205) (0.1174) (0.1235) (0.1493)

4 0.9563 1.0727 1.2481 1.2319 1.3603 0.4040
(0.1181) (0.1045) (0.1002) (0.1031) (0.1456)

Large 0.6866 0.9042 0.9602 1.0988 1.0079 0.3213
(0.0773) (0.0823) (0.0855) (0.0991) (0.1297)

Large-Small -0.312 -0.1462 -0.0893 -0.0416 -0.2700bβDR Growth 2 3 4 Value Value-Growth

Small 1.4726 1.2857 1.1078 1.0600 1.0744 -0.3982
(0.0869) (0.0718) (0.0657) (0.0620) (0.0718)

2 1.4273 1.1724 1.0287 0.9700 0.9935 -0.4338
(0.0687) (0.0591) (0.0506) (0.0535) (0.0613)

3 1.3350 1.0584 0.9510 0.8907 0.9213 -0.4137
(0.0556) (0.0463) (0.0451) (0.0475) (0.0574)

4 1.2460 1.0113 0.8911 0.8874 0.9323 -0.3137
(0.0454) (0.0402) (0.0385) (0.0396) (0.0559)

Large 1.0325 0.8595 0.7305 0.7484 0.7591 -0.2734
(0.0297) (0.0316) (0.0329) (0.0381) (0.0498)

Large-Small -0.4401 -0.4262 -0.3773 -0.3116 -0.3153
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Table 5: Unconditional models. Excess returns. With and withour constant.
The table presents λ estimates from the cross-sectional Fama-MacBeth
regressions E [Ri,t+1 −Rf,t+1] = β0iλ. The test assets are the 25 size and

BE/ME sorted portfolios of Fama and French. Returns are measured in excess
of the risk-free rate. Rm is the return on the CRSP value weighted stock

index, NCF and NDR are the two I-CAPM factors developed by Campbell and
Vuolteenaho (2004), TY is the bond yield spread, PE is the price earnings

ratio, and V S is the value spread. Standard errors are presented in
parentheses. The top set are uncorrected Fama-MacBeth standard errors and
below are standard errors modified with the Shanken (1992) correction. Alpha

and alpha-Shanken are χ2 tests of
the hypothesis of zero-pricing errors. A star (*) denotes significant at a 5% level.

CV-unrestricted CV-restricted VAR factors

constant -0.3556 -1.7015 0.9538
(1.4144) (1.1359) (1.3318)
(1.8788) (1.0114) (2.3704)

Rm 0.9101 1.7891
(1.4440) (0.5904)∗

(2.4273) (0.6312)∗

NCF 2.7391 2.5481 3.1254 1.5932
(0.8819)∗ (0.5463)∗ (0.8429)∗ (0.6167)∗

(1.1549)∗ (0.6792)∗ (1.0871)∗ (0.3983)∗

NDR -0.2130 -0.3531 0.6828 0.6828
(1.1387) (0.8083)
(1.4237) (0.9264)

TY 0.7376 0.7192
(0.1786)∗ (0.1919)∗

(0.3118)∗ (0.3549)∗

PE 0.2029 0.2529
(0.1083) (0.0745)∗

(0.1895) (0.1350)
V S -0.0055 -0.0210

(0.0238) (0.0304)
(0.0400) (0.0552)

R2 0.5765 0.5735 0.5027 0.3314 0.8530 0.8284
R2adj 0.5380 0.5549 0.4811 0.3314 0.8236 0.8038

alpha 62.08∗ 69.82∗ 68.05∗ 70.45∗ 46.63∗ 56.72∗

alpha-shanken 35.19 42.14∗ 36.68 57.68∗ 14.72 16.01

33



Table 6: Conditional models. Excess returns. With and without constant.
The table presents λ estimates from the cross sectional Fama-MacBeth
regressions E [Ri,t+1 −Rf,t+1] = β0iλ. The test assets are the 25 size and

BE/ME sorted portfolios of Fama and French. Returns are measured in excess
of the risk-free rate. Rm,t+1 is the return on the CRSP value weighted stock

index and ∆ct+1 denotes consumption growth. cayt is the lagged
consumption-wealth ratio proxy, used as scaling variable in the conditional
models. Standard errors are presented in parentheses. The top set are

uncorrected Fama-MacBeth standard errors and below are standard errors
modified with the Shanken (1992) correction. Alpha and alpha-Shanken are χ2

tests of
the hypothesis of zero-pricing errors. A star (*) denotes significant at a 5% level.

Conditional C-CAPM Conditional CAPM Conditional EZW C-CAPM

constant 2.8670 1.9016 2.2007
(0.9091)∗ (0.8472)∗ (0.8290)∗

(1.218)∗ (1.2083) (1.0315)∗dcayt -0.1696 -0.9892 -0.2154
(0.3555) (0.4852)∗ (0.3366)
(0.4697) (0.6861) (0.4138)

Rm,t+1 -0.0378 1.8666 -0.2101 1.8465
(1.0139) (0.6190)∗ (0.9979) (0.6136)∗

(1.3231) (0.6505)∗ (1.1667) (0.6432)∗dcayt ∗Rm,t+1 0.0503 0.0770 0.01739 0.0472
(0.0195)∗ (0.0194)∗ (0.0187) (0.0236)∗

(0.0270)∗ (0.0249)∗ (0.0227) (0.0310)
∆ct+1 0.0802 -0.0029 0.0913 0.1502

(0.1786) (0.1965) (0.1132) (0.1627)
(0.2375) (0.3590) (0.1388) (0.2153)dcayt ∗∆ct+1 0.0043 0.0125 0.0029 0.0042
(0.0025) (0.0036)∗ (0.0023) (0.0023)
(0.0034) (0.0065)∗ (0.0028) (0.0031)

R2 0.5943 0.2217 0.5014 0.3620 0.6093 0.5094
R2adj 0.5363 0.1879 0.4301 0.3342 0.5065 0.4393

alpha 69.40∗ 92.30∗ 69.05∗ 91.48∗ 66.73∗ 88.11∗

alpha-shanken 38.68∗ 27.12 33.95 52.63∗ 43.10∗ 49.42∗
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Table 7: Pricing Errors
The table presents four measures of pricing errors for the models estimated: C-CAPM, EZW C-CAPM, CAPM, Fama-French 3 factor,

conditional C-CAPM, conditional EZW C-CAPM, conditional CAPM, Campbell and Vuolteenaho I-CAPM, restricted and
unrestricted, and the VAR factor model. The pricing error measures are composite pricing errors, measured with both a full and a

diagonal variance-covariance matrix, the square root of average squared pricing errors, and the Hansen-Jagannathan distance measure.
The first column for each model represents the case where a constant is included in the model and the second column represents the

case where no constant is included. Asymptotic, Newey-West corrected, standard errors are in parentheses.

C-CAPM EZW C-CAPM CAPM Fama-French VAR factors

pricingerror-full 0.6210 0.8304 0.6643 0.7523 0.5925 0.6799 0.5533 0.6177 0.5180 0.5555
(0.0372) (0.0480) (0.0433) (0.0442) (0.0331) (0.0375) (0.0348) (0.0384) (0.0414) (0.0392)

pricingerror-diag 0.2355 0.3139 0.2203 0.2986 0.2843 0.3480 0.1451 0.1581 0.1115 0.1180
(0.0297) (0.0339) (0.0265) (0.0343) (0.0387) (0.0365) (0.0113) (0.0110) (0.0089) (0.0143)

Average pricing error 0.5598 0.7205 0.4538 0.7046 0.5788 0.8166 0.3190 0.3459 0.2305 0.2491
(0.0698) (0.0741) (0.0485) (0.0765) (0.0743) (0.0811) (0.0272) (0.0278) (0.0192) (0.0385)

H-J dist 0.5391 0.7594 0.6144 0.6686 0.5277 0.5695 0.4908 0.5382 0.4865 0.5214
(0.0352) (0.0491) (0.0437) (0.0440) (0.0297) (0.0314) (0.0305) (0.0337) (0.0431) (0.0386)

Conditional C-CAPM Conditional EZW C-CAPM Conditional CAPM CV-unrestricted CV-restricted

pricingerror-full 0.6337 0.7711 0.6450 0.7395 0.7502 0.7750 0.6109 0.5984 0.6593 0.5959
(0.0386) (0.0521) (0.0416) (0.0459) (0.0608) (0.0498) (0.0461) (0.0419) (0.0487) (0.0399)

pricingerror-diag 0.1792 0.2375 0.1717 0.1920 0.1904 0.2178 0.1789 0.1816 0.1814 0.2006
(0.0179) (0.0222) (0.0147) (0.0165) (0.0194) (0.0260) (0.0173) (0.0236) (0.0167) (0.0275)

Average pricing error 0.3830 0.5305 0.3758 0.4212 0.4246 0.4803 0.3913 0.3927 0.4240 0.4917
(0.0311) (0.0563) (0.0307) (0.0319) (0.0393) (0.0493) (0.0370) (0.0409) (0.0445) (0.0679)

H-J dist 0.5758 0.6997 0.5797 0.6625 0.6821 0.6923 0.5526 0.5400 0.5942 0.5145
(0.0368) (0.0510) (0.0394) (0.0430) (0.0602) (0.0471) (0.0447) (0.0394) (0.0466) (0.0348)
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Figure 1: Pricing performance of traditional models
In the figures below, returns for the 25 Fama-French portfolios from the

C-CAPM and CAPM are presented. Realized sample average excess returns
are on the x-axis and predicted excess returns are along the y-axis. Black

squares represent estimates for the models with the zero-beta rate restricted to
equal the risk-free rate and white squares give estimates where the zero-beta

rate is freely estimated.
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Figure 2: Pricing performance of traditional models
In the figures below, returns for the 25 Fama-French portfolios from the EZW
C-CAPM and Fama-French model are presented. Realized sample average
excess returns are on the x-axis and predicted excess returns are along the
y-axis. Black squares represent estimates for the models with the zero-beta
rate restricted to equal the risk-free rate and white squares give estimates

where the zero-beta rate is freely estimated.
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Figure 3: Pricing performance of I-CAPM
In the figures below, returns for the 25 Fama-French portfolios from the
Campbell and Vuolteenaho models are presented. Realized sample average
excess returns are on the x-axis and predicted excess returns are along the
y-axis. Black squares represent estimates for the models with the zero-beta
rate restricted to equal the risk-free rate and white squares give estimates

where the zero-beta rate is freely estimated.
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Figure 4: Pricing performance of conditional models
In the figures below, returns for the 25 Fama-French portfolios from the

conditional models are presented. Realized sample average excess returns are
on the x-axis and predicted excess returns are along the y-axis. Black squares
represent estimates for the models with the zero-beta rate restricted to equal
the risk-free rate and white squares give estimates where the zero-beta rate is

freely estimated.
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