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Abstract  
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that certain variables do provide incremental information and may have some practical value. 
Although this not necessarily imply that return-forecasting models may be used to predict future 
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1. - Introduction 

Explaining either the variations or movements of future stock returns is one of the most 

elusive goals in academic finance. In their recent article on stock return predictability, 

Goyal and Welch (2005, p. 27) conclude 

…our paper suggests only that our profession has yet to find a variable that has a 

meaningful robust empirical equity premium forecasting power, both IS [in-

sample] and OOS [out-of-sample], at least from the perspective of a real-world 

investor.   

This paper shows when Goyal and Welch’s (2005) conclusion, regarding out-of-sample 

evidence, is met and when it is not. 

 

 A widely recognized fact in finance is that model selection criteria fail to detect 

out-of-sample predictability in terms of level-based accuracy measures, such as the mean 

square prediction error (see, e.g., Bossaerts and Hillion (1999)). The evidence suggests 

that the “true” return generating model is either nonlinear or unstable. However, when 

one acknowledges the consequences of a potentially misspecified model, return-

forecasting models can exhibit external validity via a weighted average model [see, e.g., 

Avramov (2002) and Cremers (2002)].       

 

Another widely recognized fact in finance is that despite their inability to generate 

satisfactory level-based out-of-sample results, models may be estimated using publicly 

available information to predict future stock movements [see, e.g., Pesaran and 

Timmermann (1995, 2002) and Aiolfi and Favero (2005)]. The evidence suggests that the 
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variables that economists have suggested to predict the equity premium may have, after 

all, some practical value.     

 

 Although there is some evidence that links movement and return predictability 

(see, e.g., Christoffersen and Diebold (2005)), it cannot be reconciled with the 

(multivariate) empirical evidence in a way that offers a consistent description of the 

behavior of model selection criteria or weighted average models when predicting either 

the returns or signs of the returns. This paper proposes a simply explanation that bridges 

this gulf between return and movement predictability.  

 

We investigate the extent to which the monthly stock price returns and 

movements of the Standard and Poors 500 (S&P 500) are predictable. Our approach 

differs from prior work in several ways. First, rather than assuming the natural class 

distribution of the test-set, we follow the intuition of a popular proverb in the Latino 

community “a good rooster can crow anywhere,” that the return-forecasting models 

should generate desirable properties when predicting out-of-sample regardless of the test-

set distribution. We find that return-forecasting models exhibit a disproportional large 

percentage of error when forecasting negative equity premiums, but lower than the one 

generated by the historical equity premium mean. In fact, if the test-set would have had a 

different distribution—i.e., higher proportions of negative equity premiums than positive 

premiums—model selection criteria and weighted averaging models would have 

statistically outperformed the historical equity premium mean in terms of mean square 

prediction error. Under the natural class distribution of the test-set, however, return-
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forecasting models cannot outperform the simple historical equity premium mean, 

consistent with Goyal and Welch (2005).   

     

Next, rather than limiting ourselves to Pesaran and Timmermann’s (1992) market 

timing test statistic, we gauge the direction-of-change predictability of the models using 

several accuracy measures widely used in epidemiology, machine learning, and radiology 

and find that even though the Pesaran and Timmermann’s (1992) test statistic rejects the 

null of no market timing skills, return-forecasting models are not properly predicting 

negative equity premiums.    

 

Finally, we compare the predictive performance of return-forecasting models 

against coin-toss classifiers.4 We find that neither model selection criteria, nor 

methodologies robust to model misspecification, nor predictors evaluated singly 

outperform coin-toss classifiers. Thus, the empirical evidence we document imply that 

movement predictability have been overstated in the existing literature when using either 

model selection criteria or weighted average models.  

 

However, an ex-post analysis reveals that if an investor would have clung to some 

specifications with 4 or 5 predictors, he could have easily outperformed the historical 

equity premium mean, model selection criteria, all-inclusive model, and weighted model 

                                                 
4 Coin-toss classifiers, also known as random classifiers, use a discrete distribution to resolve the dispute 

between our two alternatives: positive premiums (or up movements) and negative premiums (or down 

movements).  
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averaging models in terms of directional-based accuracy measures, but not in terms of 

level-based accuracy measures. Stock movement predictability is feasible, whereas stock 

return predictability is not.  

 

 The remainder of the paper proceeds as follows. In Section 2, we reexamine the 

existing sample evidence on return predictability. Section 3 implements several strategies 

to improve the predictive performance of the return-forecasting models. To check 

whether some specifications would have helped an investor, we evaluate the predictive 

performance of all competing regression specifications and report the results in Section 4. 

We conclude in Section 5.  

 

2. – Another look at the sample evidence on return predictability: Are 

weighted committees increasing our ability to describe the time-series 

behavior of stock returns? 

As Fama (1991, p. 1577) states, “[t]here is a resurgence of research on time-series 

predictability of stock returns…” Not only “traditional” variables are nowadays 

considered in empirical tests for return predictability, tests now also consider the 

predictive power of a large set of potential variables.5 Moreover, in contradistinction to 

the pre-1991 research, which focused on evaluating the in-sample predictability, recent 

                                                 
5 Avramov (2002), Cremers (2002), Goyal and Welch (2005), and Campbell and Thompson (2005), for 

instance, examine the information content of more than 13 conditioning variables.     
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tests assess in-sample and out-of-sample predictability in terms of either level-based or 

directional-based accuracy measures.6     

 

 Arguably, one of the most noticeable new results is that predictive regressions in 

which model uncertainty is assessed and propagated generate desirable properties when 

predicting out-of-sample. Avramov (2002) and Cremers (2002) find that the Bayesian 

model averaging’s out-of-sample performance is superior to that of model selection 

criteria in terms of level-based accuracy measures. This finding, however, prompts 

several (and unanswered) questions: Are weighted committees increasing our ability to 

describe the time-series behavior of stock returns? Are model averaging techniques able 

to discriminate stock price movements? Are ensembles extracting information beyond 

that contained in an i.i.d. model?  

 

We first consider the sample evidence on return predictability through level-based 

accuracy measures. Then we discuss the implications of evaluating model averaging and 

model selection criteria via directional-based accuracy measures. 

 

A. - Equity premium predictability 

                                                 
6 See, for example, Pesaran and Timmermann (1995, 2002), Bossaerts and Hillion (1999), Avramov 

(2002), Cremers (2002), Goyal and Welch (2003), Ang and Bekaert (2004), Lunde and Timmermann 

(2005), Aiolfi and Favero (2005), Goyal and Welch (2005), and Rapach and Wohar (2005).    
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 Consider monthly excess returns on the S&P 500 index over the sample period 

1953:04 through 2002:12 using the following 11p =  conditioning variables (taking one 

lag): 

1. Dividend yield on the S&P 500 index (d/y). 

2. Size Premium (SMB). 

3. Value Premium (HML). 

4. Earnings price ratio on the S&P 500 index (e/p). 

5. Stock variance of the S&P 500 index (svar). 

6. Cross-sectional premium (csp). 

7. Book-to-market ratio (b/m). 

8. Net equity expansion of NYSE stocks (ntis). 

9. Term spread, defined as the difference between the long term yield on 

government bond and the 3-month T-bill (tms). 

10. Default yield spread, defined as the difference between the BAA- and AAA-rated 

corporate yields (dfy). 

11. Default return spread, defined as the difference between the returns on long-term 

corporate bonds and the returns on long-term government bonds (dfr).    

The data set was kindly provided by Amit Goyal, Ivo Welch, and Kenneth R. French.  

 

 Goyal and Welch (2005) examine the usefulness of the aforesaid set of variables, 

excluding SMB and HML, to predict stock returns. They find that none of the variables 

evaluated singly or in an all-inclusive linear model or with a model selection criterion 

outperform the then-prevailing mean. Their conclusions, however, are solely based on a 
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level-based accuracy measure ― i.e., mean squared prediction error― and as we will 

show below that it is (a) highly sensitive to the class distribution of the test-set and (b) 

not useful to gauge direction-of-change predictability.    

  

    As Avramov (2002), we perform a fixed-size rolling windows analysis, in 

which model parameters are first estimated with data from 1 to T (our T corresponds to 

180 observations), next with data from 2 to T + 1,…, and finally with data from N – T  to 

T – 1. At each iteration, one forecasts one-step ahead. Table 1 reports several statistics 

examining the properties of out-of-sample monthly forecasts generated by several models 

and composite weighted ensembles. 

 

******************* 
Table 1 about here 

******************* 
 

Following Avramov (2002), we make use of three regression-based tests of 

predictive accuracy. Namely, forecasts errors’ mean equal to zero, zero correlation 

between forecasts errors and predictive returns (Efficiency), and of zero first-order serial 

correlation. In addition, we computed the Mean Square Error (MSE) in percent. 

 

 The MSE was decomposed in order to assess whether or not the forecasts errors 

are higher in either positive or negative premiums. The decomposition may be expressed 

as in the following equation: 

                                                               (1)   0|  (1 ) |premium premiumMSE x MSE x MSE>= ⋅ + − ⋅ 0 ,≤
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where  represents the proportion of positive premiums in the test sample. 

Approximately 60 percent of the test sample corresponds to positive premiums.   

x

 

 We use eight forecasting models: First, we consider four models selected by 

adjusted R-squared (R2a), Akaike Information Criterion (AIC), Schwartz Information 

Criterion (SIC), and Posterior Information Criterion (PIC), all of which are described by 

Bossaerts and Hillion (1999). Second, we examine the i.i.d model predicting the then-

prevailing mean in stock returns. Finally, we generate three composite weighted 

ensembles by considering all linear data-generating processes in the presence of 11 

conditioning variables (211 models). In particular, the model denoted by Ave (Med) 

forecasts the average (median) of the 211 models, whereas the model denoted by BMA 

computes posterior probabilities for the collection of all 211 models. The posterior 

probability for each model was obtained via the BIC approximation (see Raftery (1995)). 

Models were estimated using Ordinary Least Squares (OLS). 

 

 The results in Table 1 indicate that model averaging techniques tend to 

outperform model selection criteria in terms of regression-based tests of predictive 

accuracy. Indeed, the prediction errors have zero mean and are essentially uncorrelated. 

In addition, the prediction errors are uncorrelated with predicted returns. Moreover, 

model averaging techniques produce mean square errors smaller than those 

corresponding to the i.i.d. model and to model selection criteria, consistent with Avramov 

(2002). It is worth noting that the three model averaging techniques exhibit very similar 
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predictive performance, consistent with the low discrimination power of model selection 

criteria (see, e.g., Dell’Aquila and Ronchetti (2006)).     

 

 By focusing on the complete picture of the mean square error criterion, however, 

we may be misguided enough to believe that model averaging techniques outperform 

either the model selection criteria or the then-prevailing equity mean. In fact, models that 

outperform in one movement consistently decrease their ability to describe the other 

movement in terms of the MSE.  

 

To further assess how different test-set distributions affect the MSE criterion, we 

evaluate the following the test-set distributions (expressed as the percentages of down 

movements or negative equity premiums): 2%, 10%, 25%, 50%, 75%, 90%, and 95%. To 

ensure that all experiments have the same test-set size, no matter the class distribution, 

the test-set size is made equal to the total number of down movements. Each test set is 

then formed by random sampling from the original test-set data, without replacement, 

such that the desired class distribution is achieved. To enhance our ability to identify 

differences in predictive performance with respect to changes in test-set class 

distribution, the experiments are based on 1000 runs. The results are shown in Table 2.     

 

******************* 
Table 2 about here 

******************* 
  

Table 2 report the effect test-set class distribution on the MSE. The first column 

in Table 2 specifies the model (or weighted committee). The next seven columns present 
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the average MSE for the 7 fixed class distributions. The values reported in the main rows 

are the actual mean square errors, and the entries enclosed in parenthesis are the standard 

errors. As can be seen from Table 2, a general pattern persists: return-forecasting models’ 

MSE increases as the proportion of down movements increases in the test-set. 

 

The intuition behind of varying the test-set class distribution is that a good 

forecasting model should generate desirable properties when predicting out-of-sample 

regardless of the test-set distribution. Patently, this is not case. Models exhibit a 

disproportional large percentage of error when forecasting negative equity premiums. In 

fact, using the two-sided test of the null that the population mean difference is zero 

against the alternative that the population mean difference is not zero, we find that for 

higher proportions of down-movements, all the estimated models except for the R-

adjusted criterion outperform the i.i.d. model. These results suggest that the only reason 

why in many tests for return predictability the then-prevailing mean cannot be 

outperformed by return-forecasting models is due to the high proportion of positive 

premiums in test-sets.       

 

B. - Direction-of-change predictability 

 Thus far, the analysis exhibits evidence supporting an asymmetry in equity 

premium predictability: negative equity premiums are not as predictable as positive 

equity premiums in terms of a level-based accuracy measure. However, the analysis is 

solely based on the level and not on the direction of the change. Are the probabilities of 

correctly predicting the sign of change also asymmetrical?              
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To answer this question, we first evaluate the forecasts of each model using the 

0/1 loss function. The 0/1 loss function is usually the main criterion for classification 

problems, and may be represented as in the following equation: 

                                                                ˆ( , ),i i iE L t y=                                                      (2) 

where at time i, is the “output” or “response” variable it ,t C∈ where is a set of class 

labels. In this paper, , where equals to 1 if the observed equity premium is 

higher than zero, 0 otherwise. is the predicted movement. equals to 1 if the predicted 

equity premium is higher than zero, 0 otherwise. equals to 1 if 

C

{0,1}C∈ C

ˆiy ˆiy

iE ˆit yi≠ , 0 otherwise. In 

other words, the 0/1 loss function represents one less the proportion of correctly predicted 

signs.  

 

In the machine learning literature, the bias-variance decomposition is widely used 

as key tool for understating function approximation algorithms. Although the bias-

variance decomposition was originally proposed for the square loss (see, e. g., Geman et 

al., 1992), this paper uses the bias-variance decomposition for the 0/1 loss function for 

one main reason: level accuracy is not as strongly correlated with profits with a trading 

strategy based on a set of predictions as directional accuracy [see, e.g., Leitch and Tanner 

(1991) and Pesaran and Timmermann (1995)].  

 

 Following Domingos (2000) and Valentini and Dietterich (2004), bias and 

variance in a noise-free setting can be defined in terms of the main prediction. The main 

prediction  can be defined as the movement that is predicted more often in the test my
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sample. Thus, the bias (systematic loss incurred by the function) at time i can be 

computed as, 

                                                             i

1 if  
.

0 if 
m i

m i

y t
B

y t
≠⎧

= ⎨ =⎩
                                                 (3) 

 

 To distinguish between the two different effects of the variance on the loss 0/1 

loss function, Domingos defines the unbiased variance, , to be the variance when 

and can be calculated as, 

uV

0,iB =

                              ˆ( ) and ( ) ,i
u m i m iV y t y y= = ≠                                       (4) 

where 1s = if s is true, 0 otherwise. The unbiased variance evaluates the extent to which 

the estimated function deviates from the correct predictions. The biased variance, , 

occurs when and evaluates the extent to which the estimated function deviates 

from the incorrect predictions. The biased variance can be estimated as, 

i
bV

1,iB =

          ˆ( ) ( ) and ( ) .i
b m i mV y t y y= ≠ ≠x i

i

                                        (5) 

 

 To obtain the loss associated with a given observation a time i [denoted by ], 

we simply compute the algebraic sum of bias, unbiased and biased variance as, 

iE

                    .i
i i u bE B V V= + −                                                       (6) 

 

In order to compute the aforementioned variables in a test set, we simply obtain 

the average for each variable. Clearly, if we want a good function that distinguishes 
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between up-and-down movements, we want the bias and the unbiased variance to be 

small. The results for the fixed-size rolling windows scheme are presented in Table 3. 

 

******************* 
Table 3 about here 

******************* 
  

Table 3 shows that model averaging techniques do not outperform model 

selection criteria in terms of direction-of-change predictability. In fact, model averaging 

techniques achieve identical error rates as model selection criteria in the test sample. The 

analysis, however, reveals that the bias, and not variance, plays a significant role in its 

contribution to the error rate. But why should a financial economist care about the role 

that the bias and variance play in the error rate? 

 

******************* 
Figure 1 about here 

******************* 
 

  We depict the case analysis of error in Figure 1. Consider the leftmost braches of 

the “tree.” We branch to the left if 1 or if i m iB y t= ≠ . In our test sample, for every model, 

the main prediction was 1― i.e., a positive equity premium. Thus, at time i there will be a 

bias if the models attempt to predict a down movement. The return-forecasting models, 

however, are not properly predicting down movements, since the estimated Biased 

Variance for each model is relatively small. In other words, good forecasting models 

should generate a high biased variance in order to neutralize the effects of the bias on the 

error rate.   
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To further illustrate the inability of the estimated models to predict down 

movements, we gauged the direction-of-change predictability of the models using several 

accuracy measures widely used in radiology and epidemiology.   

 

A forecasting model with good market timing abilities produces out-of-sample 

predictions satisfying several important properties, including (a) high sensitivity and 

specificity. Sensitivity of a model (or ensemble) is defined as the proportion of truly up-

movement cases that have a predicted equity premium higher than zero and the 

specificity the proportion of truly down-movements cases that have a predicted premium 

lower or equal to zero; (b) High (low) positive (negative) likelihood ratio. The positive 

likelihood ratio (LR+) represents the odds ratio that a predicted premium higher than zero 

will be observed in an up-movement population compared to the odds that the same result 

will be observed among a down-movement population. The negative likelihood ratio 

(LR-) represents the odds ratio that a predicted premium lower or equal to zero will be 

observed in a down-movement population compared to the odds that the same result will 

be observed among an up-movement population (see, e.g., Biggerstaff (2000)); and (c) 

high before-test rule-in/out potentials. A rule-in potential represents the number of times 

greater, on average, that an up-movement case will be rule in as an up-movement after 

performing the prediction in the estimated function, and a rule-out potential represents 

the number of times that a down movement is more likely to be a down movement (see, 

e.g., Lee (1999)).  
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In addition, we evaluated Pesaran and Timmermann’s (1992) market timing test 

statistic, widely used in academic finance. Panel A of Table 4 shows the results for the 

estimated models. To evaluate the extent to which the results provided in Panel A can be 

explained by randomness, we simulated 5000 coin-toss classifiers. To obtain each 

random classifier, we generate random values from a discrete distribution in which two 

values where possible: 1’s and 0’s. Each value was assigned 50 per cent of probability. 

The distribution of the accuracy measures of the random classifiers is presented in Panel 

B of Table 4. 

 

******************* 
Table 4 about here 

******************* 
  

Table 4 shows that neither model averaging techniques nor model selection 

criteria have desirable properties for market timing, although positive premiums exhibit 

large predictable components. Model averaging techniques produce specificity levels 

worst than random and the specificity levels that model selection criteria generate are 

perfectively explainable by randomness, even though the rolling-window predictions get 

the sign of the equity premium right in at least 60 percent of all months over the 1968 to 

2002 period! Thus, the percentage of correctly predicted signs of the excess of returns 

that does not necessarily convey important information to an investor in an unbalanced 

test-set, as it may clearly mislead an investor to think that his/her model outperform a 

random classifier. 
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 The low before-test rule-in/out potentials are another way to see the lack of 

discriminatory power of the estimated models. As all rule-in/out levels can be explained 

by coin-toss classifiers. Low (high) positive (negative) likelihood ratios can also be 

confirmed by coin-toss classifiers. In sum, neither model selection criteria nor model 

averaging techniques detect out-of-sample predictability in terms of the direction of 

change simply because the return-forecasting models fail to understand negative 

premiums. 

  

Cooper and Gulen (2006) find that random “inputs” can largely explain the 

literature’s out-of-sample evidence. Our results are consistent with them in the sense that 

random classifiers can entirely explain the apparent predictability. Perhaps the most 

striking result in Table 4, consistent with Cooper and Gulen, is that coin-toss classifiers 

can reject the null hypothesis of no market timing against the alternative of market timing 

skills at usual significance levels.     

 

3. – Learning from unbalanced data sets.     

Weiss and Provost (2003, p. 323) indicate that “[p]ractitioners have noted that learning 

performance often is unsatisfactory when learning from data sets where the minority class 

is substantially underrepresented.” To illustrate the extent to which negative premiums 

are underrepresented each time the return-forecasting models are trained, we plot in 

Figure 2 the proportion of positive premiums (or up-movements) to negative premiums 

(or down-movements) in each training-set of the rolling window analysis.   
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******************* 
Figure 2 about here 

******************* 
 

 Figure 2 illustrate that each time we estimate a return-forecasting model more 

than 60 percent of the observations correspond to up-movements. In this section, we 

implement two strategies to deal with the imbalanced data each time we train a return-

forecasting model. First, we evaluate whether or not different training-set distributions 

improve the predictive performance. Then, we assess the effectiveness of cost sensitive 

learning.    

 

 A. - Varying the training-set distribution 

We now analyze how the return-forecasting models perform under several 

training-set distributions. This strategy is gaining more ground in the machine learning 

community (see, e.g., Kubat and Matwin (1997) and Weiss and Provost (2003)). We 

evaluate the following the training-set distributions (expressed as the percentages of 

down movements or negative equity premiums): 25%, 40%, 50%, 60%, and 75%. To 

ensure that all experiments have the same training-set size, no matter the class 

distribution, the training-set size is made equal to the total number of down movements 

available at time i when attempting to predict i + 1. Each training set is then formed by 

random sampling from the training-set data, without replacement, such that the desired 

class distribution is achieved. Note that the training-set data contains the only the 

information accessible at each iteration from the rolling window analysis. Due to the high 

computational burden of the analysis, the experiments are only based on 5 runs. The 

results are shown in Table 5.  
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******************* 
Table 5 about here 

******************* 
 

As can be seen from Table 5, all premium-forecasting models, with the exception 

of the i.i.d model, improve their ability to understand (and predict) negative premiums as 

more negative premiums are available in the training-set. However, this improvement is 

not cost-free. The proportion of down-movements has an inversely related effect on 

sensitivity levels of the estimated models. Note also that if the real training-set 

distribution would have been different—i.e., higher proportion of down-movements— 

our concern would be explaining the unpredictability of positive premiums.   

 

B. - Cost sensitive learning 

The trade-off between sensitivity and specificity levels as more negative 

premiums are included in the training-set can be explained by a loss in information, as a 

large part of the positive premiums population is not used for training. Another approach 

to make return-forecasting models more suitable for learning from imbalanced data sets 

follows the idea of cost sensitive learning. The idea is to assign a higher cost (or weight) 

to the error of the negative premiums in the training phrase. We re-estimated the fixed-

size rolling windows analysis from Section 2, but in the learning process we included a 

vector of positive weights. Negative premiums were weighted 20 percent more than 

positive premiums. In other words, instead of minimizing the sum-of-squares we 

minimize the weighted sum-of-squares. The results are shown in Table 6.  
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******************* 
Table 6 about here 

******************* 
 

Table 6 shows that the return-forecasting models improve, albeit slightly, their 

ability to predict negative premiums. However, cost sensitive learning is as infective as 

varying the training-set distribution. As a model improves its ability to describe negative 

equity premiums its ability to describe positive equity premiums deteriorates.7    

 

4. – Are the “explanatory” variables irrelevant?     

As we have shown above, return-forecasting models are not properly discriminating 

positive from negative premiums. Thus, the lack of predictive power of the return-

forecasting variables could be explained by either the irrelevance of the “explanatory” 

variables or by the failure of model selection criteria to deliver the “best” specifications. 

One of the easiest ways to evaluate the relevance and redundancy of the “explanatory” 

variables, although very inefficient for high-dimensional data, is to search for a minimum 

subset of variables that maximizes predictability. Clearly, maximizing predictability with 

a set of ex-ante observable variables is more appropriate. However, our goal here is to 

test whether or not some specifications would have provided incremental information to 

an investor. The out-of-sample mean square error, in percent, for all the competing 

regression specifications is shown in Figure 3. 

 

 
                                                 
7 We have also experimented with different weights, but achieved the same pattern. The results, 

nevertheless, are available upon request to the authors.  
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******************* 
Figure 3 about here 

******************* 
  

Figure 3 shows that the lowest mean square error, 0.2002, is achieved using a 

subset of size 4. Note that the mean square error of the best return-forecasting model 

inside a subset increases as the size of the subset increases, after the subset of size 4. This 

suggests that some explanatory variables act as redundant. 

 

To formally test whether or not the return-forecasting models contain information 

that it is not present in the then-prevailing mean (or i.i.d. model), we implement Diebold 

and Mariano’s (1995) sign test statistic. Let mp be the vector of predictions of the model 

m, t be the vector of observable equity premiums, and iidp be the vector of predictions of 

the i.i.d. model. Then,  and ( )m me t p= − ( )iid iide t p= − denote the corresponding errors. 

The sign test statistic {S} is defined for model m by,    

                                           ,
1

2 1[ 0] (0,
2

n a

m m j
j

S I d N
n =

⎛ ⎞= > −⎜ ⎟
⎝ ⎠

∑ ∼ 1),

,

                                  (7) 

where is the so-called loss differential at time j, and I is an indicator 

function. We compute the S statistic for all competing regression specifications and 

depict the results in Figure 4. 

,m jd 2 2
, , ,m j iid j m jd e e= −

 

******************* 
Figure 4 about here 

******************* 
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Significant and positive (negative) values for S indicate a significant difference 

between the two forecasting errors, which imply a better accuracy of the m (i.i.d) model. 

Figure 4 shows that the predictions errors of all competing regression specifications 

cannot outperform the historical equity premium mean. However, the historical mean is 

able to generate better accuracy than many models. Another possibility to test the null 

hypothesis that there is no qualitative difference between forecasts from two models is to 

use re-sampling techniques. 

 

Re-sampling techniques are computer-intensive statistical tools for estimating the 

distribution of a parameter that in other ways would be difficult to obtain.8 The traditional 

re-sampling algorithm two compute the difference between two parameters, such as mean 

square prediction error, is: (1) draw a sample of size n with replacement from the 

observed sample of values of model 1 and calculate its mean square prediction error, (2) 

using the same random rows from step 1, for model 2 calculate the mean square 

prediction error, (3) compute the difference between the MSEs, (4) repeat steps 1 and 2 

thousand times to obtain a set of bootstrap replications. 

 

******************* 
Figure 5 about here 

******************* 
 

                                                 
8 Re-sampling techniques are described in more technical detail in Hall (1992) and Davison and Hinkley 

(1997). Practical examples of confidence interval construction are given by Efron and Tibshirani (1993). 

Guide for choosing a bootstrap confidence method when using nonparametric or parametric simulation is 

given by Carpenter and Bithell (2000). 
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Figure 5 shows the p-value for each competing regression specification. The p-

value represents the proportion of bootstrap estimates in which the difference between the 

MSEs is greater than zero. In other words, the p-value denotes the fraction of times where 

the simulated MSE of model m is lower than the one from the i.i.d. model. Therefore, low 

p-values indicate that the MSE of model m is statistically lower than the MSE of the i.i.d. 

model. As can be seen from Figure 5, none of all the competing regression specifications 

outperform the i.i.d. model, consistent with Goyal and Welch (2005).  

 

The results presented in Figure 4 and 5 indicate that model selection criteria does 

not fail to deliver specifications that are the best predictors with respect to a set of ex-ante 

observable economic variables simply because there is not a single specification that 

outperform the historical equity premium mean in terms of level-based accuracy 

measures. As a result, an investor needs to exercise caution in transforming a level 

forecast from a return-forecasting model into a trading strategy.           

   

We also computed the average between sensitivity and specificity for all the 

competing regression specifications to gauge the overall discriminatory accuracy. We 

depict the results in Figure 6.  

 

******************* 
Figure 6 about here 

******************* 
 

 Figure 6 shows that the highest overall discriminatory accuracy, 0.5941, is 

attained using a subset of size 5. If we compare the discriminatory accuracy of all 
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competing regression specifications against the coin-toss classifiers simulated in Section 

2.B, 21 specifications would have outperformed random predictions at 1 percent of 

significance and 287 at 5 percent of significance.  

 

 However, Cooper and Gulen (2006) show that much of the literature’s out-of-

sample time-series-based predictability is consistent with data snooping. Can random 

“inputs” explain the results depicted in Figure 6? Following Cooper and Gulen, we use 

non-repeating seeds to generate eleven random N(0,1) predictive variables. We compute 

the average between sensitivity and specificity for all competing regression specifications 

in the presence of these random variables. In the analysis, we followed the same 

instructions as in Section 2.A and run the simulation 10 times since Cooper and Gulen 

obtain with 10 iterations 100% or greater of the real-data predictability. The results are 

shown in Figure 7.         

 

******************* 
Figure 7 about here 

******************* 
 

 Figure 7 illustrates the discriminatory accuracy of 20480 models. The highest 

discriminatory accuracy achieved by random inputs is 0.5525. Thus, the sample evidence 

does not allow us to conclude that the “explanatory” variables proposed in the literature 

are irrelevant, as they can be use to estimate a return-forecasting model that is able to 

discriminate financial movements.        
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5. – Concluding remarks    

In this paper, we have examined the relation between stock returns and lagged publicly 

available information. Our primary objective was to determine whether return-forecasting 

models contain incremental information to an investor. We find that certain variables 

proposed in the literature to predict the equity premium do provide incremental 

information and may have some practical value. Although this not necessarily imply that 

return-forecasting models may be used to predict future stock returns, some model 

specifications may be used to predict future stock movements.     

 

Our results suggest that predictive regressions can be improved by data-intensive 

techniques. In particular, it may be possible to determine “optimal specifications” using 

out-of-bag estimates or to search for nonlinear relationships using General Additive 

Models. Such considerations may lead to an entirely new paradigm of what the important 

conditioning variables are for predicting stock returns. We hope to explore those issues 

more fully in future research.          
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Table 1: Out-of-sample results 
The table displays several statistics examining the properties of out-of-sample forecast errors 
generated by several models and weighted committees or ensembles. The former set includes the 
i.i.d model and five models selected by adjusted R-squared (r2a), AIC, SIC, FIC, and PIC. We 
examine three ensembles: Ave, Median, and BMA. Ave represents the collection of all 2p models 
(where p denotes the number of explanatory variables in the study) in which each model is 
equally-weighted. Median forecasts the median of all 2p models. BMA stands for Bayesian Model 
Averaging. BMA computes posterior probabilities for the collection of all 2p models. The 
posterior probability for each model was obtained via the BIC approximation. The forecasts of 
each model or weighted committees were evaluated with several regression-based test of 
prediction accuracy, such as MPE, Efficiency, and Serial correlation, all of which are described 
by Avramov (2002) and West and McCracken (1998). In addition, we computed the Mean 
Squared Error (MSE) for each model. The MSE  was decomposed in order to evaluate whether 
or not the forecast errors are higher in either positive or negative movements as   

, where  denotes the proportion of positive 
premiums in the test-set.  

( 1) (1 ) ( 0MSE x MSE y x MSE y= ⋅ = + − ⋅ = ) x

                  
  Ave Med BMA AIC SIC PIC i.i.d R2a 
         
MPE 0.002 0.002 0.002 0.005 0.004 0.006 -0.001 0.000 
t-statistic 0.920 0.720 0.925 2.009 1.813 2.421 -0.285 -0.069 
Serial correlation -0.066 -0.071 -0.066 -0.041 -0.023 -0.016 -0.002 0.006 
t-statistic -1.358 -1.448 -1.356 -0.847 -0.459 -0.327 -0.049 0.126 
Efficiency -0.319 -0.285 -0.319 -0.652 -0.546 -0.678 -5.387 -1.411 
t-statistic -1.463 -1.265 -1.470 -5.933 -4.942 -6.605 -2.060 -4.385 
         
MSE 0.203 0.202 0.203 0.221 0.211 0.226 0.207 0.215 
MSE (y=1) 0.178 0.174 0.178 0.217 0.210 0.224 0.159 0.166 
MSE (y=0) 0.240 0.244 0.240 0.226 0.214 0.229 0.278 0.287 
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Table 2: Effect of test-set class distribution on the MSE.   
The table displays the MSE criterion (generated by several models and weighted committees 
described in Table 1) according to several the test-set distributions. We evaluate the following 
test-set distributions (expressed as the percentages of down movements): 2%, 10%, 25%, 50%, 
75%, 90%, and 95%. The values reported in the main rows are the actual mean square errors, and 
the entries enclosed in parenthesis are the standard errors. 

                
  Out-of-sample MSE when using specified test-set distributions 
   (training distribution expressed as % of down-movements)   
 2 10 25 50 75 90 95 

2k (Ave) 0.1785 0.1831 0.1935 0.2099 0.2241 0.2333 0.2375 
 (0.0156) (0.0183) (0.0219) (0.0229) (0.0188) (0.0129) (0.0094) 

2k (Med) 0.1759 0.1816 0.1911 0.2089 0.2268 0.2370 0.2402 
 (0.0156) (0.0184) (0.0209) (0.0212) (0.0183) (0.0122) (0.0099) 

BMA  0.1788 0.1841 0.1939 0.2106 0.2246 0.2341 0.2368 
 (0.0159) (0.0181) (0.0212) (0.0227) (0.0187) (0.0128) (0.0090) 

AIC 0.2164 0.2165 0.2197 0.2216 0.2228 0.2248 0.2259 
 (0.0167) (0.0187) (0.0221) (0.0217) (0.0176) (0.0118) (0.0092) 

SIC 0.2097 0.2111 0.2100 0.2108 0.2133 0.2134 0.2138 
 (0.0157) (0.0177) (0.0197) (0.0199) (0.0165) (0.0119) (0.0082) 

PIC 0.2228 0.2243 0.2235 0.2263 0.2282 0.2282 0.2287 
 (0.0181) (0.0189) (0.0221) (0.0219) (0.0179) (0.0127) (0.0094) 

i.i.d 0.1670 0.1702 0.1884 0.2176 0.2478 0.2650 0.2710 
 (0.0133) (0.0169) (0.0214) (0.0244) (0.0196) (0.0133) (0.0104) 

R2a 0.1682 0.1769 0.1966 0.2256 0.2580 0.2743 0.2804 
 (0.0148) (0.0185) (0.0227) (0.0252) (0.0202) (0.0140) (0.0104) 
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Table 3: Bias-variance decomposition.   
The table displays several statistics examining the properties of out-of-sample forecast errors 
generated by several models and weighted committees described in Table 1. The forecasts of each 
model or composite weighted ensembles were evaluated with 0/1 loss function, which evaluates 
the usefulness of the estimated model to distinguish up from down movements. 0/1 Loss, Bias, 
Net Variance, Unbiased Variance, and Biased Variance are all described by Domingos (2000) 
and Valentini and Dietterich (2004).  

            
  0-1 Loss Bias Net Variance Unbiased Variance Biased Variance 
2k (Ave) 0.4038 0.4038 0.0000 0.1010 0.1010 
2k (Med) 0.3918 0.4038 -0.0120 0.0913 0.1034 
BMA (Ave) 0.4038 0.4038 0.0000 0.1010 0.1010 
AIC 0.4207 0.4038 0.0168 0.1971 0.1803 
SIC 0.4255 0.4038 0.0216 0.1851 0.1635 
PIC 0.4038 0.4038 0.0000 0.1851 0.1851 
i.i.d 0.4038 0.4038 0.0000 0.0000 0.0000 
R2a 0.4038 0.4038 0.0000 0.0168 0.0168 
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Table 4: Direction-of-change predictability.  
Table 3A-B displays several statistics examining the properties of out-of-sample forecast errors 
generated by several models and weighted committees described in Table 1. Sensitivity of a 
model (or ensemble) is defined as the proportion of truly up-movement cases that have a 
predicted return higher than zero and the specificity the proportion of truly down-movements 
cases that have a predicted return lower or equal to zero. The positive likelihood ratio (LR+) 
represents the odds ratio that a predicted return higher than zero will be observed in an up-
movement population compared to the odds that the same result will be observed among a down-
movement population. The negative likelihood ratio (LR-) represents the odds ratio that a 
predicted return lower or equal to zero will be observed in a down-movement population 
compared to the odds that the same result will be observed among an up-movement population. 
The next two columns are Kullback-Leibler distances. exp[D(f||g)] represents the number of times 
greater, on average, that an up-movement case will be rule in as an up-movement after 
performing the prediction, whereas a down-movement case, on average, will become exp[D(g||f)] 
times more likely to be down-movement. The column labeled Sign represents the probability of 
correctly predicting the sign of change, while the column labeled PT represents the Pesaran and 
Timmermann (1992) test statistic. The distribution of the accuracy measures of the coin-toss 
classifiers is shown in Panel B. 

                  
  A. Discriminatory power of the estimated models   
            
  Sensitivity Specificity LR+ LR- exp(D(f || g)) exp(D(g || f)) Sign PT 
2k (Ave) 0.8306 0.2500 1.1075 0.6774 1.0082 1.0091 0.5962 2.0129
2k (Med) 0.8468 0.2560 1.1381 0.5986 1.0135 1.0154 0.6082 2.5994
BMA  0.8306 0.2500 1.1075 0.6774 1.0082 1.0091 0.5962 2.0129
AIC 0.6694 0.4464 1.2092 0.7406 1.0122 1.0126 0.5793 2.3933
SIC 0.6895 0.4048 1.1584 0.7671 1.0083 1.0086 0.5745 1.9824
PIC 0.6895 0.4583 1.2730 0.6774 1.0200 1.0210 0.5962 3.0680
i.i.d 1 0 1.0000 1/0 1/0 1/0 0.5962 0.0000
R2a 0.9718 0.0417 1.0140 0.6774 1.0011 1.0013 0.5962 0.7468
  B. Random predictability (Up-movements=50%)   
         
Percentiles Sensitivity Specificity LR+ LR- exp(D(f || g)) exp(D(g || f)) Sign PT 

0.01 0.4274 0.4107 0.7952 0.79374 1.0000 1.0000 0.4423 -2.3590
0.05 0.4474 0.4345 0.8487 0.84872 1.0000 1.0000 0.4591 -1.6860
0.25 0.4758 0.4762 0.9315 0.93548 1.0005 1.0005 0.4832 -0.6897
0.50 0.5000 0.5000 0.9992 1.00073 1.0023 1.0023 0.5000 -0.0038
0.75 0.5202 0.5238 1.0696 1.07331 1.0068 1.0068 0.5168 0.6852
0.95 0.5524 0.5595 1.1833 1.18344 1.0196 1.0197 0.5409 1.6780
0.99 0.5726 0.5893 1.2752 1.26779 1.0336 1.0333 0.5577 2.3979
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Table 5: Effect of training-set class distribution on the out-of-sample accuracy measures. 
Table 5 displays several statistics examining the properties of out-of-sample forecast errors 
generated by several models and weighted committees described in Table 1. For each model, we 
report the out-of-sample accuracy measures when using specified training distributions (training 
distribution expressed as % of down-movements). 

               
  25 40 50 60 75  
 2k (Ave)       
 mse 0.2200 0.2090 0.2188 0.2322   
 Error rate 0.4019 0.4302 0.5254 0.5408   
 sensitivity 0.9629 0.7596 0.4572 0.2370   
 specificity 0.0595 0.2892 0.5000 0.7869   
 2k (Med)       
 mse 0.2182 0.2081 0.2189 0.2311   
 Error rate 0.3995 0.4177 0.5221 0.5365   
 sensitivity 0.9661 0.7846 0.4741 0.2435   
 specificity 0.0607 0.2833 0.4833 0.7880   
 BMA        
 mse 0.2200 0.2090 0.2188 0.2322   
 Error rate 0.4019 0.4302 0.5269 0.5413   
 sensitivity 0.9629 0.7596 0.4556 0.2362   
 specificity 0.0595 0.2892 0.4988 0.7869   
 AIC       
 mse 0.2431 0.2310 0.2411 0.2519   
 Error rate 0.4312 0.4634 0.5288 0.5278   
 sensitivity 0.8451 0.6467 0.4338 0.3024   
 specificity 0.1607 0.3738 0.5261 0.7226   
 SIC       
 mse 0.2262 0.2268 0.2367 0.2453   
 Error rate 0.4125 0.4596 0.5158 0.5408   
 sensitivity 0.9000 0.6774 0.4774 0.2725   
 specificity 0.1261 0.3380 0.4940 0.7345   
 PIC       
 mse 0.2548 0.2412 0.2454 0.2582   
 Error rate 0.4384 0.4567 0.5091 0.5235   
 sensitivity 0.8266 0.6403 0.4677 0.3233   
 specificity 0.1702 0.4000 0.5250 0.7023   
 R2a       
 mse 0.2190 0.2079 0.2124 0.2283   
 Error rate 0.4048 0.4043 0.4625 0.5451   
 sensitivity 0.9927 0.9346 0.6532 0.2145   
 specificity 0.0083 0.0952 0.3667 0.8095     
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Table 6: Weighted ordinary least square regression results. 
Table 6 displays several statistics examining the properties of out-of-sample forecast errors 
generated by several models and weighted committees, described in Table 1, trained using a 
weighted least square regression. Negative premiums were weighted 20 percent more than 
positive premiums.  

                
  Ave Med BMA AIC SIC PIC R2a 
        
MPE 0.0052 0.0047 0.0052 0.0076 0.0069 0.0086 0.0027 
t-statistic 2.3420 2.1330 2.3460 3.3050 3.0470 3.6910 1.1860 
Serial correlation -0.0701 -0.0727 -0.0701 -0.0420 -0.0210 -0.0185 -0.0005 
t-statistic -1.4335 -1.4867 -1.4335 -0.8589 -0.4286 -0.3776 -0.0102 
Efficiency -0.2852 -0.2731 -0.2863 -0.6442 -0.5450 -0.6727 -1.8205 
t-statistic -1.3440 -1.2370 -1.3510 -5.9510 -5.0360 -6.8180 -4.9510 
        
MSE 0.2043 0.2039 0.2043 0.2239 0.2146 0.2308 0.2166 
MSE (y=1) 0.1974 0.1938 0.1974 0.2371 0.2282 0.2440 0.1843 
MSE (y=0) 0.2145 0.2188 0.2144 0.2044 0.1946 0.2113 0.2643 
        
Error 0.4159 0.4135 0.4159 0.4399 0.4351 0.4327 0.4183 
Bias 0.4038 0.4038 0.4038 0.4038 0.4038 0.4038 0.4038 
Unbiased Var 0.1490 0.1418 0.1490 0.2308 0.2163 0.2260 0.0505 
Biased Var 0.1370 0.1322 0.1370 0.1947 0.1851 0.1971 0.0361 
        
Sensitivity 0.7500 0.7621 0.7500 0.6129 0.6371 0.6210 0.9153 
Specificity 0.3393 0.3274 0.3393 0.4821 0.4583 0.4881 0.0893 
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Figure 1:  Case analysis of error in a noise-free setting.  
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Figure 2: Training-set distribution expressed as % of up-movements 
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Figure 3: All possible subset models. At each subset size is shown the out-of-sample 

mean square error, in percent, for each model of that size.  
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Figure 4: All possible subset models. At each subset size is shown the Diebold and 

Mariano’s (1995) S test statistic on Eq. (7) for each model of that size. 
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Figure 5: All possible subset models. At each subset size is shown the empirical p-value 
(the fraction of times where the simulated MSE of model m is lower than the one from 

the i.i.d. model) for each model of that size. 
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Figure 6: All possible subset models. At each subset size is shown the overall 

discriminatory accuracy [(sensitivity + specificity)/2] for each model of that size. 
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Figure 7: Random input predictability. For each model is shown the overall 

discriminatory accuracy [(sensitivity + specificity)/2]. 
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