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THE ACCURACY OF TIME-VARYING BETAS AND 
THE CROSS-SECTION OF STOCK RETURNS 

 
 
 
 
 
 
 
 
 
Abstract 
 
This paper provides new evidence about two questions that have been investigated separately 
in the literature so far. It compares the accuracy of time-varying betas estimated with different 
techniques and assesses their impact on the results of cross-sectional tests of the CAPM. Tests 
are performed with monthly data from US industry portfolio over the period 1980-2005. The 
modeling techniques considered are the rolling regressions, GARCH models, the Kalman 
filter, the SCHWERT and SEGUIN model, a macroeconomic variables model and an 
asymmetric beta model. Our results indicate that in times-series tests, the Kalman filter with a 
beta being specified as a random walk provides the most accurate results. Moreover, these 
betas provide supportive evidence on the validity of the conditional CAPM as they are 
statistically related to the cross-section of stock returns. All others specifications of betas, 
including the widely used rolling regressions, do not produce a significant beta-return 
relationship. 
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1 Introduction 
 
The Capital Asset Pricing Model (CAPM) of SHARPE (1964), LINTNER (1965) and 
BLACK (1972) shows that beta should be the only determinant of expected stock returns. 
Since the model is developed in a one-period setting, the beta is assumed to be constant. 
However, empirical implementation of the model can only be done in a multi-period setting 
and therefore some assumptions must be made about the temporal behavior of the systematic 
risk measure. In the vast majority of empirical studies the beta is assumed to be constant over 
a defined period of time.  
 
This is in contradiction with the early evidence of BLUME (1971) that finds that beta is time-
varying and with the results of numerous papers that document beta instability on various 
markets, (see for example, FABOZZI and FRANCIS (1977), BOS and NEWBOLD (1984) or 
BROOKS and FAFF (1998)). A series of alternative models have been proposed in the 
literature to capture the time-varying behavior of the beta. FAMA and MACBETH (1973) 
propose a rolling regression approach to estimate the beta. They assume that beta is constant 
during short time intervals while FABOZZI and FRANCIS (1977) propose a beta that is 
dependent on the state of the market (up or down). SCHWERT and SEGUIN (1990) 
investigate whether the market volatility has an impact on the beta. Their results are 
conclusive for the American market but the validity of this model for various international 
markets is questioned by KOUTMOS, LEE and THEODOSSIOU (1994). BRAUN, NELSON 
and SUNIER (1995) use a bivariate EGARCH model to estimate a beta influenced 
asymmetrically by the market’s returns. FERSON and HARVEY (1999) examine whether 
macroeconomic variables play a role in the temporal evolution of the beta. Their results are 
interesting in the sense that, first, the beta is influenced by the variables and hence is time-
varying, and secondly, when these lagged variables are included in the FAMA and FRENCH 
(1993) three factors models, they find strong evidence against it. Consequently, this model is 
able to explain unconditional expected returns but not the dynamic process of the expected 
returns. Next to these methods, econometrics models have been widely used to try to explain 
the stochastic evolution of the beta. Among them, we can cite GARCH type models and the 
Kalman filter approach. The later is an algorithm which recursively estimate beta series from 
a set of priors and is presented as a state space model. If some of these models provide 
significant results, no consensus has been reach to explain the stochastic evolution of the beta. 
Furthermore, the data’s frequency plays also a role in the stochastic process followed by the 
beta, as explain by CHANG and WEISS (1991). They find that when the beta is estimated 
over a short time interval, it follows an autoregressive process but as the time interval 
lengthens, the process becomes a random walk.  
 
Despite the wealth of alternative specification for time-varying betas, only a few papers 
compare the accuracy of these estimation methods. Among them FAFF, HILLIER and 
HILLIER (1998) compare the models for the British market. They found the Kalman Filter, 
with an observation equation formulated as a random walk, to be the more accurate approach 
versus a GARCH model and the SCHWERT and SEGUIN model (thereafter SS model) to 
estimate the beta. BROOKS, FAFF, and MACKENZIE (1998) test the same models for the 
Australian market and come to the same conclusion. On the same market, GROENEWOLD 
and FRASER (2000) conclude that various models, based on time trends and some 
macroeconomic variables, to forecast the beta are not more accurate than the standard rolling 
regression. LI (2001) found a stochastic volatility model to fit the best the beta’s evolution 
followed by a GARCH model when an out of sample evaluation is made and by the Kalman 
filter when the test is in sample. EBNER and NEUMANN (2005) evaluate a rolling 
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regression, a random walk Kalman filter and a flexible least square model for individual 
German stocks. Their results support the later model by improving considerably the accuracy 
of the beta estimations. In spite of being widely used by the practitioners, and in academic 
research as well, the rolling regression is even worse than the constant beta estimated by OLS. 
To the best of our knowledge, there is no paper addressing this issue on the US market, except 
BRAUN, NELSON and SUNIER (1995), who just compare their EGARCH model with the 
rolling regression. Their results support the former method. The first objective of this paper is 
therefore to fill this gap by comparing a wide range of beta estimation methods, developed in 
the literature, for the US market.  
 
All the tests described so far are time-series tests that evaluate the accuracy of the various beta 
modeling approaches, using a mean square error (thereafter MSE) or a mean absolute error 
(thereafter MAE) criterion. These tests are evidence about the method which is the most 
accurate in a market model. However, they do not provide information about the main role of 
the beta, which is to act as the main determinant of stock returns. The second (and main) 
objective of this paper is to investigate the importance of these various methods from the 
perspective of conditional CAPM tests, using a cross-sectional methodology. This is 
important since tests of the CAPM (or any other asset pricing model) usually consider just one 
method of beta estimation. FAMA and FRENCH (1992) for instance only consider the rolling 
regression and reject statistically the link between the beta and the return. The results could be 
different with others estimation methods. To the best of our knowledge this has not been done 
so far in the literature and is therefore the main contribution of our paper. 
 
The remainder of this paper is structure as follow: section 2 describes the different 
specification of the beta and the test methodology in time-series and in cross-section. The 
models that we consider in this paper are the rolling regression, a GARCH model, the Kalman 
filter with an autoregressive observation equation, the SS model, a macroeconomic variables 
model, an asymmetric beta model. The constant beta of the market model is used as a 
benchmark. Section 3 provides a description of the data while section 4 presents the empirical 
results. Section 5 concludes. 
 
 

2 Empirical framework 
 
2.1 Time varying beta models 
 
2.1.1 The constant beta of the market model 
 
This model is used as a benchmark. It considers the beta to be constant over the whole period: 
 

itmtiiit rr εβα +⋅+=  with itε  being a i.i.d process (1) 
 
where rit is the simple return in excess of the risk free rate of the portfolio i in time t, rmt is the 
excess simple return of the market in time t, βi is the constant beta of the portfolio i and εit a 
disturbance vector. This beta is defined as: 
 

)(
),(

mt

mtit
i rVar

rrCov
=β  (2) 



 5

 
The beta could identically be obtained by the estimation of equation (1) by OLS. The other 
models will be also estimated according this equation, but with a time-varying beta. The 
implication of using portfolio instead of individual stocks is that, according to the 
diversification principle, the portfolio return is fully explained by its beta and the excess 
market return. The term εit is only a disturbance term and not the specific return of the 
portfolio i which has been eliminated in the diversification process when portfolios are 
formed. The use of portfolios also improves the quality of the beta’s estimation.  
 
2.1.2 The rolling regression 
 
This method has been used, among others, by FAMA and MACBETH (1973). It supposes 
that betas are constant over short time intervals, usually 5 years. Each month a regression of 
the market model is carried out using the last 60 observations. For each beta, only 1 
observation on 60 is new and therefore this overlapping problem lead to autocorrelation in the 
beta time-series. GROENEWOLD and FRASER (2000) investigate this issue by using non-
overlapping sub-periods and conclude that this approach doesn’t change their results. As a 
consequence, we don’t consider this issue in this paper. 
 
2.1.3 The GARCH errors model   
 
A problem with equation (1) is that errors are not normally, identically and independently 
distributed, which lead to a bias in the estimation of this equation by OLS. An approach to 
overcome this problem could be the use of a GARCH (1,1) model to descibe the disturbance 
term: 
 

itititr υµ +=   with υit ~ N (0, σ2
it) (3)

  
mtmtmtr υµ +=  with υmt ~ N (0, σ2

mt) (4) 
 
where µit is the conditional mean of the portfolio i returns in time t and respectively for the 
market return, υit a disturbance term and σ2

it the conditional variance which is define as: 
 

2
1
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−− ++= itiitiiit cba συσ  (5) 
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−− ++= mtmmtmmmt cba συσ  (6) 
 
This formulation implies that the conditional variance depend on the past squared residual 
(υ2

it-1), associated with the ARCH coefficient (bi) and the past conditional variance (σ2
it-1) 

associated with the GARCH coefficient (ci). The former coefficient could be interpreted as the 
news coefficient and the later as the old news about volatility. The higher they are, the more 
the shocks are persistent but the sum of both have to be less than unity to have a finite 
unconditional variance. The conditional covariance is computed as: 
 

22),( mtitimmtit rrCov σσρ ⋅=  (7) 
 
where ρim is the correlation coefficient, between the excess return of portfolio i and the 
market, which is suppose to be constant over time. Then these betas can be estimated by: 
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2.1.4 The Kalman filter 
 
Instead of calculating conditional variances first, as the former model, the Kalman filter 
algorithm estimates directly time-varying betas in the framework of a state-space model. This 
approach distinguishes between known (portfolios and market returns) and unknown (the 
betas) variables as well as measurement and transition equations. The former equation 
describes how known variables are generated by the unknown variables and the residuals:  
 

itmt
Kal

itiit rr εβα +⋅+=  (Measurement equation) (9) 
 
where αi is a constant for each portfolio i. The next step is to specify the transition equation 
which describes the stochastic process followed by the unknown variable, which is the beta, 
according to its lags and innovations. In this paper we choose to use an AR (1) process: 
 

it
Kal

iti
Kal

it e+= −1βφβ  (Transition equation) (10) 
 
where φi is an autoregressive coefficient. By defining the beta in this way, we let the data and 
the algorithm choose which stochastic process is the most appropriate to describe the time 
dependent process of the beta. Indeed, if the autoregressive coefficient, φi, is not statistically 
different from 1, the process will be a random walk, if it lies between 0 and 1, it follow an 
AR(1) process and if it is not statistically different from 0, it is a random coefficient model. 
The estimation of the transition equation by the Kalman filter algorithm gives us 2 different 
beta time-series. The first one is the filtered and the second one is the smoothed series. The 
former is estimated by using only the information available at time t and the later smoothes 
the series once all the estimation is done. The later method need the information of the entire 
sample and therefore is suitable only for particular purpose like determining a normal return 
in an academic framework.   
 
2.1.5 The SCHWERT and SEGUIN model 
 
This model developed by SCHWERT and SEGUIN (1990) assumes that stocks respond 
differently to variations of the market volatility, according to their size. As a consequence, the 
beta should also depend on the market volatility. They define it as: 
 

2
rmt

i
i

SS
it σ

δ
ββ +=   (11) 

 
where the first component of the beta (βi ) is constant while the second term (δi/σ2

rmt) is time-
varying and depends on the market volatility. The coefficient δi measures the sensitivity of 
portfolio i returns to a variation of the market volatility, σ2

rmt. If the sensitivity coefficient is 
not statistically significant, this beta and the constant beta defines in equation (2) are equal. 
The market volatility is obtained by the GARCH (1, 1) model in equation (6). To estimate the 
coefficients, we insert this beta definition in the market model and the following regression is 
carried out: 
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2.1.6 The macroeconomics variables model 
 
This model has been proposed by FERSON and HARVEY (1999). In this approach, the betas 
depend on a set of macroeconomic variables, which are supposed to describe the economic 
cycle. They are: the difference between the yield of a ten years and a one year government 
bond (TERM), the dividend yield of the US market (DIV), the spread between Moody’s Baa 
and Aaa corporate bond (JUNK) and the return of a one month treasury bill (T-BILL). To 
generate the beta, we use the lagged value of the variables and we define it as: 
 

110 −⋅+= tii
macro
it Zbbβ   (13) 

 
Where the coefficient boi and b1i are constant and Zt-1 is the vector of the lagged 
macroeconomic variables. The temporal instability of these betas results from their 
dependency to the lagged variables. The constancy of the coefficient b1i implies that the betas 
are a constant linear function of the variables. To estimate the coefficient in (13), we carry out 
the following market model regression: 
 

( ) itmttiiiit rZbbr εα +⋅⋅++= −110   (14) 
 
2.1.7 The asymmetric beta model  
 
This model, developed by FABOZZI and FRANCIS (1977), supposes that the beta of stocks 
or portfolios could be influenced by the state of the market. The beta is computed as: 
 

tii
asym
it D10 βββ +=   (15) 

 
where Dt is a dummy variable which takes the value of 1 if the market is defined as an up 
market (rmt is non negative) and 0 otherwise. The coefficient β1i measures the differential 
effect of an up market on the beta. According to this beta specification and to estimate the 
coefficients of equation (15), the market model is redefined as: 
 

itmttimtiiit rDrr εββα +++= 10     (16) 
 
with  Dt = 1 if rmt ≥0 
 Dt = 0 if rmt <0 
 
According to this specification, the betas can only take 2 different values. They are equal if 
the coefficient β1i is not significant and the beta is therefore time constant.  
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2.2 Test methodology 
 
2.2.1 Time-series test 
 
This first test estimate the accuracy of each of the previous beta modeling techniques using 
the mean squared error criterion (MSE criterion) of in-sample return forecasts where: 
 

mtjitjit rr β=∗  (17) 
 
where r*jit is the forecasted excess return and βjit is the beta of portfolio i in time t using the jth 
beta modeling technique (j = 1,…, 8). Then we compute the forecasting error ejit: 
 

∗−= jititjit rre  (18) 
 
and we can compare the accuracy of each beta technique by computing the MSE criterion: 
 

NT

e
MSE

N

i

T

t
jit

j

∑∑
= == 1 1

2

 (19) 

 
where N is the number of portfolios (35) and T is the number of time periods (120). The most 
accurate beta model is the one which provides the smallest MSE. This test methodology is 
widely used in the literature (e.g. by BRAUN, NELSON and SUNIER (1995), FAFF, 
HILLIER and HILLIER (1998) or GROENEWOLD and FRASER (2000)). However, this test 
informs only on which method of beta estimation is the most appropriate in the framework of 
the market model. It does not prove statistically the relationship between a portfolio returns 
and its beta. To test the existence of this link and thus the validity of the CAPM, a cross- 
sectional methodology is necessary. 
 
2.2.2 FAMA MACBETH methodology 
 
This CAPM test methodology developed by FAMA and MACBETH (1973) is one of the 
most widely used in the literature. This test is executed in two steps. First the following 
regression is carried out for each beta estimation method: 
 

jitjittjjotitr ηβγγ ++= 1   (20) 
 
where βjit are used as an explanatory variable and γjot and γj1t are the parameters to estimate. 
The coefficient γj1t can be interpreted as the theoretical market excess return in time t 
according to the jth beta estimation method. We estimate this regression using two different 
assumptions about the distribution of the disturbance term ηjit. First, it is supposed to have a 
zero mean and to be independent across all portfolios. Therefore, the OLS is an efficient 
estimation method. The second assumption is the presence of contemporaneous correlation. 
That means that the correlations between disturbances from the regressions of different 
portfolios, but at the same time, are not zero. In this case the OLS method is not efficient 
anymore. In order to overcome this problem, we use a seemingly unrelated regressions 
equations (SURE) system. This is a method used to pool time-series and cross-sections data, 
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thus the model in equation (20) can be estimated as a whole. The estimator used in practice is 
the Zellner’s seemingly unrelated regression estimator, which is defined as: 
 

[ ] YIXXIX )ˆ(')ˆ('ˆ 111 ⊗Σ⊗Σ= −−−β  (21) 
 
where β̂  is the (480x1) coefficient vector containing all the estimated  γot and γ1t, X is a 
(8400x480) matrix gathering all the βit , Σ̂ is the estimated covariances (8400x8400) matrix 
and Y is the (8400x1) return vector containing the returns of all portfolios at all the periods. 
Note that this model is estimated for each of the 8 models, however to clarify the notation of 
the equation (21), subscripts are not added.   
 
The second step is to test if the average of the coefficients γj1t is statistically significant and 
positive. That would prove the link, on average, between the beta (estimated by the jth 
method) and the return of the portfolio. If the previous test is satisfactory, by rejecting the null 
hypothesis, we can test whether this average coefficient is equal to the average realized excess 
market return. That would prove that the regressed coefficients are, in average, equal to the 
observed market risk premium. The last part of the test is to check if the coefficient γjot is on 
average not different from zero. That would mean that there is no other common factor being 
able to explain the cross-sections of the returns. The first test is carried out for each of the 8 
beta estimation model and whether the null hypothesis is not rejected, the 2 remaining tests 
are not carried out. As we know, the influence of the beta estimation method in the test of the 
conditional CAPM has not been analyzed and this is supposed to be the most important 
contribution of this paper.   
 

3 Data description 
 
For the empirical part of this paper, we use industry portfolios provided by Thomson 
Financial DataStream corresponding to the FTSE level 4 classification for the American 
market with a monthly frequency. That is to say we have 35 portfolios. The use of portfolios 
instead of individual stocks aims to improve the accuracy of the beta estimation. Moreover, 
the use of portfolios implies that returns are fully explained by their beta and the excess 
market return, the specific risk being eliminated by the diversification process. The value 
weighted “US Total Market” index, also provided by Thomson Financial DataStream, is used 
for the market returns and the three months US government bond is used as the risk free rate. 
Portfolios and the market index returns include dividend payment. The sample covers the 
period from January 1980 to January 2005, the 5 first years being reserved for prior betas 
estimations. 
 

4 Empirical results 
 
4.1 Descriptive statistics  
 
The first part of this section is dedicated to the presentation of the portfolios and their returns. 
A description, as well as the descriptive statistics, is provided in table 1. Average monthly 
excess returns range from -1.14% for the steel and others metals sector to 1.84% for the 
tobacco industry with a market average at 0.69%. Unsurprisingly, only the returns of 2 
portfolios the aerospace and defense and the electricity sectors, are normally distributed. All 
others fail the Jarque-Bera normality test. 
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Table 1: Portfolios descriptives statistics 
 

Portfolio Sector Average 

return 

volatility Jarque-Bera 

1 Mining 0.57% 10.50% 182.61 
2 Oil & Gas 0.43% 5.22% 33.15 
3 Chemicals 0.57% 5.52% 142.65 
4 Construction 0.69% 6.60% 70.15 
5 Forestry & Paper 0.53% 6.82% 42.86 
6 Steel & Metals -1.14% 8.38% 48.54 
7 Aerospace & Defence 1.01% 5.73% 75.13 
8 Diversified Industries 0.93% 5.55% 124.47 
9 Electrical equipment 1.51% 6.57% 89.40 

10 Machinery 1.38% 6.18% 131.10 
11 Auto & Parts 0.95% 6.46% 17.71 
12 Textile 1.24% 6.21% 120.53 
13 Beverages 1.47% 5.68% 39.50 
14 Food production 1.33% 4.73% 22.96 
15 Health 1.50% 4.77% 28.73 
16 Personal care 1.42% 5.08% 105.53 
17 Pharma & Biotech 1.50% 5.33% 4.06 
18 Tobacco 1.89% 8.34% 53.32 
19 General retail 1.50% 6.62% 36.67 
20 Leisure & Hotels 1.51% 6.78% 32.97 
21 Media & Entertainment 1.03% 5.46% 82.66 
22 Support Services 0.96% 5.65% 49.93 
23 Transport 1.02% 5.59% 118.08 
24 Food and drug retail 1.11% 5.22% 17.98 
25 Telecom services 1.01% 5.77% 67.01 
26 Electricity 0.99% 4.39% 2.02 
27 Other utilities 0.93% 5.52% 71.99 
28 Information tech. & Hardware 1.25% 8.68% 14.64 
29 Software & computer services 1.79% 8.24% 11.05 
30 Banks 1.45% 5.79% 25.49 
31 Insurance 1.31% 5.23% 58.98 
32 Life insurance 1.48% 5.70% 17.77 
33 Investment 0.37% 6.21% 69.35 
34 Real estate 1.30% 5.44% 56.85 
35 Other finance 1.63% 6.62% 42.86 

Market Us total market 0.69% 4.26% 95.13 
Note: Returns are in excess of the risk free rate. Average monthly returns and volatility are computed for 
the whole period, from 1980 to 2005. The Jarcque-Bera statistic, based on the skweness and kurtosis, is 
used to test if the returns are normally distributed. The statistic is distributed as χ2 with 2 degrees of 
freedom.  Statistics in bold are significant at the conventional 5% level and therefore reject the normality 
null hypothesis. 
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4.2 Estimation of time-varying beta models 
 
4.2.1 Overview 
 
Before to present details on the estimation of the specific models developed in section 2.1, we 
provide, in the table 2, the average betas for the 35 portfolios according to each of the 7 
models. It can be seen that average beta according to the various models are quite close to the 
constant beta of the market model in equation (2). Nevertheless, the betas move widely 
around their mean. This can be seen on the following figure presenting the mean, the 
minimum and the maximum beta for some of the portfolios used in this study.  
 
 
Figure 1 : Average, minimum and maximum betas of various portfolios 
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Note: the 7 methods used to estimate the betas are by order: the constant beta of the market 
model, the rolling regression, the GARCH (1, 1), the Kalman AR (1) smoothed, the SS 
beta, the macro variables beta and the asymmetric beta.  

 
This figure1 illustrate well the fact that constant beta is a good estimation of the mean of the 
various time-varying beta models. However, extreme values depart widely from their mean. 
The figure presented in appendix 1 illustrates the betas estimated according to the various 
models for each portfolio. The purpose of this figure is not to show precisely the path 
followed by the beta estimated by one particular method for a portfolio, but rather to show the 
general behavior of the dynamic beta. It can be seen that the various methods generate very 
different beta in their temporal evolution. Indeed, they even fluctuate in an opposite way over 
short time intervals and the beta volatility is also very different according to the estimation 
models. This issue confirms the importance of comparing the accuracy of the various beta 
estimation approaches and finding a significant variable in the beta estimation is clearly not 
enough to define it as a “good” beta.  
 
 

                                                 
1 To save space, we only present 4 portfolios but the results are qualitatively identical for the others.  
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Table 2: Average beta 
 

Pf βCst βRR βGARCH βKal βSS βMacro βAsym 

1 0.445 0.461 0.484 0.303 0.504 0.346 0.302 
2 0.651 0.656 0.676 0.647 0.647 0.662 0.641 
3 0.915 0.999 0.967 0.936 0.989 1.013 0.914 
4 1.037 1.130 1.099 1.099 1.072 1.217 1.075 
5 0.999 1.066 1.053 0.993 0.997 1.054 1.026 
6 1.159 1.101 1.208 1.155 1.148 1.198 1.167 
7 0.875 0.937 0.885 0.875 0.896 1.027 0.866 
8 0.950 0.928 0.954 0.944 0.950 0.941 0.949 
9 1.314 1.239 1.302 1.268 1.261 1.276 1.347 

10 1.063 1.099 1.097 1.065 1.093 1.118 1.065 
11 1.017 0.985 1.075 1.015 1.001 1.037 1.007 
12 1.111 1.174 1.153 1.140 1.119 1.241 1.114 
13 0.773 0.835 0.798 0.821 0.839 0.929 0.811 
14 0.606 0.680 0.632 0.655 0.684 0.755 0.636 
15 0.765 0.903 0.781 0.843 0.872 0.885 0.797 
16 0.701 0.795 0.727 0.747 0.778 0.845 0.726 
17 0.824 0.871 0.900 0.849 0.876 0.869 0.845 
18 0.761 0.846 0.824 0.805 0.896 0.917 0.827 
19 1.185 1.179 1.243 1.170 1.130 1.193 1.239 
20 1.269 1.248 1.316 1.263 1.247 1.264 1.250 
21 1.067 1.007 1.071 1.041 1.047 1.037 1.082 
22 1.026 1.046 1.061 1.036 1.049 1.109 0.998 
23 0.938 1.063 1.021 0.995 0.997 1.098 0.911 
24 0.742 0.779 0.770 0.775 0.776 0.873 0.781 
25 0.895 0.783 0.882 0.895 0.887 0.849 0.896 
26 0.340 0.353 0.353 0.386 0.997 0.454 0.366 
27 0.647 0.609 0.649 0.641 0.698 0.668 0.559 
28 1.517 1.335 1.480 1.493 1.423 1.431 1.513 
29 1.469 1.401 1.432 1.429 1.376 1.326 1.489 
30 0.978 1.030 1.006 1.016 1.020 1.060 0.980 
31 0.782 0.870 0.816 0.883 0.859 0.947 0.825 
32 0.835 0.940 0.859 0.888 0.924 0.972 0.876 
33 1.030 0.958 1.059 1.035 1.013 1.048 1.036 
34 0.750 0.898 0.813 0.839 0.836 0.885 0.721 
35 1.298 1.418 1.373 1.352 1.341 1.388 1.333 

Note: This table presents average beta generated by the various models discussed in section 2.1 for the 
period 1985 to 2005. The models are: βCst = constant beta of the market model, βRR = beta from the 
rolling regression, βGARCH = GARCH (1,1) beta, βKal = Kalman AR (1) beta, βSS = SCHWERT and 
SEGUIN beta, βMacro = macroeconomic variables beta and βAsym = asymmetric beta. 
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4.2.2 The GARCH error model 
 
The estimation of the coefficients, whose results are provided in appendix 2, by this model are 
not very satisfactory. The estimation of the conditional variance from equation (5) and (6) 
results only in 20 significant ARCH coefficients (bi) and in 30 significant GARCH 
coefficients (ci). These results are probably due to the monthly frequency used in this paper 
and to the relative short time interval. This is not surprising, considering that ARCH effects 
are more likely to occur in a higher frequency. In comparison, FAFF, HILLIER, HILLIER 
(2000), using a daily frequency, find all the coefficients of their GARCH (1, 1) model to be 
significant at the 1% level. Our model seems to be badly specified for a few portfolios, which 
have no significant coefficient and a sum of both of them is very small and even negative for 
the portfolio 17. Besides this exception, all meet the condition to have a finite unconditional 
variance.  
 
4.2.3 The Kalman filter 
 
As explain in section 2.1, this method provides 2 beta series for each portfolio, a filtered and a 
smoothed one. Table 3 presents the estimation of the autoregressive coefficient from equation 
(10). The value of this coefficient will determine the best stochastic structure of the time 
varying beta in the framework of the Kalman filter algorithm.  For the filtered beta all these 
coefficients are not statistically different from unity, except for the first portfolio2. As a 
consequence, the beta follows a random walk of the form: 
 

it
Kal

it
Kal

it e+= −1ββ  (22) 
 
When we consider the smoothed beta, the results are very similar. Only the beta of 4 
portfolios (including portfolio 1) follow an autoregressive process, with a coefficient, φi, very 
close to unity but still statistically different. On the 31 coefficients remaining, 27 are first 
order integrated and 4 are second order integrated. That means that the beta needs to be 
differentiated 2 times to be stationary. This is probably due to the smoothing algorithm used 
by the Kalman filter. However, to overcome the problems raised by this issue, we set the 
coefficient at unity for these 4 portfolios. According to the Kalman filter estimation, the beta 
follows in a great majority a random walk process and as a consequence, the beta is not 
predictable by its lagged values and it fluctuates randomly from period to period.  
 
4.2.4 The SCHWERT and SEGUIN model 
 
The estimation of the parameters βi and δi from equation (12) do not really support this beta 
specification. The results are presented in appendix 3. The coefficient δi is significant only for 
11 portfolios. Moreover, its size is very small, in the order of 0.004. These poor results arise 
probably from the use of industry portfolios because the sensitivity coefficient δi is supposed 
to depend on the size of the stock or portfolio.  
 
 
 
 
 
 

                                                 
2 Every beta estimation method gives very poor results for this portfolio. 
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Table 3: Kalman filter autoregressive coefficient and integration order 
 

Pf β Filtered 

φi 

Integration

order 

β Smoothed 

φi 

Integration 

order 

1 0.6596 0 0.3312 0 
2 0.9997 1 1.0000 1 
3 0.9996 1 0.9998 1 
4 0.9982 1 0.9968 1 
5 0.9997 1 0.9997 0 
6 1.0000 1 1.0000 2 
7 0.9995 1 0.9996 1 
8 0.9999 1 0.9999 0 
9 0.9981 1 0.9976 1 

10 0.9999 1 0.9998 0 
11 1.0000 1 1.0000 2 
12 0.9985 1 0.9997 1 
13 0.9924 1 0.9900 1 
14 0.9970 1 0.9968 1 
15 0.9978 1 0.9984 1 
16 0.9934 1 0.9916 1 
17 0.9984 1 0.9992 1 
18 0.9967 1 0.9971 1 
19 0.9994 1 0.9997 1 
20 0.9996 1 0.9993 1 
21 0.9999 1 0.9998 1 
22 0.9998 1 0.9997 1 
23 0.9990 1 0.9970 1 
24 0.9978 1 0.9977 1 
25 0.9833 1 0.9994 1 
26 0.9863 1 0.9858 1 
27 0.9997 1 1.0000 2 
28 0.9993 1 1.0000 2 
29 0.9999 1 0.9994 1 
30 0.9990 1 0.9998 1 
31 0.9962 1 0.9941 1 
32 0.9991 1 0.9986 1 
33 0.9994 1 1.0000 1 
34 0.9982 1 0.9974 1 
35 0.9976 1 0.9995 1 

Note: The autoregressive coefficient φi is obtained by the estimation of the transition 
equation in the Kalman state space model: βit = φiβit-1 + eit. The sample covers the period 
1980-2005. The first 5 years are taken in account because the Kalman filter could result 
in inaccurate estimations in the early period of the sample. The standard Dickey-Fuller 
test is conducted to evaluate the integration order of the beta time series. The integration 
order is the number of differentiations needed to obtain a stationary series. A zero order 
integrated series is stationary. 
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4.2.5 The Macroeconomic variables model 
 
First, we check the ability of the lagged macroeconomic variables to explain the portfolios 
returns. The results are presented in appendix 4. Their predictive capacity is very variable. For 
instance, the dividend yield of the US market (DIV) is significant for 21 portfolios returns but 
the JUNK variable is only significant for 1 portfolio. However the regressions R2 are rather 
small, ranging from 0.01 to 0.07. When forming size and book to market portfolios, FERSON 
and HARVEY (1999) find R2 slightly higher, from 0.08 to 0.15. Table 4 presents the results 
of the estimation of equation (14) which gives the coefficient necessary to generate the betas. 
The ability of this model to capture the evolution of the time-varying beta is very different for 
each portfolio. The R2 ranges from 0.2 for the electricity sector to 0.78 for the electrical 
equipment sector. Unsurprisingly, the market is the variable which has the most significant 
coefficients (26) followed by the dividend yield (20). On the other side, the Term variable has 
only 5 significant coefficients. It is interesting to note that the portfolios returns and the betas 
are not influenced by the lagged variables in the same way.  
 
4.2.6 The asymmetric beta model 
 
The estimation of the coefficient β1i from equation (16), which measures the differential effect 
of an up market on the beta, does not support this asymmetric beta specification. Only 2 
coefficients are significant3. The results of this model arise probably of the monthly frequency 
chosen; a higher frequency could potentially lead to different conclusions. 
 
4.2.7 Synthesis of the various time-varying beta  
 
A major issue raised by our results of the estimation of the various models in this section is 
the importance of the chosen frequency and the way portfolios are computed. That influences 
greatly the results and the validation of the various models. For example, the beta could be 
asymmetric in a weekly frequency but not in monthly frequency. However, in the purpose of 
comparing the various time-varying beta models, we have to use the same specification for all 
the models. Furthermore, we do not expect the models which are not suitable for our sample 
specification (i.e. the SS model and the asymmetric beta model) to provide very good results 
in the next section dedicated to the comparison of the various beta models. 
 
 
4.3 Empirical comparison of the time-varying beta models 
 
4.3.1 Time-series test 
 
The time-series test, using the MSE criterion, is widely employed in the literature. The results 
are presented in table 54. On average, the Kalman filter, providing the filtered beta series, 
gives the smallest error. In second position and with a very close MSE, we find the smoothed 
series of the Kalman filter, followed by the macroeconomic variables model and the rolling 
regression. The others models, i.e. the GARCH model, The SS model and the asymmetric 
beta model, do not beat the constant beta from the market model. This is not surprising, 
considering that these later beta specifications are not suited for our monthly frequency or our  
 
 
                                                 
3 To save space, the results are not presented in this paper. 
4 This test has also been done with the mean absolute error criterion without affecting the results.  



 16

Table 4: Regressions of the macroeconomic variables beta equations 
 

Pf Market  

β0i 

T-Bill 

β1i 

Div 

β2i 

Junk 

β3i 

Term 

β4i 

R2 

1 -1.94 529.08 -72.65 1121.49 909.89 0.07 
2 0.63 -45.73 -0.65 262.13 22.93 0.30 
3 0.71 -16.24 29.24 -654.14 124.68 0.57 
4 1.29 -127.45 46.44 -1137.22 147.95 0.52 
5 0.95 -100.97 32.75 -191.20 -123.21 0.43 
6 1.20 -93.88 -0.78 360.68 95.74 0.38 
7 1.11 3.63 30.95 -1494.61 241.40 0.49 
8 0.49 90.57 -2.03 31.18 94.91 0.57 
9 1.24 71.33 -26.13 341.11 109.41 0.78 

10 0.81 -32.11 20.41 -157.50 47.89 0.58 
11 1.13 -117.92 15.85 205.60 -145.19 0.48 
12 0.89 -61.66 41.72 -745.35 120.48 0.67 
13 1.57 -293.57 77.29 -1189.80 -376.89 0.44 
14 0.69 -177.06 65.14 -908.58 -108.84 0.45 
15 0.63 -40.97 44.20 -964.67 59.39 0.59 
16 1.40 -269.72 73.35 -1099.32 -360.00 0.47 
17 0.55 -56.50 25.00 -42.39 -28.55 0.48 
18 0.68 -266.26 60.38 -167.71 -39.09 0.22 
19 0.52 66.21 7.10 151.74 93.94 0.63 
20 0.89 5.79 2.09 351.51 22.25 0.67 
21 0.49 41.53 -7.39 625.04 66.14 0.74 
22 0.73 -29.55 19.86 -246.56 168.09 0.66 
23 0.99 18.56 33.39 -1470.03 290.64 0.60 
24 0.48 -95.54 45.29 -588.32 99.00 0.47 
25 0.99 -88.91 -6.27 761.44 -176.35 0.48 
26 0.34 -168.39 33.10 -145.41 69.44 0.20 
27 0.67 -101.88 2.32 438.61 9.79 0.28 
28 1.84 61.59 -57.04 788.54 122.52 0.63 
29 0.89 178.24 -45.69 1054.09 28.61 0.62 
30 1.20 -2.52 19.69 -916.49 75.78 0.56 
31 1.26 -99.11 45.94 -1479.58 76.94 0.49 
32 1.07 -77.24 45.17 -1214.01 31.59 0.46 
33 1.43 -60.41 -10.07 70.25 44.30 0.54 
34 0.27 -82.23 57.48 -690.05 50.09 0.50 
35 1.385 -35.764 29.344 -794.623 30.090 0.75 

Note: The coefficients are obtained by the estimation of the following equation:  
rit = αi + β0i· rmt + β1i ·T-Billt-1· rmt + β2i · Divt-1 · rmt + β3i · Junkt-1 · rmt + β4i · Termt-1 · rmt + εit. Values in bold are 
significant at the 5% level and the ones in italic at the 10% level. The lagged macroeconomic variables are in 
monthly frequency, except for the dividend yield (Div) in a yearly frequency. 
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Table 5: MSE criterion 
 

Pf βCst βRR βGARCH βKal F βKal S βSS βMacro βAsym 

1 10.61 10.30 10.55 7.31 7.37 10.59 10.21 10.78 
2 1.91 1.90 1.95 1.89 1.91 1.91 1.89 1.91 
3 1.44 1.33 1.44 1.29 1.31 1.41 1.32 1.44 
4 2.28 2.20 2.32 1.89 1.96 2.27 2.09 2.29 
5 2.74 2.64 2.91 2.63 2.66 2.74 2.67 2.76 
6 4.85 4.73 4.88 4.81 4.84 4.84 4.75 4.87 
7 1.83 1.76 1.94 1.68 1.75 1.82 1.66 1.84 
8 1.36 1.31 1.41 1.32 1.34 1.36 1.33 1.36 
9 1.04 1.01 1.02 0.80 0.83 1.02 1.01 1.01 

10 1.69 1.61 1.68 1.60 1.62 1.68 1.61 1.69 
11 2.19 2.14 2.32 2.18 2.19 2.19 2.16 2.20 
12 1.50 1.36 1.46 1.20 1.28 1.50 1.28 1.50 
13 2.15 2.04 2.17 1.96 1.60 2.11 1.81 2.08 
14 1.60 1.40 1.60 1.22 1.23 1.55 1.25 1.55 
15 1.23 1.05 1.05 0.91 0.93 1.14 0.98 1.18 
16 1.70 1.53 1.68 1.19 1.23 1.65 1.39 1.66 
17 1.61 1.52 1.60 1.46 1.49 1.59 1.51 1.58 
18 5.99 5.74 5.87 5.47 5.55 5.83 5.53 5.82 
19 1.71 1.65 1.85 1.59 1.62 1.69 1.64 1.66 
20 1.54 1.53 1.59 1.43 1.43 1.54 1.52 1.57 
21 0.81 0.80 0.85 0.79 0.76 0.80 0.78 0.81 
22 1.18 1.12 1.22 1.09 1.11 1.17 1.08 1.19 
23 1.45 1.35 1.45 1.21 1.19 1.42 1.23 1.47 
24 1.70 1.53 1.73 1.41 1.42 1.69 1.43 1.66 
25 1.81 1.80 1.81 1.37 1.73 1.81 1.76 1.81 
26 1.75 1.70 1.78 1.49 1.52 2.38 1.56 1.71 
27 2.26 2.24 2.24 2.22 2.26 2.24 2.20 2.38 
28 3.12 2.80 2.96 2.57 3.09 3.06 2.79 3.13 
29 2.70 2.68 2.84 2.60 2.57 2.65 2.62 2.68 
30 1.57 1.53 1.60 1.44 1.48 1.55 1.50 1.57 
31 1.61 1.54 1.53 1.28 1.27 1.56 1.41 1.55 
32 1.98 1.84 1.90 1.77 1.78 1.91 1.77 1.91 
33 1.84 1.76 1.87 1.65 1.68 1.83 1.77 1.84 
34 1.93 1.59 1.83 1.39 1.42 1.87 1.49 1.98 
35 1.19 1.15 1.17 0.96 1.05 1.18 1.09 1.15 

average 2.22 2.12 2.23 1.92 1.96 2.22 2.06 2.22 
ranking 7 4 8 1 2 5 3 6 

Note: The values are multiplied by 1000. Values in bold (italic) mean that the corresponding time-varying beta 
method provides the smallest (second smallest) MSE for the portfolio. βKal F means Kalman filtered and βKal S 
Kalman smoothed. 
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industry portfolios. If we look at the portfolios level, the superiority of the Kalman filter is not 
reconsidered. The 2 versions of the Kalman filter are 29 times in first position and 25 times in 
second position. Both the rolling regression and the macroeconomic variables model are 3 
times in first position. The 4 remaining models do not even rank once first or second. Our 
results supporting the Kalman filter approach are in agreement with the conclusions of studies 
on others markets, like BROOKS, FAFF and MACKENZIE (1998) on the Australian market 
or FAFF, HILLIER, HILLIER (1998) on the British market. The link with this latter study is 
interesting in the sense that they use daily UK industry returns. However, the various 
sophisticated GARCH models they consider, do not generate better return forecasts, according 
to the MSE criterion, than the simple and constant beta from the market model. They also find 
the random walk beta from the Kalman filter to be the most accurate approach to estimate the 
beta. 
 
However, this time-series test methodology does not prove statistically the relationship 
between the portfolio return and its beta. It allows only to determine which beta generating 
method fit the best the market model equation.    
 
 
4.3.2 Cross-sectional tests 
 
This section investigates whether the specification of the beta has an influence on cross-
sectional tests of the CAPM. We examine whether the beta time-series obtained with the 
various beta estimation models have a significant impact on the results of FAMA and 
MACBETH (1973) cross-sectional tests. To that purpose, 8 cross-sections tests are 
performed, one for each beta estimation method. In addition we also use an alternative 
estimator, i.e. the Zellner estimator, described in equation (21), taking in account the 
contemporaneous correlation, for the estimation of the coefficients γj1t and γjot in equation 
(20). The results are given in table 6. 
 
 
Table 6 : Cross-sectional tests 
 

 βCst βRR βGARCH βKal F βKal S βSS βMacro βAsym 

OLS statistic 0.404 0.194 0.164 1.347 2.066 0.607 1.369 0.110 
SURE statistic 0.580 0.285 0.229 1.564 2.177 0.636 1.717 0.657 

Note: This table provides the statistic of the first part of the test explained in section 2.2.2. Values 
in bold (italic) are significant at the usual 5% (10%) level. In this case, the average γj1t is different 
from zero and that proves statistically the link between the beta of a portfolio and its returns. βKal F 

means Kalman filtered and βKal S Kalman smoothed. Note that for the smoothed Kalman filter the 
beta series for the 4 portfolio (number 6, 11, 27 and 28) which are second order integrated have 
been replace by series estimated, as well with the Kalman filter, but with an autoregressive 
coefficient set to unity.  

 
The first part of the test examines whether there is a statistical relationship between the beta 
of a portfolio and its return. In this case, the null hypothesis should be rejected. First, the only 
beta estimation method which validates the CAPM (at the usual 5% confidence level) is the 
smoothed series generated by the Kalman filter. It is interesting to note that the filtered 
version of the Kalman filter, which was more accurate in the previous time-series test, does 
not allow to validate empirically the CAPM. However, in the way we estimate the smoothed 
Kalman beta series, we need the information on the entire sample. It is also clear that the 
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coefficients estimated with the SURE system provide systematically higher t-statistics. 
Considering the contemporaneous correlation could lead to change the test results. For 
example the SURE statistic for the macroeconomic variables models is significant at the 10% 
level, while the OLS statistic is not. All others model do not beat the constant beta in the 
cross-sections test. These models are, thereof not able to explain the time-varying evolution of 
the beta. This is particularly important for the rolling regression beta because it is a method 
widely used in academic to compute the beta, notably by FAMA and FRENCH (1992). 
Consequently, using another beta estimation approach, in our case the Kalman filter with a 
random walk beta, could lead to validate empirically the CAPM.  
 
In the second part of the test, we examine whether the CAPM is fully validated by the data. 
First, we test if the average γ1t, for the smoothed Kalman filter only, is different from the 
realized excess market risk premium. The test is conclusive if we can not reject the null 
hypothesis. The OLS and the SURE statistics are very close, 0.24 for the former and 0.22 for 
the later. Both of them allow us to not reject the null hypothesis and to conclude that the 
average estimated γ1t does not statistically differ from the realized excess market risk 
premium. The last part of the test investigates whether the average coefficient γot is 
statistically different from zero. We aim not to reject this test, because that would mean there 
is no other common factor than the excess market risk premium to explain the cross-sections 
of our portfolios returns. The results of this test are as well conclusive with an OLS statistic of 
0.69 and a SURE statistic of 0.94.  
 
In brief, the conditional CAPM is empirically validated whether the smoothed Kalman filter 
method is used to estimate the betas. The average γ1t is significant at the 5% usual confidence 
level and it does not differ from the realized excess market risk premium. Furthermore, the 
constant term, γot, is not statistically different from zero. These conclusions prove the 
influence of the beta estimation method in the CAPM test, as well as the method chosen to 
estimate the coefficients in the FAMA MACBETH (1973) regressions. Not considering these 
issues could lead to reject the CAPM even if it holds.   
 
 

5 Conclusion 
 
In this paper we shed light on the influence of the choice of the beta estimation method on the 
tests of the conditional CAPM. The purpose is to compare various beta estimation methods 
presented in the existing literature. The specification that we investigate are the constant beta 
of the market model (used as a benchmark), the rolling regression, a GARCH (1, 1) model, 
the Kalman filter with an autoregressive observation equation, the SS model, a 
macroeconomic variables model and an asymmetric beta model.  
 
The first part of the section 4 emphasizes the impact of the frequency and the way portfolios 
are generated on the validity of these models. The SS model, the asymmetric beta model and 
to a lesser extent the GARCH (1, 1) model are clearly not suited for our monthly frequency, 
or our industry portfolios. To evaluate which model is the most accurate and therefore 
describes the best the beta temporal evolution, we use time-series, as well as cross-sectional 
tests. The first test, using the in-sample MSE criterion, finds that the Kalman filter approach 
provides the most accurate estimates. Note that this model is estimated with an autoregressive 
transition equation but the vast majority of the autoregressive coefficients are first order 
integrated and therefore follow a random walk. These results confirm those previously found 
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in the literature on other markets like the UK or Australia. This is the first important result of 
this paper since this issue has not been examined on the US market so far. 
 
However the major interest of this paper lies in the investigation of the impact of the beta 
specification in the cross-sectional tests of the conditional CAPM. Our evidence shows that 
the Kalman filter with random walk betas is again the best specification from this point of 
view. Indeed, this is the only of our models which supports the validity of the CAPM. First, 
the relationship between portfolios returns and their betas is statistically significant and 
furthermore the constant is, on average, not different from zero, meaning that there is no other 
common variable able to explain portfolios returns. All others models, including the widely 
used rolling regression, fail to prove empirically the beta-return relationship. Our results call 
for more research in this area. In particular it would be interesting to investigate whether the 
SMB and HML risk factors from FAMA and FRENCH (1993) are still significant when betas 
are generated by the Kalman filter with a random walk specification. This is left for future 
research. 
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Appendix 1: Evolution of the time-varying beta according the various methods 
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Note: The asymmetric beta is not represented on this figure because it can only take 2 different values and 
therefore, it is not suitable for a time-series graph.  
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Appendix 2: Conditional variance coefficients for the GARCH (1, 1) model  
 

Pf ARCH 

Coefficient (bi) 

GARCH 

Coefficient (ci) 

Sum 

(bi+ci) 

Correlation 

imρ  

1 0.057 0.785 0.842 0.187 
2 0.103 0.843 0.946 0.545 
3 0.048 0.907 0.955 0.726 
4 0.107 0.780 0.887 0.689 
5 0.062 0.889 0.951 0.640 
6 0.085 0.894 0.979 0.605 
7 0.102 0.875 0.977 0.667 
8 0.101 0.883 0.984 0.747 
9 0.108 0.845 0.953 0.875 

10 0.174 0.773 0.948 0.752 
11 0.071 0.872 0.943 0.688 
12 0.428 0.161 0.589 0.783 
13 0.079 0.879 0.958 0.596 
14 0.101 0.861 0.961 0.560 
15 -0.018 1.006 0.988 0.701 
16 0.111 0.836 0.947 0.605 
17 0.050 -0.475 -0.424 0.675 
18 0.059 0.827 0.886 0.399 
19 0.362 0.224 0.586 0.784 
20 0.100 0.832 0.932 0.818 
21 0.101 0.887 0.988 0.854 
22 0.104 0.856 0.961 0.794 
23 0.046 0.224 0.270 0.733 
24 0.097 0.898 0.996 0.621 
25 0.139 0.805 0.944 0.677 
26 0.118 0.824 0.942 0.338 
27 0.124 0.823 0.947 0.512 
28 0.104 0.857 0.961 0.764 
29 0.222 0.747 0.968 0.779 
30 0.203 0.672 0.875 0.738 
31 0.279 0.373 0.652 0.653 
32 0.202 0.626 0.828 0.640 
33 0.433 0.220 0.653 0.725 
34 0.201 -0.037 0.164 0.603 
35 0.059 0.892 0.951 0.858 

marché 0.119 0.871 0.990 1 
Note: This table show the estimation results of the equation (5) for the portfolios and (6) for the market 
over the whole period (1985-2005). In the first two columns, values in bold are significant at the usual 
5% level. To have a finite unconditional variance, the sum of the two coefficients, presented in the third 
column, must be smaller than unity.  
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Appendix 3: SS beta regression coefficients 
 

Pf iδ x 10-4 iβ  Pf iδ  x 10-4 iβ  

1 3.39 0.27 19 -3.89 1.40 
2 -0.48 0.68 20 -1.63 1.36 
3 4.33 0.69 21 -1.51 1.15 
4 1.77 0.95 22 1.15 0.97 
5 -0.32 1.02 23 3.53 0.75 
6 -0.99 1.22 24 1.97 0.64 
7 1.10 0.82 25 -0.69 0.94 
8 -0.16 0.96 26 3.53 0.75 
9 -3.66 1.52 27 3.05 0.49 

10 1.65 0.98 28 -6.33 1.86 
11 -1.22 1.09 29 -6.12 1.80 
12 0.18 1.11 30 2.42 0.85 
13 3.94 0.57 31 4.72 0.53 
14 4.79 0.35 32 5.42 0.55 
15 6.52 0.42 33 -1.37 1.11 
16 4.59 0.46 34 5.22 0.47 
17 3.12 0.66 35 2.40 1.17 
18 8.28 0.32    

Note: The coefficients are estimated according to equation (12) over the whole period, from 1985 
to 2005. The coefficients in bold are significant at the usual 5% level. They are multiplied by 104.  
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Appendix 4: Regression of the macroeconomic variables on the portfolios returns 
 

Pf T-Bill Div Junk Term R2 

1 -11.49 1.17 43.81 -9.58 0.02 
2 -10.26 1.45 -0.33 -18.42 0.02 
3 -12.24 2.04 10.86 -18.36 0.03 
4 -11.83 1.70 13.94 -14.26 0.02 
5 -13.86 1.80 25.47 -20.20 0.02 
6 -14.24 1.00 29.00 -23.56 0.02 
7 -6.92 1.41 -14.46 -10.88 0.01 
8 -9.47 2.08 -14.98 -18.80 0.04 
9 -13.60 2.16 -10.96 -26.55 0.03 

10 -13.36 1.83 11.15 -18.63 0.02 
11 -15.44 2.40 -1.86 -22.52 0.03 
12 -13.88 2.31 20.08 -21.15 0.04 
13 -5.84 1.77 2.92 -15.09 0.04 
14 -3.80 1.26 2.70 -10.02 0.03 
15 -7.65 1.69 -4.52 -18.66 0.04 
16 -10.86 2.08 -4.19 -18.44 0.03 
17 -8.18 1.99 -6.87 -25.17 0.07 
18 -10.21 1.70 28.84 -30.41 0.03 
19 -11.21 1.99 9.73 -21.93 0.02 
20 -14.47 2.76 6.18 -22.26 0.04 
21 -12.42 1.98 1.24 -23.04 0.03 
22 -12.01 2.87 -23.09 -16.12 0.06 
23 -9.72 1.80 -1.87 -14.94 0.02 
24 -10.33 2.07 -10.11 -22.83 0.04 
25 -13.60 2.91 -33.63 -23.17 0.06 
26 2.76 0.27 -17.34 1.72 0.02 
27 -7.68 1.90 -41.07 -16.76 0.05 
28 -22.23 3.40 -32.58 -33.17 0.03 
29 -18.26 3.28 -14.23 -30.25 0.03 
30 -1.76 0.73 -2.15 -3.12 0.01 
31 2.07 0.50 -16.40 0.09 0.02 
32 1.52 0.34 -8.32 0.24 0.01 
33 -16.93 2.69 0.27 -21.73 0.04 
34 -2.50 0.50 16.09 1.58 0.02 
35 -6.53 1.43 -3.49 -14.06 0.01 

marché -11.94 2.12 -10.07 -19.28 0.04 
Note: The coefficients are obtained by the estimation of the following equation:  
rit = αi +δi ·T-Billt-1 + λi · Divt-1 + κi · Junkt-1 +γi · Termt-1 + εit. . Values in bold are significant at the 5% 
level and the ones in italic at the 10% level. The lagged macroeconomic variables are in monthly 
frequency, except for the dividend yield (Div) in a yearly frequency. 

 


