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Abstract

The measurement problems encountered while trying to exhibit the in�u-
ence of market risk factor on asset returns may be numerous. It seems then
di¢ cult to highlight the unique common latent factor underlying stock return
evolutions in the market. So far, excess return relationships are mainly and
broadly considered. Moreover, basic and common studies require a market
factor proxy (i.e., market portfolio benchmark). The chosen proxy usually
impacts related results (see Roll [1977]). To bypass such problems, we resort
to Kalman �ltering methodology to exhibit the common latent factor under-
lying stock market returns. Of course, when this one exists...

Keywords: CAPM, idiosyncratic risk, Kalman �lter, market risk, stock
returns, systematic risk.
JEL Codes: C32,D8.

1 Introduction

The stock return puzzle has a long story. Indeed, many authors at-
tempted to explain the global evolution of stock returns. Formerly, Sharpe
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(1963,1964), among others, established that stock returns depend on both a
market factor as well as an idiosyncratic factor of risk. Such a dependence
is usually described by some linear-type relationship. Later, the in�uence of
market variables (e.g., risk free rate, term spread, and yield curve slope) as
well as idiosyncratic factors on stock returns is exhibited (see Fama & French
[1989,1992], Campbell [1987], Harvey [1989], Breen et al. [1989], and Ferson
& Harvey [1981,1999]). Speci�cally, Banz (1981), Berk (1995) and Kothari
et al. (1995) show the importance of �rm size whereas Bhandari (1988)
underlines the leverage e¤ect on asset returns. Chan et al. (1991) explain
stock returns with book-to-market features while Merton (1987) and Amihud
& Mendelson (1989) exhibit the informational impact (i.e., news arrival in
the market) on stock returns and related liquidity. Recently, Malkiel & Xu
(2002,2003) focus on idiosyncratic risk and volatility in asset return. In the
same line, Campbell et al. (2001) exhibit the importance and signi�cance
of idiosyncratic risk in asset returns. They �nd that though idiosyncratic
volatility has highly grown over time, stock return global volatility remains
driven by market volatility (i.e., global common trend).
However, such linear relationship between stock returns and both mar-

ket factors as well as idiosyncratic factors su¤ers from many measurement
problems (e.g., heteroskedasticity and autocorrelation; see Fama [1965,1976],
Blattberg & Gonedes [1974], and A eck-Graves & McDonald [1989] among
others) leading to a biased explanation of stock return evolution. To solve
such problems, some authors resort to speci�c econometric tools or meth-
ods. For example, Shanken (1992) and Jagannathan & Wang (1996) pro-
pose a GMM methodology solving the error-in-variables problem. Di¤er-
ently, Ahn & Gadarowski (2000) propose an estimation method, which is
robust to conditional heteroskedasticity as well as autocorrelations in asset
returns. Recently, Barnes & Hughes (2002) propose a quantile regression
methodology (see Buchinsky [1998]), which is robust to error-in-variables
bias, omitted variables bias, sensitivity to outliers, and non-normal error dis-
tributions. Those authors �nd results that lead to a rejection of both the
unconditional single-factor CAPM and the conditional multi-factor CAPM.
More recently, Koutmos & Knif (2002) use conditional time-varying distrib-
utions (i.e., GARCH modeling) to assess the in�uence of systematic risk on
stock returns. They consider given market stock indices, and exhibit sta-
tionary mean-reverting beta CAPM parameters with a four-day persistence
degree. Di¤erently, Gençay et al. (2003) use multiscaling wavelet techniques
to estimate stock return beta parameters while using the S&P 500 index as
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a market portfolio (i.e., systematic risk factor proxy).
Given existing literature, it seems sometimes hard to exhibit the existence

of one signi�cant common latent factor in asset returns. Moreover, a market
index is always required to proxy the actual market factor of risk. The qual-
ity of the chosen market benchmark impacts the accuracy as well as quality
or reliability of related measurements (see Roll [1977]). To bypass such prob-
lems and open questions, we resort to a robust econometric method to exhibit
the latent factor of risk common to any asset in the market. For this purpose,
we employ a Kalman �ltering methodology, which allows to leave the market
factor of risk undetermined (i.e., endogenous to the estimation process). Our
paper is then organized as follows. Section 2 introduces the Kalman �lter
and related EM estimation. Section 3 introduces the data under consider-
ation as well as their statistical properties while section 4 employs Kalman
econometric method under our �nancial framework. Speci�cally, we consider
both US and French data samples. Further investigation is undertaken in
section 5 while investigating a common component in both French and US
common latent factors. Finally, section 6 draws some concluding remarks
and open points for future research.

2 Econometric framework

We expose therein the usefulness of the chosen econometric framework,
namely Kalman �lter, given our working setting as well as related advantages.
Then, we introduce the general econometric estimation process.

2.1 Principle and motivations

The Kalman �lter (see Kalman [1960], Harvey [1989a,b], Meinhold &
Singpurwalla [1983], Brown & Hwang [1997], Wikle & Cressie [1999], and
Cressie & Wikle [2002]) is commonly employed for short term forecasting as
well as time series analysis or estimation. This simple econometric method is
known to be optimal (i.e., unbiased and minimum error variance algorithm)
and robust. The principle is to establish the state, or equivalently, linear
dynamic of a given system, and to link such a dynamic to available or ob-
served information about the system at each point of time. Solving such a
dependence structure depends on the initial sate of the system (i.e., detailed
or accurate information about the initial state of the system is required).

3



Kalman �lter is a state-space model describing a system�s state as well as
its evolution over time. Incidentally, a state-space representation allows for
incorporating unobserved variables (i.e., state variables), which are estimated
with the observable model (i.e., observed variables or measures). Speci�cally,
Kalman �lter is a recursive linear predictor-corrector �lter, which minimizes
the expected square error between the system�s state and corresponding esti-
mate(s) (i.e., quadratic minimization algorithm). For Gaussian random vari-
ables, Kalman �lter represents the optimal linear predictor and estimator.
For non-Gaussian variables, Kalman �lter estimator is the best one among
the linear estimator class. The main interest of this econometric method-
ology is its ability to forecast a system�s state through past, present, and
future. In general, observed measures are functions of state variables (i.e.,
state of the system) insofar as measures are disturbed by a random noise
called measurement noise. Hence, Kalman �lter attempts to estimate state
variables given disturbed observations about the system. Such a forecasting
process relies on two sets of equations. The �rst set of equations is time-
updating, and forecasts the system�s current state as well as the related error
covariance matrix over the next time step. The second set of equations is
measure-updating, and corrects the errors committed in the �rst set of equa-
tions (see Chui & Chen [1987]). For this purpose, second order moments of
equation noises (i.e., state and measurement noises) are required.
Finally, Kalman �ltering methodology exhibits �ve advantages (see Lemoine

& Pelgrin [2003] among others). First, measure uncertainty is recursively
taken into account. Second, ex ante information is taken into account when
this one exists. Third, this econometric method can be applied to stationary
as well as non-stationary data. Fourth, state and measurement noises can be
non-Gaussian. Finally, time-varying estimates are enabled.
In this paper, we use Kalman methodology for �ltering purpose; namely

we look for the best proxy of the current system�s state given past and present
observations.

2.2 General framework

We introduce here the general modeling framework where state variables
are assumed to follow a �rst order Markovian process. Namely, we consider
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following linear measurement and state equations:1

Yt = ZtXt +Dt + "t (1)

Xt = AtXt�1 + Ct +Rt�t (2)

where Yt is a N � 1 vector of observations (i.e., measure variables); Zt is a
N�k measurement sensitivity matrix; Xt is a k�1 vector of state variables;2
Dt is a N � 1 vector related to exogenous known variables; "t is a N � 1
measurement white noise; At is a k� k state transition matrix; Ct is a k� 1
vector related to exogenous known variables; Rt is a k � g matrix; �t is a
g�1 state white noise; and �nally t is current time ranging from 1 to T (i.e.,
multivariate time series with T observations).
We �rst assume that state and measurement noises follow normal distri-

butions and are independent. Second, initial values of state variables and
white noises are independent3 (i.e., causal and invertible state-space model)
while initial values of state variables follow a normal law. Namely, we con-
sider:4 �

�t
"t

�
v N

��
0

0

�
;

�
Qt 0
0 Ht

��
(3)

X0 v N (m0; P0) (4)

where m0 and P0 are known expectation and covariance matrix parameters
of dimensions k � 1 and k � k respectively. The recursive nature of Kalman
�lter implies that state and measure variables are functions of the initial
system�s state, past state errors, past measurement errors, and exogenous
variables. Hence, Kalman principle is to estimate state variables at each
time t conditional on observed variables (i.e., measure variables) until time t.
Speci�cally, minimizing realized square errors on state variables requires �ve
steps in the estimation process. These �ve steps are divided into an updating
and a forecasting stage as follows:

Et�1 [Xt] = AtEt�1 [Xt�1] + Ct (5)

1For any given observed variable, there exist several possible state-space representa-
tions.

2ZtXt is considered as a signal at current time t.
3Namely, we assume that E ["t�0t] = E ["tX

0
0] = E [�tX

0
0] = 0.

4At initial time t0 = 0, hidden variables X0 (i.e., latent common and idiosyncratic
factors, or equivalently, unobserved factors) are Gaussian.
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V art�1 [Xt] = AtPt�1A
0
t +RtQtR

0
t (6)

Et�1 [Yt] = ZtEt�1 [Xt] +Dt (7)

vt = Yt � Et�1 [Yt] (8)

Ft = ZtV art�1 [Xt]Z
0
t +Ht (9)

Et [Xt] = Et�1 [Xt] +Ktvt (10)

Pt = (Ik �Kt)� V art�1 [Xt] (11)

Kt = V art�1 [Xt]Z
0
tF

�1
t (12)

where Et [�] and V art [�] are expectation and covariance operators conditional
on available information set at time t; Pt = V art [Xt] is the mean quadratic
error on Zt; Kt is the Kalman gain matrix; Ik is the identity matrix of di-
mension k; Z 0t is the transposition of matrix Zt; Ft is the covariance matrix
of vt; F�1t is the inverse matrix of Ft; and vt is an innovation process. Notice
that Et�1 [Xt] and V art�1 [Xt] are the best estimates of Xt and Pt conditional
on available information set at time t� 1. Analogously, Et [Xt] is an optimal
estimate of Xt given available information and observations at time t. More-
over, relations (11) and (6) are covariance matrix equations, namely Ricatti
equations allowing for the computation of Kalman gain series. Relations (10)
and (11) deal with state estimate and related covariance matrix updating.
Relations (5) and (6) concern forecasting (i.e., time updating). Relation (12)
is the gain matrix update; incorporating this matrix in relation (11) increases
the estimation accuracy of Et [Xt] relative to Et�1 [Xt]. Indeed, the state er-
ror covariance matrix represents a state uncertainty estimate. By the way,
V art�1 [Xt] is an ex ante covariance matrix while V art [Xt] is an ex post co-
variance matrix. And, V art�1 [Xt] is the mean quadratic error of forecast
Et�1 [Xt].
Kalman �lter requires to specify starting values for state variables (i.e.,

initial guess) and to replace unknown matrices with their estimates. Given
starting values, unknown matrix parameters are estimated while maximizing
Yt log-likelihood. For this purpose, we assume that Yt follows a multivariate
Gaussian distribution conditional on Xt as well as past values of both Xt and
Yt. Speci�cally, the log-likelihood under normality assumptions writes:

`t = �
N

2
ln (2�)� 1

2
ln jFtj �

1

2
v0tF

�1
t vt (13)

where jFtj is the determinant of matrix Ft. General setting leads to a non
stationary (i.e., time-varying) estimation framework whereas we get a sta-
tionary case when Zt, Dt, Ht, At, Ct, Rt, and Qt do not depend on time.
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Table 1: Asset denomination
France USA
ACCOR AT & T

ALCATEL ALSTOM DJIA
AXA DOW JONES

BOUYGUES FORD MOTOR
L�OREAL INTL.BUS.MACH. (IBM)
MICHELIN MERRILL LYNCH

PEUGEOT SA MICRON TECH.
SBF120 MICROSOFT

TOTAL FINA ELF SA WALT DISNEY

3 Data and properties

We introduce the data we consider as well as a preliminary statistical
analysis.

3.1 Data sets

We consider two di¤erent data sets (i.e., two di¤erent country analy-
ses). The �rst set concern 8 French stock prices and one French stock index
price ranging from 01/02/1997 to 07/12/2001, namely 1139 observations per
series (see table 1 where DJIA is the Dow Jones Average Industrial index
and SBF120 is a diversi�ed French stock index). The second set concern 8
US stock prices and one US stock index price ranging from 01/02/1997 to
07/12/2001, namely 1142 observations per series. We also consider the global
set of 18 asset prices also ranging from 01/02/1997 to 07/12/2001, namely
1111 observations per series after adjusting for non-working day di¤erences.
As we are interested in the common latent component underlying asset

return evolutions, we compute asset returns on a continuous basis as follows:

Rt = ln

�
St
St�1

�
� St � St�1

St�1
(14)

where St is the asset price at time t. Hence, we consider 1138 return obser-
vations for French assets, 1141 return observations for US assets, and �nally
1110 return observations for the merged global data set.
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3.2 Statistical pro�les

We consider asset returns on a percentage basis. Our three return data
sets exhibit some key statistical features (see tables 2, 3 and 175).
Roughly, speaking French and US stock returns are far from being nor-

mally distributed. Those returns exhibit both asymmetry and skewness fea-
tures (i.e., skewed probability distributions). Related probability distribu-
tions exhibit fatter tails than Gaussian ones (see related skewness). More-
over, their positive kurtosis pro�le is quite very heterogeneous among stock
returns. The most volatile French stock returns (i.e., in terms of distance
between extreme values, or equivalently, minimum and maximum values)
are Alcatel, Axa and Total ones whereas the most volatile US stock returns
are Ford Motor and IBM ones. Same conclusions apply to table 17, except
that IBM is no more a highly volatile stock return whereas Dow Jones stock
return becomes very volatile. Moreover, Kendall�s correlation coe¢ cients be-
tween asset returns for each �nancial market exhibit a strong positive link.
Indeed, considering each market separately, the obtained non-linear correla-
tion coe¢ cients are signi�cant at a 1% bilateral test level (see tables 4 and
5).

4 Econometric study

We expose and explain the relevant version of Kalman �ltering given our
framework as well as related econometric results.

4.1 Model

We only observe stock return data whereas each stock return is driven
by both a common latent risk factor as well as an idiosyncratic risk fac-
tor. Hence, each stock evolution depends on two unobserved variables (see
Sharpe [1963,1964]). Consequently, we employ Kalman statistical method to
describe the dynamics of both latent and idiosyncratic factors insofar as we
have incomplete knowledge about the relevant phenomenon underlying those
dynamics (i.e., hidden statistical variables).
For each stock return i, we set the following dependence structure:

Rit = �
iMt + e

i
t (15)

5This table is exposed in the appendix.
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Mt =Mt�1 + wt (16)

where eit, and wt are independent Gaussian white noises such that e
i
t incor-

porates the related idiosyncratic risk factor of asset return Rit; and Mt is
the market factor of risk underlying any stock return Rit. The only observed
variables are asset returns Rit where i 2 f1; :::; Ng with N being 9, 9 and 18
respectively for French, US, and global merged asset data samples. More-
over, t 2 f1; :::; Tg with T being 1138, 1141 and 1110 respectively for French,
US, and global merged data sets. Such a framework can easily be translated
into a state-space representation. Namely, the previous system of equations
rewrites: 0B@ R1t

...
RNt

1CA =

0B@ �1

...
�N

1CA �Mt +

0B@ e1t
...
eNt

1CA (17)

Mt = cM Mt�1 + wt (18)

where (17) corresponds to measurement equation (1) and (18) corresponds
to state equation (2). Hence, we get Yt =

�
R1t � � � RNt

�0
, Xt = Mt,

Dt = 0, "t =
�
e1t � � � eNt

�0
, k = 1, Ct = 0, Rt = Ik = 1, �t = wt, g = k,

Zt =
�
�1 � � � �N

�0
, and At = cM . To sum up, we consider the following

linear stat-space model:
Yt = ZtXt + "t (19)

Xt = AtXt�1 + �t (20)

We assume that initial conditions m0 and P0 about the system are unknown,
and elements of Qt do not depend on Pt. Moreover, we state Qt = �2M such
that P0 6= Qt, and :

Ht =

0BBBBBB@
�21 0 � � � � � � 0

0 �22 0 0
...

... 0
. . . 0

...
... 0 0 �2N�1 0
0 � � � 0 0 �2N

1CCCCCCA (21)

Therefore, our speci�cation requires to estimate �1, � � � , �N (i.e., measure-
ment equation), M0 (i.e., the initial state of the system X0), Ht (i.e., a

11



diagonal6 covariance matrix composed of N elements), P0, cM and �M (i.e.,
1 element of covariance matrix Qt). Hence, our linear system requires to
estimate 2N + 4 parameters.

4.2 Econometric results

We achieve our state-space model estimation for both French and US
assets while employing a Broyden-Fletcher-Goldfarb-Shanno-type optimiza-
tion method7 (i.e., for log-likelihood maximization). The estimates we get
are displayed in tables (6) and (7); and we �nd P Francet = 4:5128 � 10�12
and PUSt = 0:2113 whatever time t. Moreover, the accuracy level we set to
compute relative gradients is 10�6.
For both markets, the variance of the common latent component8 appears
to be signi�cant in our state-space formulation. Strikingly, the common la-
tent factor�s coe¢ cient cM is positive and signi�cant on the French market
whereas it appears to be negative and insigni�cant on the US market. By the
way, the starting value of the common latent factor is signi�cant only for the
US market. However, Ht covariance matrix9 as well as beta coe¢ cients are
generally signi�cant for the two �nancial markets under consideration. Re-
call that beta coe¢ cients represent the impact of the common latent factor
on asset returns. Considering both �nancial markets, beta coe¢ cients are
all positive, which indicates that asset returns are market driven. Moreover,
these coe¢ cients are above unity for all French asset returns as well as IBM,
Micron Tech., Microsoft and Merrill Lynch asset returns, those assets magni-
fying therefore market �uctuations. Moreover, Alcatel stock return ampli�es
nearly three times market �uctuations. Di¤erently, all the remaining asset
returns exhibit beta coe¢ cients below unity, absorbing then market impact.
We also get the following statistical pro�le for the common latent factor Mt

inherent to each �nancial market under consideration (see tables 8 and 9).

Both latent common factors exhibit asymmetric (i.e., leptokurtic) as well as
non-normal features. However, we notice structural di¤erences between those

6We explicitly assume that stock returns are only correlated through their common
latent component.

7Non-linear maximization problem.
8This one is assumed to remain constant over time.
9This covariance matrix is also assumed to be constant over time.
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Table 6: Kalman estimates for French asset returns
Parameters Estimate Gradient Std. Dev. T-Student

�1 1.5677 0.0003 0.3262 4.8056
�2 1.3508 0.0007 0.2905 4.6500
�3 2.7563 0.0020 0.5785 4.7649
�4 1.4940 0.0006 0.3218 4.6431
�5 1.7118 -0.0010 0.3549 4.8230
�6 1.7152 -0.0003 0.3615 4.7449
�7 1.1700 0.0006 0.2523 4.6374
�8 1.3099 -0.0014 0.2804 4.6724
�9 1.4182 -0.0010 0.3070 4.6197
�1 0.0000 0.0011 0.0106 -0.0003
�2 2.1317 0.0096 0.0447 47.7151
�3 2.7667 0.0022 0.0578 47.8603
�4 2.1136 -0.0036 0.0443 47.7081
�5 2.5695 -0.0011 0.0538 47.7305
�6 1.9131 -0.0006 0.0401 47.6949
�7 2.1026 -0.0099 0.0441 47.7049
�8 2.0100 0.0020 0.0421 47.7183
�9 2.8723 0.0003 0.0602 47.6959
Qt 0.8465 0.0000 0.1776 4.7655
P0 0.6548 0.0048 1.5079 0.4342
M0 8.9016 0.0000 11.3236 0.7861
cM 0.0725 0.0001 0.0128 -5.6475
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Table 7: Kalman estimates for US asset returns
Parameters Estimate Gradient Std. Dev. T-Student

�1 0.7864 0.0030 0.1038 7.5742
�2 1.0414 -0.0039 0.1395 7.4654
�3 0.7811 0.0072 0.1095 7.1313
�4 1.1960 0.0012 0.1822 6.5654
�5 1.0495 -0.0075 0.1413 7.4269
�6 0.8219 0.0011 0.1179 6.9742
�7 1.4912 -0.0085 0.1973 7.5588
�8 0.5277 0.0108 0.0769 6.8653
�9 0.7915 0.0058 0.1113 7.1081
�1 0.4642 -0.0041 0.0326 14.2237
�2 2.0897 0.0028 0.0467 44.7560
�3 2.1318 -0.0018 0.0462 46.1350
�4 4.5001 -0.0002 0.0966 46.6022
�5 2.2828 0.0087 0.0514 44.4024
�6 2.6457 0.0004 0.0568 46.5429
�7 2.3685 0.0012 0.0560 42.2666
�8 1.7222 0.0075 0.0369 46.6931
�9 2.3531 -0.0056 0.0506 46.4712
Qt 1.4182 -0.0062 0.1862 7.6187
P0 0.9001 0.0000 2.8521 -0.3156
M0 0.9004 0.0054 0.0524 17.1845
cM -0.0057 -0.0029 0.0093 -0.6142

Table 8: Statistics for common latent factors in asset returns
France USA

Mean 0.0428 0.0513
Stand. Dev. 0.8482 0.0397
Skewness -0.2569 -0.3396

Excess kurtosis 1.2001 3.2187
Min. -3.4021 -8.1372
Max. 3.7927 5.5226
Median 0.0549 0.0659

1st quartile� -0.4300 -0.7245
3rd quartile� 0.5862 0.8474
* Upper bound of the quartile.
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Table 9: Correlations of common latent factors with asset returns
France USA

i Kendall�s Tau Spearman�s Rho Kendall�s Tau Spearman�s Rho
1 1.0000 1.0000 0.8543 0.9690
2 0.3024 0.4320 0.4218 0.5892
3 0.5017 0.6830 0.3438 0.4878
4 0.4347 0.6046 0.2336 0.3370
5 0.3322 0.4724 0.4087 0.5758
6 0.4293 0.5905 0.2933 0.4212
7 0.2832 0.4100 0.4977 0.6828
8 0.3093 0.4451 0.2962 0.4286
9 0.3450 0.4895 0.3333 0.4730

two market factors. Indeed, the US market factor return exhibits fatter tails
as well as bigger variation bounds (i.e., extreme values) than the French one.
As expected, non-linear correlation coe¢ cients between common latent fac-
tors and related asset returns are positive. Strikingly, we notice a perfect
correlation between the French market factor return and SBF120 stock in-
dex return. Analogously, the US market factor return is highly correlated
with the DJIA return. At a �rst glance, we conclude that SBF120 French
stock index captures the common latent component inherent to the French
�nancial market in terms of market risk changes (see Gatfaoui [2005]). Dif-
ferently, though the high previous correlation coe¢ cients, the DJIA US stock
index does not capture the whole of market risk changes that are peculiar
to the US �nancial market. Moreover, we attempt to assess the e¢ ciency of
the systematic risk factor while explaining stock return evolutions. For this
purpose, we realize a set of regressions that are introduced in the appendix
(see tables 18 and 19). Results exhibit the general ine¢ ciency of the US sys-
tematic risk factor except for AT & T stock return. Namely, the systematic
risk factor encompasses the whole information describing the evolution of AT
& T stock return. However, such a market factor is generally insu¢ cient to
explain the whole evolution of US stock returns, underlining then the signi�-
cance of the idiosyncratic (i.e., unsystematic) risk component (see Campbell
et al. [2001]). Analogously, the French market risk factor is ine¢ cient, and
fails to explain the whole evolution of French asset returns. Further investi-
gation while comparing French and US �nancial markets requires to consider
all asset returns on the same date scale. Such an investigation is undertaken
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in the next section.

5 Further investigation

We consider returns on a percentage basis, and on the same date scale
(i.e., after adjusting for non-working days in both French and US countries).
First, we display all the statistic pro�les on the new time scale. Second, we
attempt to extract some common component from the latent common factors
inherent to the French and US markets. Finally, we describe brie�y the link
between this new global common component, and both the French and US
market factor ones.

5.1 Statistical pro�les

Estimating again our state-space model over the same time scale (and on
each market separately) leads to the estimates, which are displayed in tables
(11) and (10) with P Francet = 2:9461 � 10�12 and PUSt = 0:3615 whatever
time t.

Adjusting for non-working dates in both countries changes slightly our pre-
vious estimate results.10 We have globally the same behavior as the results
introduced in the previous section except for some speci�c details. First,
among high beta coe¢ cients, only Merrill Lynch asset return�s beta remains
above unity, amplifying then market movements. Second, the initial state
of the US market factor M0 is no more signi�cant while cM coe¢ cient be-
comes signi�cant here. Moreover, Qt variance is higher than previously (i.e.,
a 46.56% increase).
In the French case, though coe¢ cient estimates changes slightly in level, the
same conclusions as in the previous section apply. Namely, all asset returns
amplify signi�cantly market movements.

We obtain the following statistical pro�le for the common latent factor
Mt peculiar to each �nancial market under consideration (see table 12).

10Removing some data is equivalent to remove some information, and such a loss of
information impacts slightly our results.
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Table 10: Kalman estimates for US asset returns
Parameters Estimate Gradient Std. Dev. T-Student

�1 0.6019 -0.0001 0.0466 12.9205
�2 0.7909 -0.0024 0.0634 12.4727
�3 0.5944 -0.0096 0.0533 11.1424
�4 0.9268 0.0009 0.0937 9.8957
�5 0.7791 0.0091 0.0472 16.4934
�6 0.6180 0.0116 0.0367 16.8373
�7 1.1459 -0.0070 0.0848 13.5077
�8 0.4012 0.0010 0.0405 9.9033
�9 0.6117 -0.0002 0.0592 10.3301
�1 0.4601 0.0008 0.0345 13.3241
�2 2.1203 -0.0020 0.0478 44.3131
�3 2.1634 -0.0008 0.0476 45.4959
�4 2.2991 0.0010 0.0994 45.9180
�5 4.5650 0.0048 0.0523 43.9870
�6 2.6583 -0.0028 0.0580 45.8704
�7 2.3959 0.0028 0.0576 41.6293
�8 1.7401 -0.0048 0.0377 46.1082
�9 2.3793 0.0035 0.0521 45.6791
Qt 1.8838 -0.0008 0.1344 14.0128
P0 0.5004 0.0000 16.5527 0.0302
M0 0.5005 0.0023 19.4252 0.0258
cM -0.0033 0.0057 0.0009 -3.6362
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Table 11: Kalman estimates for French asset returns
Parameters Estimate Gradient Std. Dev. T-Student

�10 1.6604 0.0082 0.4308 3.8542
�11 1.4138 0.0018 0.3768 3.7524
�12 2.9518 -0.0063 0.7780 3.7938
�13 1.5750 -0.0018 0.4169 3.7782
�14 1.8353 0.0043 0.4835 3.7963
�15 1.8058 -0.0066 0.4700 3.8417
�16 1.2540 0.0033 0.3208 3.9090
�17 1.3712 0.0015 0.3587 3.8230
�18 1.4985 0.0038 0.3971 3.7736
�10 0.0000 -0.0005 0.0198 -0.0001
�11 2.1644 -0.0011 0.0460 47.0964
�12 2.8350 -0.0028 0.0602 47.0895
�13 2.1382 0.0029 0.0454 47.1005
�14 2.6103 0.0011 0.0554 47.1075
�15 1.9252 0.0002 0.0409 47.0702
�16 2.1233 0.0006 0.0451 47.0818
�17 2.0347 0.0005 0.0432 47.1166
�18 2.9125 0.0006 0.0618 47.1101
Qt 0.8110 -0.0015 0.2107 3.8495
P0 0.7106 0.0051 1.6835 0.4221
M0 8.8777 0.0000 12.2015 0.7276
cM 0.0687 -0.0003 0.0312 2.2009
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Table 12: Statistics for common latent factors in asset returns (same time
scale)

France USA
Mean 0,0414 0,0691

Stand. Dev. 0,8125 1,7848
Skewness -0,1951 -0,3436

Excess kurtosis 1,1508 3,0918
Min. -3,2123 -10,7063
Max. 3,5810 7,2395
Median 0,0494 0,0829

1st quartile� -0,4206 -0,9741
3rd quartile� 0,5546 1,1309
* Upper bound of the quartile.

The same conclusions as the former section apply here. Brie�y, common
latent French and US market factors are leptokurtic, the US market factor
being more left-asymmetric and having fatter tails than the French one. As a
rough guide, we also translate these results into graphs while plotting related
histograms as well as related Gaussian distributions (i.e., Normal densities
with corresponding moments of French and US market factor returns).

Previous histograms exhibit the higher impact of losses in both French and
US �nancial markets (i.e., higher negative returns in absolute value as com-
pared to their positive counterparts). The magnitude of observed losses (i.e.,
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Table 13: Correlations of common latent factors with asset returns (same
time scale)

France USA
Return i Kendall�s Tau Spearman�s Rho Kendall�s Tau Spearman�s Rho

1 1.0000 1.0000 0.8611 0.9720
2 0.3012 0.4295 0.4183 0.5856
3 0.5007 0.6810 0.3447 0.4879
4 0.4364 0.6067 0.2366 0.3415
5 0.3304 0.4697 0.4030 0.5681
6 0.4302 0.5921 0.2937 0.4216
7 0.2886 0.4180 0.4971 0.6818
8 0.3059 0.4406 0.2941 0.4252
9 0.3424 0.4850 0.3388 0.4806

absolute value of negative market factor returns) is higher for the US �-
nancial market. The same conclusion holds for the magnitude of observed
positive market returns. To get a view about the link between market factors
and corresponding asset returns, we consider related non-linear correlation
coe¢ cients (see table 13).

As expected, we get the same results as in the previous section. Namely,
correlation coe¢ cients are all positive, and mean that asset returns are mar-
ket driven whatever the �nancial market under consideration (see Campbell
et al. [2001]). For further investigation, we focus on a potential common
component in both French and US common latent factors (i.e., French and
US market factors).

5.2 Systemic component

We ask the question of how to characterize some potential link prevail-
ing between French and US �nancial markets. Speci�cally, we look for a
relationship between French and US common latent factors. As a �rst step,
we consider their Kendall and Spearman correlation coe¢ cients, which are
respectively � = 0:2834 and � = 0:4053. Hence, we exhibit clearly some
positive link between these two components. Therefore, at a systemic level
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Table 14: Kalman estimates for systemic component in asset returns

Parameters Estimate Gradient Std. Dev. T-Student
b1 2.3888 0.0157 0.6710 3.5602
b2 1.2464 0.0155 0.3551 3.5098
�1 1.4249 -0.0065 0.0620 22.9762
�2 0.5884 0.0111 0.0377 15.6252
Qt 0.4391 -0.0317 0.1166 3.7654
P0 1.0150 0.0621 0.0898 0.0001
B0 3.2020 -0.0173 2.8342 1.1298
cB 0.2160 0.0301 0.0466 4.6308

of consideration, we attempt to extract a common component in French and
US market factors. Such a component may result from business cycle ef-
fect, macroeconomic risk or �nancial integration e¤ect on these two �nancial
markets for example. To this end, we assume that:

MUS
t = b1Bt + e

1
t (22)

MFrance
t = b2Bt + e

2
t (23)

Bt = cBBt�1 + �t (24)

whereBt is the systemic component (i.e., a component common to French and
US �nancial markets); MFrance

t and MUS
t are French and US market factors;

(eit), �t and cB as in the previous section. The state-space formulation of
such a speci�cation is then:�

MUS
t

MFrance
t

�
=

�
b1
b2

�
�Bt +

�
e1t
e2t

�
(25)

Bt = cBBt�1 + �t (26)

with N = 2, k = g = 1. Recall that we only observe market factors MFrance
t

andMUS
t from which we try to infer a common systemic component Bt (i.e.,

unobserved state variable). The related estimates we get while applying a
Kalman methodology are displayed in table 14 with Pt = 0:0808.
As expected from correlation coe¢ cients, estimates exhibit a positive link
between systemic factor and both French and US market factor returns.
Moreover, coe¢ cient cB is positive and signi�cant. In the same way, variance

21



Table 15: Statistics for systemic factor in asset returns

Bt
Mean 0.0207

Stand. Dev. 0.3488
Skewness -0.3636

Excess kurtosis 1.3965
Min. -1.5214
Max. 1.1667
Median 0.0326

1st quartile -0.1761
3rd quartile 0.2323

Table 16: Correlations of market and systemic factor returns

Market return Kendall�s Tau Spearman�s Rho
MUS
t 0.5560 0.7405

MFrance
t 0.7185 0.8902

parameter Qt is signi�cant. Finally, the statistical pro�le of the systemic
component is summarized in table 15.
Analogously to French and US market factors, the systemic factor exhibits
non-normal and asymmetric features. Speci�cally, this component is left-
skewed and exhibits fatter tails than the Normal probability distribution.
Systemic skewness is higher than market skewness both in France and USA.
However, systemic kurtosis lies between French and US ones. Finally, we
end our study with a quick statistical pro�le of the obtained systemic factor.
Indeed, a brief correlation analysis is displayed in table 16. Then, we plot
the related histogram.
As expected, the correlation coe¢ cients we get exhibit a positive and strong
link between systemic factor and both French and US market factors. Hence,
French and US �nancial markets tend to evolve in the same direction (i.e.,
same structural changes). However, the French market is more sensitive to
structural changes than the US one (i.e., higher correlation with the systemic
component).
The previous histogram illustrates clearly the statistical pro�le of systemic
factor return. As a rough guide, we also plot the corresponding Gaussian dis-
tribution function. Namely, the probability distribution of the systemic factor
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return is obviously non-normal, fat-tailed as well as left-skewed. Indeed, the
magnitude of negative systemic returns is higher than the magnitude of their
positive counterparts.

6 Concluding remarks

In this paper, we investigate the existence of a common latent compo-
nent in asset returns. Our study concerns both the French and US �nancial
markets, and is undertaken in two steps.
First, given that we only observe asset returns, we resort to Kalman �l-

tering methodology to infer some knowledge about the unobservable French
and US market factors. This estimation method requires to translate our
investigation into a state-space representation. The results we get are pow-
erful in the sense that we �nd strong evidence of a common latent factor in
both �nancial markets. Moreover, such factors exhibit tail and asymmetric
features analogously to their related respective asset returns.
Second, we further investigate a potential link or a potential common

component in our two market factors while considering a systemic level. For
this purpose, we resort again to Kalman �ltering method to infer knowl-
edge about the unobserved systemic component. Such an approach is useful
to capture macroeconomic e¤ects and economic as well as �nancial links
between countries. Our results are also strong here and exhibit a strong
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positive link between the systemic factor and both French and US market
factors. However, we chose a linear framework to undertake our study and
investigate potential common links between asset returns. Current markets
suggest the existence of non-linear link between asset returns. So, some ex-
tensions may be undertaken in the lens of non-linearity patterns, and could
perhaps lead to even stronger results.
Future research should therefore attempt to apply improved versions of

Kalman methodology. Indeed, extensions have been proposed to allow for
relaxing required initial conditions as well as to account for missing data
(see Rao [2001]). Moreover, given known non-linear market characteristics
(see Gourieroux & Jasiak [2001] among others), extended Kalman �lter (i.e.,
EKF) and iterated extended Kalman �lter (i.e., IEKF) allow for accounting
for non-linear system features (see Jaswinsky [1970], Maybeck [1979,1982],
Chui & Chen [1987], and Julier & Uhlmann [1998]).

7 Appendix

We expose here computational details as well as complementary expla-
nations and statistics.

7.1 Statistical pro�les

For example, table (17) presents the statistical pro�les of both French
and US stock returns on the same time scale.

7.2 E¢ ciency of French and US market factors

We assess here the e¢ ciency of the obtained systematic risk factors (i.e.,
market factors of risk) for each �nancial market under consideration. Namely,
we consider the following regression for each stock i, for each �nancial market,
and for time t in f1; :::; Tg:

Rit �Mt = �iMt + u
i
t (27)

where �i a constant regression coe¢ cient, and (uit) is a Gaussian noise.
Hence, testing for the e¢ ciency of the systematic risk factor consists of test-
ing whether �i is signi�cantly zero for each stock return. This is equivalent
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to test whether the market factor summarizes the whole information that de-
scribes asset return evolutions in each considered �nancial market. Related
results are displayed in tables 18 and 19.
We also performed the standard regressions of Rit onMt for each �nancial

market under consideration, and found good explanatory powers, and posi-
tive and highly signi�cant regression coe¢ cients for both �nancial markets.
These regression coe¢ cients are far below unity for stock returns, and close
or equal to unity for stock index returns. Moreover, the explanatory powers
indicate that systematic risk factors fail generally to explain the whole evo-
lution of asset returns (except for stock index returns). To spare space, we
do not report related results, which are available upon request of course.
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