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Abstract 

 In this paper we study the dependence structure of extreme realization of returns between 

seven Asian Pasific stock markets and the USA. Methodologically, we apply the Multivariate 

Extreme Value theory that best suits to the problem under investigation. The main advantage 

of this approach is that it generates dependence measures even if the multivariate Gaussian 

distribution does not apply, as the case is for the tails of the high frequency stock index 

returns distributions. The empirical evidence suggests that conventional Constant Conditional 

Correlation GARCH models (Bollerslev, 1990) produce very similar results not just 

quantitatively but qualitatively so, as a clustering analysis showed.  Dynamic Conditional 

Correlation GARCH models (Engle, 2002) are also estimated which produce substantially 

different results. 
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1.  Introduction 

It is empirically documented that in crisis periods the correlation index of emerging 

equity markets returns tends to rise and this is often invoked as an argument against the 

diversification benefits of investing in those markets. However, Boyer et.al. (1999), among 

others, argue that from a completely statistical perspective one would expect higher 

correlations during periods of high volatility and therefore the policy of splitting a dataset into 

sub-periods of interest can yield misleading results. A valid alternative procedure would be to 

employ models representative of the data generating process, which build in the possibility of 

structural changes (e.g. the regime switching models of Ang and Bekaert, 2002). Bekaert, 

Harvey and Ng (2003) follow a more structural approach that disassociates the notion of 

contagion from the increased correlation. In this framework contagion is defined as the excess 

correlation that is not explained by higher factor volatility. 

 Notwithstanding the difficulties surrounding the estimation of the correlation 

coefficient over crisis periods, a more critical issue appears to be the suitability of correlation 

as a dependence measure. This reservation stems from the fact that the Pearson correlation 

coefficient will represent the dependence measure between two variables only if the 

dependence structure is Gaussian over the whole distribution. This is however rather unlikely 

considering the distribution properties of high frequency stock market returns. Recently, a 

number of studies have implemented asymptotic results from the multivariate extreme value 

theory (MEVT) in order to estimate the conditional correlation of international equity returns. 

The attractive feature of the MEVT is that its results hold for a wide range of parametric 

distributions of returns and not only for the multivariate normal. Longin and Solnik (2001) 

model the multivariate distribution of positive and negative monthly return exceedances, 

which are linked to high values of corresponding thresholds, of the five largest stock markets. 

They conclude that the assumption of multivariate normality cannot be accepted (rejected) for 

large negative (positive) returns. The estimated correlation coefficients are always higher in 

the case of return exceedances for negative thresholds and they tend to increase with the 



absolute size of the threshold. Poon et. al. (2004) argue that traditional tests for asymptotic 

extremal dependence bias the results in favor of this hypothesis and they suggest an additional 

measure of extremal dependence for variables that are asymptotically independent. They 

apply the pair of dependence measures on daily data of five stock index returns of the largest 

stock markets and they conclude that the asymptotic dependence between the European 

countries (United Kingdom. Germany and France) has increased over time but that the 

asymptotic independence between Europe, United States and Japan best characterizes their 

stock markets behavior. 

 In this paper we apply the MEVT in order to estimate the dependence structure of 

extreme realizations of equity returns between mature (USA, Japan) and emerging Asian 

stock markets (Hong Kong, Taiwan, Malaysia, Indonesia, Singapore and Thailand). The 

results are compared to those obtained from two classes of MGARCH models: the constant 

conditional correlation (CCC) model proposed by Bollerslev (1990) and the dynamic 

conditional correlation (DCC) model by Engle (2002).  

The above testing methodology for the dependence structure stands in stark contrast 

to classical multivariate analysis which is performed jointly for the marginal distributions and 

the dependence structure by considering the complete covariance matrix (e.g. MGARCH 

models). So in the so-called copula approach we analyze separately the main diagonal 

elements (scatter measures) of the covariance matrix from the dependence structure contained 

in the off-diagonal elements that are “not contaminated” by the scatter parameters.  

 In the next section we offer a brief presentation of the copula methodology 

that allows the extraction of the dependence structure of a set of variables independently of 

the marginal distributions, which might refer to a wide class of models. Then the MEVT and 

the MGARCH approaches are applied on a rather popular in the relevant literature data set 

that comprises of daily stock market returns of most of the Far East Asian emerging capital 

markets. Moreover, we have also included the S&P 500 as well as the NiKkei 225 indices.  

Dependence measures are estimated for all possible pairs of series and the results are 

discussed in the third part of the paper. The main evidence is that the dependence measures 



from the MEVT for negative returns (long positions) are marginally higher than those 

obtained from MGARCH models.  In order to facilitate the classification of the pairs of 

countries into different zones of dependence we have applied a clustering analysis that shows 

that the different estimation techniques are not critical if one wishes to classify each stock 

market according to its degree of dependence on the other markets.    

 

2.    Parametric estimation of the dependence structure of multivariate extremes 

Copulas, or dependence functions, represent a way of trying to extract the dependence 

structure from the joint distribution. This is being accomplished by separating the joint 

distribution into a part that describes the dependence structure and a part that describes the 

marginal behavior only. Let us consider a q-dimensional vector of random returns denoted by 

t
q

t YYYY ),...,( 21=  with marginal distributions qFF ,...,1 . The joint distribution function C  

of t
qq YFYF ))(),...(( 11 is then called the copula of the random vector t

q
t YYYY ),...,( 21= .  It 

follows then that: 
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where iii yuy +=* and iy  refers to the exceedance of iY over the threshold  iu .  

Once the problem is to study the dependence structure of extreme returns, the 

multivariate return exceedances distribution must be defined. As with the univariate case the 

exact distribution is not exactly known and therefore we have to consider asymptotic results. 

The possible limit non-degenerate distribution however must satisfy two properties; first, the 

fat-tails feature of univariate returns and second the empirical regularity that correlations rise 

at crisis periods. The first property is satisfied by the Generalized Pareto Distribution (GPD) 

function that is given by 
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where ξ is the tail index, 0>σ  the scale parameter and the support is 0≥y when 0>ξ  

and )/(0 ξσ−<< y  when 0<ξ . Essentially all the common continuous distributions of 

statistics belong in this class of distributions. For example the case 0>ξ  corresponds to 

heavy tailed distributions such as the Pareto and Student-t. The case 0=ξ  corresponds to 

distributions like the normal or the lognormal whose tails decay exponentially. The short-

tailed distributions with a finite endpoint such as the uniform or beta correspond to the 

case 0<ξ . 

The second property is satisfied by the logistic model in the bivariate extreme value 

family that is given by: 
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(Poon et. al.  (2004), Longin and Solnik (2001)). In order to disassociate the correlation 

structure from the marginal distributions the bivariate return exceedances have been 

transformed to unit Fréchet margins  
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is the GPD of exceedance iy . The asymptotic dependence of (S,T)  is defined 

by: 
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where 10 ≤≤ χ , and the two variables are termed asymptotically dependent if 0≥χ  and 

asymptotically independent if .0=χ  The relationship between the coefficient α , of eq. (3), 

and χ  is given by αχ 22 −=  so when the variables are exactly independent 0=χ and 

1=α  while when 1pα the variables are asymptotically dependent to a degree depending on 

α .  



Once we have chosen the thresholds, the bivariate distribution of return exceedances 

is described by seven parameters: the two tail probabilities, the dispersion parameters, the tail 

indexes of each variable, and the dependence parameter of the logistic function. The 

parameters of the model are estimated by the maximum likelihood method. In the bivariate 

case, the correlation coefficient of extremes is related to the coefficient of dependence by 

(Tiago de Oliveira, 1973; Longin and Solnik,  2001): 

21 αρ −=  .         (4) 

In order to investigate the empirical implications of those two different testing 

philosophies we have also chosen to estimate the correlation indices from multivariate 

volatility models. The first model we estimate is the one suggested by Bollerslev (1990) that 

handles the high dimensionality of the parameter space of the variance – covariance matrix by 

adopting the assumption of constant contemporaneous correlations (CCC).  In the CCC 

GARCH specification the conditional variance matrix is specified as ttt RDDH ≡ , where H t 

takes the form: 
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For the bivariate GARCH(1,1) case the CCC model contains only 7 parameters 

compared to 21 encountered in the full model and the positive definiteness of the variance – 

covariance matrix is easily satisfied ( 1<ρ ). In this framework the asymmetric behavior of 

the conditional covariances in bull and bear markets is guaranteed by the proper 

parameterization of the conditional variances.  

The assumption that the conditional correlations are constant may seem unrealistic in 

many empirical applications like the dependence of international equity returns. Engle (2002) 

extends the CCC estimator by allowing the conditional correlations to be time varying, that is 

the conditional variance is ttt RDDH ≡ . The dynamic conditional estimator (DCC) is 

obtained in two stages. In the first stage the univariate GARCH models are estimated for each 



return series. The standardized residuals from the first stage, )/( *
tt hYn τ= , which are 

assumed to be n.i.d. with a mean zero (Y*)  and a variance Rt, , are used in the second stage in 

the estimation of the correlation parameters. The correlation structure R is also the correlation 

of the original data and is given by 1*1* −−= tttt QQQR , where the covariance matrix Q is 

specified by a GARCH process as below: 

1
'

11 )()1( −−− ++−−= tttt QnnSQ βαβα .      (6) 

Q the unconditional covariance matrix is calculated as a weighted average of S the 

unconditional covariance of the standardized residuals, a lagged function of the standardized 

residuals and the past realization of the conditional variance.  Q* is a diagonal matrix whose 

elements are the square root of the diagonal elements of Q (Engle, 2002). 

 

 3.    Empirical evidence 

 We have applied the 3 competing models on a data set consisting of daily returns of 

the following equity indices: S&P 500 Composite (USA), Nikkei 255 Stock Average (Japan),  

Hang Seng Price Index (Hong Kong), the Stock Exchange Weighted Price Index of Taiwan,  

KLCI Composite Price Index (Malaysia), the Jakarta Stock Exchange Composite Price Index 

(Indonesia), the Straits Times (New) Price Index (Singapore), The  SET 100 Basic Industries 

Index (Thailand). The data cover the period 5/1/87 – 31/12/04. Estimates of the dependence 

coefficient have been obtained over two subperiods, 5/1/87-5/3/01 and 2/11/90 – 31/12/04, 

with the purpose to check the sensitivity of our estimates on the inclusion or not of the 

turbulent period surrounding the October 1987 stock exchange crisis.  

 The MEVT is applied on the exceedances of the return series from high enough, 

positive or negative, thresholds (Peak over Threshold, POT, method). The choice of the 

threshold is of critical importance and various methods have been proposed that range from 

visual inspection of the mean excess function to bootstrapping techniques (Danielsson and 

deVries, 1997). In order to estimate the threshold, u , for the POT method we follow Neftci 



(2000) according to whom nu σ176.1= . nσ  is the standard deviation of ( )n
ttY 1=  and 

2)/ν(ν1.44(0.10)1.176 1
t −== −F  when a Student-t (ν=6) distribution, F , is being 

assumed that is the excesses over the threshold belong to the 10% tails.  

 In table 1 we present the estimates of the tail index of equation (2), ξ, for the 

individual time series. The evidence suggests that we cannot reject the Gaussian distribution 

for the stock index returns of Japan and Taiwan while the same applies for the USA index 

when the October 1987 crisis is excluded. For the remaining Far East Asian markets the 

existence of fat tails for both positive and negative excess returns cannot be excluded. In table 

(2) we present the correlation coefficients from the MEVT and the two GARCH models. In 

both the CCC and the DCC models we allow for asymmetric behavior of the univariate 

GARCH processes by incorporating the Glosten et. al. (1993) GARCH model.   We conclude 

that the estimated extreme correlation coefficients of negative returns (long positions) are 

always higher than those for the extreme positive returns. The estimates of the extreme 

correlations of negative returns are higher than those obtained from the multivariate GARCH 

models and the unconditional estimate, although the differences are rather marginal.  

 In order to classify the various pairs of capital markets into different groups according 

to the estimated dependence measures, we apply a clustering analysis that assigns each 

estimate to the cluster having the nearest mean. K-means is one of the simplest unsupervised 

learning algorithms that solve the well known clustering problem. The procedure follows a 

simple and easy way to classify a given data set through a certain number of clusters (assume 

k clusters) fixed a priori. The main idea is to define k centroids, one for each cluster. Group 

membership is determined by calculating the centroid for each group (the multidimensional 

version of the mean) and assigning each observation to the group with the closest centroid, 

(MacQueen, 1967). The evidence appears in table 3. The main result is that the classification 

of the estimated correlations into low, medium and high dependence groups is very similar 

between the MEVT and the CCC estimates independently of the estimation period. The DCC 

correlation estimates are more sensitive, as expected, to the last observation included in the 



sample and this accounts for the different classification of the pairs of countries that is 

produced. Finally, the classification of the correlation coefficients of extreme positive returns 

and those of extreme negative returns are very similar.  



 

 

4. Concluding remarks 
 
 
 In this paper we studied the dependence structure of extreme realization of returns 

between seven Far East Asian stock markets and the USA. Methodologically, we applied the 

Multivariate Extreme Value theory that best suits to the problem under investigation. The 

main advantage of this approach is that it generates dependence measures even if the 

multivariate Gaussian distribution does not apply, as the case is for the tails of the high 

frequency stock index returns distributions. The empirical evidence suggests that 

conventional Constant Conditional Correlation GARCH models produce very similar results 

not just quantitatively but qualitatively so according to the clustering analysis that was 

applied.   
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Table 1: EVT Parameters 
 

 
 
 
Notation: Long (short) refers to negative (positive) returns.  Standard errors in parentheses. 
 
Total In-sample Period observations: 3696 (~15 years) 
 
Data Source: 
 
Japan: Nikkei 255 Stock Average 
USA: S&P 500 Composite 
Hong Kong: Hang Seng Price Index 
Taiwan: Stock Exchange Weighted Price Index  
Malaysia: KLCI Composite Price Index 
Indonesia: Jakarta Stock Exchange Composite Price Index 
Singapore: Straits Times (New) Price Index  
Thailand: SET 100 Basic Industries Index  
 
 
 
 
 

ξ (Tail Index) σ (scale parameter) u (threshold) Parameter 
Long Short Long Short Long Short Long Short Long Short Long Short 

In-sample 
Period 5/1/87 - 5/3/01 2/11/90 - 31/12/04 5/1/87 - 5/3/01 2/11/90 - 31/12/04 5/1/87 - 5/3/01 2/11/90 - 31/12/04 

Japan 0.069 
(0.046) 

0.150 
(0.065) 

-0.037 
(0.047) 

0.071 
(0.058) 0.009  0.009  0.009  0.009  0.016 0.016 0.017 0.017 

USA 0.245 
(0.063) 

0.126 
(0.064) 

0.055 
(0.052) 

0.082 
(0.059) 0.006 ( 0.006  0.007  0.006  0.012 0.012 0.012 0.012 

Hong Kong 0.325 
(0.078) 

0.243 
(0.083) 

0.128 
(0.062) 

0.180 
(0.061) 0.011  0.010  0.011  0.009  0.022 0.022 0.019 0.019 

Taiwan -0.172 
(0.047) 

0.046 
(0.060) 

0.009 
(0.063) 

0.030 
(0.053) 0.019  0.013  0.013  0.013  0.025 0.025 0.021 0.021 

Malaysia 0.265 
(0.075) 

0.411 
(0.092) 

0.206 
(0.073) 

0.338 
(0.084) 0.012  0.009  0.011  0.010  0.020 0.020 0.018 0.018 

Indonesia 0.275 
(0.095) 

0.427 
(0.109) 

0.183 
(0.074) 

0.174 
(0.074) 0.012  0.013  0.011  0.011  0.021 0.021 0.018 0.018 

Singapore 0.355 
(0.084) 

0.266 
(0.079) 

0.189 
(0.068) 

0.231 
(0.067) 0.008  0.008  0.008  0.007  0.017 0.017 0.015 0.015 

Thailand 0.116 
(0.071) 

0.190 
(0.072) 

0.151 
(0.069) 

0.283 
(0.078) 0.016  0.017  0.013  0.014  0.026 0.026 0.025 0.025 



 
Table 2: Correlation Estimates  

 

 
 
 
Notation:  POT = Peaks over Threshold methods for the generation of the extreme 
observations. CCC= constant conditional correlation method. DCC=Dynamic 
conditional correlation method. GJR= Glosten, L., R. Jaganathan and D. Runkle, 
(1993). Other notation as in table 1. 
 
 
 
 
 
 
 
 
 

MEVT (POT) MVGARCH 
Bivariate Model 

Long Short Long Short DCC(GJR) CCC(GJR) DCC(GJR) CCC(GJR) 
UNCONDITIONAL 

In-sample Period 5/1/87 - 5/3/01 2/11/90 - 31/12/04 5/1/87 - 5/3/01 2/11/90 - 31/12/04 5/1/87 - 5/3/01 2/11/90 - 31/12/04 

Japan – USA 0.320 0.279 0.320 0.312 0.252 0.279 0.176 0.292 0.318 0.293 
Japan – Hong Kong 0.338 0.286 0.356 0.313 0.880 0.288 0.133 0.349 0.295 0.348 
Japan – Taiwan 0.236 0.195 0.236 0.248 0.186 0.115 0.180 0.191 0.136 0.186 
Japan – Malaysia 0.328 0.247 0.257 0.222 0.210 0.241 0.147 0.230 0.255 0.195 
Japan – Indonesia 0.176 0.176 0.219 0.217 0.096 0.093 0.170 0.167 0.086 0.175 
Japan – Singapore 0.361 0.313 0.375 0.309 0.376 0.283 0.365 0.318 0.357 0.329 
Japan – Thailand 0.237 0.199 0.218 0.222 0.205 0.134 0.144 0.125 0.149 0.152 
USA – Hong Kong 0.313 0.373 0.321 0.390 0.162 0.350 0.212 0.374 0.293 0.367 
USA – Taiwan 0.222 0.222 0.232 0.252 0.314 0.131 0.298 0.180 0.142 0.199 
USA – Malaysia 0.300 0.271 0.239 0.213 0.283 0.287 0.157 0.229 0.326 0.220 
USA – Indonesia 0.221 0.159 0.265 0.216 0.119 0.123 0.161 0.164 0.113 0.180 
USA – Singapore 0.418 0.338 0.393 0.306 0.291 0.372 0.207 0.326 0.480 0.335 
USA – Thailand 0.261 0.237 0.237 0.235 0.265 0.197 0.176 0.167 0.210 0.188 
Hong Kong – Taiwan 0.198 0.195 0.256 0.266 0.326 0.134 0.210 0.233 0.126 0.220 
Hong Kong – Malaysia 0.452 0.337 0.423 0.324 0.308 0.378 0.356 0.336 0.370 0.357 
Hong Kong – Indonesia 0.288 0.231 0.350 0.262 0.158 0.174 0.236 0.248 0.191 0.304 
Hong Kong – Singapore 0.583 0.499 0.598 0.504 0.640 0.496 0.395 0.525 0.507 0.601 
Hong Kong – Thailand 0.324 0.321 0.329 0.326 0.279 0.258 0.269 0.247 0.279 0.296 
Taiwan – Malaysia 0.199 0.181 0.198 0.163 0.175 0.105 0.152 0.143 0.127 0.142 
Taiwan – Indonesia 0.135 0.128 0.210 0.199 0.043 0.070 0.133 0.131 0.035 0.136 
Taiwan – Singapore 0.243 0.213 0.286 0.267 0.543 0.140 0.209 0.228 0.163 0.233 
Taiwan – Thailand 0.199 0.192 0.232 0.208 0.156 0.115 0.137 0.110 0.138 0.144 
Indonesia – Malaysia 0.350 0.243 0.365 0.266 0.125 0.175 0.162 0.248 0.174 0.254 
Indonesia – Singapore 0.362 0.314 0.425 0.337 0.053 0.213 0.204 0.300 0.232 0.371 
Indonesia – Thailand 0.276 0.248 0.344 0.278 0.161 0.165 0.202 0.204 0.198 0.292 
Malaysia – Singapore 0.619 0.500 0.491 0.393 0.501 0.575 0.337 0.445 0.563 0.432 
Malaysia – Thailand 0.319 0.293 0.327 0.298 0.250 0.257 0.240 0.231 0.275 0.268 
Singapore - Thailand 0.404 0.324 0.396 0.347 0.317 0.315 0.294 0.279 0.351 0.365 



 
Table 3: Correlation K-Means Clustering  

 

 
 

K-Means Centers 

 
Notation: 1,2,3 refer to the classification to low, medium and high correlation. 
 
 
 
 

EVT (POT) MVGARCH 
Bivariate Model 

Long Short Long Short DCC(GJR) CCC(GJR) DCC(GJR) CCC(GJR) 
UNCONDITIONAL 

In-sample Period 5/1/87 - 5/3/01 2/11/90 - 31/12/04 5/1/87 - 5/3/01 2/11/90 - 31/12/04 5/1/87 - 5/3/01 2/11/90 - 31/12/04 

Japan – USA 2 2 2 2 1 2 1 2 2 2 
Japan – Hong Kong 2 2 2 2 3 2 1 2 2 2 
Japan – Taiwan 1 1 1 1 1 1 1 1 1 1 
Japan – Malaysia 2 1 1 1 1 2 1 2 2 1 
Japan – Indonesia 1 1 1 1 1 1 1 1 1 1 
Japan – Singapore 2 2 2 2 2 2 3 2 2 2 
Japan – Thailand 1 1 1 1 1 1 1 1 1 1 
USA – Hong Kong 2 2 2 2 1 2 2 3 2 2 
USA – Taiwan 1 1 1 1 1 1 3 1 1 1 
USA – Malaysia 2 2 1 1 1 2 1 2 2 1 
USA – Indonesia 1 1 1 1 1 1 1 1 1 1 
USA – Singapore 2 2 2 2 1 2 2 2 3 2 
USA – Thailand 1 1 1 1 1 1 1 1 1 1 
Hong Kong – Taiwan 1 1 1 1 1 1 2 2 1 1 
Hong Kong – Malaysia 2 2 2 2 1 2 3 2 2 2 
Hong Kong – Indonesia 2 1 2 1 1 1 2 2 1 2 
Hong Kong – Singapore 3 3 3 3 2 3 3 3 3 3 
Hong Kong – Thailand 2 2 2 2 1 2 2 2 2 2 
Taiwan – Malaysia 1 1 1 1 1 1 1 1 1 1 
Taiwan – Indonesia 1 1 1 1 1 1 1 1 1 1 
Taiwan – Singapore 1 1 1 1 2 1 2 2 1 1 
Taiwan – Thailand 1 1 1 1 1 1 1 1 1 1 
Indonesia – Malaysia 2 1 2 1 1 1 1 2 1 1 
Indonesia – Singapore 2 2 2 2 1 1 2 2 2 2 
Indonesia – Thailand 1 1 2 1 1 1 2 1 1 2 
Malaysia – Singapore 3 3 3 2 2 3 3 3 3 2 
Malaysia – Thailand 2 2 2 2 1 2 2 2 2 2 
Singapore - Thailand 2 2 2 2 1 2 3 2 2 2 

EVT (POT) MVGARCH 
K-Groups 

Long Short Long Short DCC(GJR) CCC(GJR) DCC(GJR) CCC(GJR) 
UNCONDITIONAL 

In-sample Period 5/1/87 - 5/3/01 2/11/90 - 31/12/04 5/1/87 - 5/3/01 2/11/90 - 31/12/04 5/1/87 - 5/3/01 2/11/90 - 31/12/04 

G1 : Low Correlation 0.217 0.204 0.237 0.233 0.206 0.139 0.156 0.158 0.142 0.187 
G2 : Medium Correlation 0.348 0.313 0.363 0.332 0.515 0.301 0.221 0.273 0.305 0.335 
G3 : High Correlation 0.601 0.499 0.544 0.504 0.880 0.535 0.341 0.448 0.517 0.601 


