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OPTIMAL BENCHMARKING FOR ACTIVE PORTFOLIO MANAGERS 

UNDER LINEAR OR AFFINE COMPENSATION SCHEMES 

 

 

Abstract 

 

Within an agency theoretic framework adapted to the portfolio delegation issue, we 

show how to construct optimal benchmarks. In accordance with U.S. regulations, 

the benchmark-adjusted compensation scheme is taken to be symmetric. The 

investor’s only control is to force the manager to adopt the appropriate benchmark. 

Solving simultaneously the manager’s and the investor’s dynamic optimization 

programs in a fairly general framework, we characterize the optimal benchmark. 

We then provide explicit solutions when the investor’s and the manager’s utility 

functions exhibit different CRRA parameters. We find that, even under optimal 

benchmarking, it is never optimal for the manager, and therefore for the investor, to 

follow exactly the benchmark, except in a very restrictive case. We finally assess 

by simulation the practical importance, in particular in terms of the investor’s 

welfare, of selecting a sub-optimal benchmark. 

 

 

Keywords: Benchmarking; Incentive Fees; Mutual Funds; Continuous Time 

Trading; Martingale Approach; Principal-Agent model. 
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I. INTRODUCTION 

 
The compensation of active portfolio managers most often depends on their 

performance relative to a benchmark, a practice that is sensible to the extent that their 

skill (or lack of it) is best measured when the performance of the market(s) they trade 

on is taken into account. Earning 7% in a given period by investing in US stocks has 

evidently not the same meaning and the same implications according to whether the 

S&P 500 index has increased by 15% or decreased by 6% over the same period. The 

spectacular growth of the managed funds industry in recent years has elicited extensive 

research on the various aspects of the delegated portfolio management issue1. One 

particular strand of research has been concerned with the appropriate benchmark-

adjusted compensation scheme that should be adopted. Within this literature, much 

attention has been devoted to the case where the part of the incentive fee that refers to 

the benchmark is symmetric, implying that a bonus is paid to the manager if the 

portfolio return exceeds that of the benchmark but a penalty is inflicted to him if the 

opposite occurs. This choice is essentially motivated by the regulation currently in force 

in the U.S. (Amendment to the Investment Advisors Act of 1940 passed by the 

Congress in 1970), as well as in many European countries, which prohibits mutual 

funds, pension funds and other publicly registered investment firms to use the 

asymmetric (bonus only) compensation scheme. Moreover, these institutions still 

represent the bulk of the delegated portfolio management industry, the recent success of 

hedge funds and other alternative management funds notwithstanding2. 

 

The literature relative to the optimal contract that should bind the principal (investor) 

and her agent (manager) addresses in general one of the following problems (detailed 

below): i) under what conditions is a linear or affine contract a first or a second best 

contract for the investor? ii) given that the contract is linear or affine, what  parameters 

make it a first or a second best contract ? In the first issue, the benchmark is found as 

part of the solution to the  principal's problem, while in the second issue it is 

exogenously given. 

 

                                                 
1 Over $4 trillion is presently invested in U.S. equity funds alone.  
2 Note that some of these funds charge a linear symmetric incentive fee, although convex, asymmetric, 
compensation schemes have become popular.  
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In this paper, we adopt yet a different approach. We take the linear or affine structure of 

the contract, and its parameters, as given. This choice is motivated by: (i) the US 

legislation referred to above; (ii) the fact that the literature has largely focused on linear 

contracts, which will allow for useful comparisons with our results; and (iii) tractability 

and economic interpretation of the results, considering that they will be shown to be 

already rather involved. Under this assumption, we examine the issue of what 

constitutes the optimal benchmark for the first best contract. As is well known, there is 

a trade off between  model generality (in particular regarding the assumed price 

dynamics for the traded assets and the relevant information structure) and tractable 

solutions. Adopting a setting that leads to a well defined second best contract, even not 

expressed in closed form, requires heroic assumptions that may blur the main message 

of the analysis. This is the reason why this paper is restricted to the study of first best 

contracts, the adopted setting being however fairly general.  

 

Our approach extends or complements the extant literature in four directions. 

1. While other studies did derive endogenous second best contracts under moral hazard 

and sometimes under adverse selection as well, they had to adopt very specific settings 

and assumptions (such as very specific processes for the traded asset prices, risk 

neutrality, control by the agent of only the drift of the value of the managed portfolio 

and not its volatility). By contrast, our analysis is fairly general as to the assumed utility 

functions and asset price dynamics. We allow for general Von Neuman-Morgenstern 

utility functions, as the CARA assumption is very restrictive and typically does not 

reflect actual investors’ behavior. When we specialize the model to a sub-class of utility 

functions to obtain some closed form results, we select the CRRA (constant relative 

risk aversion) family, which is admittedly restrictive but nevertheless less problematic 

on empirical grounds than choosing the CARA utility. In addition, and more 

importantly, the stochastic processes generating asset returns are not mere geometric 

Brownian motions but are general diffusion processes. Furthermore, the riskless interest 

rate is not constant but obeys also a fairly general stochastic process. We thus are in a 

position to introduce state variables that will influence the investment opportunity set, 

instead of assuming the latter constant. This generalization is important in that it helps 

justifying why the principal should delegate her portfolio decisions to a manager in the 

first place. Even if the real world exhibited such stability that the assumption of i.i.d. 

returns that underlies geometric Brownian motions was reasonable, and consequently 
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that inferences by investors as to future return characteristics were easy, some 

arguments could still be advanced that justify the employment of professional 

managers. For instance, one could invoke the agent’s lower transaction costs and the 

principal’s lack of time or desire for active management. Yet, the argument that 

managers may have access to superior information is much more convincing. Suppose 

that, for reasons we review in section II below, asset returns are partially predictable, an 

assumption that is precisely ruled out by modeling returns as simple Brownian motions. 

Then it seems realistic to assume that typical investors have neither the technology nor 

the skill to make use of sophisticated Bayesian optimizing methods that can exploit this 

predictability. If they believe that professional managers do have these capabilities, 

then delegation makes more sense. In a way, we can think of markets being complete 

for managers but incomplete for investors, who then are willing to pay a fee to access 

truly optimal portfolios. Only is it necessary that the principal uses the appropriate 

benchmark so as she reaches her first best optimum. 

 

2. In the continuous time literature, almost always the manager controls only the drift of 

his action's objective. This is particularly restrictive in the case of portfolio delegation, 

since there exists a risk-return trade off that the manager controls. By contrast, the 

agent in our setting controls both the drift and the volatility of the managed portfolio 

value. 

 

3. Our solutions involve a well defined benchmark whose interpretation as a portfolio is 

straightforward and whose value is always non-negative. When the optimal contract 

structure is found endogenously, depending on the cost or effort function assumed for 

the manager, the benchmark may be difficult to interpret as a portfolio due to 

dimensionality problems3. Moreover, when the linear structure is taken as given, as 

here, nothing guarantees that the obtained parameters for the optimal incentive fee are 

reasonable from a practical viewpoint. Since our parameters are given, hence 

admissible by construction, our setting does not face this potential issue. 

 

4. Contrary to what is done in related work where the investor’s and the manager’s 

programs are not solved simultaneously, there is no need here to introduce a constraint 

                                                 
3 See for instance equation (9) in Ou-Yang (2003) defining the benchmark “portfolio”. 
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relative to the agent’s reservation utility in the investor’s program. To the extent that 

the manager predetermines the fee parameters (and knows which optimal benchmark 

will be imposed by the principal), he will set them to levels such that the present value 

of his global fee is compatible with his reservation utility. By contrast, when the 

optimal contract form is to be found endogenously, the present value of the manager’s 

fee is endogenous and therefore his reservation  level must be added as a constraint. 

This is true also when the contract form is assumed to be linear, the benchmark is 

exogenously given and the fee parameters are found endogenously as part of the 

optimal solution to the principal’s program. Since it is difficult to assess this reservation 

level with any degree of accuracy, not needing this parameter is a main advantage of 

our approach. 

 

We analyze two alternative benchmark-adjusted compensation schemes. The first has a 

“linear symmetric” form, according to which the manager will receive at termination of 

the contract a fee proportional to the value of the managed portfolio plus a positive or 

negative fee based upon the difference between the value of the managed portfolio and 

that of the benchmark.  The second scheme is “affine symmetric” in the sense that the 

agent receives a fixed dollar-amount plus a symmetric part as in the first scheme4. Our 

main results can be summarized as follows: 

 

(i) the optimal portfolio managed by the agent always differs from the optimal 

benchmark chosen by the principal (except in one special case mentioned below in (v)). 

Since we consider first best contracts, the agent’s behavior is nonetheless optimal.  

(ii) under the “linear symmetric” scheme, the managed portfolio can be split in two 

components, a speculative part that depends on the manager’s preferences but not on 

the principal’s, and a hedging part against the adverse fluctuations of the value of the 

benchmark imposed by the principal; 

(iii) under the “affine symmetric” scheme, the managed portfolio is more complicated 

as the two components above are intermingled and cannot be disentangled; in addition, 

due to the presence of a fixed fee, the value of this portfolio has an optional structure; 

                                                 
4 It is of course possible to nest the two schemes into a single one comprising three components, and then 
to specialize it to the two schemes presented here. No economic insight, however, is lost with our simpler 
presentation.  
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(iv) under both compensation schemes, the optimal benchmark is generally more 

involved than the managed portfolio, even in the “linear” case, but can however be 

expressed as a combination of the principal’s and the agent’s optimal wealth; in 

addition, intuitive conditions are provided that greatly simplify its structure; 

(v) when the investor’s and the manager’s utility functions are logarithmic, closed form 

solutions can be derived. Under both compensation schemes (with some minor 

restrictions on the fee parameters in the “affine symmetric” case), the managed 

portfolio is simply the optimum growth portfolio. The benchmark, however, depends 

on the compensation scheme. Only if the latter is “linear symmetric” does the 

benchmark perfectly match the managed portfolio. If it is “affine symmetric”, the 

benchmark differs from the optimum growth portfolio, and thus the managed portfolio; 

this is due to the non-negativity constraint that binds the managed portfolio in presence 

of a fixed fee; 

(vi) when the investor’s and the manager’s utility functions are iso-elastic, quasi-

explicit solutions are provided which show that, in all cases, the benchmark and the 

managed portfolios differ, and also differ from the optimum growth portfolio, in a very 

complex way, which reinforces the view that commonly observed benchmarks are sub-

optimal; 

(vii) simulations show that differences between commonly adopted benchmarks and 

optimal ones are substantial in many situations, which implies tangible welfare losses 

for the principal. 

 

The rest of the article is articulated as follows. Section II offers a brief review of the 

related literature on the delegated portfolio management and the asset return 

predictability issues. Section III presents the economic framework we adopt. Section IV 

analyzes the manager’s optimization problem under the two alternative benchmark-

adjusted compensation schemes (“linear symmetric” and “affine symmetric”). We then 

investigate in Section V the principal’s problem, which consists in choosing the optimal 

benchmark that she imposes upon the agent and maximizes the expected utility of her 

terminal wealth, under both compensation schemes. Section VI derives explicit 

solutions when the principal’s utility function and that of the agent both exhibit CRRA, 

in particular when they are logarithmic. Section VII assesses the practical importance of 

selecting an optimal benchmark for the principal by simulating the manager’s and the 

agent’s risk aversion coefficients and their optimal portfolios. Some concluding 
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remarks are offered in the last Section. Most mathematical proofs are gathered in the 

Appendix for readability. 

 

 

II. RELATED LITERATURE 

 

Following the early lead by Ross (1973) on the principal-agent issue, Holmström and 

Milgrom (1987), whose work was generalized by Schättler and Sung (1993) and Sung 

(1995), proved in continuous time that if the principal’s and agent’s utility functions 

exhibit constant absolute risk aversion (CARA) and the principal cannot observe the 

agent’s actions, linear contracts are optimal. Ou-Yang (2003)5 proves that the 

symmetric compensation scheme is efficient in a continuous time principal-agent 

framework where all processes are geometric Brownian motions, the investor does not 

observe the value of the managed portfolio continuously, and the manager has CARA 

utility. He provides closed form results either when the investor has also CARA utility 

and a rather general class of cost functions for the manager is used, or the investor is 

endowed with a general utility function but the manager’s cost function is a constant. 

Two recent contributions greatly extended this literature. Sung (2005) introduced in the 

standard Holmström and Milgrom (1987) adverse selection and also the possibility for 

the agent to control the volatility of the output of her actions. In a much more general 

stochastic environment, but assuming information is perfect, Cadenillas, Cvitanic and 

Zapatero (2006) prove that if the manager and the investor have the same CRRA 

coefficients, or possibly different CARA parameters, the optimal contract is (ex post) 

linear. If not, it is not linear and may be of a call type6. In this paper, as stated in the 

introduction, the principal takes the linear structure and the parameters of the 

compensation scheme as given but derives her optimal benchmark. 

 

Some authors, however, questioned the optimality of such linear contracts. For 

example, Admati and Pfleiderer (1997) have shown in a static (one period) framework 

                                                 
5 See Dybvig et al. (2001) for additional references to the literature before 2000. 
6 We do not discuss asymmetric compensation schemes, as they are forbidden by law for mutual funds. 
See Carpenter (2000) and Ross (2004) for insightful results on the way asymmetric fees impinge on 
managers’ willingness to take more risk. See also Hodder and Jackwerth (2004) for a numerical 
evaluation of realistic incentive contracts on hedge-fund performance, and a comparison of managerial 
risk shifting that arises in the frameworks of Carpenter (2000), Goetzmann, Ingersoll and Ross (2003) 
and Basak, Pavlova and Shapiro (2003). 
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that the use of a risky benchmark portfolio of the type commonly adopted in practice, 

such as an index fund, cannot be in general rationalized when a linear and symmetric 

contract binds the investor and the manager. Li and Zhou (2005) showed that, in 

general, an optimal contract is an increasing, nonlinear function of final wealth, the 

shape of which depends on the principal’s and the agent’s risk aversions, the state price 

density function and the agent’s reservation utility level.  

 

Another strand of literature assumes the contract structure (linear symmetric or 

asymmetric) given, and derives the optimal parameters of the contract. In Golec (1992) 

for instance, while the principal takes the linear structure of the compensation scheme 

and the benchmark as given (which then faces the Admati and Pfleiderer (1997) 

criticism), she optimizes the fee parameters. An explicit solution for the latter 

parameters are obtained when the optimization is performed in a purely static 

framework. A similar approach has been adopted by Starks (1987) where symmetric 

and asymmetric contracts are compared. The former contract is shown to dominate the 

latter in aligning the manager’s interest with that of the principal. In Kapur and 

Timmermann (2005), the agent has superior information and the investor chooses the 

parameters of the optimal contract subject to the manager’s participation constraint.  

 

All the previously quoted papers take the manager’s reservation level as given. In 

particular, Kapur and Timmermann (2005) showed that whether the participation 

constraint is binding or not is crucial for the qualitative impact of performance fees on 

the capital market equilibrium. Here, we take the fee parameters as given. 

Consequently, the present value of the manager’s compensation is decided by the 

manager and known (revealed) in advance. Note in addition that the positivity 

constraint on the parameters (necessary for the results to be plausible) is usually not 

taken into account in the extant literature, which may make the optimal contracts 

impossible to implement.   

 

Another, related, strand of literature examines incentive conflicts between agents and 

principals in money management. In particular, Chevalier and Ellison (1997) 

investigate flows-induced risk taking by fund managers. Most agents are rewarded for 

increasing the value of managed assets, and there is a well documented positive 

relationship between relative performance and fund-flows. This conjunction creates an 



 9

incentive for managers to exploit this relationship by manipulating their risk exposures 

near the end of the management period. Basak, Pavlova and Shapiro (2003), however, 

show that imposing a maximal shortfall of the managed fund return over that of an 

appropriate benchmark can reduce the adverse effects (on the investor’s welfare) of 

such managerial incentives. Here, we ignore this issue for tractability and assume away 

free entry in and exit from the fund once it is started. 

 

An (implicit) assumption of this paper is that skillful managers can exploit the 

predictability of asset returns. To obtain tractable or explicit solutions for the optimal 

contract, most previously quoted papers make restrictive assumptions on the dynamics 

of asset prices. In a static setting, asset returns are assumed to be Gaussian and in a 

dynamic framework, asset prices follow geometric Brownian motions. Although no 

consensus has yet emerged in the empirical literature as to which variables have 

predictive power and to what extent predictability is economically significant, it is now 

admitted that some predictability exists. Campbell (1987), Campbell and Shiller 

(1988a, b) and Fama and French (1989) reported that long term equity returns can be 

explained either by a short term interest rate, some measure of the term premium and 

the average dividend yield or by the dividend/price and the earnings/price ratios. 

Jegadesh and Titman (1993) showed that strategies exploiting some form of momentum 

can exhibit superior performance. Vila-Wetherilt and Wells (2004) confirmed the high 

predictability of U.K. equity returns in the long run using the approach Campbell and 

Shiller (1988a, b) had applied to U.S. stocks. Ferson, Heuson and Su (2004) recently 

reported that the time variation in expected returns remains economically important 

even after transaction costs. In works more closely related to this paper, Pastor and 

Stambaugh (2002), Busse and Irvine (2003), Geczy, Levin and Stambaugh (2003) and 

Jones and Shanken (2005) showed that the predictability embedded in observed 

managerial skills can be exploited. Avramov (2004) and Avramov and Chordia (2005) 

claimed that investment strategies involving individual stocks or benchmarks are more 

profitable when they incorporate macroeconomic variables as predictors. Avramov and 

Wermers (2004) using managers’ skills, mutual fund risk-loadings and benchmark 

returns as predictors, provided convincing evidence that the predictability reported for 

single assets carries over to actively managed mutual funds and that portfolio strategies 

that exploit such a predictability significantly outperform those which do not. 
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These strands of research strongly suggest that active management may be more 

valuable than previously acknowledged under the standard market efficiency 

hypothesis. Therefore,  solving for the optimal contract in the context of  more general 

dynamics for asset prices  provides a useful generalization. Our setting will allow for 

asset return predictability to the extent that the parameters of the diffusion processes 

characterizing our asset returns are driven by predictable (but unspecified) state 

variables.  

 

III. THE ECONOMIC FRAMEWORK 

 

The manager can trade continuously in a frictionless, arbitrage-free and complete 

financial market until time T, the horizon of the economy. There are N+1 financial 

assets available for trade in this market, namely a locally riskless asset and N risky 

assets. The former is a money market account yielding at each time t an instantaneous 

interest rate r(t). The investor does not intervene directly in the market but delegates her 

portfolio decisions to the manager. We give the model some structure by making the 

following additional assumptions. 

 

- The drifts and diffusion parameters of all stochastic processes defined below depend 

on a number M of (unspecified) state variables Y(t). The latter evolve through time 

according to the following stochastic differential equation (SDE): 

 ( ) ( )( ) ( )( ) ( )tdZtY,tdttY,ttdY YY Σ+µ=  (1) 

where µY(.) is a bounded (M x 1) vector valued function of t and Y, ΣY(.) is a bounded 

(M x N) matrix valued function of t and Y, with M ≤ N, and Z denotes a standard 

Brownian Motion in RN, Z’ = (Z1, …, ZN), with the prime ’ indicating a transpose. 

Hence the uncertainty is formalized by the complete filtered space { } [ ] ⎭
⎬
⎫

⎩
⎨
⎧Ω τ∈ P,,,

E,0ttFF , 

where Ω is the state space, F is the σ-algebra representing measurable events, P is the 

actual (historical) probability and the filtration is the augmented filtration generated by 

the Brownian Motion assumed to satisfy the usual conditions7. Note that some of the 

                                                 
7 The σ-algebra contains the events whose probability with respect to P is null. See Karatzas and Shreve 
(1991) p 89. 
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asset prices defined below may belong to the set of the M state variables. We assume M 

≤ N so that the financial market is complete. 

 

- The N risky asset prices obey the following SDE: 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )tdZtY,ttIdttY,ttItdS SSSS Σ+µ=  (2) 

where IS(t) denotes the diagonal (N x N) matrix with the elements Si(t) (i = 1, ..., N), 

µS(.) is a bounded (N x 1) vector valued function, and ΣS(.) is a bounded (N x N) matrix 

valued function, assumed to be full rank when markets are assumed to be complete, and 

less than full rank when markets are assumed to be incomplete. To ease the exposition, 

we will denote ( )( )tY,tSµ  by ( )tSµ  and ( )( )tY,tSΣ  by ( )tSΣ . 

 

Also, these assets are assumed to pay no dividends between 0 and T, which makes all 

admissible portfolios self-financing and thereby will allow us to solve our dynamic 

portfolio programs as if they were static. 

 

- The instantaneous riskless interest rate at time t solves the following SDE: 

 ( ) ( )( ) ( )( ) ( )tdZtY,tdttY,ttdr irr Σ+µ=  (3) 

where the drift and diffusion parameters, ( ) ( )tandt rr Σµ  for brevity, are general 

functions which can be specialized to preclude the spot rate to take on negative values. 

As was the case for µS(t), the drift ( )trµ  is assumed to satisfy the usual necessary 

conditions so that (3) has a unique solution. The diffusion process followed by r(t) is 

completely general and need not be made explicit. It determines the evolution of the 

whole term structure of interest rates in an endogenous manner. 

 

- A particular portfolio will play an important role in the analysis to follow, namely the 

so-called “optimum growth”, or “log-optimal” or “numéraire” portfolio. Its value at 

time t (≤ T) is denoted by h(t) and is normalized so that h(0) = 1. It is the optimal 

portfolio chosen by a logarithmic investor and has the convenient property to make the 

h-denominated value process of any admissible and self-financing portfolio a 
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martingale under the true probability measure P8. This portfolio obeys the following 

dynamics: 

 ( )
( ) ( )( ) ( )( ) ( )tdZtY,tdttY,tr
th
tdh 'κ+=  (4) 

where ( )( )tY,tκ  denotes the vector of the market prices of risk associated with the 

different sources of risk present in the economy. Given the dynamics of the primitive 

assets assumed in (2) and (3), this vector can be written explicitly, when markets are 

complete, as follows: 

 ( )( ) ( )( ) ( )( ) ( )[ ]NS
1

S trtY,ttY,ttY,t 1−µΣ=κ −  (5) 

We now study the manager’s program and the investor’s problem in succession. 

 

 

IV. THE MANAGER’S OPTIMIZATION PROBLEM 

 

To act as an agent for his principal, the manager is assumed to impose on her either one 

of the following compensation schemes: 

 ( ) ( ) ( ) ( )( )TVTVTVTF b
1

m
11

m
11 −ν+φ=  (6) 

 ( ) ( ) ( )( )TVTVTF b
2

m
222 −ν+Φ=  (7) 

where F(T) is the global fee received by the manager at terminal date T, φ, ν1 and ν2 are 

predetermined constants, Φ is a predetermined dollar amount, and V
m

 and V
b
 stand for 

the value of the managed fund and that of the benchmark, respectively. While both 

schemes are symmetric around the chosen benchmark, the first scheme involves a fee 

component proportional to the terminal value of the fund, whereas the second scheme 

involves a fixed part. This difference in the way the global fee is computed at date T 

will prove crucial as to the optimal strategy followed by the agent and the optimal 

benchmark imposed by the principal. To keep things tractable, we ignore the possibility 

of early withdrawal(s) from the fund on the part of the investor. 

 

                                                 
8 See Long (1990) or Bajeux-Besnainou and Portait (1997).  
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We now make two commonly encountered assumptions regarding the optimization 

program the manager faces. First, the global fee he receives at the end of the period is 

considered his only source of wealth. Therefore, he will maximize the expected utility 

of this global fee. His utility function, U
m

(F(T)), is an increasing and strictly concave 

Von Neuman-Morgenstern function that satisfies the usual Inada conditions, in 

particular that the marginal utility of zero wealth is plus infinity. Second, rather than 

using a cost function, we specify an effort function, which may seem more appropriate 

in a principal-agent type problem. Effort naturally involves disutility, and is fairly 

realistically assumed to be a positive function of the level of wealth (gross of 

compensation fees) restituted to the principal. 

 

Since the financial market is complete, rather than solving the problem by way of the 

stochastic dynamic programming technique, it is easier to follow Duffie (1996) and the 

seminal contributions of Karatzas, Lehoczky and Shreve (1987) and Cox and Huang 

(1989, 1991) and adopt the martingale approach. As is well known, the latter substitutes 

a simpler, static, problem for a dynamic one. Also, to keep using the true (historical) 

probability measure P, and thus simplify the computation of the manager’s optimal 

strategy, we make use of the optimum growth portfolio as the numéraire in this 

program.  

 

Consequently, the manager’s optimization program writes: 

 

( )( ) ( )[ ]

( )
( ) ( )

( )
( )⎪

⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

≥
≥

=⎥
⎦

⎤
⎢
⎣

⎡

−

0TF
0TV

0V
Th
TV

E.t.s

TVeTFUEmax

i

m
i

m
iP

m
iii

mP

Vm
i

 (8) 

In this program, i = {1, 2} denotes the type of scheme proposed by the manager. Notice 

first that the effort coefficient ei logically depends on the adopted scheme. Also, the 

manager monitoring the level of the principal's managed portfolio ( )[ ]TVm
i  through his 

decisions, he thereby controls his effort level ( )[ ]TVe m
ii . For simplicity, this effort is 
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assumed to be a linear function of the principal's portfolio. The first constraint, in which 

V(0) is the principal’s initial wealth to be invested by the manager, is the budget 

constraint expressed in the usual martingale form (under P), and should be binding at 

the optimum. The second constraint forces the manager to follow strategies such that 

the terminal value of the managed portfolio is non-negative, and thus is a solvency 

constraint. It is well known that taking into account this constraint may have a decisive 

impact on the optimal decisions of risk averse agents9. The third constraint states that 

the overall fee must be non-negative. Due to the symmetric component of the fee, the 

manager who performs badly will have to pay the principal the difference between the 

managed portfolio value and the benchmark value. So adding this constraint is a priori 

necessary. It turns out that it is always satisfied under the linear symmetric 

compensation scheme since we have imposed Inada’s conditions on the manager’s 

utility function. It will be shown to be satisfied also at the optimum in the affine 

symmetric scheme. 

 

A technicality worth mentioning is that the objective function could, in theory, be an 

increasing or a decreasing function of the manager’s portfolio value because the 

manager’s effort has a cost that increases with this value. Therefore, we will implicitly 

restrict the analysis to the region of the utility function where the objective function is 

increasing in the manager’s portfolio value, i.e. where 0e
V
U

im
i

m

≥−
∂
∂ . In other words, 

the manager chooses only amongst those portfolios for which his marginal utility is 

larger than the cost of the effort necessary to construct them. 

 

Using Cox and Huang (1991) one can easily verify that program (8) has a unique 

solution. Deriving the first-order condition for an optimum leads to the following 

solution for the portfolio chosen by the manager under the first compensation scheme: 

 

Proposition 1: 

The terminal value of the portfolio chosen by the manager under compensation scheme 

(6) is equal to: 

                                                 
9 See Lioui and Poncet (1996) and Gollier et al. (1997). 
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 ( ) ( ) ( )TVeTh1TV b
1

1

1

1

11

1

1
m

1

m
1 ν+φ

ν
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ν+φ

+
ν+φ

λ
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where ( ).mY  is the inverse of the marginal utility function U’m, i.e. ( )ymY  is x such that 

U’m(x)=y, and the Lagrange multiplier 1λ solves: 

 ( ) ( ) ( ) ⎥
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To ease the interpretation of this result, we note first that, by substituting in (6) the 

value of ( )TVm
1  given by (9), the agent’s optimal compensation (and thus his optimal 

final wealth) under the first scheme is equal to: 

 ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ν+φ

+
ν+φ

λ
= −

1

11

1

1
m1

eThTF Y  (11) 

so that the first term on the RHS of (9) is nothing but F1(T)/(φ+ν1). If the compensation 

fee did not include a symmetric component (ν1 = 0), the optimal portfolio chosen by the 

agent would simply be the intuitive ( )TVm
1  = F1(T)/φ, with obviously no role left for 

the benchmark. Here, however, because of the presence of a symmetric fee component, 

the value of the managed portfolio is the sum of two terms, the second one being a 

fraction ν1/(φ+ν1) of the value of the benchmark. Since neither the optimal wealth (11) 

nor the shadow price (10) of the budget constraint depend on the benchmark portfolio, 

they are also independent of the principal’s risk aversion parameters. Therefore, a kind 

of “separation” property obtains in the case of the linear symmetric compensation 

scheme. Absent the effort cost, everything would be as if the manager received at the 

contract inception the present value of his fee and invested it optimally in the market. 

Only the presence of the effort cost prevents this to occur.    

 

At each time t, the value of the manager's portfolio obeys: 
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= −− Y  (12) 

where we have used both the martingale property of ( )
( )th

tVm
1  and the optimal solution. 
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The agent’s optimal investment strategy consists of two parts. The first one can be 

interpreted as a “speculative” component. It depends on the manager’s utility function, 

and on the value of the optimum growth portfolio h(t), but is completely independent of 

the principal’s preferences and demand. The second one is reminiscent of a “hedging” 

term. It stems from the portfolio delegation granted to the agent and allows the latter to 

hedge against the unfavorable fluctuations of the benchmark portfolio that is imposed 

upon the agent by the principal. Unlike the first part, it does not depend directly on the 

optimum growth portfolio, and is free of the manager’s preferences so that it can be 

considered as a minimum variance term. The crucial result here is that it is not optimal 

for the agent (except if his utility function is logarithmic and the compensation scheme 

is (6); see section VI below) to select the benchmark imposed by the principal as the 

delegated portfolio. 

 

Turning to the second compensation scheme, the solution for the portfolio chosen by 

the manager is given in the following proposition: 

 

Proposition 2: 

The terminal value of the portfolio chosen by the manager under compensation scheme 

(7) is equal to: 

 ( ) ( ) ( )
+

−
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⎤
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Φ−ν+⎟⎟

⎠

⎞
⎜⎜
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⎛
ν

+
ν
λ

ν
= TVeTh1TV b

22
2

21

2

2
m

2

m
2 Y  (13) 

where the Lagrange multiplier 2λ  is such that: 
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⎥
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Under this compensation scheme, the solution is more involved because the presence of 

the fixed amount Φ could make ( )TVm
2  negative (see the appendix for the proof and a 

brief discussion). Embedded implicitly in (13) are long positions in a risky portfolio 

and in a long put, the latter being exercised if the portfolio value falls below the strike, 

which is of course zero. To see this, note that the agent’s optimal final wealth is equal 

to: 
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where we have use the fact that max(x – y, 0) + y = max(x, y). Note that, due to our 

assumption regarding the manager’s utility function, both equations (11) and (15) imply 

a strictly positive value for the final fee F(T). 

 

An important difference with the linear compensation fee is that the “separation” 

property does not hold any more in the affine case. Indeed, the manager’s optimal 

wealth now depends directly on the benchmark portfolio and thus indirectly on the 

principal’s preference parameters. As a consequence, the manager is concerned in this 

case by the particular benchmark that the principal imposes on him. One practical 

implication is that managers could to a certain extent try to favor those investors whose 

preferences and thus desired benchmarks match best their management skills. Another 

implication is that investors, in turn, have under this compensation scheme an incentive 

to select those agents whose skills are reputed to fit best their investment objectives. 

  

The value of the manager's portfolio at each time t then obeys: 
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Here, it is never optimal for the manager to adopt the benchmark as the investor’s 

portfolio, even in the log utility case (see section V below). In addition, the previous 

formal separation in two “funds” breaks down, because of the “positive only” feature of 

the solution. In particular, the implicit hedge against the benchmark’s fluctuations is 

preference dependent and could now be interpreted as a kind of information-based 

Merton-Breeden hedging component. Also, due to the possibly binding solvency 

constraint of program (8), we recover here, as in Cox and Huang (1989), the optional 

feature of the strategy. 
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V.  THE INVESTOR’S OPTIMAL BENCHMARK 

 

Although the compensation scheme is imposed on the investor, the latter can 

nevertheless control the manager by selecting the appropriate benchmark. This is the 

reason why the principal’s program and the agent’s must be solved simultaneously. 

Formally, the investor chooses a benchmark portfolio that maximizes the expected 

utility of her terminal wealth. Recall her initial wealth is denoted by V(0). Her final 

wealth, net of all fees, is denoted by W(T). Depending on the compensation scheme 

selected by the manager, W(T) either writes: 
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or: 
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The principal’s utility function, Up(W(T)), is an increasing and strictly concave Von 

Neuman-Morgenstern function that, like the agent’s utility, is assumed to satisfy the 

Inada conditions. She thus solves the following optimization program, for i = 1 or 2 

according to the compensation scheme dictated by the manager: 
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In this program, the first constraint is the budget constraint expressed in the martingale 

form and should be binding at the optimum. The second requires that the benchmark 

portfolio respects the solvency constraint. The third one will always be satisfied since 

we have imposed Inada’s conditions on the principal’s utility function. 

 

Contrary to what is done in related research where the investor’s and the manager’s 

programs are not solved simultaneously, there is no need here to specify a constraint 

relative to the agent’s reservation utility. To the extent that the manager predetermines 

the fee parameters (and knows what benchmark will be imposed by his principal), he 

can set them to a level such that the present value of his global fee is compatible with 

his reservation utility. That feature simplifies the investor’s problem. The optimal 

benchmarks designed by the principal under compensation schemes (6) and (7) are 

described in the following two propositions.  

 

Proposition 3: 

Under compensation scheme (6), the benchmark portfolio chosen by the investor is 

such that: 
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where ( ).pY  is the inverse of the marginal utility function U’p, and the Lagrange 

multiplier δ1 associated with the investor’s budget constraint solves: 
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  (21) 

 

It is noteworthy that the benchmark can be expressed by construction as a combination 

of the investor’s and the manager’s optimal wealth. The structure of the solution 

however is rather involved without further restrictions on the principal’s and agent’s 

utility functions. Note that we have to take the positive part of the solution only, not to 

make sure that the investor’s terminal wealth is positive (since this is guaranteed by the 

Inada conditions), but to guarantee that the value of the benchmark is non-negative. 

Mere inspection of equation (18) reveals that, in general, a positive investor’s wealth 
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does not imply a positive value for the benchmark [the latter value is negative if:  Φ < 

(1- ν2) ( )TVm
2 ]. Similarly in equation (17), W1(T) may be positive while ( )TVb

1  is 

negative. However, the solution somewhat simplifies and becomes linear if the non-

negativity feature (+) drops out of both equations. This is clearly the case when the sum 

(φ + ν1) of the compensation parameters is (equal to or) larger than 1, an admittedly 

restrictive but plausible assumption. 

 

To shed some light on the intricacy of general result (20), suppose for a moment that 

the parameters are such that the non-negativity constraint is not binding. Then, 

substituting in equation (17) for the value of ( )TVb
1  given by equation (20), the 

principal’s optimal final wealth, net of all fees, writes: 
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⎠
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1
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p1 ThTW Y  (22) 

Result (22) looks fairly simple as it involves the usual numéraire portfolio and the 

principal’s utility function. This is deceitful however, as it does not exhibit the 

“separation” property: the principal’s optimal net wealth still depends on the manager’s 

preferences through the presence of the Lagrange multiplier δ1 (see equation (21)). 

 

Assuming now that the solvency constraint is binding, the principal’s optimal wealth 

writes: 
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where the second term between parentheses can be interpreted as the optimal wealth 

achieved for a benchmark portfolio value set equal to zero (see equation (17) above). 

 

The situation in which the compensation scheme includes a fixed amount is dealt with 

in the next proposition.   

 

Proposition 4: 

Under compensation scheme (7), the benchmark portfolio chosen by the investor is 

such that: 
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where the Lagrange multiplier δ2 associated with the investor’s budget constraint 

solves: 
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The same comments as above essentially apply here, although the proof is slightly more 

involved (see the appendix). Suppose again the non-negativity constraint is not binding. 

Then, substituting in equation (18) for the value of ( )TVb
2  given by equation (23), the 

principal’s optimal net wealth writes: 

 ( ) ( )( )1
2p2 ThTW −δ=Y  (25) 

As in (22), it does depend on the manager’s preferences through the multiplier δ2. A 

more detailed analysis and closed form solutions are provided in the next section where 

utility functions are restricted to the CRRA family. It is important to note that any 

member of this family satisfies the usual Inada conditions, in particular that the 

marginal utility of zero wealth is plus infinity. The previous general results then can be 

relied on. 

 

VI. EXPLICIT SOLUTIONS WITH CONSTANT RELATIVE  

RISK AVERSION 

 

A well known result in portfolio theory due to Merton (1971) is that for a well behaved 

utility function, the risky component of an investor’s optimal portfolio can be 

decomposed into (M+1) parts. The first part is the optimum growth portfolio and others 

are the M Merton-Breeden terms hedging for the random shifts in the investment 

opportunity set brought about by the M state variables. In the special case of the log 

utility function, which uniquely possesses the myopic feature, the M hedging terms 

vanish. We then consider the log case first and then generalize to the case of the iso-

elastic function with different risk aversion parameters for the principal and her agent.  
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VI.1 Logarithmic utility 

 

To further simplify the results and focus on the main workings of the model, we now 

set the effort parameter e to zero. Although this is obviously restrictive, it is not 

damaging to the spirit of the model since only the first best contract is considered. 

 

Under the linear compensation scheme (6), formula (9) for the managed portfolio 

reduces to: 

 ( ) ( ) ( ) ( )TVTh0VTV b
1

1

1

1

m
1 ν+φ

ν
+

ν+φ
φ

=  (26) 

because the ( ).mY  function is such that ( ) x1xm =Y  in (9) and (10), which allows for an 

explicit solution for λ1, and then for ( )TVm
1 . 

 

From (20) and (21), and using also ( ) ( ) x1xx pm ==YY , the benchmark portfolio 

simplifies to: 
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where the Lagrange multiplier δ1 solves: 
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Combining the three previous equations then yields: 

 ( ) ( ) ( )Th0VTVb
1 = ( )TVm

1=  (29) 

 

This result, a primer to the best of our knowledge although very intuitive, is 

theoretically important as it is the only case where the manager will adopt exactly the 

benchmark as the investor’s portfolio. A corollary to this result is that the 

predetermined coefficients (φ and ν1) of the linear compensation scheme (6) bear no 

effect at all on the managed portfolio characteristics, since the latter portfolio is nothing 

but the optimum growth portfolio. Thus, in this case, Merton’s result is recovered 

because both participants to the contract are myopic. Also, the manager will receive no 

benchmark-adjusted compensation in any state of nature (this part of the fee thus is 

riskless since equal to zero), his optimal fee being ( )TV m
1φ . 
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Under the affine compensation scheme (7), results are strikingly different. First, the 

formula for the managed portfolio, obtained from equation (13), is more involved due 

to the presence of the fixed fee, which prevents us from deriving the Lagrange 

multiplier λ2 explicitly: 
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where, from (19), λ2 solves: 
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From (23) and (24), the benchmark portfolio is given by: 
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where 2δ  solves: 
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Combining (30) and (32) also yields: 
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which clearly indicates the optional feature of the managed portfolio due to the fixed 

fee. In all cases, because utility functions were assumed logarithmic, the risky part of 

that portfolio is (a proportion of) the optimum growth portfolio. Notice that, in the case 

where ( )TVm
2  is equal to the first argument in the Max function above, the Lagrangian 

δ2 plays no role and the fixed fee amount Φ appears explicitly, in addition to its indirect 

influence through λ2. Also, the managed portfolio is a linear combination of the 

numéraire portfolio and the riskless asset that delivers –Φ/ν2 at date T. In the case 

where ( )TVm
2  is equal to the second argument in the Max function, the managed 
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portfolio is proportional to the numéraire portfolio, the proportion depending on the fee 

parameters, the chosen benchmark and both utility functions. 

 

It is intuitive that for reasonable fee parameters, the second situation will prevail almost 

surely, and both ( )TVb
2  and ( )TVm

2  will have strictly positive values. In this case, the 

former rewrites:   
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where 2δ  solves: 
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Thus, we have: 
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and 
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where P(0,T) denotes the current value of a zero-coupon bond delivering $1 at maturity 

T. Therefore, (30) becomes: 
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and, substituting for (38) into (39) one also has: 
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From (31), it follows that: 
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and therefore: 
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Finally, the managed portfolio rewrites: 

 ( ) ( ) ( )Th0VTVm
2 =  (42) 
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which is the numéraire portfolio. It does differ from the benchmark portfolio (38). 

 

Whether the compensation fee is linear or affine (but in that case for fee parameters 

such that the probability of a non-positive value for the benchmark portfolio is zero), 

the portfolio managed by the agent turns out to be the same, namely the numéraire 

portfolio. However, in the affine case, the benchmark portfolio differs: as evidenced by 

equation (38), it is not equal to the optimum growth portfolio unless the fixed amount 

Φ is (uninterestingly) set to zero. 

 

VI.2 Power utility 

 

Let us assume now, more generally, that the principal and the agent both have iso-

elastic utility functions, with possibly different risk aversion coefficients: 
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Under the first compensation scheme (6), formula (9) for the managed portfolio 

becomes: 
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where 1λ is such that: 
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From (20) and (21), the benchmark portfolio writes: 
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or else: 
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with 
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where δ1 solves: 
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It follows that the value of the manager’s portfolio is equal to: 
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Although the principal’s and the agent’s utility functions exhibit CRRA, the solution 

remains quite involved. In particular, both risk aversion coefficients are present 

(directly and through Λ12) as a direct consequence of solving simultaneously the 

manager’s and the investor’s programs. Also, while the optimum growth portfolio still 

plays a pivotal role, the solution is highly non-linear in h(T). 

 

One interesting particular case, sometimes dealt with in the literature, occurs when the 

principal and her agent have the same risk aversion parameter. Then one has: 
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and the two portfolios are proportional to each other but not equal. In particular, they 

have identical volatility. 

 

Under the second compensation scheme (7), formula (13) for the managed portfolio 

becomes: 
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where the Lagrange coefficient λ2 solves: 
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From (23) and (24), the benchmark portfolio writes: 
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where the Lagrange multiplier δ2 is such that: 
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Substituting for the benchmark portfolio into (50) yields: 
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where λ2 solves: 
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If the non-negativity constraint does not bind the value (52), the managed portfolio 

rewrites more simply: 
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Note that in all cases, because utility functions are not logarithmic, the managed and the 

benchmark portfolios are not proportions of the optimum growth portfolio, but are 

much more complex due to the non-myopic nature of the principal’s and agent’s 

strategies. With these preferences, the fact that asset returns are partially predictable 
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becomes more important and justifies that the principal delegates her portfolio 

decisions to an agent against a fee. Even though the utility functions have been 

restricted to exhibit the convenient CRRA feature, the optimal benchmark is very 

intricate, which reinforces Admati and Pfleiderer’s (1997) case against the use of 

commonly observed benchmarks. 

 

VII. SIMULATIONS 

 

The following simulations are intended to shed some light on the implications of 

compensation schemes on the manager’s risk taking behavior and specifically on the 

risk/return tradeoff of his actual portfolio relative to that of the imposed benchmark. To 

this end, we adopt the CRRA utility of the previous section and assume that only two 

assets are traded, a stock index (the market portfolio) and a riskless asset (money 

market account). Because of the presence of the solvency constraint, this simplified 

setting is the only one for which an explicit solution is recovered. In the continuous 

time literature, this is a standard assumption, directly inspired by the CAPM.. 

Furthermore, the investment opportunity set is assumed to be constant for tractability 

and the dynamics of the two assets thus writes as follows: 

 ( )
( ) ( )tdZdt
tS
tdS

SS σ+µ=  (57) 

and 

 ( )
( ) dtr
tB
tdB

=  (58) 

This assumption obviously minimizes the benefit of portfolio delegation from the 

investor’s viewpoint, if the agent has managerial skills, since it ignores the asset return 

predictability discussed in section II. Unfortunately, closed form solutions for 

intertemporal portfolio choice are known to exist only in a few cases. The constant 

investment opportunity set considered here is one of them, but explicit solutions exist 

for more general specifications. For example, Kim and Omberg (1996) solved the 

optimal portfolio problem for a CRRA investor maximizing his expected utility of 

terminal wealth when the market price of risk is mean reverting and Wachter (2002) 



 29

extended their setting to account for intermediate consumption. Bajeux-Besnainou et al. 

(2001), Lioui and Poncet (2001) and Brennan and Xia (2002) solved the problem under 

stochastic interest rates. Here, due to the binding solvency constraint on portfolio 

values, we cannot derive a closed form solution even with a constant investment 

opportunity set.  Our results thus are best viewed as a worst case scenario for the 

principal, the actual incentive to delegate being stronger that what will be shown in the 

simulations. 

 

The complete solutions to the investor’s and the manager’s problems, which still 

remain rather involved, are provided in Appendix B. The optimal benchmark is 

computed and compared to a classical benchmark, here the risky asset (the market 

portfolio). We performed the simulations for the linear compensation scheme (6) only, 

this being sufficient to illustrate our main point, namely, that imposing an optimal 

benchmark to the manager dramatically modifies the composition of the managed 

portfolio and increases substantially the principal’s welfare. The parameters of our base 

case simulation are given in Table 1. Note that these are standard parameters, except 

that we have assumed that the principal is more risk averse than her agent (twice as 

much). 

 

Insert Table 1 about here 

 

Let us denote by α1 the proportion of the relevant portfolio invested in the risky asset, 

(1- α1) being invested in the riskless asset. Table 2 presents the initial compositions of 

the optimally managed ( )m
1α  and benchmark ( )b

1α  portfolios computed according to the 

results of Appendix B, and the initial composition of the sub-optimally managed 

portfolio ( )m
1α̂  when the adopted benchmark is the market portfolio, for different values 

of the compensation scheme parameters. Note that our calibration is such that m
1α̂  is 

equal to 100% (up to the third decimal) in the baseline case, for any pair (φ, ν1) of the 

fee parameters, that is the managed portfolio is (almost) identical to the (sub-optimal) 

benchmark. 

Several striking features emerge from Table 2. First, the managed portfolio matches 

rather closely the optimal benchmark, the discrepancy ranging from (roughly) 1% to 

6% only (compare the values of m
1α  and b

1α ). This highlights the fact that imposing the 
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proper benchmark to the manager is of paramount importance as to the principal’s 

welfare. Second, this result is all the more crucial because varying the parameters of the 

linear compensation scheme has very little impact on the composition of these 

portfolios, and on the (slight) difference between them. This is because the part ν1 of 

the compensation that depends on the discrepancy between the portfolio and its 

benchmark is symmetric. Third, the optimal benchmark differs dramatically from the 

often adopted market portfolio (or any subset of it), a result that comforts Admati and 

Pfleiderer’s (1997) analysis. The proportion of risky assets it includes is slightly less 

than one half (45 to 49%), as opposed to 100% (by definition) for the market portfolio. 

Since the manager closely follows his benchmark under the compensation schemes 

under scrutiny, whether the latter is optimal or not is of particular relevance to the 

investor. 

 

Insert Table 2 about here 

 

Table 3 reports the impact, on the managed and the optimal benchmark portfolios, of 

various assumptions regarding the volatility of the risky asset and the market price of 

risk. As expected, the proportion of both portfolios invested in the risky asset decreases 

(proportionately) with the asset volatility, while that invested in the market portfolio 

hardly decreases. For instance, for a baseline market price of risk κ equal to 0.3, the 

benchmark comprises 144.86% of the risky asset if the latter has a volatility of 5% and 

36.22% only if the asset volatility is 20%. In addition, this proportion increases 

(proportionately) with κ, the market excess return per unit of risk, while that invested in 

the sub-optimal portfolio hardly increases. For example, for a baseline volatility of 

15%, the proportion b
1α  is 32.19% if κ is equal to 0.2 and 64.38% if κ is equal to 0.4. 

 

Insert Table 3 about here 

 

Behavior towards risk also affects crucially the composition of the optimal benchmark 

and that of the managed portfolio. Table 4 shows the impact of both the principal’s and 

the agent’s risk aversion. As expected, this influence is huge. The proportion of the 

benchmark (and the managed portfolio) invested in the risky asset declines rapidly with 

the CRRA coefficients, and, for reasonable values of the latter, ranges from 100.00% to 
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19.54%. For a given manager’s risk aversion, the more risk averse is the principal, the 

less is invested in the risky asset, both for the benchmark and the managed portfolios. 

The more risk averse are the agent and the principal, the more the managed and the 

benchmark portfolios diverge from the market portfolio and are invested in the riskless 

asset. 

  

Insert Table 4 about here 

 

Finally, we provide in Table 5 a measure of the welfare loss incurred by the investor 

when the manager follows the standard (i.e. market portfolio) benchmark. Table 5 

presents the loss in absolute percentage return for different values of the principal’s risk 

aversion coefficient γp, of the compensation scheme parameters φ and ν1, and of the 

market price of risk κ. For tractability, we have assumed that the manager’s utility is 

logarithmic (γm = 1), while the principal’s is iso-elastic with various values of the risk 

aversion coefficient (γp > 1). If the manager’s utility was not logarithmic, a change in 

the benchmark would imply a change in the manager’s optimal wealth. Therefore, the 

welfare loss suffered by the principal would be an intricate combination of a direct loss 

due to the benchmark being sub-optimal and an indirect loss through the impact on the 

manager’s optimal wealth. If the latter has log utility, however, his optimal wealth is 

completely independent of the investor's utility parameter since it is independent of the 

benchmark that she selects. Therefore, the welfare loss suffered by the principal is 

purely a direct one. As Table 4 has shown that the main qualitative influence is the 

discrepancy between the agent’s and the investor’s risk aversions, it is not too 

damaging to norm the former to one and let the latter be larger than one. The 

mathematical derivations and approximations are reported in Appendix C. The 

(approximate) welfare loss from the manager adopting a sub-optimal benchmark ranges 

roughly from 0.1% to 8%, which is quite sizeable if one recalls that the φ parameter, 

which represents the average fee for one dollar under management, ranges from 0.5% 

to 2.5%. 

 

Insert Table 5 about here 
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To summarize, in spite of their limited scope (essentially due to the assumption of a 

constant opportunity set), our simulations offer a striking evidence as to the necessity 

for investors who face the compensation schemes imposed by the fund managers to 

design truly optimal, as opposed to routinely adopted, benchmarks. Introducing state 

variables and, thus, some predictability in asset returns would obviously amplify the 

reported differences between using an optimal or a sub-optimal benchmark. 

 

VIII. CONCLUDING REMARKS 

 

Admati and Pfleiderer (1997) have forcefully argued that benchmark-adjusted 

compensation based upon the unconditional, passive, benchmarks which are used in 

practice leads to a portfolio allocation that is sub-optimal for the investor and is useless 

to assess actual managerial skills. If, however, investors impose on managers 

appropriate active benchmarks in a multi-period context so that partial asset return 

predictability is properly taken into account, then delegation to talented managers 

makes  sense and screening managers is both possible and useful. To show this, we 

have adopted general Von Neuman-Morgenstern utility functions for both the agent and 

the principal, and postulated fairly general diffusion processes for asset returns, the 

parameters of which are functions of (unspecified) state variables. Selecting two 

alternative, symmetric, benchmark-adjusted compensation schemes, we have solved the 

manager’s and the investor’s dynamic optimization programs simultaneously. Given 

that the manager imposes the compensation scheme on the investor, the latter’s only 

control over her agent is to force him to adopt the benchmark that maximizes her 

welfare. The optimal portfolio managed by the agent has indeed been shown to always 

differ (with one minor exception) from the optimal benchmark chosen by the principal. 

Under the “affine symmetric” scheme, the value of the managed portfolio always has 

an optional structure. Under both compensation schemes, the optimal benchmark can be 

expressed as a combination of the principal’s and the agent’s optimal wealth. 

 

We have also provided explicit solutions when both the investor’s and the manager’s 

utility functions exhibit constant relative risk aversion, in particular when they are 

logarithmic. In all cases but the logarithmic, the benchmark and the managed portfolios 

differ, and also differ from the optimum growth portfolio, in a very complex way, 

which reinforces the view that commonly observed benchmarks are sub-optimal. With 
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logarithmic utility, under both compensation schemes the managed portfolio is simply 

the optimum growth portfolio. As a unique exception, the benchmark perfectly matches 

the managed portfolio under the “linear symmetric” scheme. It does differ from it, 

however, under the “affine symmetric” scheme. 

 

In the more specialized context of a constant investment opportunity set, we have also 

shown by simulation that selecting a sub-optimal benchmark actually has material 

consequences, in particular in terms of the investor’s welfare. Simulation in the more 

realistic but (much) more complicated environment assumed for the most part in this 

paper would lead to an even more dramatic discrepancy.  
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Appendix 
 

Appendix A (sections IV and V) 

 

Proof of Propositions 1 and 2. 

- In the case of incentive fee (6), from program (8) the manager chooses his portfolio 

such that the latter is the positive solution to the following equation: 
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where 1λ  is the Lagrange multiplier associated with the budget constraint. Therefore, 

the manager's optimal portfolio is given by: 
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where ( )ymY  is x such that ( ) yxU'
m = . Since Um was assumed to be a well-behaved 

utility function (in particular is continuous and monotonic), its inverse always exists. 

This equation is equation (9) in the text. Using the budget constraint present in (8) 

yields: 
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Gathering the terms involving V(0) on the LHS yields (10). 

 

- In the case of incentive fee (7), from program (8) the manager chooses his portfolio 

such that it is the positive solution to the following equation: 

 ( ) ( )( )( ) ( ) 1
22

b
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m
22

'
m2 TheTVTVU −λ=−−ν+Φν  (A4) 

where λ2 is the Lagrange multiplier associated with the budget constraint. 

 

A technical problem arises here due to the fixed amount Φ, which could make ( )TVm
2  

negative. We thus make use of Cox and Huang’s (1989) powerful equivalence result 

(Theorem 2.4 on p. 64) according to which the solution to the constrained program 

( ( )TVm
2  has to be non-negative) is the positive part of the solution to the unconstrained 

one (no restriction on the value of ( )TVm
2 ). Therefore, the optimal portfolio is equal to: 
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A slight rearranging of some terms yields (13). Then using as above the budget 

constraint in (8) yields (14). 

 

Proof of Propositions 3 and 4: 

- Given program (19) in the text, the optimal benchmark portfolio under compensation 

fee (6) is the positive solution to the following equation: 
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where 1δ  is the Lagrange multiplier associated with the investor’s budget constraint. 

Therefore, the optimal benchmark portfolio writes after some rearranging: 
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which is result (20). Equation (21) for the Lagrange multiplier is obtained using the 

budget constraint present in program (19). 

 

- Under compensation fee (7), the investor’s terminal wealth writes according to 

equation (18): 
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We solve as if the condition 
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holds, and then we show that the solution in fact satisfies this condition. When (A9) 

holds, the optimal wealth (18) writes: 
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which is equation (23) and where 2δ  solves: 
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which is equation (24). 

 

To see why (A9) holds, use [x]+ = x + [-x]+ and write (A11) as: 
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Therefore: 
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and result (A9) follows since the first two terms are non-negative. 
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Appendix B (section VII) 

 

We now provide an explicit solution to the manager’s and the investor’s problems in 

the case of a constant opportunity set. For readability, we rewrite here the equations 

whose explicit solutions are needed to derive the portfolio strategies. 

 

A portfolio strategy consists in the dynamic allocation of the investor’s wealth between 

the risky and the riskless assets. Therefore, the value V(t) of the strategy evolves over 

time as: 

 ( )
( ) ( )[ ] ( )tdZdtr1
tV
tdV

SS ασ+α−+αµ=  (B1) 

where α is the proportion of wealth invested in the risky asset. Given the dynamics of 

the manager’s portfolio and that of the benchmark, we can derive the exact composition 

of both portfolios. 

 

With only one risky asset, the dynamics of the optimum growth portfolio reduces to: 
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where: 
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To proceed, we need the following useful 

 

lemma: 

 

Assume h has a log normal distribution according to (B14). Therefore: 
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where 

 
( )

( )
⎭
⎬
⎫

⎩
⎨
⎧

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ⎟

⎠
⎞

⎜
⎝
⎛ −+−

−κ
= tT

2
1xry

th
Kln

tTy
1d 2

y  (B5) 

 

Proof: 
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We start from: 
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Since 
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it follows that: 
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where u is a standard normal variate. Then we have: 
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Explicit calculation using the standard Laplace transform yields the desired result. 

 

Under the linear compensation scheme, the benchmark portfolio at each time t writes: 
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and therefore: 
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Using the lemma above yields: 
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where 
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Applying Ito’s lemma and the Leibnitz rule then yields: 
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Using (B1), the optimal investment in the risky asset is: 
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The managed portfolio value at each time t writes: 
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or else: 
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and explicit calculations lead to: 
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Applying Ito’s lemma yields: 
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so that the manager’s optimal strategy reads: 
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It is instructive to compare this result with the manager’s optimal strategy, had he been 

evaluated relative to the risky asset (the market portfolio) as the benchmark: 
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Appendix C (section VII, welfare loss) 

 

We now provide an explicit calculation of the welfare loss suffered by the investor 

when the manager adopts a sub-optimal benchmark. We assume that the manager has a 

logarithmic utility and the principal has a power utility. For brevity, only the first 

(linear) compensation scheme is considered. 

 

The manager’s portfolio under this scheme and logarithmic preferences is given by: 
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To compute explicitly the RHS of (C1), we need the Lagrange multiplier λ1, which is 

given by equation (10). Its value is here equal to: 
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The investor’s optimal wealth then is: 
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If the standard (sub-optimal) benchmark was used, this wealth would be: 
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The optimal wealth using the optimal benchmark is such that: 
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where δ1 is the shadow price of the budget constraint. 

The welfare loss θ associated with using the sub-optimal benchmark then is such that: 
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The RHS cannot be computed explicitly, but we can use a first order approximation. 

We have: 
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Note that: 
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1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

 (C10) 

Expanding this expression around φ = 0 yields: 
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Plugging (C11) into (C9) then yields: 

 ( ) ( ) ( ) ( )
( )

( )
( ) 11pp

1
1

TS
Th

TS
ThTSln1ln

1
1

1
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Therefore we have: 
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In addition, we know that: 
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where u is a standard normal variate. Using the fact that: 
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 SS r κσ+=µ , (C15) 

(C14) becomes: 
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Using the normalization V(0) = S(0) = 1 and T = 1 in the simulations, explicit 

computation of (C13) gives: 
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On the other hand, using the optimal benchmark leads to: 
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where δ1 solves: 
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with 

 

( )

( )

( )1

1

1
1

1
1

12

1

1
11

1

1

1

b

ν+φ−
φ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
δ

ν
ν+φ

ν+φ
=Λ

φ
ν

ν+φ−
=Λ

γ
−  (C20) 

Expanding (C18) around φ = 0 yields: 
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where we have neglected the dependence of the Lagrange multiplier δ1 upon the risk 

aversion parameter γp. Therefore: 
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The welfare loss θ due to sub-optimal benchmarking then is such that: 
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which leads to the explicit value: 
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Table 1 : Base case simulation parameters 

 

φ ν1 γm γp R κ σS V(0) Τ S(0) 
1.5% 30% 2 4 2% 0.3 15% 1 1 1 

 

φ and ν1 are the constant parameters of the linear compensation scheme (6), γm and γp 
are the manager’s and the principal’s coefficients of risk aversion, respectively, r is the 
riskless rate of interest, κ is the market price of risk, σs is the volatility of the risky 
asset, T is the investment horizon (in years), and V(0) and S(0) stand for the 
(normalized) initial values of the managed fund and the risky asset (the market 
portfolio), respectively. 
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Table 2 : Impact of the compensation scheme parameters 
 
The Table presents the initial compositions of the optimally managed ( )m

1α  and 
benchmark ( )b

1α  portfolios and the initial composition of the sub-optimally managed 
portfolio ( )m

1α̂  when the adopted benchmark is the market portfolio, for different values 
of the compensation scheme parameters. α1 is the proportion of the risky asset in the 
relevant portfolio, (1- α1) being invested in the riskless asset. 
 

ν1 = 20% ν1 = 25% ν1 = 30% ν1 = 35% ν1 = 40%

50.25% 50.25% 50.25% 50.25% 50.25%
φ = 0.5% 49.01% 49.26% 49.42% 49.54% 49.63%

100.00% 100.00% 100.00% 100.00% 100.00%

50.50% 50.50% 50.50% 50.50% 50.50%
φ = 1% 48.03% 48.52% 48.85% 49.09% 49.26%

100.00% 100.00% 100.00% 100.00% 100.00%

50.75% 50.75% 50.75% 50.75% 50.75%
φ = 1.5% 47.06% 47.80% 48.29% 48.64% 48.90%

100.00% 100.00% 100.00% 100.00% 100.00%

51.00% 51.00% 51.00% 51.00% 51.00%
φ = 2% 46.10% 47.08% 47.73% 48.20% 48.55%

100.00% 100.00% 100.00% 100.00% 100.00%

51.25% 51.25% 51.25% 51.25% 51.25%
φ = 2.5% 45.15% 46.38% 47.19% 47.77% 48.20%

100.00% 100.00% 100.00% 100.00% 100.00%

( )tˆ m
1α

m
1α̂

m
1α
b
1α

m
1α̂

m
1α
b
1α

m
1α̂

m
1α
b
1α

m
1α̂

m
1α
b
1α

m
1α̂

m
1α
b
1α
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Table 3 : Impact of the market parameters 
 
The Table presents the initial compositions of the optimally managed ( )m

1α  and 
benchmark ( )b

1α  portfolios and the initial composition of the sub-optimally managed 
portfolio ( )m

1α̂  when the adopted benchmark is the market portfolio, for different values 
of the market parameters (market price of risk κ, and volatility of the risky asset, σs). α1 

is the proportion of the risky asset in the relevant portfolio, (1- α1) being invested in the 
riskless asset. 
 

 
σS = 5% σS = 10% σS = 15% σS = 20% σS = 25%

101.50% 50.75% 33.83% 25.38% 20.30%
κ = 0.2 96.57% 48.29% 32.19% 24.14% 19.31%

104.76% 100.00% 98.41% 97.62% 97.14%

126.87% 63.44% 42.29% 31.72% 25.37%
κ = 0.25 120.72% 60.36% 40.24% 30.18% 24.14%

107.14% 101.19% 99.21% 98.21% 97.62%

152.25% 76.12% 50.75% 38.06% 30.45%
κ = 0.3 144.86% 72.43% 48.29% 36.22% 28.97%

109.52% 102.38% 100.00% 98.81% 98.10%

177.63% 88.81% 59.21% 44.41% 35.53%
κ = 0.35 169.01% 84.50% 56.34% 42.25% 33.80%

111.90% 103.57% 100.79% 99.40% 98.57%

203.00% 101.50% 67.67% 50.75% 40.60%
κ = 0.4 193.15% 96.58% 64.38% 48.29% 38.63%

114.29% 104.76% 101.59% 100.00% 99.05%

( )tˆ m
1α

m
1α̂

m
1α
b
1α

m
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m
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b
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m
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m
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Table 4 : Impact of risk aversion 
 

The Table presents the initial compositions of the optimally managed ( )m
1α  and 

benchmark ( )b
1α  portfolios and the initial composition of the sub-optimally managed 

portfolio ( )m
1α̂  when the adopted benchmark is the market portfolio, for different values 

of the risk aversion coefficients (γm and γp). α1 is the proportion of the risky asset in the 
relevant portfolio, (1- α1) being invested in the riskless asset. 

 

 
 

γp = γm γp = γm+1 γp = γm+2 γp = γm+3 γp = γm+4

100.00% 67.17% 50.75% 40.90% 34.33%
γm = 2 100.00% 65.53% 48.29% 37.94% 31.05%

100.00% 100.00% 100.00% 100.00% 100.00%

66.67% 50.25% 40.40% 33.83% 29.14%
γm = 3 66.67% 49.43% 39.09% 32.19% 27.27%

98.41% 98.41% 98.41% 98.41% 98.41%

50.00% 40.15% 33.58% 28.89% 25.38%
γm = 4 50.00% 39.66% 32.76% 27.84% 24.14%

97.62% 97.62% 97.62% 97.62% 97.62%

40.00% 33.43% 28.74% 25.23% 22.49%
γm = 5 40.00% 33.11% 28.18% 24.49% 21.61%

97.14% 97.14% 97.14% 97.14% 97.14%

33.33% 28.64% 25.13% 22.39% 20.20%
γm = 6 33.33% 28.41% 24.71% 21.84% 19.54%

96.83% 96.83% 96.83% 96.83% 96.83%

( )tˆ m
1α

m
1α̂

m
1α
b
1α

m
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m
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b
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m
1α̂

m
1α
b
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m
1α̂

m
1α
b
1α

m
1α̂

m
1α
b
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Table 5 : Welfare loss associated with a sub-optimal benchmark 
 

The Table presents the welfare loss in absolute percentage return when the adopted 
benchmark is the market portfolio, for different values of the principal’s risk aversion 
coefficient γp, of the compensation scheme parameters φ and ν1, and of the market price 
of risk κ. 

 
 

 
 

 
 

 

 

γp Welfare loss φ Welfare loss
2.500 0.08% 1.00% 0.14%
2.750 0.37% 1.25% 0.68%
3.000 0.69% 1.50% 1.22%
3.250 0.98% 1.75% 1.77%
3.500 1.22% 2.00% 2.31%
3.750 1.44% 2.25% 2.86%
4.000 1.63% 2.50% 3.41%
4.250 1.79% 2.75% 3.96%
4.500 1.94% 3.00% 4.53%
4.750 2.09% 3.25% 5.14%
5.000 2.33% 3.50% 5.77%
5.250 2.43%
5.500 2.60%

ν1 Welfare loss κ Welfare loss
5.00% 2.89% 0.15 0.16%

10.00% 1.83% 0.20 0.31%
15.00% 1.53% 0.25 0.64%
20.00% 1.38% 0.30 1.22%
25.00% 1.29% 0.35 2.02%
30.00% 1.22% 0.40 3.24%
35.00% 1.18% 0.45 4.48%
40.00% 1.14% 0.50 6.11%
45.00% 1.12% 0.55 7.98%
50.00% 1.10%


