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Abstract

In this paper we propose a different point of view on the effect of the stochastic

volatility on the skewness of the density of the underlying asset when the underlying

price is not correlated with its volatility. Heston (1993) established that when the

state variables are not correlated, stochastic volatility changes only the kurtosis of

underlying asset density. We demonstrate that stochastic volatility always affects the

higher moments of underlying asset distribution even if the price is not correlated

with its volatility. Also, we show that when the state variables are not correlated, the

risk-neutral probabilities are symmetrical.
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A Note on Skewness in
The Stochastic Volatility Models

1 Introduction

The most important models of options pricing with stochastic volatility are those proposed

by Hull and White (1987), Stein and Stein (1991) and Heston (1993). Bates (1996 and 2000)

and Pan (2002) extended the jump-diffusion model as to incorporate stochastic volatility in

order to explain the structure of option prices while Bakshi et al. (1997 and 2000) developed

option pricing models that simultaneously admit stochastic volatility, stochastic interest rate

and random jump. Hull and White proved that the option price with stochastic volatility is

the price of Black and Scholes integrated over the probability distribution of the average of

future volatilities during the life of the option. Heston, Bates or Bakshi, Cao and Chen use

the characteristic function of risk-neutral probabilities of final prices of the underlying asset.

We consider an option pricing evaluation model with two state variables. Thus, the price

of the European call option depends on the price of the underlying asset and on its volatility.

In the Heston model, in a risk-neutral world these two state variables verify the stochastic

differential equations as follows:

dSt = rStdt+ σtStdw (1)

dσ2t = k
¡
θ − σ2t

¢
dt+ σvσtdz (2)

where S represents the underlying nondividend-paying stock price, r represents the risk-free

interest rate and σ represents the volatility. The Brownian motions w and z are correlated

(dwt · dzt = ρdt) and the coefficient of correlation is ρ (−1 < ρ < 1). k represents the

speed of adjustment of the volatility, θ represents the long-run mean of the volatility and σv

represents the volatility of the volatility.

In a risk-neutral world, the option price formula with stochastic volatility is analogous

to the Black-Scholes formula:

C = SP1 −Ke−rτP2 (3)
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where S is the present value of the underlying asset and K is the strike price. P1 and P2 are

the risk-neutral probabilities that the log-price of underlying asset is greater than lnK.

Heston obtains the characteristic function of risk-neutral probabilities using the Fokker-

Planck forward equation. When the underlying asset price is not correlated with the volatility

(ρ = 0), these characteristic functions are defined by:

fj (α) = exp
¡
C +Dσ2 + iα lnS

¢
(4)

where

C = iαrτ +
a

σ2v

½
(bj + γ) τ − 2 ln

·
1− δ exp (γτ)

1− δ

¸¾
D =

bj + γ

σ2v

·
1− exp (γτ)
1− δ exp (γτ)

¸
δ =

bj + γ

bj − γ

γ =
q
b2j − σ2v (2ujαi− α2)

where j = 1, 2, u1 = 1/2, u2 = −1/2, a = kθ, b1 = b2 = b = k + λ and λ is the market price

of volatility risk.

Using this Heston definition of the characteristic function of the risk-neutral probabilities,

we show that the probability densities are asymmetrical. The paper is organized as follows.

In section 2, we use the characteristic functions to obtain a relation between the risk-neutral

probabilities. In section 3, we present a new closed-form formula of the option price with

stochastic volatility when the state variables are not correlated. Section 4 shows that the

stochastic volatility always affects the skewness of the probability density of the underlying

asset even if the stock price is not correlated with the volatility. Section 5 summarizes and

concludes.

2 The Characteristic Function

In the expression of the characteristic functions of the risk-neutral probability density, the

value of γ equals
p
b2 + σ2v (α

2 − αi) if j = 1 and equals
p
b2 + σ2v (α

2 + αi) if j = 2. Using
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the hyperbolic sine and hyperbolic cosine definitions, the expression (4) of the characteristic

function can be written in a very simple form:

f1 (α) = eiα(lnS+rτ)e
abτ

σ2v

Ã
1

cosh
¡γ1τ
2

¢
+ b

γ1
sinh

¡γ1τ
2

¢! 2a

σ2v

exp

"
−σ2 α2 − iα

b+ γ1 coth
¡γ1τ
2

¢# (5)

f2 (α) = eiα(lnS+rτ)e
abτ

σ2v

Ã
1

cosh
¡γ2τ
2

¢
+ b

γ2
sinh

¡γ2τ
2

¢! 2a

σ2v

exp

"
−σ2 α2 + iα

b+ γ2 coth
¡γ2τ
2

¢# (6)

where:

γ1 =
p
b2 + σ2v (α

2 − iα) and γ2 =
p
b2 + σ2v (α

2 + iα) (7)

From now on we can use the Gil-Pelaez inversion theorem1 in order to obtain the risk-

neutral probabilities, P1 (x < d) and P2 (x < d), that the return of underlying asset is lower

than threshold d. Hence,

P1 (x < d) =
1

2
+
1

2π

Z ∞

0

eiαdφ1 (−α)− e−iαdφ1 (α)
iα

dα (8)

P2 (x < d) =
1

2
+
1

2π

Z ∞

0

eiαdφ2 (−α)− e−iαdφ2 (α)
iα

dα (9)

where the characteristic functions, φ1 and φ2, and d are defined by:

φ1 (α) = e
abτ

σ2v

Ã
1

cosh
¡γ1τ
2

¢
+ b

γ1
sinh

¡γ1τ
2

¢! 2a

σ2v

exp

"
−σ2 α2 − iα

b+ γ1 coth
¡γ1τ
2

¢# (10)

φ2 (α) = e
abτ

σ2v

Ã
1

cosh
¡γ2τ
2

¢
+ b

γ2
sinh

¡γ2τ
2

¢! 2a

σ2v

exp

"
−σ2 α2 + iα

b+ γ2 coth
¡γ2τ
2

¢# (11)

d = ln
K exp (−rτ)

S
(12)

One of the properties of a characteristic function stipulates that φ1 (α) and φ1 (−α) and,
respectively φ2 (α) and φ2 (−α) are complex conjugate2. Because of characteristic functions
symmetry we note that the quantities φ1 (α) and φ2 (α) are complex conjugate:

φ1 (−α) = φ2 (α) and φ1 (α) = φ2 (α) (13)

1See Gil-Pelaez (1951), “Note on the inversion theorem”, Biometrika, 38, page 481-2.
2φ1 (α) = φ1 (−α) and φ2 (α) = φ2 (−α).
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φ1 (α) = φ2 (−α) and φ1 (α) = φ2 (α) (14)

and that involvesZ ∞

0

eiαdφ2 (α)− e−iαdφ2 (−α)
iα

dα =

Z ∞

0

eiαdφ1 (−α)− e−iαdφ1 (α)
iα

dα (15)

and

P1 (x < d) =
1

2
+
1

2π

∞Z
0

eiαdφ2 (α)− e−iαdφ2 (−α)
iα

dα (16)

2.1 The Relation between Risk-neutral Probabilities

The fact that the first risk-neutral probability can be written as depending on the second

characteristic function φ2 (α) allows us to determine a relation between the risk-neutral

probabilities which appear in the theoretical option price formula.

The first step is to determine the probability P1 (x < −d). Using the Gil-Pelaez formula
and the fact that the characteristic functions are complex conjugate, we obtain:

P1 (x < −d)= 1
2
+
1

2π

Z ∞

0

e−iαdφ1 (−α)− eiαdφ1 (α)

iα
dα (17)

=
1

2
+
1

2π

Z ∞

0

e−iαdφ2 (α)− eiαdφ2 (−α)
iα

dα

therefore:

P1 (x < −d)= 1
2
− 1

2π

Z ∞

0

eiαdφ2 (−α)− e−iαdφ2 (α)
iα

dα

=
1

2
−
·
P2 (x < d)− 1

2

¸
= 1− P2 (x < d)

In the same way, we obtain an analogous relation between P2 (x < −d) and P1 (x < d).

Summarizing, we found the following relation between risk-neutral probabilities:P1 (x < −d) = 1− P2 (x < d) = P2 (x > d)

P2 (x < −d) = 1− P1 (x < d) = P1 (x > d)
(18)

The next step is to obtain a relation between the risk-neutral probabilities which appear

in the option price formula. Knowing that,P1 (−d < x < d) = P1 (x < d)− P1 (x < −d)
P2 (−d < x < d) = P2 (x < d)− P2 (x < −d)

(19)
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and using the Gil-Pelaez formula for each probability, we found:

P1 (−d < x < d)=
1

2π

Z ∞

0

"¡
eiαd − e−iαd

¢
iα

φ1 (−α) +
¡
eiαd − e−iαd

¢
iα

φ1 (α)

#
dα (20)

=
1

2π

Z ∞

0

¡
eiαd − e−iαd

¢
iα

[φ1 (−α) + φ1 (α)] dα

Using the fact that the φ1 (α) and φ1 (−α) are complex conjugate3 and the fact that
eiαd−e−iαd

iα
= 2 sinαd

α
,

P1 (−d < x < d) =
2

π

Z ∞

0

sinαd

α
Re [φ1 (α)] dα (21)

In the same way, we obtain:

P2 (−d < x < d) =
2

π

Z ∞

0

sinαd

α
Re [φ2 (α)] dα (22)

Once again we take advantage of the relation between the two characteristic functions.

They are complex conjugate, hence Re [φ1 (α)] = Re [φ2 (α)]. Consequently, the probabilities

(21) and (22) are identical. We make the notation P for this probability:

P = P1 (−d < x < d) = P2 (−d < x < d) (23)

The final step is to use the relations (18) and (23). Hence, the relation between risk-

neutral probabilities is given by:P1 (x > d) = P2 (x < d)− P

P2 (x > d) = P1 (x < d)− P
(24)

3 A Closed-form Formula of The Option Price

In this section, we establish the theoretical price of an European call option when the volatil-

ity is stochastic and when the underlying price is not correlated with the volatility.

3Knowing that φ1 (α) and φ1 (−α) are complex conjugate, then:

φ1 (α) + φ1 (−α) = 2Re [φ1 (α)]

Re [φ1 (α)] = Re [φ1 (−α)] and Im [φ1 (α)] = − Im [φ1 (−α)]
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We can express the probability P2 (x > d) using the Gil-Pelaez definition of the proba-

bility P2 (x < d):

P2 (x > d)= 1−
·
1

2
+
1

2π

Z ∞

0

eiαdφ2 (−α)− e−iαdφ2 (α)
iα

dα

¸
=
1

2
− 1

2π

Z ∞

0

eiαdφ2 (−α)− e−iαdφ2 (α)
iα

dα (25)

From Euler formulas,

P2 (x > d)=
1

2
− 1

2π

Z ∞

0

·µ
sinαd

α
− i
cosαd

α

¶
φ2 (−α)−

µ
−sinαd

α
− i
cosαd

α

¶
φ2 (α)

¸
dα

=
1

2
− 1

2π

Z ∞

0

½
sinαd

α
[φ2 (−α) + φ2 (α)]− i

cosαd

α
[φ2 (−α)− φ2 (α)]

¾
dα (26)

But the quantities φ2 (−α) and φ2 (α) are complex conjugate. Hence,

P2 (x > d) =
1

2
− 1

π

Z ∞

0

sinαdRe [φ2 (α)]− cosαd Im [φ2 (α)]
α

dα (27)

and that involves4:

P2 (x < d) =
1

2
+
1

π

∞Z
0

sinαdRe [φ2 (α)]− cosαd Im [φ2 (α)]
α

dα (28)

In order to determine the probability P1 (x > d), we use the relation (24) between the

risk-neutral probabilities:

P1 (x > d)=P2 (x < d)− P =
1

2
+
1

π

Z ∞

0

sinαdRe [φ2 (α)]− cosαd Im [φ2 (α)]
α

dα

−2
π

Z ∞

0

sinαd

α
Re [φ2 (α)] dα

Therefore, the expression of the risk-neutral probability P1 (x > d) is defined by:

P1 (x > d) =
1

2
− 1

π

Z ∞

0

sinαdRe [φ2 (α)] + cosαd Im [φ2 (α)]

α
dα (29)

Knowing the expressions (27) and (29) of the risk-neutral probabilities, the closed-form

formula of the option price with stochastic volatility is given by:

C =S

½
1

2
− 1

π

Z ∞

0

sinαdRe [φ2 (α)] + cosαd Im [φ2 (α)]

α
dα

¾
(30)

−Ke−rτ
½
1

2
− 1

π

Z ∞

0

sinαdRe [φ2 (α)]− cosαd Im [φ2 (α)]
α

dα

¾
4See the same definition in Kendall and Stuart, (1977), “The Advanced Theory of Statistics”, Volume 1,

page 96.
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In this closed-form formula, the risk-neutral probabilities are explained only by one char-

acteristic function, φ2 (α). Moreover, we note that the risk-neutral probabilities are sym-

metrical5.

3.1 A Heston-like Option Price Formula

Using the following relation6:

sinαdRe
£
φj (α)

¤− cosαd Im £φj (α)¤
α

= −Re
·
e−iαd

iα
φj (α)

¸
= Im

·
e−iαd

α
φj (α)

¸
(31)

we obtain:

P2 (x > d) =
1

2
+
1

π

Z ∞

0

Re

·
e−iαd

iα
φ2 (α)

¸
dα (32)

and

P1 (x > d) =
1

2
+
1

π

Z ∞

0

Re

·
e−iαd

iα
φ1 (α)

¸
dα (33)

and we found the Heston closed-form formula:

C = S

½
1

2
+
1

π

Z ∞

0

Re

·
e−iαd

iα
φ1 (α)

¸
dα

¾
−Ke−rτ

½
1

2
+
1

π

Z ∞

0

Re

·
e−iαd

iα
φ2 (α)

¸
dα

¾
(34)

Heston doesn’t take into consideration the relation between the risk-neutral probabilities

and the fact that the characteristic functions are complex conjugate. Therefore, we can

simplify the formula proposed by Heston using this relation between the probabilities. We

found the following closed-form formula:

C =S

½
1

2
− 1

π

Z ∞

0

Re

·
e−iαd

iα
φ2 (α)

¸
dα− 2

π

Z ∞

0

sinαd

α
Re [φ2 (α)] dα

¾
(35)

−Ke−rτ
½
1

2
+
1

π

Z ∞

0

Re

·
e−iαd

iα
φ2 (α)

¸
dα

¾
Obviously, it is better to use our formula when we pass on the numerical integration.

The relation between the risk-neutral probabilities operates like a restriction. The first risk-

neutral probability is forced to respect this restriction. Consequently, the degree of accuracy

in the numerical integration must be higher.
5As concerning the accuracy of the computing, this symmetry will allow a better numerical approximation

of the option price.
6See, for instance, Davis (1973) - “Numerical inversion of characteristic function”, Biometrika 60, and

Shephard (1991) - “From characteristic function to distribution function: A simple framework for the theory”,

Econometric Theory 7.
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4 The Effect of The Stochastic Volatility on The Skewness of The

Underlying Return Density

Reasoning ab absurdo we demonstrate that the density laws of P1 and, respectively of P2 are

not symmetrical when the underlying price is not correlated with the volatility. Supposing

ab absurdo that the density law of P2 is symmetrical, we have7:

P ∗2 (−d < x < d) = 2P2 (x < d)− 1 (36)

and, using the Gil-Pelaez inversion formula, we obtain8:

P ∗2 (−d < x < d)= 2

·
1

2
+
1

2π

Z ∞

0

eiαdφ2 (−α)− e−iαdφ2 (α)
iα

dα

¸
− 1

=
1

π

Z ∞

0

eiαdφ2 (−α)− e−iαdφ2 (α)
iα

dα (37)

Moreover, using the Euler formulas, we have:

P ∗2 (−d < x < d)=
1

π

Z ∞

0

·µ
sinαd

α
− i
cosαd

α

¶
φ2 (−α)−

µ
−sinαd

α
− i
cosαd

α

¶
φ2 (α)

¸
dα

=
1

π

Z ∞

0

½
sinαd

α
[φ2 (−α) + φ2 (α)]− i

cosαd

α
[φ2 (−α)− φ2 (α)]

¾
dα (38)

therefore:

P ∗2 (−d < x < d) =
2

π

Z ∞

0

sinαdRe [φ2 (α)]− cosαd Im [φ2 (α)]
α

dα (39)

But, without supposing the probability density symmetry, we know the expression of

P2 (−d < x < d) given by (22). Consequently, the difference between the two expressions

must be zero, P2 (−d < x < d)− P ∗2 (−d < x < d) = 0 or

2

π

Z ∞

0

sinαd

α
Re [φ2 (α)] dα−

2

π

Z ∞

0

sinαdRe [φ2 (α)]− cosαd Im [φ2 (α)]
α

dα = 0

We conclude that the probability density of the underlying return is symmetrical if and only

if:
2

π

Z ∞

0

cosαd

α
Im [φ2 (α)] dα = 0

7The sign * denotes the fact that the probability is determined under ab absurdo assumption.
8The same result is obtained by Gil-Pelaez (1951).
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In other words, the underlying return density is symmetrical if and only if Im [φ2 (α)] dα = 0.

Obviously, the skewness coefficient of underlying return density is non-zero because

2

π

Z ∞

0

cosαd

α
Im [φ2 (α)] dα 6= 0 and Im [φ2 (α)] dα 6= 0 (40)

We offer a second proof of an ab absurdo reasoning. If we suppose ab absurdo that

the underlying asset density is symmetrical, the risk-neutral probability P ∗1 (x > d) can be

determined knowing the expression of P ∗2 (−d < x < d).

P ∗1 (x > d)=P2 (x < d)− P ∗2 (−d < x < d)

=
1

2
+
1

π

Z ∞

0

sinαdRe [φ2 (α)]− cosαd Im [φ2 (α)]
α

dα

−2
π

Z ∞

0

sinαdRe [φ2 (α)]− cosαd Im [φ2 (α)]
α

dα

which involves:

P ∗1 (x > d) =
1

2
− 1

π

Z ∞

0

sinαdRe [φ2 (α)]− cosαd Im [φ2 (α)]
α

dα (41)

or

P ∗1 (x > d) = P2 (x > d) (42)

This is not true because P ∗1 (x > d) must be identical with P1 (x > d) and P1 (x > d) 6=
P2 (x > d). Therefore, it is not possible to have the equality (42) for all values taken by d.

Consequently, we conclude that the underlying return density is not symmetrical and the

skewness is changed by the stochastic volatility even if the underlying price is not correlated

with its volatility.

The Figure 1 shows the densities which correspond to the probabilities P1 and P2. The

Figure shows that the underlying return density is not symmetrical. Moreover, a certain

“symmetry” between the densities can be observed. The two densities have identical skewness

coefficients, but with opposite sign. We can note that one of the density is the “image in the

mirror” of the other density. That is true because of the relations between the risk-neutral

probabilities.

We conclude that the stochastic volatility also changes the skewness, not only the kurto-

sis, of the underlying return density when the price of underlying asset is correlated with the
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volatility. That is contrary to Heston who stipulates that, without correlation between the

state variables, the stochastic volatility changes only the kurtosis of the underlying return

density.

 
Figure 1 
The asymmetrical densities 

    -d                0                d 

x 

Probability Density of P2 

P2(x > d) = P1(x < -d) 

P2(x < -d) = P1(x > d) 

P = P2(-d < x < d) 

    -d                0                d 

x 

Probability Density of P1 

P1(x > d) = P2(x < -d) 
P1(x < -d) = P2(x > d) 

P = P1(-d < x < d) 
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5 Conclusions

Heston (1993) established that stochastic volatility changes only the kurtosis of underlying

asset density when the state variables are not correlated. This paper shows that stochastic

volatility always affects the skewness of underlying asset distribution even if the price is

not correlated with its volatility. Moreover, the risk-neutral probabilities are symmetrical

when the state variables are not correlated. This symmetry is done by a relation which

exists between the risk-neutral probabilities. The two densities which give the risk-neutral

probabilities have identical skewness coefficients, but with opposite sign. In fact, one of the

density is the “image in the mirror” of the other density.
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