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Learning and Asset Prices under Ambiguous Information

Abstract

We propose a new continuous-time framework for studying asset prices under learning

and ambiguity aversion. In a Lucas economy with time-additive power utility, a discount

for ambiguity arises for a relative risk aversion below one or, equivalently, an intertemporal

elasticity of substitution above one. The joint presence of learning and ambiguity enforces

large equity premia and model predictions consistent with well-known asset pricing puzzles.

For realistic amounts of ambiguity, absence of either learning or ambiguity aversion implies

low volatilities or low equity premia.

Keywords: Financial Equilibria, Learning, Knightian Uncertainty, Ambiguity Aversion,

Model Misspecification.
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In this paper we study the equilibrium asset-pricing implications of learning when the

distinction between risk and ambiguity (Knightian uncertainty) aversion matters. We define

ambiguity as those situations in which investors do not rely on a single probability law to

describe the relevant random variables. Ambiguity aversion means that investors dislike the

ambiguity of the probability law of asset returns.

Using a continuous-time economy, we study the joint impact of learning and ambiguity

aversion on asset prices and learning dynamics. More specifically, we tackle the problem of

asset pricing under learning and ambiguity aversion in a continuous-time Lucas (1978) exchange

economy in which economic agents have partial information on the ambiguous dynamics of some

aggregate endowment process. We develop a new continuous-time setting of learning under

ambiguity aversion that allows us to study analytically both the conditional and unconditional

implications for equilibrium asset prices.

Whether ambiguity aversion gives a plausible explanation for salient features of asset prices

when learning is accounted for is an open issue. For instance, researchers ask if the equity pre-

mium puzzle can be still addressed in a model of ambiguity aversion as new data are observed

and more data-driven knowledge about some unobservable variable becomes available. The

answer to this question depends on the ability of investors to learn completely the underlying

probability laws under a misspecified belief. Rational models of Bayesian learning1 cannot

address such issues, because they are based on a single-prior/single-likelihood correct speci-

fication assumption about the beliefs that define the learning dynamics. Therefore, to study

asset prices under learning and ambiguity aversion, we must consider settings that explicitly

address a possible misspecification of beliefs and the corresponding learning dynamics.

In our model, agents learn only some of the global ambiguous characteristics of the un-

derlying endowment process, parameterized by a finite set of relevant ambiguous states of the

economy. Moreover, we account for a set of multiple likelihoods in the description of the local

ambiguous properties of the underlying endowment process, conditional on any relevant state
1See the early work of Detemple (1986), Dothan and Feldman (1986), and Gennotte (1986). More recent

contributions include, e.g., Barberis (2000), Brennan (1998), Brennan and Xia (2001), Kandel and Stambaugh
(1995), Pástor (2000), Pástor and Stambaugh (2000), Veronesi (1999) and (2000), and Xia (2001). For a recent
review of the literature, see Feldman (2005).
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of the economy. Since we allow for multiple likelihoods, our model does not resolve ambiguity

in the long run, even when the underlying endowment process is not subject to changes in

regime.

Using the exchange economy framework, we are able to compute analytically the equilib-

rium equity premia, equity expected returns and volatilities, interest rates, and price dividend

ratios. Since we also allow for external exogenous signals on the unobservable expected growth

rate of the aggregate endowment, we can study the relation between asset prices, information

noisiness and ambiguity.

Our main focus is on studying how learning under ambiguity aversion affects the functional

form of the equilibrium variables and if it worsens existing asset pricing puzzles. For instance,

although there is plenty of evidence that ambiguity aversion settings do help to explain the

equity premium and the low interest-rate puzzles, we also know that in a pure setting of learning

the equity premium can be even more of a puzzle (see, e.g., Veronesi (2000)). So we ask if

the combination of learning and ambiguity aversion helps to give a reasonable explanation

for the equity premium puzzle. We also know that pure settings of learning can explain

excess volatility and volatility clustering of asset returns. At the same time, simple constant

opportunity set models of ambiguity aversion do not affect substantially expected equity returns

and equity volatility (see, e.g., Maenhout (2004) and Sbuelz and Trojani (2002)). So we ask

if the combination of learning and ambiguity aversion still generates excess volatility and

volatility clustering.

We can directly address these questions in our model. First, we find that in a Lucas

economy, learning under ambiguity aversion implies an equilibrium discount for ambiguity, if

and only if relative risk aversion is smaller than one, or equivalently, if the elasticity of in-

tertemporal substitution (EIS) is above one. Under low risk aversion, learning and ambiguity

aversion increase conditional equity premia and volatilities. In addition, the part of equity

premium due to the interaction of learning and ambiguity aversion is the largely dominating

one. Second, learning and ambiguity aversion imply lower equilibrium interest rates, regard-

less of risk aversion. Thus, with low risk aversion, we get both a higher equity premium and

a lower interest rate. This finding is a promising feature of our setting, in that it explains
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simultaneously the equity premium and the risk-free rate puzzles without an ad hoc use of

preference parameters. That is, already for moderate amounts of ambiguity. Third, under

learning and ambiguity aversion, the true theoretical equilibrium relation between excess re-

turns and conditional variances is highly time-varying. This feature can generate (i) estimated

relations between excess returns and conditional variances that have undetermined signs over

time and (ii) a huge time-varying bias in the naively estimated risk-return trade-off using, e.g.,

regression methods. In addition, estimates of the EIS based on standard Euler equations for

equity returns are strongly downward biased. Therefore, in our model an EIS above one can

be consistent with observed estimated EIS clearly below one. Finally, since in our setting am-

biguity does not resolve asymptotically, we show explicitly that asset pricing relations under

ambiguity aversion, but no learning, can be interpreted as the limit of an equilibrium learning

process under ambiguity aversion. The paper is organized as follows. The next section reviews

the relevant literature on learning and ambiguity. Section 2 introduces our setting of learning

under ambiguity aversion. The properties of the optimal learning dynamics are studied in Sec-

tion 3. Section 4 characterizes and discusses conditional asset pricing relations under learning

and ambiguity aversion. Section 5 concludes.

1. Background

Distinguishing between ambiguity aversion and risk aversion is economically and behaviorally

important. As the Ellsberg (1961) paradox illustrates, investors behave differently under am-

biguity and risk aversion. Moreover, ambiguity itself is pervasive in financial markets. Gilboa

and Schmeidler (1989) suggest an atemporal axiomatic framework of ambiguity aversion in

which preferences are represented by Max-Min expected utility over a set of multiple prior

distributions.

Recently, authors have attempted to incorporate ambiguity aversion also in an intertempo-

ral context. These approaches have been largely inspired by the Gilboa and Schmeidler (1989)

Max-Min expected utility setting. Epstein and Wang (1994) study some asset pricing impli-

cations of Max-Min expected utility in a discrete-time infinite horizon economy. Epstein and

3



Schneider (2003) later provide a discrete-time axiomatic foundation for that model in which

they show that a dynamically consistent conditional version of the Gilboa and Schmeidler

(1989) preferences can be represented by using a recursive Max-Min expected utility criterion

over a set of multiple distributions. Chen and Epstein (2002) extend that setting to continuous

time. Hansen, Sargent, and Tallarini (1999, in discrete time) and Anderson, Hansen, and Sar-

gent (2003, in continuous time) propose a second setting of intertemporal ambiguity aversion

based on an alternative form of Max-Min expected utility preferences. Their settings apply

robust control theory to economic problems.

Various authors have proposed continuous-time models of full information economies with

ambiguity aversion that give plausible explanations for several important characteristics of as-

set prices. Examples of such models include, among others, Gagliardini, Porchia, and Trojani

(2004; term structure of interest rates), Epstein and Miao (2003; home bias), Liu, Pan, and

Wang (2004; option pricing with rare events), Maenhout (2004; equity premium puzzle), Rout-

ledge and Zin (2001; liquidity), Sbuelz and Trojani (2002; equity premium puzzle), Trojani and

Vanini (2002, 2004; equity premium puzzle and stock market participation), and Uppal and

Wang (2003; home bias). By construction, these models exclude any form of learning. In-

vestors observe perfectly the state variables that determine the opportunity set, but they are

not fully aware of the probability distribution of the state variables. Consequently, some form

of conservative worst-case optimization determines their optimal decision rules.

Only more recently have a few authors addressed the issue of learning under ambiguity

aversion. Using a production economy that is subject to exogenous regime shifts and driven by

a two-state Markov chain, Cagetti, Hansen, Sargent, and Williams (2002) apply robust filtering

theory to show the impact of learning and ambiguity aversion on the aggregate capital stock,

equity premia, and price dividend ratios. Using numerical methods, they provide evidence that

ambiguity aversion increases precautionary saving in a way that is similar to the effect of an

increased subjective time preference rate. Moreover, the equity premium increases substantially

due to ambiguity aversion and price dividend ratios turn out to be lower.

Our model differs from the Cagetti et al. (2002) setting in several aspects. We work with an

exchange Lucas economy without regime shifts and employ a more tractable homothetic setting
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of preferences under ambiguity aversion. These two features allow us to solve the model in

closed form and to discuss the convergence of equilibria under learning and ambiguity aversion

to equilibria with no learning. Due to the tractability of the model, we are able to study

theoretically and in great detail all relevant asset-pricing relations and their dependence on

model parameters. For instance, we show that in the partial information exchange Lucas

economy, ambiguity aversion can fail to increase equity premia if standard risk aversion is

too high or, equivalently, the EIS is too low. Moreover, we allow for external public signals,

in excess of dividends, and for heterogeneous ambiguity sizes across the relevant states of the

economy. These extensions have nontrivial implications for the resulting asset pricing relations.

For instance, the effect of ambiguity aversion on price dividend ratios cannot be mapped into

an adjustment of the subjective time preference rate. Moreover, ambiguity premia caused by

extraneous signals have an important role in the determination of equity premia.

Epstein and Schneider (2002) use a discrete-time setting to highlight that learning about

an unknown parameter under multiple likelihoods can fail to resolve ambiguity asymptotically,

even when the underlying state process is not subject to regime shifts. Epstein and Schneider

(2004) present a related learning model under ambiguity and illustrate the impact of an am-

biguous signal precision on asset prices. Using numerical methods applied to a setting with

risk neutral investors, they show that an ambiguous quality of information, defined in terms of

a set of possible values of the signal precision parameter, can generate skewed asset returns and

excess volatility. The focus of our paper is different from Epstein and Schneider (2002). While

they focus on ambiguous signal precision and its impact on returns volatility and skewness,

we focus on ambiguous signals about expected dividend growth and the resulting implications,

primarily for equity premia. In this context, we show that for realistic amounts of ambiguity

the joint interaction of learning and ambiguity aversion is responsible for very large equity

premia. At the same time, we show that the additional model predictions are consistent with

the interest rate and excess volatility puzzles. In addition, the tractability of our setting allows

us to compute all equilibrium quantities analytically under standard assumptions on the utility

function. For instance, since we assume general power utility investors, we can disentangle the

impact of ambiguity aversion and risk aversion on equity premia, and we show that a positive

ambiguity premium arises only for a moderate risk aversion or, equivalently, a sufficiently large
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EIS. Finally, our model allows for ambiguity on fundamental and extraneous ambiguous sig-

nals. This feature emphasizes the distinction between ambiguous fundamental signals, which

affect both the underlying opportunity set and expectations of the economy’s growth rate, and

ambiguous extraneous signals, which affect only the expected growth rate of the economy.

Finally, Knox (2005) proposes an axiomatic setting of learning about a model parameter

under ambiguity aversion. However, he does so without studying the general equilibrium asset

pricing implications.

2. The Model

We start with a continuous-time Lucas economy. The drift rate in the diffusion process for

the dividend dynamics is unobservable. Investors learn about the “true” drift by observing

dividends and a second distinct signal. In contrast to most other models of rational learning,

we explicitly allow for a distinction between noisy and ambiguous signals. For a purely noisy

signal, the distribution conditional on a given parameter value is known. For ambiguous

signals, the distribution conditional on a given parameter value is either unknown or at least

not uniquely identified. This distinction broadens the notion of information quality. In many

situations, it is plausible that agents are aware of a host of poorly understood or unknown

factors that obscure the interpretation of a given signal. Such obscuring factors can depend

on economic conditions or on some specific aspects of a given state of the economy.

In our model, signals on the state of the economy are ambiguous and can be interpreted

differently, depending on whether agents condition on good or bad economic information. We

model this feature by a set of multiple likelihoods on the underlying dividend dynamics. The

size of this set of multiple likelihoods can depend on the state of the economy. Disentangling

the properties of noisy and ambiguous signals across the possible relevant states of the economy

gives the model builder a more realistic way to specify a learning behavior with multiple beliefs.
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Our objective is to characterize equilibrium asset returns in the presence of noisy signals

in ambiguous states of the economy. Therefore, we develop an equilibrium model of learning

under ambiguity aversion that consists of the following key elements:

a) A parametric reference model for the underlying dividend process and the unobservable

dividend drift. We explicitly treat the reference model as an approximation to reality,

rather than an exact description of it. Therefore, economic agents possess some motivated

specification doubts. Specification doubts arise, e.g., when agents are aware that, based

on an empirical specification analysis, they choose the reference model from a set of

statistically close models.

b) A set of multiple likelihoods on the dynamics of the unobservable dividend drift. We use

these multiple likelihoods to compute a set of beliefs about the unknown dividend drift

dynamics. This set of beliefs represents the investor’s ambiguity on the dynamic structure

of the unobservable expected dividend growth rate. The set of multiple likelihoods can

also serve as a description of a class of alternative specifications to the reference model.

Since these specifications are statistically close, they are difficult to distinguish from the

reference belief.

c) An intertemporal Max-Min expected utility optimization problem.2 The Max-Min prob-

lem models the agents’ optimal behavior given their attitudes to risk and ambiguity and

under the relevant set of multiple ahead beliefs.

Given the three key elements above, a set of standard market clearing conditions on good

and financial markets closes the model. After solving the model, we provide equilibrium asset

prices under learning and ambiguity aversion.
2See also Gilboa and Schmeidler (1989), Chen and Epstein (2002), Epstein and Schneider (2003), and Knox

(2005).
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2.1. The Reference Model Dynamics

We consider a Lucas (1978) economy populated by CRRA investors with utility function

u (C, t) = e−δt C
1−γ

1− γ
, (1)

where γ > 0. The representative investor has a parametric reference model that describes in

an approximate way the dynamics of dividends D

dD

D
= Et

(
dD

D

)
+ σDdBD , (2)

where σD > 0 and Et

(
dD
D

)
is the unobservable drift of dividends at time t. Investors further

observe a noisy unbiased signal e on Et (dD/D) with dynamics

de = Et

(
dD

D

)
+ σedBe , (3)

where σe > 0. The standard Brownian motions BD and Be are independent.

The parametric reference model to describe the dividend drift dynamics is a rough approx-

imation to reality. It implies a simple geometric Brownian motion dynamics for dividends with

a constant drift that takes one of a finite number of candidate values, as in (2000).

Definition 1 The reference model dividend drift specification is given by

1
dt

Et (dD/D) = θ , (4)

for all t ≥ 0, where θ ∈ Θ := {θ1, θ2, ..., θn} and θ1 < θ2 < ... < θn. The representative

investor has some prior beliefs (π̂1, .., π̂n) at time t = 0 on the validity of the candidate drift

values θ1, ..., θn.

In a single-likelihood Bayesian framework, Definition 1 implies a parametric single-likelihood

model for the dividend dynamics, where the specific value of the parameter θ is unknown. The

only relevant statistical uncertainty about the dynamics in equation (2) is parametric. There-

8



fore, in a single-likelihood Bayesian setting, a standard filtering process leads to asymptotic

learning of the unknown constant dividend drift θ in the class Θ of candidate drift values.

Moreover, the equilibrium asset returns dynamics can be determined and the pricing impact

of learning can be studied analytically.

In the sequel, we strongly depart from such a Bayesian asset pricing setting by allowing for

the possibility of a misspecification in the reference model of Definition 1. Relevant misspecifi-

cations take a general nonparametric form, so that they cannot be consistently detected even

by means of parametric Bayesian model selection approaches.

2.2. Multiple Likelihoods

In reality, a Bayesian (single-likelihood) specification hypothesis of the type given in Defini-

tion 1 is very restrictive. Such a specification assumes that even when the dividend drift is

unobservable, the investor can identify a parametric model that is able to describe exactly, in

a probabilistic sense, the relevant dividend drift dynamics. More realistically, we propose a

model of learning in which economic agents have some specification doubts about the given

parametric reference model. Such a viewpoint is motivated by considering that any empirical

specification analysis provides a statistically preferred model only after having implicitly re-

jected several alternative specifications that are statistically close to it. Even if such alternative

specifications to the reference model are statistically close, it is quite possible that they can

quantitatively and qualitatively affect the optimal portfolio policies derived under the reference

model’s assumptions.3 To avoid the negative effects of a misspecification on the optimal poli-

cies derived from the reference model, we prefer to work with consumption/investment optimal

policies that account explicitly for the possibility of model misspecifications. This approach

should ensure some degree of robustness of the optimal policies against misspecifications of the

reference model dynamics.
3The importance of this issue has been recognized, e.g., by Huber (1981) in his influential introduction to

the theory of robust statistics and has been further developed, e.g., in econometrics to motivate several robust
procedures for time series models. See Krishnakumar and Ronchetti (1997), Sakata and White (1999), Ronchetti
and Trojani (2001), Gagliardini, Trojani, and Urga (2005), Mancini, Ronchetti, and Trojani (2005), and Ortelli
and Trojani (2005), for some recent work in the field.
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We explicitly incorporate specification doubts by modeling agents’ beliefs, conditional on

any possible reference model drift θ, by using a set of multiple likelihoods. To define these

sets, we restrict ourselves to absolutely continuous misspecifications of the geometric Brownian

motion process in equations (2) and (4). By Girsanov’s theorem, the likelihoods implied by

absolutely continuous probability measures can be equivalently described by a corresponding

set of drift changes in the model dynamics in equations (2) and (4).

Let h (θ) σD be a process describing the dividend drift change implied by such a likelihood

function. We assume that h (θ) ∈ Ξ (θ), where Ξ (θ) is a suitable set of standardized change

of drift processes (see Subsection 2.3, Assumption 2 below). Under such a likelihood, the

prevailing dividend dynamics are

dD

D
= E

h(θ)
t

(
dD

D

)
+ σDdBD , (5)

with signal dynamics

de = E
h(θ)
t

(
dD

D

)
+ σedBe . (6)

Ambiguity on D’s dynamic arises as soon as for some θ ∈ Θ, the set Ξ (θ) contains a drift

distortion process h (θ) different from the zero process. In this case, we consider several possible

functional forms of the drift in equation (5) together with the reference model dynamics in

equations (2) and (4). The set of possible drifts implied by the multiple likelihoods in Ξ (θ)

represents the relevant beliefs of an agent who does not completely trust the reference model

dynamics.

2.3. A Specific Set of Multiple Likelihoods

Compared with the Bayesian single-likelihood specification hypothesis in Definition 1, an agent

with multiple likelihood beliefs is less ambitious. Thus, we have the following assumption.

Assumption 1 The “true” dividend drift specification is given by

1
dt

E
h(θ)
t

(
dD

D

)
= θ + h (θ, t) σD , (7)
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for all t ≥ 0, some θ ∈ Θ and some h (θ) ∈ Ξ (θ). The representative investor has some beliefs

(π̂1, .., π̂n) at time t = 0 on the a priori plausibility of the different sets Ξ (θ1) , ..,Ξ (θn) of

candidate drift processes.

Under Assumption 1, the representative agent recognizes that a whole class Ξ (θ) of stan-

dardized drift changes is statistically hardly distinguishable from a zero drift change, i.e., from

the reference model dynamics with drift θ given in Definition 1. If Ξ (θ) = {0} for all θ ∈ Θ,

the Bayesian setup in (2000). follows. Then, agents would be concerned only with the pure

noisiness of a signal on the parameter value θ. Therefore, the distinction between ambiguity

and noisiness is absent in a pure Bayesian setting.

The size of the set Ξ (θ) describes the degree of ambiguity associated with any possible

reference model dividend drift θ. The broader the set Ξ (θ), the more ambiguous are the

signals about a specific dividend drift θ + h (θ) σD ∈ Ξ (θ). Such ambiguity reflects the fact

that there are aspects of the unobservable dividend drift dynamics that agents think are hardly

possible, or even impossible, to ever know. For example, the representative agent is aware of

the problem that identifying the exact functional form for a possible mean reversion in the

dividend drift dynamics is empirically a virtually infeasible task.4 Accordingly, the agent tries

to understand only a limited number of features on the dividend dynamics.

In our setting, we represent this limitation with a learning model about the relevant neigh-

borhood Ξ (θ), rather than with a learning process on the specific form of h (θ). Therefore, the

learning problem under multiple beliefs becomes one of learning the approximate features of

the underlying dividend dynamics across a class of model neighborhoods Ξ (θ), θ ∈ Θ. Hence,

the representative agent has ambiguity about some local dynamic properties of equity returns,

conditional on some ambiguous local macroeconomic conditions. The agent tries to infer some

more global characteristics of asset returns in dependence of such ambiguous macroeconomic

states. Finally, since the size of the set Ξ (θ) can depend on the specific value of θ, our setting

allows also for a degree of ambiguity that depends on economic conditions.
4Shepard and Harvey (1990) show that in finite samples, it is very difficult to distinguish between a purely

iid process and one which incorporates a small persistent component.
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Next, we specify the set Ξ (θ) of multiple likelihoods relevant for our setting. The set

contains all likelihood specifications that are statistically close (in some appropriate statistical

measure of model discrepancy) to the one implied by the reference model dynamics. This

feature makes more precise the general principle that Ξ (θ) should contain only models for which

agents have some well-motivated specification doubt, relative to the given reference model

dynamics. The relevant reference model misspecifications are constrained to be small and

are thus hardly statistically detectable. Moreover, the set Ξ (θ) contains any misspecification

which is statistically close to the reference model. This property defines a whole neighborhood

of slight, but otherwise arbitrary, misspecifications of the reference model distributions.

Assumption 2 For any θ ∈ Θ we define Ξ (θ) by

Ξ (θ) :=
{

θ + h (θ) σD :
1
2
h2 (θ, t) ≤ η (θ) for all t ≥ 0

}
, (8)

where η (θ1) , .., η (θn) ≥ 0. Moreover, for any i 6= j it follows:

Ξ(θi) ∩ Ξ(θj) = ∅ . (9)

Under Assumption 2, we can constrain the discrepancy between the reference model dis-

tributions under a drift θ and those under any model implied by a drift distortion process

h (θ) ∈ Ξ (θ) to be statistically small. A moderate bound η (θ) implies that for any likelihood

in the set Ξ (θ) there will be a small statistical discrepancy relative to a reference model dy-

namics with drift θ. In all our model calibrations below in the paper, we will impose moderate

sizes for parameter η(θ), in order to avoid unrealistically pessimistic beliefs in our model. Since

equation (8) does not make any specific assumption on a parametric structure for h (θ), the

neighborhood Ξ (θ) is nonparametric and contains all likelihood models that are compatible

with the bound in set (8).

Condition (9) means that economic agents have ambiguity only about candidate drifts

within neighborhoods, but not between neighborhoods. In other words, different macroeco-

nomic conditions can be mapped into disjoint sets of likely drift dynamics. Such a situation
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arises when the degree of ambiguity η (θ) in the economy is not too high, relative to the dis-

tance between reference model drifts θ. Therefore, we focus on situations in which ambiguity

in the economy is moderate.

2.4. Ambiguity Aversion and Intertemporal Max-Min Expected Utility

We denote by F (t) the information available at time t that contains all possible realizations

of dividends and signals. P is the price of the risky asset in the economy, r the instantaneous

interest rate and η (θ) the function that describes the amount of ambiguity relevant to investors.

The representative investor determines consumption and investment plans C (t) and w (t) by

solving the intertemporal Max-Min expected utility optimization problem

(P ) : max
C,w

inf
h(θ)

E

[∫ ∞

0
u (C, s) ds

∣∣∣∣F (0)
]

, (10)

subject to the dividend and wealth dynamics

dD = (θ + h (θ) σD) Ddt + σDDdBD

dW = W

[
w

(
dP + Ddt

P

)
+ (1− w) rdt

]
− Cdt ,

where for any θ ∈ Θ the standardized drift distortion is such that h (θ) ∈ Ξ (θ) and Assumption

2 holds. In problem (10), the representative agent must select, in excess of an optimal con-

sumption/investment policy, an optimal worst-case belief h out of the admissible class Ξ(θ).

The fact that such an optimal belief is determined endogenously as a function of investors’

preferences differs sharply from the standard Bayesian setting in which beliefs are fixed by a

parametric assumption on the unobservable dynamics of the underlying dividend drift process.
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3. Multiple Filtering Dynamics under Ambiguity

3.1. Bayesian Learning and Likelihood Misspecification

Learning under ambiguity requires constructing a set of standard Bayesian ahead beliefs for

E
h(θ)
t

(
dD
D

)
that are functions of likelihoods h (θ) ∈ Ξ (θ). For a given likelihood model h (θ) ∈

Ξ (θ), let πi (t) be the investor’s belief that the drift rate is θi + h (θi) σD, conditional on past

dividend and signal realizations, i.e.,

πi (t) = Pr
(

1
dt

E
h(θ)
t

(
dD

D

)
= θi + h (θi) σD

∣∣∣∣F (t)
)

. (11)

The distribution Π (t) := (π1 (t) , .., πn (t)) summarizes investors beliefs at time t, under a given

likelihood h (θ) ∈ Ξ (θ). Given such beliefs, investors can compute the expected dividend drift

at time t as
1
dt

Eh(θ)

(
dD

D

∣∣∣∣F (t)
)

=
n∑

i=1

(θi + h (θi) σD) πi (t) = mθ,h , (12)

where

mθ,h = mθ + mh(θ) , mθ =
n∑

i=1

θiπi (t) , mh(θ) =
n∑

i=1

h (θi) πi (t) σD . (13)

The filtering equations implied by any given likelihood h (θ) ∈ Ξ(θ) are standard (see, e.g.,

Liptser and Shiryaev (2001)).

Lemma 1 Suppose that at time zero investors’ beliefs are represented by the prior probabilities

π̂1, .., π̂n. Under a likelihood h (θ) ∈ Ξ (θ), the dynamics of the optimal filtering probabilities

vector π1, .., πn is given by

dπi = πi (θi + h (θi) σD −mθ,h)
(
kDdB̃h

D + kedB̃h
e

)
; i = 1, .., n , (14)

where

dB̃h
D = kD (dD/D −mθ,hdt) , dB̃h

e = ke (de−mθ,hdt) ,
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kD = 1/σD, ke = 1/σe. In this equation,
(
B̃h

D, B̃h
e

)
is a standard Brownian motion in R2,

under the likelihood h (θ) ∈ Ξ (θ) and with respect to the filtration {F (t)}.

To study how a likelihood misspecification affects the dynamic properties of the perceived

beliefs, we express the dynamics in equation (14) in terms of the original Brownian motions

BD and Be. This description helps to highlight how a likelihood misspecification can fail to

imply consistency of a Bayesian learning process.

Corollary 1 Let h (θ) ∈ Ξ (θ) be an admissible likelihood and θl + hDσD, l ∈ {1, .., n}, be the

true dividend drift process. It then follows that

dπi = πi (θi + h (θi) σD −mθ,h) [k (θl + hDσD −mθ,h) dt + kDdBD + kedBe] ; i = 1, .., n ,

(15)

where k = k2
D + k2

e .

Expression (15) gives the dynamics of the posterior probability πi for the general case in which

the likelihood h (θ) might be different from the true underlying drift distortion hD, i.e., the case

in which the likelihood h(θ) might be misspecified. The case of a correctly specified likelihood

arises when h(θl) = hD. In this case, an inspection of the dynamics in equation (15) shows

that the underlying dividend drift θl + hDσD will eventually be learned.

Corollary 2 If the likelihood h (θ) is correctly specified, i.e., if hD = h (θl) for some θl ∈ Θ,

then πl →
t→∞ 1, almost surely.

Corollary 2 shows that consistency of a Bayesian learning process is inherently linked to the

correct specification of the given likelihood. Intuitively, consistency cannot be generally ex-

pected under a misspecified likelihood h (θ). To illustrate the basic point, we can study the

resulting learning dynamics in a setting with only two possible dividend-drift states.

Example 1 Consider the simplified model structure:

Θ = {θ1, θ2} , h (θ1) = h (θ2) = 0 . (16)
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Let θ1 + hDσD be the true underlying dividend drift process. Then, equation (15) implies the

learning dynamics:

dπ1 = π1 (1− π1) (θ1 − θ2) [k (θ1 + hDσD −mh,θ) dt + kDdBD + kedBe] . (17)

From Example 1, we see immediately that if

θ1 + hDσD < mθ,h (θ1 + hDσD > mθ,h) , (18)

then π1 → 1 (π1 → 0) as T →∞, almost surely. Under these conditions, investors will “learn”

asymptotically a constant dividend-drift process θ1 (θ2), even if the true one, θ1+hDσD, might

be time-varying in a nontrivial and unpredictable way.

This observation implies that we will always have π1 → 1 (π1 → 0) as T → ∞ for all

settings in which the true drift θ1 + hDσD is uniformly lower than θ1 (higher than θ2). In the

more general case with θ1 + hDσD between θ1 and θ2, both outcomes are possible (i.e., either

π1 → 1 or π1 → 0). Figure 1 illustrates this point.

Insert Figure 1 about here

In Figure 1, we plot two different trajectories of π1 under a dividend-drift process such that

θ1 + hD (t) σD =





(θ1 + θ2) /2 + a t ∈ (k, k + 1] ,

(θ1 + θ2) /2− a t ∈ (k + 1, k + 2]
, (19)

where k ∈ N is even and |a| < (θ2−θ1)/2. Process (19) describes a deterministic and piecewise

constant dividend-drift misspecification. Although we could consider more complex (possibly

nonparametric) misspecifications, the main message of Figure 1 would not change.

Figure 1 shows that under a dividend-drift process (19), a Bayesian investor could converge

to infer asymptotically both θ1 and θ2 as the dividend-drift process that generated asset prices,

even if the true drift process is always strictly between θ1 and θ2. In Panel A, we plot two

possible posterior probabilities trajectories when no shift arises (a = 0). In Panel B, we add
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two alternative trajectories implied by a = 0.015, when a yearly deterministic shift in the

underlying parameters is present. The only attainable stationary points in the dynamics (17)

are the points π1 = 1 and π1 = 0. Any value π1 ∈ (0, 1) such that

θ1 + hDσD = mh,θ (20)

makes the drift, but not the diffusion, equal to zero in the dynamics (17). Consequently, π1

will never stabilize asymptotically in regions such that mh,θ ≈ θ1 + hDσD. If the goal is to

approximate adequately θ1 +hDσD by means of mh,θ, even under a misspecified likelihood, an

asymptotic behavior such that mh,θ ≈ θ1 + hDσD would be ideally more natural. However,

this behavior will never arise under the given misspecified likelihood. Richer, but qualitatively

similar, patterns emerge when we enlarge the set of possible states of the economy or when

the form of introduced misspecification in the likelihood is more complex.

This discussion highlights that a Bayesian investor will not be able to evaluate exactly

the utility of a consumption/investment strategy, because she will not identify exactly the

underlying dividend-drift process, even asymptotically. Therefore, we work with a learning

setting in which investors explicitly exhibit some well-founded specification doubts about the

given reference model.

3.2. Learning Under Ambiguity Aversion

Which learning behavior should agents adopt in an ambiguous environment? Since agents are

not particularly comfortable with a specific element of Ξ (θ), they base their beliefs on the

whole set of likelihoods Ξ (θ). By Corollary 1, this approach generates a whole class P of

indistinguishable dynamic dividend-drift prediction processes given by

P = {mθ,h : h (θ) ∈ Ξ (θ)} , (21)
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where the dynamics of any of the corresponding posterior probabilities π1, .., πn under the

likelihood h (θ) is given by

dπi = πi (θi + h (θi) σD −mθ,h)
(
kDdB̃h

D + kedB̃h
e

)
, i = 1, .., n . (22)

The set P of dynamic dividend-drift predictions represents investor’s ambiguity on the true

dividend-drift process, conditional on the available information generated by dividends and

signals. As expected, the larger the size of the set of likelihoods Ξ (θ) (i.e., the ambiguity

about the dividend dynamics), the larger the size of the set P of dynamic dividend-drift

prediction processes.

Using the set P of dynamic dividend-drift predictions, we can write the continuous-time op-

timization problem (10) as a full information problem in which we define the relevant dynamics

in terms of the filtration {F (t)}. Indeed, since all beliefs implied by likelihoods h(θ) ∈ Ξ(θ) are

absolutely continuous, all relevant processes (B̃h
D, B̃h

e )′ generate the same filtration {F(t)} and

the dynamic budget constraint associated with problem (10) can be equivalently formulated

in terms of mθ,h and (B̃h
D, B̃h

e )′. See also Miao (2001) for a related discussion.

An equilibrium in our economy is a vector of processes (C (t) , w (t) , P (t) , r (t) , h (θ, t))

such that the optimization problem (P ) is solved and markets clear, i.e., w (t) = 1 and C (t) =

D (t). In equilibrium, the relevant problem then reads

(P ) : J (Π, D) = inf
h(θ)

E

[∫ ∞

0
e−δt D(t)1−γ

1− γ
dt

∣∣∣∣F (0)
]

, (23)

subject to the dynamics

dD = mθ,hDdt + σDDdB̃h
D , (24)

dπi = πi (θi + h (θi) σD −mθ,h)
(
kDdB̃h

D + kedB̃h
e

)
, (25)

where for any θ ∈ Θ we have h (θ) ∈ Ξ (θ) and Assumption 2 holds.

The key difference with a standard (single-likelihood) equilibrium Bayesian setting of learn-

ing is that in equation (23) investors must select optimally a worst-case forecast procedure for
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the unknown dividend drift. Such a worst-case belief selection generates an endogenous sys-

tematic discrepancy between the reference model belief and the one applied by investors to

value risky assets under ambiguity. The worst-case belief selection affects investors’ relevant

belief for pricing future asset pay-offs by enforcing a conservative max-min utility behavior.

Therefore, in equilibrium the worst-case belief selection has a direct impact on the level of

asset prices. However, a more indirect effect arises for the equilibrium equity-return dynamics

under the reference model belief. The systematic bias between the reference model belief and

investors’ worst-case belief affects reference model equilibrium quantities in a nontrivial way.

In Proposition 1, we study the direct impact of ambiguity aversion on the price of equity

and equilibrium interest rates. We do so by presenting the solution to Problem (23).

Proposition 1 Let θ̂i := δ + (γ − 1) θi + γ (1− γ) σ2
D
2 and assume that

θ̂i + (1− γ)
√

2η (θi)σD > 0 , i = 1, .., n . (26)

Then, we have:

a) The normalized misspecification h∗ (θ) solving Problem (23) is given by

h∗ (θi) = −
√

2η (θi) , i = 1, .., n . (27)

b) The equilibrium price function P (Π, D) for the risky asset is given by:

P (Π, D) = D
n∑

i=1

πiCi , (28)

where

Ci = 1/(θ̂i + (1− γ)
√

2η (θi)σD) , i = 1, .., n . (29)

c) The equilibrium interest rate r is

r = δ + γmθ,h∗ − 1
2
γ (γ + 1)σ2

D , (30)
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where mθ,h∗ = mθ + mh∗(θ) is such that

mh∗(θ) =
n∑

i=1

h∗ (θi) πiσD = −
n∑

i=1

√
2η(θi)πiσD . (31)

Each constant of the form in equation (29) is proportional to investors’ expectation of

discounted lifetime dividends, conditional on a constant dividend-drift process θi−
√

2η (θi)σD.

The drift process θi−
√

2η (θi)σD is the worst-case drift misspecification θi+h∗ (θi) σD selected

from the neighborhood Ξ (θi). More specifically, we have

Ci = Eh∗(θi)

[∫ ∞

s
e−δ(t−s)

(
D (t)
D (s)

)1−γ

dt

]
=

1
D (s)

Eh∗(θi)

[∫ ∞

s

uc (D (t) , t)
uc (D (s) , s)

D (t) dt

]
,

(32)

where Eh∗(θi) [·] denotes expectations under a geometric Brownian motion process for D having

drift θi −
√

2η (θi)σD.

A high Ci implies that investors are willing to pay a high price for the ambiguous state

Ξ (θi). Since the state is not observable, they weigh each Ci by the posterior probability πi to

get the price in equation (28) of the risky asset under learning and ambiguity aversion. We

note that Ci is a function of both investors’ ambiguity aversion, via the parameter η (θi), and

investor’s relative risk aversion γ.

We can also write equation (32) as

Ci = E

[∫ ∞

s
e
−
h
δ+(1−γ)

√
2η(θi)σD

i
(t−s)

(
D (t)
D (s)

)1−γ

dt|θ = θi

]
, (33)

where E [·|θ = θi] denotes reference model expectations conditional on a constant drift θ = θi.

Therefore, the impact of ambiguity aversion on the price of the ambiguous state Ξ (θi) is

equivalent to that implied by a corrected time preference rate

δ −→ δ + (1− γ)
√

2η (θi)σD (34)
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under the reference model dynamics. The adjustment in equation (34) depends on the amount

of ambiguity of the ambiguous state Ξ (θi), relative risk-aversion γ and dividend-growth volatil-

ity σD.

Cagetti et al. (2002) give numerical evidence that ambiguity aversion decreases the aggre-

gate capital stock in a way that is similar, but not identical under general power utility, to

the effect of an increased subjective discount rate. In our setting, equation (34) implies that,

given a homogeneous degree of ambiguity, the effect of ambiguity aversion is exactly offset by

an increase in the subjective time preference rate. However, in the general case of an heteroge-

neous degree of ambiguity η (θ), we cannot map the final effect of ambiguity on equity prices

into an adjustment of one single time preference rate. As we show in Section 4, the additional

flexibility implied by heterogeneous ambiguity structures can generate model predictions that

are consistent with the well-know puzzles even more easily than can homogeneous ambiguity

structures.

Corollary 3 summarizes the dependence of the price Ci on an arbitrary ambiguity parameter

η(θi).

Corollary 3 The price of any ambiguous state Ξ (θ) is a decreasing function in the degree of

ambiguity η (θ) if and only if γ < 1. In such a case, Ci is a convex function of η (θi), which is

uniformly more convex for smaller risk aversion γ.

From Corollary 3, the marginal relative price of ambiguity is negative if and only if relative

risk aversion γ is less than 1. In the opposite case, if γ > 1, we obtain the somewhat coun-

terintuitive implication, relative, e.g., to the basic intuition provided by the standard (static)

Ellsberg (1961) paradox, that the price of an ambiguous state is higher than the one of an

unambiguous one.

To understand this only apparently paradoxical finding, recall that in the determination

of Ci the representative investor discounts worst-case future dividends through their marginal

utility. In equilibrium, a lower dividend growth rate implies a lower expected future consump-

tion growth and a lower discount rate. Since for high risk aversion the last effect dominates, a
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lower expected dividend growth deriving from a conservative belief under ambiguity implies a

lower discount rate and a higher price for ambiguous states.

For γ > 1, settings of learning and ambiguity aversion with high risk aversion deliver low

(negative) equity premia and low volatilities, together with high and highly variable interest

rates. That is, imposing high risk aversion worsens the asset pricing puzzles when learning

under ambiguity aversion is considered. Therefore, we focus in the sequel on settings with

moderate risk aversion. There is some experimental evidence favoring low risk aversion under

ambiguity collected by Wakker and Deneffe (1996), who estimate a virtually linear utility

function when using a utility elicitation procedure robust to the presence of ambiguity. In such

experiments, utility functions estimated by procedures that are not robust to the presence of

ambiguity are clearly concave.

Assumption 3 The representative agent in the model has a relative risk-aversion parameter

γ < 1.

Since we adopt a setting with power utility of consumption, Assumption 3 is equivalent to

assuming an elasticity of intertemporal substitution (EIS) 1/γ > 1. This is perfectly consistent

with the idea that in our model excess returns are going to reflect mainly some premium for

ambiguity, rather than a premium for risk.

The empirical evidence about the size of the EIS is mixed. Hansen and Singleton (1982) and

Attanasio and Weber (1989) estimated the EIS to be well above one. Hall (1988) considered

aggregation effects and estimated an EIS well below one using aggregate consumption data.

Similar low estimates using aggregate consumption variables are obtained in Campbell (1999).

Recent empirical work focusing on the consumption of households participating in the stock

or the bond market has suggested that such investors have a much larger EIS than individuals

that do not hold stocks or bonds. For instance, Vissing-Jorgensen (2002) estimates an EIS well

above one for individuals holding portfolios of stocks and bonds in Euler equations for treasury

bills. Attanasio and Vissing-Jorgensen (2003) also estimate large EIS for stockholders when

using Euler equations for treasury bills and after-tax returns. Attanasio, Banks, and Tanner

(2002) findings on UK data suggest an EIS larger than one for Euler equations including
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treasury bills and equity returns in an econometric model where ownership probabilities are

also estimated. Finally, Aı̈t-Sahalia, Parker, and Yogo (2004) estimate EIS above one using

Euler equations for treasury bills where consumption is measured by consumption of luxury

goods. Typically, in these empirical studies the EIS estimated with Euler equations including

US equity returns are lower. However, as noted for instance by Vissing-Jorgensen (2002, p.

840), Attanasio and Vissing-Jorgensen (2003, p. 387) and Aı̈t-Sahalia, Parker, and Yogo (2004,

p. 2985), this finding is mainly due to the low predictive power of the instruments for equity

returns, which leads to poor finite sample properties of the estimators.

The results in the above literature are based on models that do not explicitly account

for fluctuating economic uncertainty. Recently, Bansal and Yaron (2004) argued in a setting

with Epstein and Schneider (1989) preferences and fluctuating uncertainty that a model with

EIS above one can explain better key asset markets phenomena than a model with EIS below

one. Moreover, they showed that neglecting fluctuating economic uncertainty leads to a severe

downward bias in the estimated EIS using standard Euler equations. In our setting fluctuating

economic uncertainty arises endogenously, via the learning process of our representative agent.

Therefore, downward biases in EIS estimates similar to those noted in Bansal and Yaron

(2004) will arise. Such biases are particularly large for Euler equations using equity returns;

see Section 4.4 below.

3.2.1. Price/Dividend Ratios and Interest Rates

Under Assumption 3, we obtain from Proposition 1 a few implications for the behavior of the

price/dividend ratio P/D in the model. We summarize them in Corollary 4.

Corollary 4 Under Assumption 3 we have the following:

a) The price/dividend ratio P/D is a decreasing convex function of the amount of ambiguity

(η (θ1) , .., η (θn)) in the economy. Moreover, P/D is a uniformly more convex function

for lower risk aversion γ.
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b) A mean-preserving spread Π̂ of Π implies

P̂ /D > P/D ,

that is, the price/dividend ratio P/D is increasing in the amount of uncertainty in the

economy.

Finding a) in Corollary 4 is a direct implication of (28) and (33). Finding b) follows from

the convexity of Ci in (28) as a function of θi −
√

2η(θi)σD.

Under Assumption 3, the impact of a higher ambiguity on price/dividend ratios (Finding

a)) has a different sign than the one of a higher uncertainty in the economy (Finding b)). This

is a distinct prediction of ambiguity aversion for the behavior of P/D.

In Proposition 1, the equilibrium interest rate is given by equation (30). The effect of

learning and ambiguity aversion on equilibrium interest rates is always negative, since r is a

decreasing convex function of (η (θ1) , .., η (θn)). We obtain the special case of an equilibrium

interest rate rNA under no ambiguity, as in Veronesi (2000), by setting η (θ) = 0 for all θ ∈ Θ

in (30),

rNA = δ + γmθ − 1
2
γ (γ + 1)σ2

D . (35)

Hence,

r − rNA = γmh∗(θ) < 0 ⇐⇒ there exists θ ∈ Θ such that η (θ) > 0 . (36)

The case with no uncertainty about the true model neighborhood arises under a degenerate

distribution Π, implying mθ + mh∗(θ) = θl −
√

2η (θl)σD for some θl ∈ Θ and

r = δ + γ
(
θl −

√
2η (θl)σD

)
− 1

2
γ (γ + 1)σ2

D . (37)

The interest rate in equation (37) is the equilibrium interest rate of an economy with ambi-

guity but no learning. Hence, even in the case of an asymptotic learning about Ξ (θl), the

asset-pricing impact of ambiguity on interest rates does not disappear. Asymptotically, the

representative agent still has ambiguity about the unknown drift θl + h (θl) σD ∈ Ξ (θl) that
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generates the dividend dynamics, even if she learns that the relevant model neighborhood is

Ξ (θl).

For the case in which the asymptotic distribution of Π is nondegenerate, the contribution

mh∗(θ) of ambiguity aversion to the level of interest rates is a weighted sum of the contributions

of ambiguity aversion under the single-model neighborhoods Ξ (θ1),.., Ξ (θn). The weights in

mh∗(θ) are given by the posterior probabilities Π. Moreover, the dynamics of Π depend on η(θ),

i.e., on the worst-case likelihood h∗(θ), that has been optimally selected by the ambiguity-averse

investor. Therefore, time-varying aggregate ambiguity arises fully endogenously, because its

Π–dependent dynamics cannot be determined regardless of the ambiguity parameter η in the

economy.

The impact of ambiguity aversion on interest rates and price/dividend ratios is illustrated

numerically in Table 1 for a setting of no learning (column NL) and a setting with learning

(column L). The first row (η = 0) in Table 1 presents quantities prevailing in the absence of

ambiguity. The following rows (η = 0.001, 0.005, 0.01, 0.02) give equilibrium interest rates and

price/dividend ratios for an increasing (homogenous) ambiguity parameter η.

Insert Table 1 about here

For a moderate risk aversion parameter γ = 0.5, low interest rates of about 2.8% are obtained,

even in the absence of ambiguity (η = 0), because the elasticity of intertemporal substitution

1/γ implied by our setting is sufficiently large. Increasing ambiguity aversion lowers interest

rates further to a level of about 2.45% for η = 0.02. Interest rates under learning (column L)

and no learning (column NL) are identical because r is a linear function of posterior probabili-

ties Π and we have chosen Π to be symmetric around the true underlying dividend drift θ. Due

to the convexity of Ci as a function of θi−
√

2η(θi)σD, price/dividend ratios are always higher

in a setting of learning, compared to a model without prior uncertainty about the underlying

dividend drift. However, ambiguity aversion lowers P/D−ratios monotonically, from a level of

about 96 in the absence of ambiguity (column L for η = 0) to a level of about 69 (column L

for η = 0.02).
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3.2.2. Endogenous Learning Dynamics

The normalized worst-case drift distortion in equation (27) of Proposition 1 determines the

description of the endogenous relevant Π−dynamics under ambiguity aversion. We focus on

a description under the reference model dynamics from the perspective of an outside observer

who knows that the dividend dynamics indeed satisfies the reference model in (2) and (3), and

who also knows the specific value of the parameter θ.

Despite the fact that the true dynamics are those under the reference model, misspec-

ification doubts coupled with ambiguity aversion force investors to follow different learning

dynamics than the optimal Bayesian learning dynamics under the reference model’s likelihood.

We highlight this issue in the next Corollary.

Corollary 5 Under the reference model in Definition 1, the filtered probabilities dynamics of

a representative agent solving the equilibrium optimization problem (23) are

dπi = πi

(
θi −

√
2η (θi)σD −mθ,h∗

)
[k (θ −mθ,h∗) dt + kDdBD + kedBe] (38)

Equation (38) gives us a way to study the learning dynamics realized under ambiguity

aversion. We observe that ambiguity aversion can imply a tendency to overstate the probability

of good states, relatively to the probabilities implied by the learning dynamics of a Bayesian

investor. To emphasize this point, we consider the case of a constant ambiguity aversion

η (θ1) = ... = η (θn) = η, implying filtered probability dynamics given by

dπi = πi (θi −mθ)
[
k

(
θ −mθ +

√
2ησD

)
dt + kDdBD + kedBe

]
. (39)

For η = 0, the dynamics in equation (39) are those of a standard (single-likelihood) Bayesian

learner. More precisely, the difference in the drift in (39) with and without ambiguity (η 6= 0

and η = 0) is given by

kπi (θi −mθ)
√

2ησDdt. (40)
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The difference is positive for above-average candidate reference model drifts θi ∈ Θ (θi−mθ >

0) and negative for below-average candidate reference model drifts θi ∈ Θ (θi − mθ < 0).

Therefore, investors subject to ambiguity aversion will tend to “learn” a large reference model

drift more rapidly than a low reference model drift. Unconditionally, this property implies

learning dynamics where the a posteriori expected reference model drift mθ under ambiguity

aversion is higher than that of a Bayesian investor, i.e., the learning dynamics under ambiguity

aversion implies an optimistic tendency to overstate the a posteriori reference model drifts

relatively to a standard Bayesian prediction. Such a tendency is more apparent for large

precision parameters k.

Figure 2 illustrates these features for a setting with three possible neighborhoods Ξ (θ1),

Ξ (θ2), Ξ (θ3). We plot the posterior probabilities π1 implied by Corollary 5 for the “bad” state

Ξ (θ1) in Panel A and those for the good state Ξ (θ3) (the probabilities π3) in Panel B. The

“true” underlying state is Ξ(θ2).

Insert Figure 2 about here

In Panel A, the uniformly higher probabilities π1 arise in the absence of ambiguity (the

solid line corresponds to η = 0), while for the largest ambiguity-aversion parameter η =

0.05 the uniformly lowest posterior probabilities arise. Hence, the ambiguity-averse investor

systematically understates the probability of the “bad” state θ1. Similar features, but in the

opposite direction, arise for the probabilities π3 of the “good” state θ3 in Panel B.

4. Conditional Asset Returns

Given the worst-case dividend drift θi−
√

2η (θi)σD conditional on the ambiguous state Ξ (θi),

we obtain the equilibrium equity excess return R dynamics under learning and ambiguity

aversion, defined by

dR =
dP + Ddt

P
− rdt . (41)
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We first study the direct effect of learning and ambiguity aversion on R−dynamics by describing

this effect with respect to the filtered Brownian motions B̃h∗
D , B̃h∗

e , which are implied by the

selected optimal worst-case likelihood belief h∗(θ) of Proposition 1. This description provides

the dynamics of R under the worst-case scenario h∗(θ) ∈ Ξ(θ) in our economy. In this sense, we

can interpret the resulting expected excess return on equity as the worst-case equity premium

in the economy.

The indirect impact of learning and ambiguity aversion on R−dynamics arises because of

the differences between the likelihood belief under the reference model dynamics and the opti-

mal worst-case belief adopted by ambiguity-averse investors in computing asset prices. Under

the reference model likelihood belief, such a discrepancy determines an additional ambiguity

premium component for misspecification in the R−dynamics. We can analyze this important

effect of learning and ambiguity aversion, by describing R−dynamics with respect to the fil-

tered Brownian motions B̃D, B̃e, which are implied by the reference model belief for dividends

in Definition 1. This description provides the correct R−dynamics from the perspective of an

outside observer (e.g., an econometrician), who believes in the reference model of Definition

1 as an approximate description of the dividend dynamics and knows that investors in the

economy are ambiguity averse. The resulting expected excess return on equity identifies the

structure of equity premia under learning and ambiguity aversion. Proposition 2 summarizes

our findings.

Proposition 2 (i) Under the investor’s subjective optimal worst-case belief h∗(θ) in Proposi-

tion 1, the equilibrium return process R under ambiguity aversion has dynamics

dR = µwc
R dt + σDdB̃h∗

D + Vθ,h∗
(
kDdB̃h∗

D + kedB̃h∗
e

)
, (42)

where

µwc
R = γ

(
σ2

D + Vθ,h∗
)

, Vθ,h∗ =
n∑

i=1

πiCi

(
θi −

√
2η (θi)σD

)
∑n

i=1 πiCi
−mθ,h∗ , (43)
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and with Brownian motion increments with respect to the filtration {F(t)} given by

dB̃h∗
D = kD

(
dD

D
−mθ,h∗dt

)
, dB̃h∗

e = ke (de−mθ,h∗dt) .

(ii) Under the reference model belief, the equilibrium excess return process R under ambiguity

aversion has dynamics

dR = µRdt + σDdB̃D + Vθ,h∗
(
kDdB̃D + kedB̃e

)
, (44)

where

µR = µwc
R −mh∗(θ) (1 + kVθ,h∗) ,

and with Brownian motion increments with respect to the filtration {F(t)} given by

dB̃D = kD

(
dD

D
−mθdt

)
, dB̃e = ke (de−mθdt) .

We can analyze in more detail how learning under ambiguity aversion affects the conditional

structure of asset returns. We first study the sign and comparative statics for quantities mh∗(θ)

and Vθ,h∗ arising in equations (42) and (44). In a second step, we discuss the impact of learning

under ambiguity aversion on equity premia and volatilities. The term

mh∗(θ) = mθ,h∗ −mθ = −
n∑

i=1

√
2η(θi)πiσD (45)

is a conservative correction to the reference model’s a posteriori expectations mθ. This cor-

rection accounts for misspecification doubts in the a posteriori expectations for the growth

rate of the economy and is always negative. The term Vθ,h∗ reflects the difference between the

worst-case expected growth rate of the economy, mθ,h∗ , and its value-adjusted counterpart.

Vθ,h∗ is larger either when agents have more diffuse beliefs about Ξ (θ1) , ..,Ξ (θn), or when

they value the asset very differently across the different states. These differences in valuation
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depend on the heterogeneity of the worst-case growth rate θ −
√

2η (θ)σD across such states.

Under Assumption 2, it follows

θ1 −
√

2η(θ1)σD < θ2 −
√

2η(θ2)σD < ... < θn −
√

2η(θn)σD .

Therefore, we can use similar arguments as in the proof of Lemma 3 in Veronesi (2000) to obtain

the following characterization of Vθ,h∗ in our setting of learning under ambiguity aversion.

Lemma 2 Let Assumption 2 be satisfied. It then follows that:

1. Vθ,h∗ is a decreasing function of γ.

2. The following statements are equivalent:

(a) Assumption 3 holds.

(b) Vθ,h∗ > 0.

(c) For any mean-preserving spread Π̃ of Π it follows

Ṽθ,h∗ > Vθ,h∗ ,

where ”v” denotes quantities under Π̃.

In particular, quantity Vθ,h∗ is positive and increasing with respect to mean-preserving spreads

of Π if and only if γ < 1. The positivity of Vθ,h∗ is crucial to avoid theoretical asset pricing

relations that are clearly inconsistent with the equity premium puzzle predictions.

To study the impact of ambiguity aversion on Vθ,h∗ , we compute comparative statics for

the standardized worst-case drift ambiguity quantities
√

2η(θ1), ..,
√

2η(θn) in a neighborhood

of η(θ) = 0, i.e., the pure Bayesian learning setting.

Proposition 3 (i) The comparative statics of Vθ,h∗ for the ambiguity parameter
√

η(θi) are

∂Vθ,h∗

∂
√

2η(θi)

∣∣∣∣∣
η(θ)=0

= −
[

πiC(θi)∑n
j=1 πjC(θj)

− πi + (1− γ)
πiC(θi)2∑n
j=1 πjC(θj)

(θi −mθ − Vθ)

]
σD ,
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where for any i = 1, .., n coefficient C(θi) is the value of Ci in Proposition 1 for η(θi) = 0 and

Vθ is the value of Vθ,h∗ for η(θ1) = ... = η(θn) = 0. (ii) Let Assumption 3 be satisfied. If both

conditions

πiC(θi)∑n
j=1 πjC(θj)

≷ πi ; θi −mθ ≷ Vθ (46)

are satisfied, then

∂Vθ,h∗

∂
√

2η(θi)

∣∣∣∣∣
η(θ)=0

≶ 0 . (47)

(iii) Let Assumption 3 be satisfied. If ambiguity is homogeneous (η(θi) = η for i = 1, .., n), it

follows

∂Vθ,h∗

∂
√

2η

∣∣∣∣
η=0

< 0 . (48)

To understand the meaning of Proposition 3 and condition (46), define for any i = 1, .., n the

value-adjusted probability of the reference model drift θi in the absence of ambiguity,

π̃i =
πiC(θi)∑n

j=1 πiC(θj)
. (49)

Then, we can rewrite equation (46) as

π̃i ≷ π ; θi −mθ ≷ m̃θ −mθ , (50)

where ”∼” denotes quantities under Π̃. Condition (50) is intuitive. It requires that the value-

weighted probability π̃i of θi and the reference model drift θi itself are larger (or smaller) than,

respectively, the posterior probability πi and the Π̃−value weighted mean of θ. If equation (50)

is valid with “>”, then adding ambiguity to state θi implies, under Assumption 3, Vθ,h∗ < Vθ.

The opposite holds if (50) is valid with “<”. Under Assumption 3, C(θi) in an increasing

convex function of θi. Therefore, equation (50) will tend to hold with “>” for large values of θi

and with “<” for low values of θi. (For instance, under Assumption 3 condition (50) is always
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satisfied with “<” by θ1 and with “>” by θn.) Inequality (47) of Proposition 3 then implies

that asymmetric ambiguity structures η(θ) tend to decrease (increase) Vθ,h∗ , when ambiguity

is sufficiently large for high (low) reference model drift states. However, when ambiguity is

homogeneous, no increase in Vθ,h∗ arises when we extend the Bayesian learning setting to

incorporate ambiguity aversion.

4.1. Equity Premia

From equation (43), the equilibrium equity premium µR is given by

µR = γ(σ2
D + Vθ,h∗)︸ ︷︷ ︸
(A)

−mh∗︸ ︷︷ ︸
(B)

−mh∗kVθ,h∗︸ ︷︷ ︸
(C)

. (51)

µR is the sum of three conceptually different equity premium contributions (A), (B), and (C).

(A) is the equity premium part deriving from standard risk exposure, i.e., the standard risk

premium. It can also be interpreted as the worst-case equity/risk premium in our economy.

The sum (B)+(C) is the equity premium part caused by exposure to ambiguity, i.e., the

ambiguity premium. (B) is the part of the ambiguity premium caused by misspecifications in

the dividend dynamics. (C) is the part of the ambiguity premium caused by misspecifications

in the dynamics for the posterior probabilities Π.

Figure 3, Panel D, presents a typical pattern for the equity premium µR for different levels

of the risk-aversion parameter and under a homogeneous degree of ambiguity η (θ) = η = 0.01.

Insert Figure 3 about here

In Figure 3, the equity premium µR is a monotonically decreasing function of risk aversion.

However, for low risk aversion, such a feature seems to be very compatible with the predictions

of the equity premium puzzle. For instance, for moderate risk aversion γ between 0.2 and 0.4,

the equity premium ranges from about 8% to about 5%. This effect arises despite the small

size of the ambiguity parameters used.
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4.1.1. Premia for Risk

The term (A) in equation (51) is the equity premium perceived by an investor under the optimal

worst-case likelihood h∗ (θ) selected in Proposition 1. More precisely, from Proposition 2 we

have

µwc
R = γ

(
σ2

D + Vθ,h∗
)

= γCovh∗
t (dR, dD/D) = γCovt(dR, dD/D) , (52)

where Covh∗
t (Covt) denotes conditional covariances under the worst-case likelihood h∗ (under

the reference model likelihood) and the last equality arises because worst-case and reference

model likelihoods are absolutely continuous. Therefore, the term (A) has the dual interpre-

tation of being the total equity/risk premium arising under the worst-case likelihood belief,

and the part of equity premium deriving from pure risk exposure under the reference model

likelihood belief.

In particular, equation (52) emphasizes the fact that under learning and ambiguity aver-

sion, the covariance term Covt(dR, dD/D) captures only the fraction (A) of the whole equity

premium µR under the reference model dynamics.

It is natural to expect that the risk premium (A) will be actually quite small in our economy.

Indeed, γσ2
D is the risk premium under ambiguity aversion but no learning (see, e.g., Maenhout

(2004) and Trojani and Vanini (2002)). It is increasing in γ, but for realistic risk-aversion

parameters it is typically a very small number. Moreover, Lemma 2 implies that the quantity

Vθ,h∗ is decreasing in risk aversion. Therefore, the term (A) as a function of risk aversion is

bounded and is negligible for practical purposes.

In Panel C of Figure 3, we plot a typical profile of the risk premium (A) as a function of

γ (circled curve) together with the equity/risk premium function implied by a setting of pure

Bayesian learning (crossed curve). The equity/risk premium function prevailing in Panel C

under a pure Bayesian learning setting almost coincides with the risk premium function under

ambiguity aversion. In general, the risk premium (A) under learning and ambiguity aversion is

different from the risk premium arising under pure learning, because the term Vθ,h∗ in equation

(52) is different from the corresponding term that prevails in a setting of pure learning when

η(θ) = 0. However, for realistic structures of the ambiguity function η(θ), we always find the
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two risk premia to be numerically similar. The Mehra and Prescott (1985) equity premium

puzzle is even more puzzling in a purely Bayesian setting, because equity premia cannot be

matched by risk premia, even for very high risk aversion. However, the equity premium in

equation (51) under learning and ambiguity aversion also consists of the ambiguity premium

(B)+(C). As we show below, this component is crucial for obtaining model predictions that

are consistent with the equity premium puzzle.

4.1.2. Premia for Ambiguity

Under ambiguity aversion, the equity premium in equation (51) depends on the ambiguity

premia (B) and (C), which are both positive under Assumption 3. The sum of (B)+(C)

represents a premium for ambiguity in the reference model dynamics that derives from the

discrepancy between the reference model likelihood belief and the worst-case likelihood belief

optimally selected by the ambiguity-averse representative investor. More specifically, recall

that the worst-case return dynamics (42) depends on two filtered random shocks

dB̃h∗
D = dB̃D − kDmh∗(θ)dt , dB̃h∗

e = dB̃e − kemh∗(θ)dt . (53)

By construction, (B̃h∗
D , B̃h∗

e ) is a {F(t)}–Brownian motion under the worst-case likelihood belief

h∗(θ), but it is a {F(t)}–Brownian motion with drift under the reference model likelihood belief.

The differences

λA
D := (dB̃h∗

D − dB̃D)/dt = −kDmh∗(θ) , (54)

and

λA
e := (dB̃h∗

e − dB̃e)/dt = −kemh∗(θ) , (55)

are the market prices of ambiguity for dB̃D and dB̃e shocks, respectively, that prevail under

the reference model belief. Such market prices of ambiguity arise because ambiguity-averse

investors apply a worst-case learning approach to price assets. Such an approach systematically
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understates the expected dividend drift prevailing under the reference model. The filtered

shocks dB̃h∗
D and dB̃h∗

e influence the worst-case dynamics in equation (42) in two distinct

ways: through the isolated impact of dB̃h∗
D on the worst-case filtered dynamics for dividends

and through the joint impact of dB̃h∗
D and dB̃h∗

e on the worst-case filtered dynamics for the

posterior probabilities Π. More precisely, by setting h = h∗ in equations (24) and (25) we

obtain, for the optimal joint (D,Π) –filtered dynamics:

dD/D = mθ,h∗dt + σDdB̃h∗
D , (56)

dπi/πi = (θi + h (θi) σD −mθ,h∗)
(
kDdB̃h∗

D + kedB̃h∗
e

)
; i = 1, .., n . (57)

The ambiguity premium for exposure to shocks in any of the πi dynamics is

kD(dB̃h∗
D − dB̃D)/dt + ke(dB̃h∗

e − dB̃e)/dt = kDλA
D + keλ

A
e = −kmh∗(θ) , (58)

where k = k2
D + k2

e . From the worst-case R–dynamics,

dR = µwc
R dt + σDdB̃h∗

D + Vθ,h∗
(
kDdB̃h∗

D + kedB̃h∗
e

)
, (59)

we see that ambiguity premia for shocks dB̃h∗
D in the D–dynamics are multiplied by dividend

volatility σD. Similarly, ambiguity premia for shocks kDdB̃h∗
D +kedB̃h∗

e in the Π–dynamics are

multiplied by Vθ,h∗ . These arguments imply

−mh∗(θ) = σDλA
D ; −mh∗(θ)kVθ,h∗ = Vθ,h∗(kDλA

D + kEλA
e ) , (60)

i.e., the equity premium component (B) in equation (51) is the equilibrium ambiguity premium

for misspecification in the D–dynamics, and the equity premium component (C) in equation

(51) is the equilibrium ambiguity premium for misspecification in the Π–dynamics .

Component (B) is also nonzero under a degenerate Π–distribution, i.e., in the absence of

learning. Under a nondegenerate Π–distribution, it is affected by Π only when ambiguity η(θ)
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is not homogeneous and to the extent that Π affects the posterior mean of
√

η(θ)σD. Indeed,

under a homogeneous ambiguity η(θ) = η > 0 it follows

−mh∗(θ) =
√

2ησD, (61)

i.e., the ambiguity premium in a full information economy with ambiguity-averse agents, as

obtained, e.g., in Trojani and Vanini (2002). Therefore, we interpret component (B) as a pure

premium for ambiguity. As becomes obvious from (61), we note that even in the absence

of learning the equity premium can be made large by increasing the parameter η. However,

to accommodate for a reasonable equity premium, we would have to make the uncertainty

parameter η unreasonably large and thereby impose an excessive degree of pessimism. Only the

simultaneous modeling of learning and ambiguity aversion allows us to generate a substantial

equity premium with a moderate and reasonable amount of ambiguity.

In contrast to the findings in the risk premia analysis above, the contribution of the ambigu-

ity premium component (B) to the equity premium is given by a first-order effect of ambiguity

that is proportional to dividend volatilities σD. Moreover, since (B) is nonzero even for degen-

erate Π–distributions, it will not disappear asymptotically, even in the case of an asymptotic

learning about the underlying true model neighborhood Ξ(θ). In contrast to (B), the ambigu-

ity premium part (C) is zero under a degenerate Π–distribution, implying that the asymptotic

level of the ambiguity premium in the case of asymptotic learning is fully determined by com-

ponent (B). Such an asymptotic ambiguity premium rewards the representative agent for the

residual ambiguity about the precise drift that generated the dividend dynamics, out of a rel-

evant neighborhood Ξ (θl). In such a case, we can obtain the ambiguity premium (61) in a full

information economy with ambiguity aversion as the limit of a sequence of ambiguity premia

in partial information economies with ambiguity averse agents.

Under Assumption 3, component (C) in equation (51) is nonzero if and only if Π is non-

degenerate, i.e., if ambiguity-averse investors did not yet fully learn the underlying model

neighborhood Ξ(θ). Therefore, we can interpret (C) as an ambiguity premium component

caused by the joint presence of ambiguity aversion and learning.
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To illustrate the contribution of learning and ambiguity to risk and equity premia, we

compute these quantities in Table 2 for a setting of no learning (column NL) and a setting

without learning (column L). The first row (η = 0) in Table 2 presents quantities prevailing in

the absence of ambiguity. The following rows (η = 0.001, 0.005, 0.01, 0.02) give equilibrium risk

and equity premia (column RP and EP) for an increasing (homogenous) ambiguity parameter

η.

Insert Table 2 about here

For risk aversion γ = 0.5, we obtain in column RP of Table 2 tiny risk premia, i.e., component

(A) in the total equity premium, both for a setting with and without learning. For a setting

of no learning and no ambiguity, very high risk aversions are needed to generate sizable risk

premia. As shown in Veronesi (2000), in a setting of learning without ambiguity, risk premia

are tiny also for very large risk aversions. Therefore, the equity premium is even more of a

puzzle in such economies. In column EP of Table 2 we present equity premia. In the absence

of ambiguity (η = 0), risk and equity premia are identical. Introducing ambiguity in the model

increases equity premia both for a setting of no learning (column NL) and a setting of learning

(column L). From column NL, we observe a premium for pure ambiguity that increases equity

premia from about 0.07% (η = 0) to about 0.60% (η = 0.01). In relative terms, the increase

in the equity premium is substantial. However, the resulting equity premia are still too small

for practical purposes. With η = 0.01, the pure ambiguity premium (B) is only about 0.53%.

Column L, instead, presents large equity premia increasing from about 0.2% (η = 0) to about

13.4% (η = 0.01). The total ambiguity premium (B)+(C) is about 13.2%, indicating a large

premium (C) for learning and ambiguity of about 12.67% when η = 0.01.

From Lemma 2, the ambiguity premium (C) is positive and decreasing in γ. Moreover, in

contrast to the ambiguity premium (B), it depends on the signal precision parameter ke. To

highlight (C)’s dependence on a general ambiguity parameter vector η(θ), we use the second-

order asymptotics provided in Lemma 3.
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Lemma 3 The following second-order asymptotics for −mh∗Vθ,h∗ around η(θ) = 0 holds

−mh∗Vθ,h∗ = −mh∗


Vθ +

n∑

i=1

∂Vθ,h∗

∂
√

2η(θi)

∣∣∣∣∣
η(θ)=0

√
2η(θi)σD


 + o(‖η(θ)‖)

=
n∑

j=1

πj

√
2η(θj)σD


Vθ +

n∑

i=1

∂Vθ,h∗

∂
√

2η(θi)

∣∣∣∣∣
η(θ)=0

√
2η(θi)σD


 + o(‖η(θ)‖)

(62)

From Lemma 3, the first-order impact of ambiguity aversion on the ambiguity premium (C) is

given by the term

−kmh∗Vθ = kVθ

n∑

j=1

πj

√
2η(θj)σD . (63)

Therefore, for moderate ambiguity sizes, the term mh∗ determines the size of (C) as a function

of η(θ). Given a posterior distribution Π, we can expect ambiguity structures implying largest

ambiguity premia (B) to imply also the largest premium component (C). Given mh∗ , the first-

order quantitative effect of ambiguity on the ambiguity premium (C) is larger when either the

risk premium in a comparable purely Bayesian economy is large (when Vθ is large), or the

signal precision parameter k is larger.

From Lemma 3, the second-order effect of ambiguity on the premium (C) is given by the

term

−kmh∗

n∑

i=1

∂Vθ,h∗

∂
√

2η(θi)

∣∣∣∣∣
η(θ)=0

√
2η(θi)σD . (64)

Hence, given a first-order impact of ambiguity on (C) (i.e., given mh∗), the second-order effect

of ambiguity is determined by its first-order effect on Vθ,h∗ , which we have characterized by

the comparative statics in Proposition 3. From Proposition 3 and the following discussion, we

expect the sign of equation (64) to be negative for homogeneous ambiguity structures or for

asymmetric ambiguity structures that associate a larger ambiguity with favorable economic

states. Asymmetric ambiguity structures that associate a larger ambiguity with unfavorable
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economic states tend to imply an opposite sign in equation (64). Figure 4 illustrates these

features under a parameter choice and a prior structure Π identical to that in Figure 3.

Insert Figure 4 about here

Panels A, C, E, and G present different forms for the ambiguity function η(θ). For compara-

bility, we choose these functions in a way that preserves the same weighted entropy measure
∑

πiη(θi) as in Figure 3. Panels B, D, F, and H plot the corresponding equity premia µR

(dashed line) and risk premia µwc
R (solid line) as a function of risk aversion γ ∈ [0.1, 1].

In Figure 4, the size of −mh∗ is 0.27%, 0.19%, 0.23%, and 0.23% in Panels B, D, F, and H,

respectively, implying very small pure ambiguity premium components (B) in all panels. The

risk premium component (A) is also very small. In all plots it is always below 0.25%.

In Figure 4, we show that the ambiguity premium (C) under learning and ambiguity aver-

sion is quantitatively quite substantial, for moderate risk aversion γ < 1. For instance, in

Panel H, it is above 8% for a risk aversion of about 0.2 and it is above 5% for a risk aversion

of about 0.4 (dashed line). For all practical purposes, the key equity premium component is

the ambiguity premium (C), i.e., the ambiguity premium part due to the joint presence of

ambiguity aversion and learning.

The prior distribution Π underlying Figure 4 is the symmetric distribution plotted in Panel

A of Figure 3. Such a prior distribution puts low probabilities on reference model states above

or below average and higher probabilities on more central states. Therefore, in Figure 4 the

pure ambiguity premium −mh∗ is lower for ambiguity structures that put large ambiguity

sizes on external reference model states (as for instance, the ambiguity structure in Panel C).

According to Lemma 3 and the following discussion, we then expect higher equity premia

for situations in which the first-order impact (−mh∗Vθ) of ambiguity aversion on −m∗Vθ,h∗

is larger. This intuition is confirmed by Panels D and F of Figure 4, where larger values of

−mh∗ are associated with higher equity premium functions. But comparing Panels F and H,

we see that the first-order impact on the premium is identical, since −mh∗ is the same in both

settings. However, from Lemma 3 and Proposition 3, we expect the second-order impact of
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ambiguity on the premium to be larger for the ambiguity structure in Panel G, a conjecture

we confirm by comparing the equity premia plotted in Panels F and H.

4.1.3. Is There an Ambiguity Premium for Imprecise Signals?

In our Lucas economy, the risk premium (A) is quantitatively negligible, even for a large risk

aversion. For such a large risk aversion, more precise signals tend to increase, rather than

decrease, the equity risk premium. Moreover, when signals are imprecise, the risk premium is

bounded from above (Veronesi (2000), Proposition 3). In other words, there is no quantitatively

relevant risk premium for imprecise signals.

However, under ambiguity aversion, we show that the key equity premium component is the

ambiguity premium (C). For low risk aversions and when signals are imprecise, the resulting

equity premium is quantitatively very significant. Therefore, a key question arises: Is there

an ambiguity premium for imprecise signals? Corollary 6 presents sufficient conditions for a

positive answer to this question.

Corollary 6 Let Assumption 3 be satisfied and suppose that function
√

η(θ) is a convex func-

tion of θ. Then, for any mean-preserving spread Π̃ of Π it follows:

−m̃h∗(1 + kṼθ,h∗) > −mh∗(1 + kVθ,h∗) , (65)

where ∼ denotes quantities under Π̃.

Corollary 6 states that under a convex ambiguity function
√

η(θ) there is always an am-

biguity premium (B)+(C) for information noisiness.5 This finding implies that when public

signal realizations are less precise, the expected excess return is higher, because there is an

ambiguity premium for misspecification in the dividend and posterior probabilities Π dynamics

5More generally, in the case in which, e.g.,
p

η(θ) is a concave function, the final result depends on the
strength of the effects implied by the ambiguity premium (C) components −mh∗ and Vθ,h∗ . In all our numerical
examples, we find that the effect caused by changes in Vθ,h∗ dominates. This evidence supports the hypothesis
that, for practical purposes, ambiguity premia for information noisiness arise also more generally than under
the conditions of Corollary 6.
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under the reference model. When the realized signal precision is low, the posterior probabilities

Π are more diffuse, implying larger market prices of ambiguity λA
D and λA

e in equations (54)

and (55). The quantity Vθ,h∗ in equation (65) also increases under a less precise signal (see

again Lemma 2). Vθ,h∗ is the covariance between equity returns R and signals e. Indeed, the

relevant signal dynamics are

de = mθ,h∗dt + σedB̃h∗
e = mθ,h∗dt + σe(dB̃e −mθ,h∗dt) , (66)

implying, from (44)

Vθ,h∗ = Covt(dR, de) . (67)

Therefore, the increased ambiguity premium under less precise signals follows from (i) higher

market prices of risk and ambiguity, and (ii) higher equilibrium covariances between equity

returns and public signals. The higher covariance (67) under imprecise signals arises because

less precise a posteriori dividend drift predictions mθ,h∗ imply a lower sensitivity of investors’

hedging demand to signals. Therefore, positive (negative) signals tend to generate a positive

(negative) excess demand for equity and a positive covariance between equilibrium equity

returns and signals. This discussion emphasizes the important role of imprecise signals in

determining the level of the ambiguity premium.

4.2. Equity Volatility

From Proposition 2, the volatility of stock returns is given by

σ2
R = σ2

D + Vθ,h∗ (2 + kVθ,h∗) . (68)

Lemma 2 implies that σ2
R is a U-shaped function of risk aversion γ, having a minimum σ2

R = σD

at γ = 1. Moreover, under a setting of pure ambiguity aversion (i.e., for a degenerate Π) we

also have Vθ,h∗ = 0, and hence σR = σD. σD is the return volatility in a setting of ambiguity
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aversion without learning. Maenhout (2004) and Trojani and Vanini (2002) obtain this result

under a constant opportunity set dynamics.

Therefore, to obtain nontrivial sizes of equity returns volatility, it is important to introduce

learning in the model, in excess of ambiguity, and to ensure that γ 6= 1. However, from Section

4.1, we see that the only such parameter choice than can be consistent with sizable equity

premia is γ < 1, that is, Assumption 3. Therefore, adding learning to a setting of ambiguity

aversion is crucial to obtain qualitative model predictions that can be consistent with the excess

volatility puzzle. However, only under Assumption 3 can such predictions also be consistent

with the equity premium puzzle.

Column Vol of Table 2 illustrates quantitatively the contribution of learning and ambiguity

to equity return volatilities, for a setting of no learning (column NL) and a setting without

learning (column L), under homogenous degrees of ambiguity η = 0, 0.001, 0.005, 0.01. In the

absence of learning σR = σD, irrespective of the degree of ambiguity in the economy, implying

tiny equity volatilities of approximately 3.75%. In the presence of learning, volatility ranges

from about 28.7%, without ambiguity (η = 0), and about 24.3%, for an ambiguity size η = 0.01.

As stated in Proposition 3, (iii), for homogenous ambiguity structures η(θ) = η equity volatility

is always lower under ambiguity aversion. The same conclusion does not hold, in general, for

heterogenous ambiguity structures.

Given a nondegenerate learning setting with posterior probabilities Π, we analyze the ad-

ditional contribution of ambiguity aversion to equity returns volatilities when Assumption 3

is satisfied. To study the behavior of σR as a function of a general, possibly heterogenous,

parameter vector η(θ), we can again make use of Proposition 3, where we characterize the

dependence of Vθ,h∗ on η(θ), in a neighborhood of the purely Bayesian Lucas economy. From

that proposition, we expect higher equilibrium volatilities for asymmetric ambiguity structures

η(θ) that associate a higher concern for ambiguity with less favorable states of the economy.

Figure 5 highlights the effect of homogeneous and heterogeneous ambiguity structures on

equilibrium equity return volatility.

Insert Figure 5 about here
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In Panels A, C, and E of Figure 5, we plot three different heterogeneous ambiguity structures

in a setting with five possible reference model drift states. In Panels B, D, and F, we present

the equity return volatility σR as a function of risk aversion γ. For each such panel, we plot

volatility in a setting of pure learning (dotted lines), in a setting of pure ambiguity (dash dotted

lines), in a setting of heterogeneous ambiguity given, respectively, by Panels A, C, and E on the

left for Panels B, D, and F on the right (solid lines), and in a setting of homogeneous ambiguity

(dashed lines). As expected, in the presence of learning, all volatility functions are U–shaped

and attain a minimum at γ = 1, where σR = σD. The volatility for the pure ambiguity setting

is constant at σD and is very small. Large differences compared to all other volatility curves

arise outside small neighborhoods of the point γ = 1. For instance, in Panel F the value of

σD is about 3%, but the volatility for γ = 0.6 in the setting with learning and homogeneous

ambiguity is about 18%. This evidence emphasizes further the dominant role of learning, as

opposed to ambiguity aversion, in generating interesting model volatility predictions for the

excess volatility puzzle.

Different ambiguity structures η (θ) can imply higher or lower volatilities than in the pure

Bayesian setting. Consistently with Proposition 3, the ambiguity structure in Panel E deliv-

ers the highest volatility curve, and the structure in Panel C implies the lowest volatilities.

Asymmetric ambiguity structures of the type in Panel E tend to link less favorable economic

states with a higher ambiguity. Homogeneous ambiguity structures always deliver lower volatil-

ities that do those of a pure Bayesian learning setting. The quantitative differences between

equilibrium volatilities under homogeneous and heterogeneous ambiguity structures can be

substantial, especially for moderate risk aversion. For instance, in Panel F, equity volatility

under heterogeneous ambiguity is 66% for γ = 0.1 and 38% for γ = 0.3. For the same risk

aversion parameters, equity volatility under homogeneous ambiguity is about 57% and 34%,

respectively. In relative terms, equity volatility increases by 13% (γ = 0.1) and 10% (γ = 0.3),

when we introduce ambiguity in the model. These differences arise already for a very small

average ambiguity size
∑

πiη(θi) = 0.0012 and for the given set of possible reference model

states Θ assumed in Figure 5. For larger average ambiguity, volatility differences become more

significant. For instance, with an average ambiguity
∑

πiη(θi) = 0.005, volatility increases by

more than 22% (γ = 0.1) and 17% (γ = 0.3) in the presence of ambiguity aversion. Similarly,
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in a model with only three possible reference model drifts, we found that ambiguity aversion

can easily increase equity volatility by about 20% for risk aversion parameters up to 0.3.

4.3. Time-Varying Theoretical Risk/Return Relations

From the results in the previous sections we expect learning and ambiguity aversion to have

important implications for the prevailing risk/return relations. Column EP/Vol of Table 2

illustrates quantitatively the issue, for a setting of no learning (column NL) and a setting

without learning (column L), under homogenous degrees of ambiguity η = 0, 0.001, 0.005, 0.01.

In particular, in a model of pure learning (column L, η = 0) the low equity premium and the

large equity volatility imply a tiny risk/return trade-off of about 0.71%. For settings including

ambiguity aversion, the trade-off is between about 17.9% for η = 0.01 and 55% for η = 0.01.

From Proposition 2 and equation (68), the relations between risk or equity premia and the

conditional variance of returns are given by

µwc
R = γσ2

R − γVθ,h∗ (1 + kVθ,h∗) (69)

and

µR =
(

γ − mh∗(θ)

Vθ,h∗

)
σ2

R − γVθ,h∗ (1 + kVθ,h∗) + mh∗(θ)

(
1 +

σD

Vθ,h∗

)
, (70)

respectively. In particular, when Π is non-degenerate equation (70) implies a truly positive, but

time-varying, theoretical relation between the equity premium µR and the conditional variance

σ2
R. Such a time-varying relation is due to the ambiguity premium component (C) and derives

from the interaction of learning and ambiguity aversion. The true relation between the risk

premium µwc
R and the conditional variance σ2

R is linear and constant. Both relations (69) and

(70) are biased by a heteroskedastic error term that has a nonzero conditional mean. More

precisely, since the dominating term in such errors is

−γVθ,h∗ (1 + kVθ,h∗) < 0, (71)

both relations are biased downwards.
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Figure 6 illustrates the theoretical relation between risk or equity premia and equity return

conditional variances.

Insert Figure 6 about here

The theoretical (time-varying) equity premium “sensitivity” to changes in σ2
R is huge, compared

to the sensitivity of the risk premium, which in turn is given by the risk-aversion coefficient γ.

Moreover, ambiguity premia derive by definition from model misspecification, rather than from

covariances between asset returns and economic state variables. Therefore, we can expect them

to be very difficult to identify by, for instance, regression methods. Figure 7 highlights this

point by plotting the time series of estimated parameters in a sequence of rolling regressions

of R on σ2
R.

Insert Figure 7 about here

As expected, highly time-varying regression estimates arise. Such estimates may even indicate

a switching sign in the estimated relation between µR and σ2
R over different time periods.

More importantly, the estimated (time-varying) coefficients do not even approximately identify

correctly the equity premium “sensitivity” to changing variances under learning and ambiguity

aversion. For instance, the estimated parameters for γ = 0.9 in Figure 7 are never above 0.3,

but the theoretical “sensitivities” of equity premia to σ2
R in Figure 6 are above eight for all

ambiguity aversion parameters.

4.4. Biases in EIS estimates

Our model uses time additive power utility functions to obtain simple closed form solutions for

the desired equilibria. Such a choice imposes a specific relation between standard risk aversion

and EIS. Risk aversions less than one have to be associated with EIS above one. However, this

relation does not imply necessarily large estimated EIS. Indeed, one by-product of learning in

our context is to induce a stochastic volatility in the a-posteriori expected dividend growth in

the model. Similar to the effects noted by Bansal and Yaron (2004) in a full-information asset

pricing setting, stochastic volatility of expected dividend growth can induce a large downward

bias in a least-squares regression of consumption growth on asset returns when using Euler
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equations including equity returns. Such regressions are typically used to estimate the EIS in

applied empirical work.6

To understand the main reason for a negative bias in the estimation of the EIS, we consider

for brevity a pure setting of learning with no ambiguity aversion, that is η (θ) = 0. From

Proposition 1 and 2 we have

r = δ + γmθ − 1
2
γ (γ + 1)σ2

D , µR = γ
(
σ2

D + Vθ

)
,

where mθ = E (dD/D| Ft). Therefore,

E (dP/P + D/P | Ft) = r + µR = δ + γE (dD/D| Ft)− 1
2
γ (γ + 1)σ2

D + γ
(
σ2

D + Vθ

)
,

and, solving for E (dD/D| Ft):

E (dD/D| Ft) = a + b · E (dP/P + D/P | Ft)− Vθ, (72)

where a = −δ/γ + 1
2 (γ − 1)σ2

D and b = 1/γ. Equation (72) defines a correctly specified

theoretical linear regression equation if and only if the random term Vθ is 0. This in turn can

happen only if no learning is present (Π is degenerate) or γ = 1 (log utility). In all other cases,

the error term

dεt := dD/D − a− b · E (dP/P + D/P | Ft)

will be correlated with the regressor dP/P + D/P in a least-squares regression of dD/D on

dP/P +D/P . Under Assumption 3, such correlation induces a downward bias in the estimation

of the EIS 1/γ in a least-squares regression of aggregate consumption growth dD/D on total

equity returns dP/P +D/P . Since Vθ is decreasing in relative risk aversion, we can expect the

bias to be larger for lower γ values. Figures 8 and 9 illustrate these features.

Insert Figures 8 and 9 about here
6See, e.g., Hall (1988), Vissing-Jorgensen (2002), and Attanasio and Vissing-Jorgensen (2003), among others.
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In Figures 8 and 9, we observe a very large bias in the mean least-squares estimates of the EIS

1/γ in a regression of dD/D on dP/P +D/P . As expected, the bias is larger for lower values of

γ. For instance, for γ = 0.5 the mean estimate of 1/γ is between 0.2 and 0.4, depending on the

amount of ambiguity in the economy. This corresponds to a downward bias in the estimation

of the EIS of about 80%. For γ = 0.7 mean EIS estimates range between about 0.35 and 0.6.

Interestingly, such estimated values of the EIS are compatible with those obtained, e.g., in

Vissing-Jorgensen (2002, Table 2A) and Attanasio and Vissing-Jorgensen (2003, Table 1A) for

Euler equations including stock returns.

5. Conclusion

We derive asset prices in a continuous-time partial information Lucas economy with ambiguity

aversion and time-additive power utility. In our model, ambiguity aversion implies only a

partial asymptotic learning about a neighborhood of a priori statistically indistinguishable

beliefs.

For low risk aversion, the joint presence of learning and ambiguity enforces large equity

premia, already under a moderate amount of ambiguity in the economy. Additional model

predictions are consistent also with the interest rate and the excess volatility puzzles. Intro-

ducing both learning and ambiguity aversion is crucial. Model settings in which learning is

absent need unrealistically large amounts of pessimism to generate sizable equity premia. At

the same time, they imply tiny equity volatilities. A further model implication is a highly

time-varying true relation between excess returns and their conditional variances. This model

feature generates estimated relations between excess returns and conditional variances with an

undetermined sign and implies huge time-varying biases in the naively estimated risk-return

trade-off. Finally, standard estimates of the elasticity of intertemporal substitution (EIS) based

on Euler equations for equity returns are strongly downward biased under learning and ambi-

guity aversion. Therefore, an EIS well above one in the model is consistent with an observed

(biased) estimated EIS well below one.
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The time additive power utility function in our model allows us to obtain simple and easily

interpretable closed form solutions for the desired equilibria, at the cost of constraining the

relation between risk aversion and EIS. Disentangling risk aversion and EIS would allow for an

additional degree of freedom which could be used, e.g., to generate higher worst case equity

premia in our model. Such extensions are therefore interesting venues for further research.

The specific relation between standard risk aversion and EIS could be weakened by using a

setting of learning under ambiguity aversion with Epstein and Schneider (1989)-type prefer-

ences. Hayashi (2005) has provided a theoretical axiomatic framework of ambiguity aversion

with recursive utility. To our knowledge, no concrete asset pricing setting with ambiguity

and recursive utility has been studied so far in the literature. Adding learning to such set-

tings will even improve the technical difficulties necessary to handle conveniently these models.

Moreover, the basic intuition derived from our model is likely to hold also under more general

preferences that disentangle risk aversion and the EIS. Investors with high relative risk aver-

sions increase their hedging demand when they expect low consumption growth. This demand

counterbalances the negative price pressure deriving from negative dividend news. Under am-

biguity aversion, investors tend to understate actual consumption growth. Highly risk averse

investors therefore increase further their hedging demand for equity. Since the supply of the

risky asset is fixed and the riskless bond is in zero net supply, the higher demand increases the

price of the risky asset relative to dividends. At the same time, for low EIS a lower expected

consumption growth because of ambiguity aversion induces a large ceteris paribus a large sub-

stitution from today to tomorrow consumption, in order to smooth consumption out. Such

an excess saving demand increases further the price of equity relative to dividends and lowers

the equilibrium interest rate. From a more general perspective, the assumption of a low risk

aversion in our model is just a condition ensuring that the elasticity of the total demand for

risky assets with respect to changes in expected consumption growth is positive.
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Appendix: Proofs

Proof of Corollary 1. The statement of the corollary follows easily by noting that under

hD−distorted dynamics we have:

dB̃h
D = dBD + kD (θ + hDσD −mθ,h) dt , dB̃h

e = dBe + ke (θ + hDσD −mθ,h) dt .

Proof of Proposition 1. We have for any likelihood h (θ) ∈ Ξ (θ),

V h(θ) (Π, D) = Eh(θ)

[∫ ∞

s
e−δ(t−s) D

1−γ
t

1− γ
dt

∣∣∣∣∣F (s)

]

= Eh(θ)

[∫ ∞

s
e−δ(t−s) D (t)1−γ

1− γ
dt

∣∣∣∣∣ π1 (s) = π1, .., πn (s) = πn, D (s) = D

]

=
D1−γ

1− γ

n∑

i=1

πiE
h(θ)

[∫ ∞

s
e−δ(t−s)

(
D (t)
D (s)

)1−γ

dt

∣∣∣∣∣ θ̃ = θ̃i

]
, (A1)

where θ̃ = θ + h (θ) σD, θ̃i = θi + h (θi) σD. Therefore, for any vector Π:

J (Π, D) = inf
h(θ)

V h(θ) (Π, D)

≥ D1−γ

1− γ

n∑

i=1

πi inf
h(θi)

Eh(θi)

[∫ ∞

s
e−δ(t−s)

(
D (t)
D (s)

)1−γ

dt

∣∣∣∣∣ θ̃ = θ̃i

]
. (A2)

Conditional on θ̃i, the h (θ)−drift misspecified dynamics are

dD = (θi + h (θi) σD) Ddt + σDDdBD . (A3)

Therefore, Assumption 2 implies that we can focus on solving the problem

(Pi) :





V i (D) = infh(θi) E
(∫∞

s e−δ(t−s) D(t)1−γ

1−γ dt
∣∣∣D (s) = D

)

1
2h (θi)

2 ≤ η (θi)
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subject to the dividend dynamics

dD = (θi + h (θi) σD) Ddt + σDDdBD . (A4)

The Hamilton Jacobi Bellman equation for this problem reads

0 = inf
h(θi)

{
−δV i +

D1−γ

1− γ
+ (θi + h (θi) σD)D · V i

D +
1
2
σ2

DD2V i
DD + λ

(
1
2
h (θi)

2 − η (θi)
)}

,

(A5)

where λ ≥ 0 is a Lagrange multiplier for the constraint 1
2h (θi)

2 ≤ η (θi). Equation (A5) implies

the optimality condition

h (θi) = −σDD

λ
V i

D . (A6)

Slackness then gives
σ2

DD2

λ2

(
V i

D

)2 = 2η (θi) , (A7)

implying

h (θi) = −
√

2η (θi)sign[σDDVD] = −
√

2η(θi) . (A8)

This result proves the first statement. To prove the second statement, we note that

V i (D) =
D1−γ

1− γ
E

[∫ ∞

s
e−δ(t−s)

(
D (t)
D (s)

)1−γ

dt

∣∣∣∣∣ θ̃ = θi −
√

2η (θi)σD

]
. (A9)

Conditional on θ̃ = θi −
√

2η (θi)σD, the solution of the dividend dynamics gives

(
D (t)
D (s)

)1−γ

= exp
{

(1− γ)
(

θi −
√

2η (θi)σD − σ2
D

2

)
(t− s) + (1− γ) σD (BD (t)−BD (s))

}
,

implying, under the given assumptions,

E

[∫ ∞

s
e−δ(t−s)

(
D (t)
D (s)

)1−γ

dt

∣∣∣∣∣ θ̃ = θi −
√

2η (θi)σD

]
=

1

θ̂i + (1− γ)
√

2η (θi)σD

,

where

θ̂i = δ − (1− γ) θi + γ (1− γ)
σ2

D

2
> 0 . (A10)
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We thus obtain for the price of any risky asset with dividend process (D (t))t≥0:

P (t)
D (t)

=
n∑

i=1

πiE

[∫ ∞

t
e−δ(s−t)

(
D (s)
D (t)

)1−γ

ds

∣∣∣∣∣ θ̃ = θi −
√

2η (θi)σD

]
, (A11)

or equivalently

P (t) ρ (t) =
n∑

i=1

πiE

[∫ ∞

t
ρ (s)D (s) ds

∣∣∣∣ θ̃ = θi −
√

2η (θi)σD

]
(A12)

where ρ (t) = uc (D (t) , t) = e−δtD (t)−γ . This result proves the second statement of the

proposition. Writing equation (A12) in differential form and applying it to the risky asset

paying a “dividend” D = r we obtain:

rdt = −
n∑

i=1

πiEt

[
dρ

ρ

∣∣∣∣ θ̃ = θi −
√

2η (θi)σD

]
=

(
δ + γ

(
mθ + mh(θ)σD

)− 1
2
γ (γ + 1)σ2

D

)
dt ,

i.e., the third statement of the proposition, concluding the proof.

Proof of Proposition 2. Statement (i) follows by applying the proof of Proposition 2

in Veronesi (2000) to the D−dynamics (24) under the worst-case likelihood h∗(θ) = −
√

2η(θ).

Statement (ii) follows by expressing the R−dynamics obtained in (i) with respect to the filtered

Brownian motions B̃D, B̃e under the reference model.

Proof of Proposition 3. Let θ := (θ1, .., θn)′ and

C(x) =
1

δ + (γ − 1)x− γ(1− γ)σ2
D
2

.

To simplify notations, we define

V (θ) =
∑

i

πiθi

[
C(θi)∑

j πjC(θj)
− 1

]
. (A13)
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To prove the first and the second statement of the proposition, we compute the gradient

∇V := (Vθ1 , .., Vθn)′, where for brevity Vθk
:= ∂V/∂θk, k = 1, .., n. It then follows that

Vθk
(θ) = πk

[
C(θk)∑
j πjC(θj)

− 1

]
+

∑

i

πiθi

[
C ′(θi)δki∑
j πjC(θj)

− C(θi)
πkC

′(θk)
(
∑

j πjC(θj))2

]

=
πkC(θk)∑
j πjC(θj)

− πk + θk
πkC

′(θk)∑
j πjC(θj)

−
∑

i πiθiC(θi)∑
j πjC(θj)

· πkC
′(θk)∑

j πjC(θj)

=
πkC(θk)∑
j πjC(θj)

− πk +
πkC

′(θk)∑
j πjC(θj)

[θk −mθ − V (θ)] ,

where δki = 1 if k = i and δki = 0 else. From the explicit expression for C(x),

C ′(θk) = (1− γ)C(θk)2 ,

implying

Vθk
(θ) =

πkC(θk)∑
j πjC(θj)

− πk + (1− γ)
πkC(θk)2∑

j πjC(θj)
[θk −mθ − V (θ)] .

Under Assumption 3, the conditions

πkC(θk)∑
j πjC(θj)

≷ πk ; θk −mθ ≷ V (θ) (A14)

imply Vθk
≷ 0. Since

∂Vθ,h∗

∂
√

2η(θk)

∣∣∣∣∣
η(θ)=0

=
∂V (θ −

√
2η(θ)σD)

∂
√

2η(θk)

∣∣∣∣∣
η(θ)=0

= −Vθk
(θ)σD, (A15)
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where
√

2η(θ) := (
√

2η(θ1), ..,
√

2η(θn))′, condition (A14) also implies the sign of (A15). To

prove the third statement, we calculate

∂Vθ,h∗

∂
√

2η

∣∣∣∣
η=0

=
n∑

k=1

∂V (θ −
√

2η(θ)σD)
∂
√

2η(θk)

∣∣∣∣∣
η(θ)=0

= −
n∑

k=1

{
πkC(θk)∑
j πjC(θj)

− πk + (1− γ)
πkC(θk)2∑

j πjC(θj)
[θk −mθ − V (θ)]

}
σD

= −(1− γ)
n∑

k=1

πkC(θk)2∑
j πjC(θj)

[θk −mθ − V (θ)] . (A16)

Therefore, it is sufficient to study the sign of

n∑

k=1

πkC(θk)2∑n
j=1 πjC(θj)2

[θk −mθ − V (θ)] =
n∑

k=1

πkC(θk)2∑n
j=1 πjC(θj)2

[θk −mθ]− V (θ) .

Since C(x) is increasing and convex,

n∑

k=1

πkC(θk)2∑n
j=1 πjC(θj)2

[θk −mθ]− V (θ) > 0 (A17)

and

∂Vθ,h∗

∂
√

2η

∣∣∣∣
η=0

< 0 , (A18)

under the given assumptions, concluding the proof.

Proof of Lemma 3. We compute second-order asymptotics for the function

H(η(θ1), .., η(θn)) := H(η(θ)) := −mh∗Vθ,h∗ . (A19)

We first have:

∂kH = −Vθ,h∗∂kmh∗ −mh∗∂kVθ,h∗ , (A20)
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and

∂i∂kH = −Vθ,h∗∂i∂kmh∗ − ∂kmh∗∂iVθ,h∗ − ∂imh∗∂kVθ,h∗ −mh∗∂i∂kVθ,h∗ , (A21)

where subscripts k, i denote partial derivatives for the arguments
√

2η(θk),
√

2η(θi). Using the

explicit expression of mh∗ , and since mh∗ = 0 for η(θ) = 0, it follows that

∂kH|η(θ)=0 = −Vθ∂kmh∗ |η(θ)=0 = VθπkσD

∂i∂kH|η(θ)=0 = −∂kmh∗∂iVθ,h∗ |η(θ)=0 − ∂imh∗∂kVθ,h∗ |η(θ)=0

= [πk∂iVθ,h∗ |η(θ)=0 + πi∂kVθ,h∗ |η(θ)=0]σD . (A22)

A second-order Taylor expansion of H at η(θ) = 0 then gives, up to term or order o(‖η(θ)‖),

H(η(θ)) =
n∑

k=1

Vθπk

√
2η(θk)σD

+
1
2

n∑

i=1

n∑

k=1

{
πk∂iVθ,h∗ |η(θ)=0 + πi∂kVθ,h∗ |η(θ)=0

}√
2η(θk)

√
2η(θi)σ2

D

= −mh∗Vθ +
n∑

i=1

n∑

k=1

πk∂iVθ,h∗ |η(θ)=0

√
2η(θk)

√
2η(θi)σ2

D

= −mh∗Vθ +
n∑

i=1

∂iVθ,h∗ |η(θ)=0

√
2η(θi)σD

n∑

k=1

πk

√
η(θk)σD

= −mh∗ [Vθ +
n∑

i=1

∂iVθ,h∗ |η(θ)=0

√
2η(θi)σD] (A23)

Proof of Corollary 6. From Lemma 2, Vθ,h∗ is increasing in mean-preserving spreads

Π̃, under the given assumptions. Moreover,

−mh∗ =
n∑

i=1

πi

√
η(θi)σD (A24)

is also increasing in mean-preserving spreads, because of the assumed convexity of
√

2η(θ) as

a function of θ.
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Fig. 1. Posterior probabilities dynamics. The panels display trajectories for the probability
π1 given in equation (17) of Example 1. Panel A shows two trajectories for π1 with a = 0 in
equation (19). We plot the same trajectories with the same random seed in Panel B (dashed
lines) and add the trajectories (solid lines) where we assume a = 0.015. The switching in
equation (19) is deterministic and occurs every year (see the dotted vertical lines in Panel B).
Further parameters are Θ = {0.0075, 0.0275}, σD = 0.0375, σe = 0.015.
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Fig. 2. The effect of ambiguity aversion on the prevailing posterior probabilities dynamics.
We assume three possible states and the filtered probabilities dynamics in equation (39) with
parameters set equal to σD = 0.0375, σe = 0.015, Θ = {0.0023, 0.0173, 0.0323}, θ = 0.0173, and
a set of discretized normal priors Π(0) = {0.3085, 0.3829, 0.3085}. Panel A plots the probability
dynamics of the “bad” state θ1 for three different levels of a homogeneous ambiguity parameter
η = {0, 0.025, 0.05}. The dotted line represents the dynamics under the intermediate level of
ambiguity η = 0.025. In Panel B, we plot the dynamics of the posterior probabilities for the
“good” state θ3 for the same levels of ambiguity (these graphs are based on the same random
seed as the one used in Panel A).
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Fig. 3. Risk premium and ambiguity premium under homogeneous ambiguity. Panel A plots
the set of probabilities Π relevant for the figure. Panel B plots the different relevant reference
model states θ1, .., θn. The true reference model dividend drift state is marked with a square
and is equal to the posterior expected value

∑
πiθi. We use a small amount of homogeneous

ambiguity η = 0.0012. The size of the ambiguous neighborhoods Ξ(θ1), ..,Ξ(θn) is highlighted
by the ellipses centered at θ1, .., θn in Panel B. Further, we set δ = 0.05, σD = 0.0375 and
σe = 0.015. With these parameters, we plot the resulting risk premium µwc

R and the equity
premium µR in Panels C and D as functions of γ.
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Fig. 4. Risk premium and ambiguity premium under heterogeneous ambiguity. Panels A,
C, E, and G plot different entropy preserving distributions of ambiguity around the reference
model dividend drift states θ1, .., θ5, i.e., Panels A, C, E, and G are such that the weighted
entropy measure

∑
πiη(θi) is equal to 0.0012, as in Figure 3. Panels B, D, F, and H plot

the equity premium µR (dashed lines) and the risk premium µwc
R (solid line) implied by the

different distributions of ambiguity in Panels A, C, E, and G as a function of risk aversion
γ ∈ [0.1, 1]. For comparability, we also give the size of −m∗ implied by each plot. Further, we
set δ = 0.05, σD = 0.0375 and σe = 0.015.
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Fig. 5. Equity volatility. Panels A, C, and E plot different entropy preserving distributions
of ambiguity around the reference model dividend drift states θ1, .., θ5, i.e., Panels A, C, and
E are such that the weighted entropy measure

∑
πiη(θi) is equal to 0.0012, as in Figure 3.

Panels B, D, and F plot the resulting volatility σR (solid curves) implied by the different
distributions of ambiguity in Panels A, C, and E. For comparability, we plot in each graph the
quantities prevailing under a homogeneous ambiguity parameter η = 0.01 (dashed curves), the
pure learning setting, i.e, η(θi) = 0, i = 1, .., n (dotted curve), and the pure ambiguity case
arising under a degenerate Π (dash dotted line). Further, we set δ = 0.05, σD = 0.0375 and
σe = 0.015.
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Fig. 6. Theoretical time-varying return/volatility trade-off. For different parameters γ =
0.3, 0.5, 0.7, 0.9, we plot the theoretical (time-varying) coefficient bt = γ − mh∗(θ)/Vh∗,θ in
the theoretical expected excess return and variance relation µR = btσ

2
R + ct, where ct =

−γVθ,h∗(1 + kVθ,h∗) + mh∗(1 + σ2
D/Vh∗,θ). In all panels, we plot bt as a function of time for

homogeneous ambiguity structures η(θ) = η, where η = 0.0017, 0.0033. The horizontal flat
solid lines correspond to the (constant) risk premium coefficient γ.
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Fig. 7. Rolling regression analysis. For different parameters γ = 0.3, 0.5, 0.7, 0.9 we plot the
time variation of the estimated parameter b in a rolling regression of R on σ2

R. The rolling
regressions are based on sample sizes of 50 observations simulated from a model with three
reference model drift states Θ = {0.0025, 0.0175, 0.0325} and under a homogeneous degree of
ambiguity η = 0.001. The true dividend is θ = 0.0175. Further parameters are δ = 0.05,
σD = 0.0375, σe = 0.015.
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Fig. 8. Regression analysis. For different parameters γ = 0.3, 0.5, 0.7, 0.9, we plot the mean
estimated parameter in 1000 regressions of dD/D on dP/P + P/D. The regressions are based
on sample sizes of 365 observations simulated from a model with three reference model drift
states Θ = {0.0025, 0.0175, 0.0325} and under three homogeneous degrees of ambiguity η =
0, 0.005, 0.01, 0.015. The true dividend is θ = 0.0175. Further parameters are δ = 0.05,
σD = 0.0375, σe = 0.015. In all panels, the dashed horizontal lines give the correct underlying
value 1/γ of the EIS. The dotted lines give the resulting mean parameter estimates as a function
of η.
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Fig. 9. Regression analysis. For different parameters γ = 0.3, 0.5, 0.7, 0.9, we present the
box plots of the estimated parameters in 1000 regressions of dD/D on dP/P + P/D. The
regressions are based on sample sizes of 365 observations simulated from a model with three
reference model drift states Θ = {0.0025, 0.0175, 0.0325} and under three homogeneous degrees
of ambiguity η = 0, 0.005, 0.01, 0.015. The true dividend is θ = 0.0175. Further parameters
are δ = 0.05, σD = 0.0375, σe = 0.015.
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interest rate (%) P/D ratio
η NL L NL L

0.000 2.8223 2.8223 87.5214 96.3729
0.001 2.7384 2.7384 81.5374 83.7536
0.005 2.6348 2.6348 75.1836 79.8640
0.010 2.5571 2.5571 71.0357 74.7932
0.020 2.4473 2.4473 65.8945 68.7587

Table 1

The table presents values of interest rates and price-dividend ratios for a risk aversion γ = 0.5
and different homogeneous levels of ambiguity η, in model settings without learning (NL) and
with learning (L). Calculations are based on a model with five reference model drift states
Θ = {−0.0125, 0.0025, 0.0175, 0.0325, 0.0475}. The true dividend is θ = 0.0175. Further
parameters are δ = 0.02, σD = 0.0375, σe = 0.005.
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RP (%) EP (%) Vol (%) EP/Vol (%)
η NL L NL L NL L NL L

0.000 0.0703 0.2033 0.0703 0.2033 3.7500 28.7165 1.8750 0.7079
0.001 0.0703 0.1952 0.2380 4.8484 3.7500 27.0534 6.3471 17.9216
0.005 0.0703 0.1871 0.4453 9.9459 3.7500 25.4045 11.8750 39.1502
0.010 0.0703 0.1819 0.6006 13.3940 3.7500 24.3429 16.0171 55.0222

Table 2

The table presents values of risk premia (RP), equity premia (EP), volatilities (Vol), and
ratios of equity premia and volatilities (EP/Vol) for a risk aversion γ = 0.5 and differ-
ent homogeneous levels of ambiguity η, under model settings without learning (NL) and
with learning (L). Calculations are based on a model with five reference model drift states
Θ = {−0.0225,−0.0025, 0.0175, 0.0375, 0.0575}. The true dividend is θ = 0.0175. Further
parameters are δ = 0.03, σD = 0.0375, σe = 0.01.
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