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The volatility information content of stock options for individual firms is measured 

using option prices for 149 U.S. firms during the period from January 1996 to 

December 1999. ARCH models and OLS regressions are used to compare volatility 

forecasts defined by historical stock returns, at-the-money implied volatilities and 

model-free volatility expectations for every firm. For one-day-ahead estimation, a 

historical ARCH model outperforms both of the volatility estimates extracted from 

option prices for 36% of the firms, but the option forecasts are nearly always more 

informative for those firms that have the more actively traded options. When the 

prediction horizon extends until the expiry date of the options, the option forecasts are 

more informative than the historical volatility for 86% of the firms. The results also 

show that, overall, there is less volatility information contained in the model-free 

volatility expectations than in the at-the-money implied volatilities. 

 

Keywords:  Volatility; Stock options; Information content; Implied volatility; Model-

free volatility expectations; ARCH models 

 

 

 



1. Introduction  

 

The volatility implicit in an option price can be interpreted as an estimate of the 

average volatility of the underlying asset over the life of the option. If markets are 

efficient and option pricing models are correctly specified, then option implied 

volatilities are expected to subsume all information contained in historical volatility. 

There is already a fruitful literature that investigates the information content of stock 

index options and exchange rate options. However, a good understanding of the 

information content of options written on individual stocks is also of great importance 

for risk management, volatility forecasting and option pricing. 

 

1.1 Prior literature 

 

The ability of option implied volatility to provide good estimates of stock index 

volatility has now been established. However, some early empirical studies challenge 

the usefulness of implied volatility as a guide to the future variability of index returns. 

Day and Lewis (1992) do not find conclusive evidence that option implied volatilities 

contain incremental information relative to the conditional volatility from GARCH 

and EGARCH models, by using weekly data on the S & P 100 index. Canina and 

Figlewski (1993), who relied on regression tests, find that implied volatility does not 

have a statistically significant correlation with realized volatility for most of their 

subsamples and it is less informative than a simple historical measure of volatility.  

 

These negative conclusions might be caused by a lack of data, mis-measurement of 

implied volatilities, or inappropriate statistical inference. After correcting various 
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methodological errors, later studies of the S & P 100 index provide a consensus that 

the at-the-money (henceforth ATM) option implied volatility is a more efficient 

estimate of the subsequent realized volatility than estimates based solely on historical 

information. Fleming (1998), in agreement with Christensen and Prabhala (1998), 

shows that the implied volatility, although biased, subsumes all information contained 

in the historical volatility. In more depth, Blair, Poon and Taylor (2001) use the 

Chicago Board Options Exchange (CBOE) volatility index (VIX) as the measure of 

option implied volatility and daily and intra-day returns sources to measure historical 

volatility. They find no evidence for incremental information contained in daily index 

returns beyond that provided by VIX. The implied volatilities in their sample 

outperform intraday returns for both in-sample estimation and out-of-sample 

forecasting. Similar conclusions are obtained for S & P 500 index options by 

Ederington and Guan (2002a). Studies that focus on exchange rate options also favor 

the conclusion that the option implied volatility is an efficient estimate of the future 

realized volatility (Jorion (1995), Xu and Taylor (1995), Pong et al (2004)). 

 

However, nearly all of the previous studies investigate the information content of 

ATM or nearest-to-the-money option implied volatilities, and thus fail to incorporate 

the information contained in out-of-the-money (henceforth OTM) options, which are 

also actively traded for indices. Ederington and Guan (2002b) investigate the 

information content contained in Black-Scholes implied volatilities, corresponding to 

different strike price intervals, using S & P 500 data. They find that the implied 

volatilities in several strike prices intervals are upward biased compared with the 

realized volatility and that the nearest-to-the-money implied volatilities do not provide 

the most information. The use of either a single option or only a few options may not 

  2



be sufficient to extract all the relevant information, so that the forecasting ability of 

option prices may be underestimated. Furthermore, the studies that have investigated 

the information content of Black-Scholes implied volatilities could be affected by 

model misspecification errors. 

 

Constructive theoretical relationships between volatility and option prices have been 

developed by Carr and Madan (1998) and Demeterfi, Derman, Kamal and Zou (1999). 

They show that the fair value of a variance swap rate, which is a risk-neutral forecast 

of subsequent realized variance, can be replicated by taking a static position in options 

of all strike prices. Likewise, Britten-Jones and Neuberger (2000) build on the 

pioneering work of Breeden and Lizenberger (1978) to show that a complete set of 

call options can be used to infer the risk-neutral expectation of the integrated variance 

until the options’ maturity. This risk-neutral expectation of future variance is 

independent of any option pricing model and it incorporates the information across all 

strike prices. In September 2003, the model-free volatility expectation was adopted by 

the CBOE as a new method for calculating the components of its volatility index 

(VIX). The new VIX provides a 30-day volatility expectation for the S & P 500 index. 

Carr and Wu (2004) synthesize the variance swap rates of five stock indices and 35 

individual stocks using option prices. They find their estimates of the variance swap 

rates are significant variables when explaining the movements of realized variance for 

all the indices and the majority of the stocks. 

  

The model-free volatility expectation is theoretically more appealing than alternative 

volatility estimates, including Black-Scholes implied volatility, because it contains 

information from a complete set of option prices and it does not rely on restrictive 
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model assumptions. Jiang and Tian (2005) generalize the model-free volatility 

expectation to processes with prices jumps and they develop a method for 

implementing its calculation using prices for options written on the S & P 500 index. 

They also investigate the information content and the forecasting ability of the model-

free volatility expectation. Their results show that the model-free volatility 

expectation subsumes all information contained in both the ATM implied volatility 

and the past realized volatility, calculated from intraday index returns. Lynch and 

Panigirtzoglou (2005) also examine the information content of the model-free 

volatility expectation in comparison with historical volatility measured by intraday 

returns. Their results for S & P 500, FTSE 100, Eurodollar and short sterling futures 

show that the model-free volatility expectation is an efficient but biased estimate of 

future volatility.  

 

However, nearly all of the previous equity studies, whether they use the Black-

Scholes implied volatility or the model-free volatility expectation, only investigate the 

information content of option prices that are written on stock indices. There are very 

few studies that test the information content of individual stock options. We may 

anticipate that the volatility information contained in the prices of stock options is less 

efficient when estimating and predicting volatility, compared with index option prices, 

since stock options are traded far less frequently. Lamoureux and Lastrapes (1993) 

study two years of daily data for ten U.S. firms and their results indicate that the 

simple GARCH(1,1) model is more informative than a model that uses implied 

volatility alone. Their results also show that implied volatilities have predictive power, 

although they are biased forecasts of future volatilities. It is inevitably difficult to 

draw firm conclusions from their small quantity of data. 
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1.2 Scope 

 

This paper is the first to examine the volatility information content of individual stock 

options based on a large sample of U.S. stocks. In addition to the ATM option implied 

volatility, the model-free volatility expectation is also adopted as a predictor of 

realized volatility. We develop a method to calculate the model-free volatility 

expectation for individual stock options that are less liquid than stock index options. 

For each firm out of the 149 in our sample, we use both ARCH models and OLS 

regressions to compare the historical information from daily stock returns, the 

information contained in the ATM implied volatility and the information provided by 

the model-free volatility expectation. 

 

In contrast to previous studies about stock index options, our empirical research 

shows that for one-day-ahead estimation neither the ATM implied volatility nor the 

model-free volatility expectation is consistently superior to an ARCH model when 

estimating the volatility of individual stock returns. Especially for firms with few 

traded options, it is better to use an asymmetric ARCH model to estimate the 

conditional volatility of future stock returns. When the estimation horizon extends 

until the end of the option lives, it is found that both of the volatility estimates 

extracted from option prices outperform the historical volatility for a substantial 

majority of our firms. For the firms in our sample, the ATM implied volatility 

outperforms the model-free volatility expectation overall when predicting the 

volatilities of individual stock returns.  
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The paper proceeds as follows. Section 2 describes the newly developed model-free 

volatility expectation and our method for calculating this expectation. The 

descriptions of our data and empirical methodology are provided in Sections 3 and 4 

respectively.  Section 5 presents the empirical results. Our conclusions are stated in 

the final section.  

 

2. Model-free volatility expectation and implementation issues 

 

This section describes our methods for calculating the model-free volatility 

expectation from a small number of option prices.  

 

2.1 Theory 

 

At time 0 it is supposed that there is a complete set of European option prices for an 

expiry time T. For a general strike price K, these option prices are denoted by  

and  respectively. For a risk-neutral measure Q, the price of the underlying 

asset  is assumed to satisfy the equation 

),( TKc

),( TKp

tS SdWSdtqrdS σ+−= )( , where r is the 

risk-free rate, q is the dividend yield,  is a Wiener process and tW tσ  is the risk-

neutral stochastic volatility. The integrated squared volatility of the asset over the 

horizon T  is defined as:  

.
0

2
,0 ∫=

T
tT dtV σ  
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Britten-Jones and Neuberger (2000) show that the risk-neutral expectation of the 

integrated squared volatility is given by the following function of the continuum of 

European OTM option prices: 
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Here  is the forward price at time 0 for a transaction at the expiry time TF ,0 T . 

Following previous literature, the quantity defined by equation (1) will be referred to 

as the model-free variance expectation and its square root as the model-free volatility 

expectation. Dividing the variance expectation by T  defines its annualized value. 

 

The key assumption required to derive (1) is that the stochastic process for the 

underlying asset price is continuous. It is then possible to produce a volatility 

expectation that does not rely on a specific option-pricing formula. The expectation is 

then ‘model-free’, in contrast to the Black-Scholes implied volatility. Both Carr and 

Wu (2004) and Jiang and Tian (2005) relax the assumption of continuity. They show 

that (1) is an excellent approximation when there are jumps in prices.  

 

2.2 The discrete formula 

 

The CBOE has calculated the model-free volatility expectation of the S & P 500 index 

over the next 30 calendar days since September 2003. They calculate the volatility 

index, VIX, using M strike prices as1: 
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1 This equation is included in http://www.cboe.com/micro/vix/vixwhite.pdf. 
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where  is the strike price used to select call or put options,  is the call 

price with strike price  when  and otherwise it is the put price, and  is 

set equal to 

0K ),( TKQ i

iK 0KKi ≥ iKΔ

2
11 −+ − ii KK 2. The quantity VEσ  is the annualized value of the model-

free volatility expectation from time 0 until time T . 

 

The CBOE sets the strike  just below the forward price . We also employ 

equation (2). However, we use a small number of strikes to estimate a risk-neutral 

density and hence we can infer option prices for as many strikes as necessary. 

Consequently we can set  and the final term in equation (2) then disappears. 

Thus  always represents an OTM option price in our calculations, as  is 

the ATM strike price.  

0K TF ,0

TFK ,00 =

),( TKQ i 0K

 

2.3 Construction of implied volatility curves 

 

Equation (1) shows that the model-free volatility expectation is obtained from the 

integral of a function of option prices at all strikes. However, stock option prices are 

usually only available for a small number of strike prices. In order to obtain consistent 

option prices for a large number of strikes, we must estimate implied volatility curves 

from small sets of observed option prices. 

 

                                                 
2 KΔ for the lowest strike is the difference between the lowest strike and the next higher strike. 

Likewise, KΔ for the highest strike is the difference between the highest strike and the next lower 

strike. 
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We implement a variation of the practical strategy described by Malz (1997), who 

proposed estimating the implied volatility curve as a quadratic function of the option’s 

delta; previously a quadratic function of the strike price had been suggested by 

Shimko (1993). As stated by Malz (1997), making implied volatility a function of 

delta, rather than of the strike price, has the advantage that the away-from-the-money 

implied volatilities are grouped more closely together than the near-the-money 

implied volatilities. Also, extrapolating a function of delta provides sensible limits for 

the magnitudes of the implied volatilities. 

 

The quadratic specification is chosen because it is the simplest function that captures 

the basic properties of the volatility smile. Furthermore, there are insufficient stock 

option prices to estimate higher-order polynomials. Only three strike prices are 

required to estimate the parameters of a quadratic implied volatility function.  

  

Delta is defined here as the first derivative of the Black-Scholes call option price with 

respect to the underlying forward price: 
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Following Bliss and Panigirtzoglou (2002, 2004),  is a constant that permits a 

convenient one-to-one mapping between delta and the strike price. In this study,  

is the implied volatility for the option price whose strike price is nearest to the 

*σ

*σ
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forward price . The value of the call delta TF ,0 Δ  increases from zero for deep out-of-

the-money call options to  for deep in-the-money call options.  rTe−

 

The parameters of the quadratic function have been estimated by minimizing the 

following function: 

∑ ΦΔ−
=

N

j
jjjj VIIVw

1

2)),(ˆ( ,                                              (4) 

where  is the number of observed strike prices,  is the observed implied 

volatility for a strike price , 

N jIV

jK jΔ  is given by (3),  equals jw )1( jj Δ−Δ ,  is the 

vector of the three parameters of the quadratic function, and  is the fitted 

implied volatility. The minimization is subject to the constraint that the fitted implied 

volatility curve is always positive when 

Φ

),(ˆ ΦΔ jjVI

Δ  is between 0 and .  rTe−

 

The squared errors of the fitted implied volatilities are weighted by , to 

ensure that the most weight is given to near-the-money options. Far-from-the-money 

options are given low weights because their contracts are less liquid and hence their 

prices are the most susceptible to non-synchronicity errors. Introducing weights when 

fitting the quadratic function reduces the impact of any outliers obtained from far-

from-the-money options. 

)1( jj Δ−Δ

 

After the implied volatility function is fitted, we use 1000 equally spaced values of 

delta (that cover the range from 0 to ) to calculate OTM option prices for the 

corresponding strike prices. If either the least call price or the least put price exceeds 

rTe−
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0.001 cents then we extend the range of strike prices3, to eliminate any error caused 

by truncating the integral shown in (1).  The OTM prices are then used to evaluate (2).  

 

3. Data 

 

This section introduces the data used in our study and the methods we used to select 

our sample of firms. 

 

3.1 Sources 

 

The option data used in this study are from the Ivy DB database of OptionMetrics and 

the stock return data are from CRSP. The Ivy DB contains the prices for all US listed 

equities and market indices and all US listed index and equity options, based on 

closing quotes at the CBOE. The dataset also includes interest rate curves, dividend 

projections and option implied volatilities. Our sample starts on 4 January 1996 and 

ends on 31 December 1999. There are 1009 trading days during this period. 

 

Both Carr and Wu (2004) and our study use the implied volatilities provided by Ivy 

DB, rather than option prices. Each implied volatility provided by Ivy DB is based on 

the midpoint of the highest closing bid price and the lowest closing offer price across 

all exchanges on which the option trades. For the European options, implied 

volatilities are inferred from the Black-Scholes option pricing formula adjusted for 

projected dividends. For the American options, the implied volatilities are calculated 

                                                 
3 The extrapolation in either tail occurs with an equal spacing of 0.01 in moneyness, defined as the ratio 

TFK ,0 . It continues until the OTM prices are less than 0.001 cents. The implied volatility equals the 
appropriate end-point of the quadratic function. 
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from a binomial tree model, which takes into account the early exercise premium and 

dividends. Whenever call and put implieds are both available, for the same firm, 

trading day, expiry date and strike price, the average of the two implied volatilities is 

used. Options with less than eight days to maturity are excluded in order to avoid any 

liquidity and market microstructure effects around expiry.  

 

The interest rate that corresponds to each option’s expiration is obtained by linearly 

interpolating between the two closest zero-coupon rates, that are provided by the zero-

curve file included in the Ivy DB. We also calculate the corresponding forward stock 

price  for each option, that has the same time to maturity, TF ,0 T . It is defined as the 

future value of the difference between the current spot price and the present value of 

all future dividend distributions between times 0 and T inclusive. The dividend 

distribution information is also included in the Ivy DB. 

 

Daily stock returns for each firm have been obtained from CRSP, for the period from 

January 1988 to March 2000. These returns incorporate adjustments for both 

dividends and changes in the capital structure of the firm. They are transformed into 

continuously compounded returns, such that , where  is the CRSP 

stock return.  

)1log( *
tt rr += *

tr

 

3.2 Selection of firms 

 

All firms with sufficient option trading activity are included in our study. Two criteria 

are used to select firms from the database. The first criterion selects firms based on 

the number of option trading days during the sample period and then the second 
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selects firms depending on the number of market option observations per day, which 

is the daily number of available strike prices.  

 

Firstly, only firms that have options written on them throughout the whole sample 

period are included. As a result, every firm that is selected has option observations for 

1009 trading days from January 1996 to December 1999. Consequently, the 

comparison of different volatility measures using GARCH specifications and OLS 

regressions, introduced in the following section, will not be influenced by either the 

sample period or the sample size. 

 

Secondly, a firm must have sufficient option trading activity, where sufficient is 

defined by us as enough to construct implied volatility curves for at least 989 (i.e. 

98%) of the 1009 trading days. If the firm has too many days of missing data, the 

firm’s options are considered to be illiquid and then the information content of option 

prices is expected to be reduced.  

 

Our method for constructing the implied volatility curve requires at least three strike 

prices and their corresponding implied volatilities to estimate the quadratic curve. 

Whenever there are less than three available strike prices on a trading day, we are 

unable to construct the implied volatility curve and thus unable to calculate the 

model-free volatility expectation. The options with the nearest time-to-maturity are 

usually chosen. When there are less than three available strike prices for the nearest 

time-to-maturity, we switch to the second nearest time-to-maturity, which is usually 

in the month after the trading day. However, when it is impossible to estimate the 

implied volatility curve for the two nearest-to-maturity sets of option contracts, both 
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the model-free and the ATM volatility estimates are treated as missing data for that 

trading day and instead we assume both values remain unchanged from the previous 

trading day.  

 

A total of 149 firms pass both filters. The number of option observations during the 

sample period varies from firm to firm and could be viewed as a measure of liquidity. 

We anticipate that more option observations for a firm during the sample period will 

be associated with a higher efficiency of the firm’s options when estimating the 

underlying asset’s future variability. There are less option observations in 1996, 

compared with later periods. The maximum number of daily observations occurs in 

1999 for most firms. 

 

Figure 1 shows the distribution of the average number of daily available strike prices 

for the 149 selected firms. The average number for firm i , iN , equals the total 

number of available strike prices for firm i  during the sample period divided by the 

number of trading days, which is 1009 for all firms; for those trading days when it is 

impossible to construct an implied volatility curve because of a lack of observations, 

the number of available strike prices is set to zero. The minimum, median and 

maximum values of iN  are 3.7, 5.1 and 12.9 respectively. More than a half of the 

averages iN  are between 4 and 6. As shown by Figure 1, the stock options in our 

sample have far less observations than the stock index options studied in previous 

literature.  

 

4. Empirical methodology  
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4.1 Econometric specifications 

 

Both ARCH and regression models have been estimated in many previous 

comparisons of the information content of different volatility estimates. ARCH 

models can be estimated from daily returns, while regression models are estimated for 

a data-frequency that is determined by the expiration dates of the option contracts. 

The primary advantages of ARCH models are the availability firstly of more 

observations and secondly of maximum likelihood estimates of the model parameters. 

A disadvantage of ARCH models, however, is that the data-frequency is usually very 

different to the forecasting horizon that is implicit in option prices, namely the 

remaining time until expiry. This fact may weaken the relative performance in an 

ARCH context of volatility estimates extracted from option prices. To learn as much 

as we can about volatility from the option prices, our study therefore uses both ARCH 

specifications for one-day returns and regressions that employ a forecast horizon 

equal to the options’ time to maturity.  

 

4.1.1 ARCH specifications 

 

To compare the performance of historical daily returns, ATM implied volatilities and 

model-free volatility expectations, when estimating future volatility, three different 

ARCH specifications that use different daily information sets are estimated for daily 

stock returns , from 4 January 1996 to 31 December 1999.  The specifications 

include an MA(1) term in the conditional mean equation to capture any first order 

autocorrelation.  

tr
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The general specification is similar to that of Blair et al (2001). It is as follows: 
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Here  is the lag operator,  is the conditional variance of the return in period t  and 

 is 1 if 

L th

1−ts 01 <−tε  and it is 0 otherwise. The terms 1, −tVEσ  and 1, −tATMσ  are 

respectively the daily estimates of model-free volatility expectation and the ATM 

implied volatility, computed at time 1−t  by dividing the annualized values by 252 . 

 

By placing restrictions on selected parameters in the conditional variance equation, 

three different volatility models based upon different information sets are obtained: 

(1) The GJR(1,1)-MA(1) model, as developed by Glosten et al (1993): 

0==== δγ βδβγ . 

(2) The model that uses the information provided by model-free volatility 

expectations alone: . 0===== −
δβδβαα

(3) The model that uses information provided by ATM implied volatilities alone: 

. 0===== −
γβγβαα

 

The parameters are estimated by maximising the quasi-log-likelihood function, 

defined by assuming that the standardized returns  have a normal distribution. To 

ensure that the conditional variances of all models remain positive, constraints such as 

tz

0>ω , 0≥α , , 0≥+ −αα 0≥β , 0≥γβ  and 0≥δβ  are placed on the parameters. 

Inferences are made through ratios, constructed from the robust standard errors of −t
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Bollerslev and Wooldridge (1992). The three special cases listed above are ranked by 

comparing their log-likelihood values; a higher value indicates that the information 

provides a better description of the conditional distributions of daily stock returns. 

 

4.1.2 OLS regressions 

 

Univariate and encompassing regressions are estimated for each firm, as in the index 

studies by Canina and Figlewski (1993), Christensen and Prabhala (1998) and Jiang 

and Tian (2005). While a univariate regression can assess the information content of 

one volatility estimation method, the encompassing regression addresses the relative 

importance of competing volatility estimates.  

 

The most general regression equation is specified as follows:  

TtTtATMATMTtVEVETtHVHVTtRE ,,,,,,,0,, εσβσβσββσ ++++= ,               (6) 

where TtRE ,,σ  is some measure of the realized volatility from time t  to time T  , and 

TtHV ,,σ  is a historical volatility forecast calculated from the GJR(1,1)–MA(1) model 

using the information up to time t . The terms  and are non-

overlapping measures of the model-free volatility expectation and the ATM implied 

volatility. Inferences are made using the robust standard errors of White (1980), that 

take account of heteroscedasticity in the residual terms 

TtVE ,,σ TtATM ,,σ

Tt,ε . 

 

4.2 Volatility calculations  

 

Option measures 
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We use daily estimates of the ATM implied volatility and the model-free volatility 

expectation in the estimation of the ARCH models. The ATM implied volatility is the 

implied volatility for the available strike price that is closest to the forward price. The 

model-free volatility expectation is calculated as described in Section 2.3. Firstly, the 

implied volatility curve is constructed on each trading day for each firm’s stock. From 

each implied volatility curve, a large number of fitted implied volatilities are 

converted into Black-Scholes call and put option prices. Finally, the annualized value 

of the model-free volatility expectation is calculated from equation (2). 

 

Figure 2 shows the two time series of option measures of volatility, for General 

Electric and IBM, during our sample period from January 1996 to December 1999. 

The dark line represents the model-free volatility expectation and the dotted line the 

ATM implied volatility. It is seen that these two volatility measures move closely 

with each other and that the ATM implied volatility tends to be slightly lower than the 

model-free volatility expectation.  

 

For the OLS regressions, both the model-free volatility expectation and the ATM 

implied volatility on the trading date that follows the previous maturity date are 

selected, so that non-overlapping samples of volatility expectations are obtained. We 

are able to use sets of 49 monthly observations, with maturity days from January 1996 

to January 2000, for 129 of the 149 firms. For each of the remaining 20 firms, the 

number of observations is 46, 47 or 48 because of the occasional illiquidity of option 

trading for some firms. To match the horizon of all the variables in the OLS 

regressions with the one-month horizon of the options information, realized volatility 
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measures and historical volatility forecasts are required for the remaining lives of the 

options.  

 

Realized volatility 

 

Two measures of the realized volatility from a day t  until the options’ maturity date 

T are predicted. The first measure applies the well-known formula of Parkinson (1980) 

to daily high and low stock prices, to give:  

∑
−

=
=

H
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ii
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lowhigh
H 1
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)]log()[log(252σ                            (7) 

where  and  are, respectively, the highest and lowest stock price for day i , 

and 

ihigh ilow

H  is the number of days until the options expire. The second measure is the 

annualized variance of the daily returns:  
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where  is the stock return for day i  and ir Ttr ,  is the average stock return from time  t  

until T .  

 

The first estimator is expected to be a more accurate measure of realized volatility 

than the second, because intraday prices theoretically contain more volatility 

information than daily prices. 

 

Historical volatility 
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Historical forecasts of volatility are evaluated using the GJR(1,1)-MA(1) model. The 

historical information up to the observation day t  provides the conditional variance 

 for the next day. The forecast of the aggregate variance until the expiry time T, 

whose square root represents the historical volatility forecast 

1+th

HVσ  in the regressions, 

is given by:  
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where βααφ ++= −
2
1  and )1(2 φωσ −=  are respectively equal to the persistence 

parameter and the unconditional variance of the returns. 

 

The parameters of the ARCH models used to define the historical forecasts are 

estimated by maximizing the log-likelihood of a set of n returns that do not go beyond 

time t . Ninety of the 149 firms have continuous price histories from January 1988 

until January 2000. For these firms, we initially use 2024=n returns for the trading 

days between 4 January 1988 and 4 January 1996, as our first forecasts are made on 4 

January 1996; the subsequent forecasts use parameters estimated from the 2024 most 

recent returns. For each of the other firms, whose histories commence after January 

1988, we use all the daily returns until the observation day t (although we stop adding 

to the historical sample if n reaches 2024). 

 

4.3 Descriptive Statistics  

 

Table 1 presents summary statistics for all the volatility estimates used in either the 

ARCH or regression models. Statistics are first obtained for each firm from time 
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series of volatility estimates. Then the cross-sectional mean, median, lower quartile 

and upper quartile values of each statistic, across the 149 firms, are calculated and 

displayed in Table 1. Panel A provides summary statistics for daily estimates of the 

model-free volatility expectation, the ATM implied volatility, and the difference 

between them; while Panel B shows statistics for the non-overlapping volatility 

estimates that are used in the OLS regressions, including the realized volatility 

measured by high and low stock prices, the realized volatility measured by the 

standard deviation of returns, the model-free volatility expectation, the ATM implied 

volatility and the historical volatility forecasts.  

 

From Panel A, on average the model-free volatility expectation is higher than the 

ATM implied volatility although occasionally the latter is higher than the former. This 

also occurs in the study by Jiang and Tian (2005) of S & P 500 index options. We 

have tested and rejected the null hypothesis that the ATM implied volatility is an 

unbiased estimate of the model-free volatility expectation, at the 1% significance level, 

for each of the 149 firms.  We therefore conclude that the ATM implied volatility 

tends to be a downward biased measure of the risk-neutral expected variance.  

 

Panel B shows the cross-sectional statistics of the time-series means of the ATM 

implied volatility are very close to those of the realized volatility measured by the 

standard deviation of returns. The estimates of the realized volatility measured by 

high and low prices are lower, as these estimates are biased when the intraday price 

process is not geometric Brownian motion. 
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Table 2 presents the cross-sectional mean and median values of the correlation matrix, 

which is formed using time-series of non-overlapping, monthly, volatility estimates 

for each firm. Comparing the correlations of each volatility estimate with realized 

volatility, the ATM implied volatility provides the highest correlation values and 

historical volatility the lowest, for both measurements of realized volatility. The 

correlations of the model-free volatility expectation with the two measures of realized 

volatility are slightly lower than, but very close to, those of ATM implied volatility. 

Realized volatility measured by high and low prices is more highly correlated with the 

three volatility estimates, than the realized volatility measured by the standard 

deviation of returns. The highest correlation statistics are between the model-free 

volatility expectation and the ATM implied volatility, with the mean and median 

respectively equal to 0.932 and 0.952. These high values reflect the similar 

information that is used to price ATM and OTM options.  

 

5. Results 

 

In this section, the results from fitting both the GARCH specifications and the OLS 

regressions, defined by equations (5) and (6), to the data from 149 firms during the 

period from 4 January 1996 to 31 December 1999 are discussed. The results for 

models estimated across all firms are first presented. We then consider results for 

groups of firms, with the groups defined in two different ways by using measures of 

the liquidity of options trading. 

 

5.1 ARCH specifications 
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5.1.1 Estimates of parameters 
 
 

Table 3 provides the summary statistics of the sets of 149 point estimates (their 

median, lower quartile , and upper quartile ) from the three ARCH 

specifications defined by equation (5).  Summary statistics are shown in Panel A for 

the GJR(1,1)-MA(1) model, in Panel B for the model that only uses the information 

provided by the model-free volatility expectation, and in Panel C for the model that 

uses the information provided by the ATM implied volatility alone. The last two rows 

in each panel are the percentages of the estimates that are significantly different from 

zero at the 5% and the 10% levels. 

qL qU

 

The first model is the standard GJR(1,1)-MA(1) model, which uses previous stock 

returns to calculate the conditional variance. The value of α  measures the symmetric 

impact of new information (defined by tε ) on volatility while the value of  

measures the additional impact of negative information (when 

−α

0<tε ) on volatility. 

Approximately 75% of all firms have a value of  that is more than twice the 

estimate of 

−+αα

α , indicating a substantial asymmetric effect for individual stocks. For 

the majority of firms, the estimates of α  and  are not significantly different from 

zero at the 5% level. This is probably a consequence of the relatively short sample 

period. The volatility persistence parameter, assuming returns are symmetrically 

distributed, is . The median estimate of persistence equals 0.94.  

−α

βαα ++ −5.0

 

The second model uses only the information contained in the time series of model-

free volatility expectations, 1, −tVEσ , to calculate conditional variances. The series 
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1, −tVEσ  is filtered by the function )1( Lγβγ −  of the lag operator L. For half of the 

firms, the estimates of γ  are between 0.48 and 0.85; also, half of the estimates are 

significantly different from zero at the 5% level. In contrast, most of the estimates of 

γβ  are near zero. This suggests that a conditional variance calculated from the 

model-free volatility expectation given by the latest option prices can not be improved 

much by using older option prices. 

  

The third model uses only the information contained in the ATM implied volatility 

series, 1, −tATMσ , to calculate the conditional variances. The interquartile range for δ  

is from 0.62 to 0.88 and almost one-half of the estimates are significantly different 

from zero at the 5% level. More than half of the estimates of the lag coefficient, δβ , 

are zero and few of them are far from zero. On average, δ  exceeds γ  and δβ  is less 

than γβ . 

 

The total weight in the conditional variance equation given to the model-free volatility 

expectations and the ATM implied volatilities are respectively defined by the 

quantities )1( γβγ −  and )1( δβδ − .  A higher value of these quantities may imply 

the information provided is more relevant to the conditional variance movements, or it 

may also indicate a lower level of the volatility estimates. The summary statistics for  

)1( γβγ −  and )1( δβδ −  are shown in the last two columns of Table 3. Figure 4 is 

a scatter diagram of these two variables for the 149 firms. It is seen that there is a 

strong positive correlation between these two variables.  Most points are closer to the 

x-axis than to the y-axis because )1( δβδ −  is usually higher than )1( γβγ − .  
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5.1.2 Comparisons of log-likelihoods 

 

A higher log-likelihood value indicates a more accurate description of the conditional 

distributions of daily stock returns. Panel A of Table 5 provides frequency counts that 

show how often each of the three ARCH specifications has the highest log-likelihood 

for the observed returns. The first column shows the percentage frequencies across all 

firms. We use ,  and  to represent the log-likelihoods of the three 

models defined after equation (5). The percentage numbers in the table show how 

many firms satisfy each of the six possible orderings of ,  and .  

HVL VEL ATML

HVL VEL ATML

 

More than a third of the firms (35.6% or 53 firms) have a log-likelihood, , for the 

GJR(1,1)–MA(1) model that is higher than both of the values,  and , 

obtained from the options information. For the 64.4% (96 firms) whose log-

likelihoods are maximized using option specifications, the ATM specification (37%) 

is best more often than the model-free volatility expectation (27%). This is evidence 

for the superior efficiency of ATM option implied volatilities when estimating 

individual stock volatility.  

HVL

VEL ATML

 

This high frequency for the historical specification is contrary to the studies on 

options written on stock indices, which reach a consensus that option prices perform 

much better than ARCH models estimated from daily returns. However, our results 

are consistent with the in-sample conclusions of Lamoureux and Lastrapes (1993), 

who show that the GARCH(1,1) model has a slightly higher log-likelihood than the 

model that uses ATM implied volatilities, for all the 10 U.S. firms in their sample. 
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There are two obvious reasons why the GJR model performs the best for so many 

firms. Firstly, the key difference between our data for individual stock options and the 

stock index option data of previous studies is that the latter options are much more 

liquid than the former. As individual stock options are far less liquid, they may be 

unable to provide informative volatility expectations. Secondly, our ARCH 

specifications and the model in Lamoureux and Lastrapes (1993) are estimated with a 

horizon of one day, while volatility estimates from option prices represent the 

expected average daily variation until the end of the options’ lives. The mismatch 

between the estimation horizon and the options’ time to maturity may enhance the 

performance of the GJR (1,1)–MA(1) model relative to the other two models.  

 

5.2 OLS regressions  

 

The regression results are for non-overlapping observations, defined so that the 

estimation horizon is matched with the options’ time to maturity. Table 4 reports the 

results from both univariate and encompassing regressions. The results from the two 

measures of realized volatility are presented in separate panels. As before, Med,  

and  are the median, lower quartile, and upper quartile of the point estimates 

across 149 firms. The two numbers in parentheses for each parameter estimate are the 

numbers of firms whose estimates are significantly different from zero at the 5% and 

10% levels. The last two sets of columns show summary statistics for the regression 

mean squared errors (MSE) and the Durbin-Watson statistics.  

qL

qU

 

We begin our discussion with the results from the univariate regressions in Panel A, 

when realized volatility is measured by high and low stock prices. The null hypothesis 
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0=β  is rejected for more than 80% of the tests at the 5% level. The values of the 

adjusted 2R  are highest for the ATM implied volatility (median 0.282), but the 

values for the model-free volatility expectation are similar (median 0.260); the values 

for historical volatility, however, are much lower (median 0.119). This evidence 

suggests that volatility estimates extracted from option prices are much more 

informative than historical daily stock returns when the estimation horizons match the 

lives of the options. 

 

We next consider the encompassing regressions with two independent variables in 

Panel A. The bivariate regression models that include the historical volatility variable 

increase the median adjusted 2R  values slightly from the univariate levels for option 

specifications; from 0.282 to 0.284 for ATM implied volatility and from 0.260 to 

0.273 for the model-free expectation. For these bivariate regressions, only a small 

number of firms reject the null hypothesis 0=HVβ  at the 5% level (37 for historical 

volatility and model-free volatility, and 33 for historical volatility and ATM implied 

volatility). Therefore most firms can not reject the hypothesis that the historical 

volatility of the underlying asset is redundant when forecasting future volatility, 

which may be a consequence of the informative option prices and the small number of 

forecasts that are evaluated. 

 

The bivariate regressions involving the model-free volatility expectation and the ATM 

implied volatility have a median value of adjusted 2R  equal to 0.282, which is 

fractionally less than for the bivariate regressions involving the historical and the 

ATM volatilities. This can be explained by the very high correlation between the 

model-free volatility expectation and the ATM implied volatility. For most firms, 
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both the null hypotheses 0=VEβ  and 0=ATMβ  can not be rejected, showing that 

we can not decide that one option measure subsumes all the information contained in 

the other.  

 

The regression involving all three volatility estimates has a median adjusted 2R  equal 

to 0.302. The median values of HVβ , VEβ  and ATMβ  are respectively 0.09, 0.13 

and 0.46 which suggests the ATM forecasts are the most informative.  

 

Panel B in Table 4 presents the regression results when the realized volatility is 

measured by the standard deviation of daily returns. The comparisons between 

specifications provide the same conclusions as those deduced from Panel A, but now 

the regressions have lower values of adjusted 2R  and, therefore, less firms with 

significant coefficient estimates. This lower values of 2R are expected from the 

information in the correlation matrix shown in Table 2, which shows that the realized 

volatility measured by high and low stock prices has higher correlations with the three 

volatility forecasts under consideration, than does the realized volatility measured by 

the standard deviation of daily returns.  

 

Although the values of the Durbin-Watson statistic are often low, most of the test 

values are not significantly different from two so that the null hypothesis that the 

regression residuals are not correlated is accepted. 
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Regressions results have also been obtained when the volatility variables are replaced 

either by variances or by their logarithms. The results are similar to those presented in 

Table 4. 

 

Panel B of Table 5 provides frequency counts that show how often each of the three 

univariate forecasts has the highest value of 2R , when realized volatility is measured 

by daily high and low stock prices. The first column of percentage frequencies shows 

how many firms satisfy each of the six possible orderings of adjusted 2R  values from 

the three univariate regressions, which are denoted by ,  and 2
HVR 2

VER 2
ATMR .  

 

There are important differences between the frequencies in Panels A and B of Table 5.  

Only 14% (i.e. 21) of the firms have historical volatility ranking highest in Panel B, 

compared with 36% in Panel A. Both the model-free volatility expectation and the 

ATM implied volatility rank highest more often in Panel B than in Panel A. The ATM 

implied volatility has the best regression results for 48% (i.e. 72) of the firms, while 

the model-free volatility expectation performs the best for 38% (i.e. 56 firms). Thus, 

only when the estimation horizon is matched do we find that the option prices are 

clearly more informative than the historical daily returns. 

 

 

5.3 Comparisons for groups defined by available strike prices 

 

We now allocate the firms to groups according to the average number of daily 

available strike prices, iN , defined in Section 4.2. We do this to try and discover if 
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the liquidity of options trading can explain why some firms appear to have 

informative option prices (relative to historical forecasts) and others do not. A 

successful liquidity relationship would also help to explain why our results for stock 

options are different from those reported elsewhere for stock index options. 

 

When a firm has more available strike prices, we may conjecture that the firm’s 

option prices are more efficient when estimating volatility. Therefore, for a higher 

value of iN , the ATM implied volatility and the model-free volatility expectation 

should tend to perform better than historical volatility, especially for the model-free 

expectation which is estimated across all available strike prices.  

 

The 149 firms have been divided into three groups. Group 1 )63( =n  contains the 

firms that have iN  between 3 and 4 and they are considered to be the firms with the 

least liquidly traded options in our sample. The firms in Group 2  are those 

that have 

)50( =n

iN  between 4 and 5. Group 3 )36( =n , which is the most liquid group, 

contains the firms with iN  higher than 5.  

 

The second, third and fourth columns of Table 5 provide frequency counts about the 

best source of information for the three groups, that can be compared with the counts 

in the first column for all the firms. 

 

From Panel A of Table 5, that compares ARCH likelihoods, we conclude that the 

historical volatility is outperformed by options when the stock options are most 

actively traded. The percentage of firms for which the GJR(1,1)–MA(1) model 
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performs the best decreases from 51% for Group 1, to 40% for Group 2 and then to 

only 3% for Group 3. The percentages are similar, across groups, for the model-free 

volatility expectation. They increase for the ATM implied volatility from 24% for 

Group 1, to 32% in Group 2 and then to 67% in Group 3. The null hypothesis that 

there is no relationship between our groups and the highest log-likelihood values is 

rejected by the 33×  contingency table (chi-squared) test at the 0.5% level, with the 

chi-square test statistic equal to 27.38. 

 

Panel B of Table 5, that compares adjusted 2R  values for the regresions, displays 

similar patterns to Panel A, but the changes in frequencies between groups are now 

less pronounced. Again we see that the historical forecasts are clearly inferior to the 

ATM implied volatility forecasts for the firms that have the most recorded option 

prices. Although the general pattern is the same, the chi-squared test statistic, equal to 

4.39, does not reject the null hypothesis of no association between the group and the 

best method at the 5% level. The different chi-squared test conclusions may simply 

reflect the small sample sizes used in the regressions (ranging from 46 to 49) that 

make it difficult to estimate the true level of 2R  for each forecasting method.   

 

The median values of the ARCH parameter estimates for the three specific ARCH 

models, across the firms in each group, are provided in Table 6. The numbers in 

parentheses are the percentages of the estimates that are significantly different from 

zero at the 10% level. Panel A shows the median values for the parameters in the 

GJR(1,1)-MA(1) model. Panel B shows the median values for the ARCH 

specification that uses only the information provided by the model-free volatility 

expectation. As the options of the firms become more liquid, moving from Group 1 to 
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Group 3, the estimates of γ  and the percentages of significant estimates increase 

monotonically, from 0.57 to 0.81 and from 47% to 89%, coupled with a decrease in 

the median estimate of γβ  from 0.17 to 0.03. Meanwhile, the median value of the 

weight put on the VEσ  series, )1( γβγ − , rises from 0.77 for Group 1 to 0.86 for 

Group 3, reflecting an overall increase in information content. The same pattern is 

seen in Panel C, which provides the median values for the ARCH specification that 

only uses the information provided by the ATM implied volatility.  

 

5.4 Comparisons for groups defined by comparing ATM and OTM liquidity 

 

From Table 5, it is seen that the ATM implied volatility outperforms the model-free 

volatility expectation for a majority of the firms; this is true even for the firms that 

have the more actively traded options. Firms are again allocated to groups, but now 

using the time-series average of the trading volume of ATM options as a fraction of 

the total volume across all strikes. We might conjecture that when trading is 

concentrated in the firm’s ATM options then the information provided by OTM 

options will become redundant; consequently, the model-free volatility expectation 

will then be unable to provide efficient forecasts of the future variability.  

 

The 149 firms are separated into three groups according to their average level of ATM 

trading activity relative to the total trading activity. Group 1 contains the firms that 

have an average ratio from 24% to 40%. The firms in Group 2 are those that have 

average ratios from 40% to 45% and for Group 3 the range is higher than 45%. We 

might expect more firms in Group 3 to have ATM implied volatility predictions that 

outperform the model-free volatility expectation than in Groups 1 and 2. 
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The middle group of three columns in Table 5 present the frequency counts, defined 

in the same way as for all the other columns in this table. In Panel A, the ATM 

predictions outperform the model-free expectations for 60% of the firms in Group 1, 

56% in Group 2 and 59% in Group 3. The corresponding frequencies in Panel B are 

50%, 67% and 54%. There is therefore no evidence to support the conjecture that the 

ATM predictions are more likely to be best when OTM trading volume is relatively 

low. Furthermore, for Group 1 when the OTM volume is relatively high, the model-

free volatility expectation remains less efficient than the ATM predictions for a 

majority of the firms.  

 

The chi-square test statistics are, 1.51 and 3.64, respectively for the orderings defined 

by ARCH specifications, and for those defined by the 2R  values. The null hypothesis 

that there is no association between the second grouping method and the best of the 

three forecasting variables can not be rejected for either Panel A or Panel B. 

 

5.5 Comparisons for groups defined by relative trading activity of intermediate 

delta options 

 

We also group all firms according to the time-series average of trading volume of 

intermediate delta options as a fraction of the total volume across all strike prices. The 

options with delta values between 0.25 and 0.75 are defined to be intermediate delta 

options. When the relative trading activity of these options is high, there is relatively 

less trading in very high and very low strike prices. Therefore, the model-free 

volatility expectation, which includes all strike prices, might then lose its advantage 
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and thus the ATM implied volatility concentrated on only one central strike price 

might tend to perform better.  

 

The 149 firms are again separated into three groups according to the average level of 

intermediate delta trading activity relative to the total trading activity. Group 1 (n=49) 

contains the firms where average ratio is lower than 62%. Group 2 (n=44) contains 

those that have the ratio between 62% and 65%. Group 3 (n=56) contains the firms 

that have an average ratio higher than 65%. We might expect more firms in Group 3 

to have ATM implied volatility predictions that outperform the model-free volatility 

expectation than in Groups 1 and 2.  

 

The last three columns in Table 5 present the frequency counts when the firms are 

grouped by near-the-money trading activity. In Panel A, that compares ARCH 

likelihoods, the ATM predictions outperform the model-free volatility expectation for 

63% of the firms in Group 1, 60% in Group 2, and 54% in Group 3. The 

corresponding frequencies in Panel B, when comparing the adjusted 2R , are 65%, 

59%, and 50%. There is no evidence showing that the ATM implied volatility is more 

often superior to the model-free volatility expectation when relative intermediate delta 

trading activity is high.  

 

The chi-square test statistic is 9.00 for Panel A, and 3.03 for Panel B. Thus, we cannot 

reject the null hypothesis that there is no association between the third grouping 

method and the best method, at the 5% level. 

 

5.6 Cross-sectional regression analysis 
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When we try to discover when one prediction method is better than the others, the 

allocation of firms to different groups loses some information. We now use the same 

three variables, average number of available strike prices, relative liquidity of ATM 

options, and relative liquidity of intermediate delta options, to try and explain the 

numerical differences between the likelihood values from ARCH models and the 

numerical differences between 2R  values from univariate OLS regressions. 

 

The general cross-sectional regression equation is specified as follows: 

iiDELTAiATMii TVTVNy εβββα +×+×+×+= ,, 321                       (10) 

where , for firm i , represents the difference between any two loglikelihood values 

from ARCH models or any two adjusted 

iy

2R  values from univariate regressions. The 

variables iN , TV  and  are respectively the average number of available 

strike prices, the relative trading volume of ATM options and the relative trading 

volume of intermediate delta options for firm i , defined in Sections 5.3, 5.4 and 5.5. 

Regressions involving one, two or three explanatory variables are estimated for all 

149 firms. 

iATM , iDELTATV ,

 

Tables 7, 8 and 9 show the regression results. Table 7 reports the results when 

explaining the difference in the performance of the ATM implied volatility and that of 

the model-free volatility expectation. In Panel A,  equals the difference between the 

loglikelihood value of the ARCH model using ATM implied volatility alone and that 

of the ARCH model using model-free volatility expectation alone. In Panel B,  

equals adjusted 

iy

iy

2R  from the univariate regression using ATM implied volatility 
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minus the adjusted 2R  from the univariate regression using model-free volatility 

expectation. Similarly, Table 8 shows the regression results that explain the 

differences between the performance of ATM implied volatility and that of historical 

volatility; Table 9 reports the results for differences between model-free volatility 

expectation and historical volatility. In all three tables, Panel A shows the results 

when the dependent variable is obtained from the loglikelihood values of ARCH 

models, while Panel B shows the results when the dependent variable is obtained from 

the adjusted 2R  values of univariate regressions. 

 

We begin our discussion with the results in Table 7. As we expect the ATM implied 

volatility to perform better, compared with the model-free volatility expectation, when 

there is relatively more trading in ATM and intermediate delta options, here the 

coefficients of  and  are expected to be positive.  iATMTV , iDELTATV ,

 

In Panel A of Table 7, we find that the adjusted 2R  of the three univariate regressions 

are low and two are negative. The most significant variable in the univariate 

regressions is the average number of available strike prices, with a coefficient of 

0.599 and a t-value of 1.80. We can conclude that none of the three variables can 

explain the difference in the performance between ATM implied volatility and model-

free volatility expectation, on its own.  

 

A high relative trading volume for ATM options might occur when there is illiquid 

trading for all options. Under this circumstance, both the ATM implied volatility and 

the model-free volatility expectation become inefficient and thus we cannot explain 

the difference between them using the relative trading volume of ATM options alone. 
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However, after combining it with the average number of available strike prices in the 

fourth regression in Panel A, both of the explanatory variables become more 

significant and the adjusted 2R  value of 0.026 is higher than those of the univariate 

regressions. We might conclude that when the firm’s option trading is liquid overall 

but most trading is of the ATM options, then the ATM implied volatility tends to 

perform better than the model-free volatility expectation. 

 

The highest adjusted 2R  value is 0.034, from the encompassing regression including 

all three explanatory variables. We cannot find any evidence supporting the 

hypothesis that the model-free volatility expectation is relatively inefficient when the 

relative trading volume of the intermediate delta options is high. On the contrary, the 

coefficient of the relative trading volume of the intermediate delta options is negative, 

with a t-value equal to –1.50. 

 

None of the coefficients are significant in Panel B of Table 7. The low number of 

observations in our OLS regressions (46 to 49), defined in section 4.1.2, might 

explain the low explanatory power of these estimates. 

 

We next consider the results shown in Table 8, which measure the difference in the 

performance between ATM implied volatility and historical volatility. When any one 

of iN ,  or  is higher, we conjecture that the predictions from option 

prices become more efficient than historical forecasts. Therefore we expect the 

coefficients of the explanatory variables to be positive.  

iATMTV , iDELTATV ,
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In both panels of Table 8, we find that all the coefficients of iN  are positive and 

significantly different from zero at the 5% level. It is seen that the average number of 

available strike price is the most important variable to explain the difference between 

the performances of ATM implied volatility and historical volatility. Especially in 

Panel B, there is no additional explanatory power when combining iN  with the other 

two variables. The positive coefficients imply that for firms with more recorded strike 

prices, the ATM implied volatility is more accurate in estimating future volatility, 

compared to historical volatility.  

 

Similar to results in Table 7, we find that the coefficient of relative trading volume of 

ATM options becomes more significant when it is combined with the number of 

available strike prices. The highest adjusted 2R  values in Panel A and Panel B are 

both from the bivariate regressions that use the relative trading volume of ATM 

options and the number of available strike prices. This shows again that when the 

firm’s option trading is liquid overall, but the trading is more concentrated on ATM 

options than the others, then ATM implied volatility tends to be the most informative 

estimate of future volatility.  

 

The coefficient of  is positive and significant for two of the regressions in 

Panel A. When the relative trading of intermediate delta options is high, volatility 

estimates from options tend to be better than historical estimates. However, the 

relative trading activity of intermediate delta options loses its significance when 

combined with the average number of strike prices.  

iDELTATV ,
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Finally, we consider the results in Table 9, which compare the performance of model-

free volatility expectation and historical volatility. The significant results in Table 9 

are similar to those in Table 8, except that the coefficient of relative trading volume of 

ATM options, which measures the liquidity of ATM options, is always insignificant 

in Table 9. When there are more available strike prices, or when trading is more 

concentrated on intermediate delta options, the model-free volatility expectation tends 

to perform better than historical volatility. The significant coefficients in Panel A of 

Table 9 are slightly lower than those in Panel A of Table 8. This implies that when the 

values of iN  and  increase, the enhancement in the performance of ATM 

implied volatility is slightly more than that of model-free volatility expectation.  

iDELTATV ,

 

6. Conclusions 

 

There is a consensus from previous studies about the informational efficiency of 

options written on stock indices that option prices are more informative than daily 

stock returns when estimating and predicting the volatility of indices. Our analysis of 

149 firms shows, however, that a different estimation conclusion applies to options 

for individual firms. For one-day-ahead estimation, more than a third of our firms do 

not have volatility estimates, extracted from option prices, that are more accurate than 

those provided by a simple ARCH model estimated from daily stock returns. When 

the prediction horizon extends until the expiry date of the options, the historical 

volatility becomes much less informative than either the ATM implied volatility or 

the newly developed model-free volatility expectation. Our results also show that both 
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volatility estimates from options are more likely to be more informative than 

historical returns when the number of different strike prices traded is higher.  

 

Although the model-free volatility expectation has been demonstrated to be the most 

accurate predictor of realized volatility by Jiang and Tian (2005) for the S & P 500 

index, for our firms it only outperforms both the ATM implied volatility and the 

historical volatility for about one-third of the firms. In contrast, the ATM implied 

volatility is the method that most often performs the best. The relatively poor 

performance of the model-free volatility expectation might be explained by the 

relative levels of ATM and OTM trading activity, when the firm’s option trading 

overall is liquid.  Another possible explanation is that the OTM options are mispriced 

and, therefore, the model-free volatility expectation, which is a combination of option 

prices across all strike prices, is outperformed by the information provided by ATM 

options alone. A third explanation may be that option prices for all strikes can not be 

inferred reliably from a handful of traded strikes. 
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Figure 1 Distribution of the average number of daily available strike 
prices for 149 firms 
 
Sample period is from January 4, 1996 to December 31, 1999. The average number of daily available 
strike prices for firm i , 

iN , is defined as the total number of option observations for firm i  during the 
sample period divided by the number of trading days, which is 1009 for all firms. 
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Figure 2 Examples of the model-free volatility expectation and the ATM 

he figure plots the time series of daily estimates of model-free volatility expectation and ATM 

anel A: Time series plot for General Electronic 

implied volatility  
 
T
implied volatilities over the sample period from January 1996 to December 1999.  
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Panel B: Time series plot for IBM 
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Figure 3 Comparison of the estimated values of 
γβ

γ
−1

 and 
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Table 1 Summary statistics of volatility estimates 
 

Sample period is from January 1996 to December 1999. Numbers are cross-sectional statistics calculated from time series statistics, for a cross-section of 149 firms. Mean, 
Med, and are respectively the mean, median, lower and upper quartile values of each estimate across 149 firms. Panel A provides the summary statistics of the daily 
estimates used in ARCH models and Panel B the non-overlapping volatility estimates used in OLS regressions. 

qL qU

VEσ   represents the model-free volatility expectation, ATMσ  the 
ATM implied volatility,  the realized volatility measured by daily high and low prices,  the realized volatility measured by daily returns, and  the historical 
volatility forecasts. All volatility numbers are annualized. 

)1(
REσ )2(

REσ HVσ

 
Time series stat. Mean Std Dev Max Min 

Cross-sec. stat. Mean Med qL  qU  Mean Med qL  qU  Mean Med qL  qU  Mean Med qL  qU  

Panel A: summary statistics for daily measures of model-free volatility expectation and ATM implied volatility 

VEσ  0.523 0.522 0.371 0.646 0.124 0.106 0.078 0.131 1.539 1.176 0.826 1.527 0.316 0.311 0.222 0.404 

ATMσ  0.487 0.484 0.351 0.610 0.099 0.094 0.072 0.114 1.093 1.023 0.755 1.278 0.296 0.285 0.205 0.381 

ATMVE σσ −  0.036 0.032 0.024 0.043 0.051 0.035 0.026 0.048 0.634 0.301 0.218 0.415 -0.105 -0.067 -0.132 -0.042 

Panel B: summary statistics for non-overlapping volatility estimates 
)1(

REσ  0.370 0.371 0.254 0.474 0.105 0.098 0.077 0.130 0.713 0.703 0.504 0.894 0.210 0.195 0.140 0.275 

)2(
REσ  0.484 0.490 0.341 0.607 0.173 0.162 0.122 0.210 1.096 1.021 0.722 1.314 0.230 0.222 0.156 0.293 

VEσ  0.517 0.518 0.367 0.639 0.112 0.092 0.072 0.116 0.909 0.807 0.595 0.987 0.361 0.364 0.245 0.454 

ATMσ  0.484 0.489 0.351 0.605 0.093 0.087 0.063 0.107 0.771 0.722 0.558 0.901 0.340 0.335 0.233 0.428 

HVσ  0.493 0.507 0.323 0.600 0.109 0.068 0.046 0.101 0.924 0.708 0.510 0.925 0.353 0.342 0.229 0.473 
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Table 2 Summary statistics of the correlation matrices 

 
Sample period is from January 1996 to December 1999. Mean and Med are respectively the cross-sectional mean and median values of correlations across 149 firms. 
Correlations for each firm are calculated using the non-overlapping observations of volatility estimates.  is realized volatility measured by high and low prices.  is 
realized volatility measured by daily returns.  is  model-free volatility expectation. is  ATM implied volatility. is historical volatility . 

)1(
REσ )2(

REσ

VEσ ATMσ HVσ

 
 
  )1(

REσ  )2(
REσ  VEσ  ATMσ  HVσ  

Cross sectional stat. Mean Med Mean Med Mean Med Mean Med Mean Med 
)1(

REσ  1 1         
)2(

REσ  0.852 0.869 1 1       

VEσ  0.510 0.522 0.445 0.433 1 1     

ATMσ  0.521 0.528 0.454 0.465 0.937 0.952 1 1   

HVσ  0.368 0.370 0.314 0.330 0.542 0.572 0.558 0.578 1 1 
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Table 3 Summary statistics of ARCH parameter estimates across 149 firms  
Daily stock returns are modelled by the ARCH specification: tr

LLL
shdiizzhr tATMtVEttt

tttttttt
δγ β

δσ
β

γσ
β
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ts is 1 if tε is negative, otherwise is zero. ts VEσ  is a measure of model-free volatility expectation.  ATMσ  is a measure of ATM implied volatility. Parameters are estimated by 
maximizing the quasi-log-likelihood function. Panel A contains the estimation results for the GJR (1,1)-MA (1) model; Panel B and Panel C for models that uses information 
provided by model-free volatility expectation and ATM implied volatility respectively. Inferences are made through −t ratios, constructed from robust standard errors. 
Numbers in the parentheses are the percentage of estimates which are significantly different from zero at the 5% and the 10% significance level. The persistence estimate is 

βαα ++ −5.0 . Med, and are respectively the median, lower and upper quartile values of each estimate across 149 firms.  qL qU

Parameters  310×μ  θ  510×ω  α  −α  β  γ  γβ  δ  δβ  Persistence 
γβ

γ
−1

 
δβ

δ
−1

 

Panel A: estimates of GJR (1,1)-MA (1) model 
 Med 0.85 0.00 5.91 0.03 0.08 0.86     0.94   
 qL  0.40 -0.04 1.57 0.00 0.04 0.66     0.81   
 qU  1.42 0.04 17.89 0.06 0.13 0.93     0.98   
 At 5% (11.4%) (10.7%) (63.8%) (20.1%) (43.0%) (93.3%)        
 At 10% (22.8%) (14.8%) (74.5%) (32.2%) (54.4%) (93.3%)        

Panel B: estimates of ARCH specification that uses model-free volatility expectation only 
 Med 0.73 0.00 0.49    0.71 0.03    0.83  

 qL  0.33 -0.03 0.00    0.48 0.00    0.72  

 qU  1.22 0.05 10.15    0.85 0.34    0.90  

 At 5% (11.4%) (10.7%) (0.7%)    (50.3%) (7.4%)      

 At 10% (22.8%) (16.1%) (2.0%)    (61.1%) (8.7%)      

Panel C: estimates of ARCH specification that uses ATM implied volatility only 
 Med 0.71 0.01 0.00      0.88 0.00   0.96 

 qL  0.35 -0.03 0.00      0.62 0.00   0.84 

 qU  1.23 0.05 7.27      1.01 0.20   1.04 

 At 5% (10.7%) (9.4%) (0.0%)      (42.3%) (4.0%)    

 At 10% (20.1%) (16.8%) (0.7%)      (57.0%) (6.0%)    
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Table 4 Summary statistics of estimates for univariate and encompassing regressions across 149 firms  
 

Panel A contains the results of OLS regressions when realized volatility is measured using high and low stock prices; Panel B for results when realized volatility is measured 
by the standard deviation of returns. Inferences are made through standard errors, computed following a robust procedure taking account of heteroscedasticity [White (1980)]. 
Numbers in parentheses are the number of firms whose estimates are significantly different from zero at the 5% and the 10% levels. Med, and are respectively the 
median, lower and upper quartile values of each estimate across 149 firms. MSE is the mean squared regression error.  

qL qU

α
HVβ  VEβ  ATMβ  Ad. R square MSE Durbin-Watson 

Med qL  qU  Med qL  qU  Med qL  qU  Med qL  qU  Med qL  qU  Med qL  qU  Med qL  qU  

Panel A:  Realized volatility is calculated using high and low stock prices 
0.096 0.019 0.224 0.535 0.284 0.737       0.119 0.031 0.261 0.008 0.004 0.015 1.50 1.28 1.68 

(58/66) (102/114)            
0.071 0.024 0.152    0.559 0.415 0.678    0.260 0.126 0.392 0.007 0.003 0.013 1.59 1.43 1.81 

(39/51)  (131/139)           
0.066 0.005 0.143       0.612 0.473 0.767 0.282 0.141 0.401 0.007 0.003 0.013 1.61 1.42 1.81 

(35/47)   (137/141)          
0.043 -0.011 0.125 0.134 -0.048 0.361 0.502 0.304 0.624    0.273 0.150 0.422 0.007 0.003 0.013 1.73 1.54 1.90 

(19/32) (37/47) (100/115)         
0.028 -0.032 0.122 0.117 -0.06 0.347    0.544 0.387 0.735 0.284 0.166 0.415 0.007 0.003 0.013 1.71 1.53 1.90 

(19/31) (33/43)  (108/116)        
0.066 0.003 0.147    0.143 -0.112 0.523 0.464 0.000 0.816 0.282 0.154 0.410 0.007 0.003 0.013 1.63 1.45 1.86 

(36/50)  (24/34) (34/48)        
0.036 -0.024 0.127 0.093 -0.086 0.329 0.132 -0.183 0.487 0.457 -0.009 0.727 0.302 0.164 0.432 0.007 0.003 0.013 1.75 1.53 1.92 

(15/31) (31/45) (22/29) (27/40)          
Panel B: realized volatility is calculated using returns 

0.126 0.010 0.330 0.670 0.344 1.000       0.090 0.008 0.190 0.023 0.012 0.042 1.79 1.60 1.96 
(54/69) (89/104)            

0.072 0.004 0.186    0.764 0.581 0.934    0.172 0.082 0.309 0.022 0.010 0.035 1.78 1.60 2.06 
(19/34))  (114/129)           

0.052 -0.019 0.151       0.882 0.667 1.059 0.202 0.107 0.287 0.021 0.010 0.036 1.78 1.62 2.03 
(16/25)   (123/132)          

0.045 -0.046 0.161 0.187 -0.116 0.493 0.672 0.356 0.881    0.192 0.103 0.318 0.021 0.010 0.035 1.90 1.71 2.09 
(19/27) (31/42) (89/103)         

0.034 -0.066 0.141 0.113 -0.147 0.409    0.744 0.538 1.052 0.210 0.109 0.294 0.021 0.010 0.036 1.88 1.71 2.06 
(17/26) (24/33)  (94/109)        

0.056 -0.018 0.155    0.201 -0.249 0.756 0.563 -0.021 1.152 0.199 0.106 0.326 0.021 0.009 0.035 1.82 1.63 2.05 
(15/28)  (16/27) (25/34)        

0.044 -0.052 0.152 0.095 -0.149 0.400 0.190 -0.275 0.737 0.563 -0.053 1.078 0.213 0.115 0.324 0.021 0.009 0.035 1.90 1.71 2.08 
(17/27) (28/33) (14/24) (20/27)          
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Table 5 Frequency counts for the variables that best describe the volatility of stock returns 
HVL ,  and  represent the log-likelihood values of the ARCH models that only  use, respectively, historical volatility, the model-free volatility expectation and ATM implied 

volatility. ,  and  represent, respectively, the Adjusted R-squared of the three univariate regressions when realized volatility is measured by high and low prices. The 
figures are the percentages of firms that satisfy the orderings in the first column. Groups are firstly separated according to average values of traded strike prices for each firm.  Group 
1 has the lowest average values for the number of traded strike prices: 

VEL ATML
2
HVR 2

VER 2
ATMR

43 <≤ iN , group 2 has 54 <≤ iN , and group 3 has 5≥iN . Groups are secondly separated according to the 
relative trading activity of at-the-money options for each firm.  Groups 1, 2 and 3 are respectively the firms whose at-the-money trading volume as a fraction of total trading 
volumes are below 40%, between 40% and 45% and higher than 45%. Groups are thirdly separated according to the relative trading activity of intermediate delta options for each 
firm, Groups 1, 2 and 3 are respectively the firms whose intermediate delta trading volume as a fraction of the total trading volume are lower than 62%, between 62% and 65%, and 
above or equal to 65%, where a intermediate delta is defined as a delta value between 0.25 and 0.75. n  represents the number of firms in each group. 

   Grouped by iN   Grouped by ATM trading 
activity 

Grouped by Intermediate 
delta trading activity 

  
All firms 

 Group 1 Group 2 Group 3  Group 1 Group 2 Group 3  Group 1 Group 2 Group 3 
  (n=149)  (n=63) (n=50) (n=36)  (n=48) (n=55) (n=46)  (n=49) (n=44) (n=56) 

Panel A: Frequency counts for the ARCH specifications that maximize the likelihoods of observed stock returns 
GJR (1,1) – MA (1) model performs the best 35.6%  50.8% 40.0% 2.8%  37.5% 30.9% 39.1%  46.9% 20.5% 37.5% 

ATMVEHV LLL >>  14.1%  19.1% 18.0% 0.0%  16.7% 12.7% 13.0%  18.4% 6.8% 16.1% 

HVATMHV LLL >>  21.5%  31.8% 22.0% 2.8%  20.8% 18.2% 26.1%  28.6% 13.6% 21.4% 

VEσ  performs the best 27.5%  25.4% 28.0% 30.6%  22.9% 30.9% 28.3%  18.4% 36.4% 28.6% 

HVATMVE LLL >>  25.5%  22.2% 26.0% 30.6%  20.8% 29.1% 26.1%  14.3% 34.1% 28.6% 

ATMHVVE LLL >>  2.0%  3.2% 2.0% 0.0%  2.1% 1.8% 2.2%  4.1% 2.3% 0.0% 

ATMσ performs the best 36.9%  23.8% 32.0% 66.7%  39.6% 38.2% 32.6%  34.7% 43.2% 33.9% 

HVVEATM LLL >>  32.9%  20.6% 28.0% 61.1%  33.3% 36.4% 28.3%  30.6% 38.6% 30.4% 

VEHVATM LLL >>  4.0%  3.2% 4.0% 5.6%  6.3% 1.8% 4.3%  4.1% 4.5% 3.6% 

Panel B: Frequency counts for the univariate regression model that has the highest adjusted R squared 

HVσ  performs the best 
22

14.1%  19.1% 12.0% 8.3%  16.7% 10.9% 13.0%  16.3% 13.6% 10.7% 
2

ATMVEHV RRR >>  4.7%  7.9% 0.0% 5.6%  6.3% 1.8% 6.5%  6.1% 2.3% 5.4% 
222
VEATMHV RRR >>  9.4%  11.1% 12.0% 2.8%  10.4% 9.1% 6.5%  10.2% 11.4% 5.4% 

VEσ  performs the best 
22

37.6%  41.3% 36.0% 33.3%  43.8% 30.9% 39.1%  28.6% 38.6% 44.6% 
2

HVATMVE RRR >>  33.6%  34.9% 34.0% 30.6%  39.6% 27.3% 34.8%  26.5% 31.8% 41.1% 
222
ATMHVVE RRR >>  4.0%  6.4% 2.0% 2.8%  4.2% 3.6% 4.3%  2.0% 6.8 3.6% 

ATMσ performs the best 
22

48.3%  39.7% 52.0% 58.3%  39.6% 58.2% 47.8%  55.1% 47.7% 44.6% 
2

HVVEATM RRR >>  41.6%  30.2% 46.0% 55.6%  33.3% 54.6% 37.0%  49.0% 36.4% 41.1% 
222
VEHVATM RRR >>  6.7%  9.5% 6.0% 2.8%  6.3% 3.6% 10.9%  6.1% 11.4% 3.6% 
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Table 6 Median values of ARCH parameter estimates across firms in different groups 
Daily stock returns are modelled by the ARCH specification: tr
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ts is 1 if tε is negative, otherwise is zero. ts VEσ and ATMσ are measures of model-free volatility expectation and ATM implied volatility. Parameters are estimated by maximizing 
the quasi-log-likelihood function. Panel A, Panel B and Panel C are the estimation results for the GJR(1,1)-MA(1) model and models using information provided by the model-free 
volatility expectation and ATM implied volatility, respectively. Inferences are made through −t ratios, constructed from robust standard errors. Numbers in parentheses are the 
percentage of estimates that are significantly different from zero at the 10% significance level. The persistence estimate is . Groups 1, 2 and 3 are the firms that have βαα ++ −5.0

43 <≤ iN , 54 <≤ iN  and 5≥iN  respectively, where
iN is the average number of daily available strike prices for firm i . 

γβ
γ
−1

 Parameters  310×μ  θ  510×ω  α  −α  β  γ  γβ  δ  δβ  Persistence 
δβ

δ
−1

 

Panel A: estimates of GJR (1,1)-MA (1) model 
 Group 1 0.61 0.00 5.91 0.03 0.06 0.87     0.96   
  (10%) (20%) (62%) (41%) (48%) (92%)        
 Group 2 0.83 0.00 5.81 0.02 0.10 0.86     0.94   
  (16%) (16%) (82%) (20%) (54%) (94%)        
 Group 3 1.40 0.00 8.01 0.03 0.08 0.83     0.92   
  (56%) (3%) (86%) (33%) (67%) (94%)        

Panel B: estimates of ARCH specification that uses model-free volatility expectation only 
 Group 1 0.55 0.00 2.23    0.57 0.17    0.77  

  (10%) (19%) (3%)    (48%) (14%)      

 Group 2 0.78 0.00 0.00    0.73 0.00    0.85  

  (20%) (14%) (2%)    (58%) (2%)      

 Group 3 1.22 0.01 0.05    0.81 0.03    0.86  

  (50%) (14%) (0%)    (89%) (8%)      

Panel C: estimates of ARCH specification that uses ATM implied volatility only 
 Group 1 0.56 0.01 1.58      0.75 0.00   0.89 

  (6%) (21%) (2%)      (44%) (8%)    

 Group 2 0.77 0.01 0.00      0.90 0.00   1.00 

  (14%) (14%) (0%)      (52%) (6%)    

 Group 3 1.21 0.01 0.00      0.97 0.00   1.03 

  (53%) (14%) (0%)      (86%) (3%)    



Table 7 Cross-sectional analysis of the relative performance of ATM implied volatility 
and model-free volatility expectation 
The most general OLS regression results are for the equation iiDELTAiATMii TVTVNy εβββα +×+×+×+= ,, 3210 , 

where  in Panel A and  in panel B.  and  represent the log-
likelihood values of the ARCH models that only use, respectively, the ATM implied volatility and the model-free 
volatility expectation;  and  represent, respectively, the adjusted 

iVEiATMi LLy ,, −= 22
iVEiATMi RRy ,, −= iATML , iVEL ,

2
iATMR ,

2
iVER ,

2R  values of the univariate regressions 
using ATM implied volatility and model-free volatility expectation for firm i , when realized volatility is measured by 
high and low prices. iN  denotes the average value of the traded strike prices for firm i .  denotes the relative 
trading activity of at-the-money options for firm i , calculated as the time-series mean of the daily trading volume of the 
at-the-money option divided by the total trading volume.  denotes the  trading activity of intermediate delta 
options, calculated as the time-series mean of the daily trading volume of intermediate delta options divided by the total 
trading volume, where intermediate delta is defined as between 0.25 and 0.75. Estimation is across 149 firms. Numbers 
in parentheses are t-values, and the asterisk * indicates a significant estimate at the 5% level using a two tailed t-test.   

iATMTV ,

iDELTATV ,

 
 

Intercept  Number  
of strikes 

ATM  
volume 

Intermediate  
delta volume 

R-Square Adj. 
 R-square 

Panel A: when the dependen  variable ist iVEiATMi LLy

 
 
 
 
 
 
 
 
 
 
 

,, −= . 
      

-2.239 0.599   0.021 0.015 
(-1.19) (1.80)     
-0.902  4.572  0.002 -0.005 
(-0.26)  (0.56)    
-0.727   2.810 0.001 -0.006 
(-0.16)   (0.38)   
-10.109 0.892* 14.892  0.039 0.026 
(-1.95) (2.36) (1.63)    
-2.129 0.601  -0.192 0.021 0.008 
(-0.45) (1.75)  (-0.03)   
-1.362  3.994 1.128  0.002 -0.011 
(-0.28)  (0.43) (0.13)    
-8.063 1.291* 27.234* -15.102 0.054 0.034 
(-1.51) (2.81) (2.22) (-1.50)    

Panel B: when the dependen  variable is . t 22
iVEiATMi RRy ,, −=

    
 
 
 
 
 
 

  
0.014 -0.001   0.000 -0.006 
(0.90) (-0.24)     
-0.002  0.029  0.001 -0.006 
(-0.05)  (0.42)    
0.054   -0.071 0.009 0.002 
(1.43)   (-1.16)   
-0.000 -0.000 0.027  

 
0.001 -0.012 

(-0.00) (-0.04) (0.35)   
 
 
 
 
 

  
0.054 0.000  -0.071 0.009 -0.005 
(1.40) (0.02)  (-1.13)   
0.041  0.083 -0.105 0.017 0.004 
(1.04)  (1.09) (-1.53)   
0.021 0.004 0.154 -0.155 0.024 0.004 
(0.47) (1.03) (1.50) (-1.85)   
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Table 8 Cross-sectional analysis of the relative performance of ATM implied volatility 
nd historical volatility a 

The most general OLS regression results are for the equation iiDELTAiATMii TVTVNy εβββα +×+×+×+= ,, 3210 , 

where  in Panel A and  in panel B.  and , respectively, represent the 
log-likelihood values of the ARCH models that only use ATM implied volatility and the loglilkelihood value of the 
GJR(1,1)-MA(1) model;  and  represent, respectively, the adjusted 

iHViATMi LLy ,, −= 22
iHViATMi RRy ,, −= iATML , iHVL ,

2
iATMR ,

2
iHVR ,

2R  values of the univariate regressions 
using ATM implied volatility and historical volatility for firm i , when realized volatility is measured by high and low 
prices. iN  denotes the average value of the traded strike prices for firm i .  denotes the relative trading activity 
of at-the-money options for firm i , calculated as the time-series mean of the daily trading volume of the at-the-money 
option divided by the total trading volume.  denotes the  trading activity of intermediate delta options, 
calculated as the time-series mean of the daily trading volume of intermediate delta options divided by the total trading 
volume, where intermediate delta is defined as between 0.25 and 0.75. Estimation is across 149 firms. Numbers in 
parentheses are t-values, and the asterisk * indicates a significant estimate at the 5% level using a two tailed t-test.   

iATMTV ,

iDELTATV ,

 
 Intercept Number 

of strikes 
ATM 

volume 
Intermediate 
delta volume 

R-Square Adj. 
R-square 

Panel A: when the dependen  variable is 

 
 
 
 
 
 
 
 
 
 

t iHViATMi LLy ,, −= . 
      

-17.389 3.735*   0.090 0.084 
(-3.14) (3.81)     
1.344  3.803  0.000 -0.007 
(0.13)  (0.15)    

-32.105   56.212* 0.042 0.036 
(-2.31)   (2.54)   
-49.548 4.931* 60.848*  0.121 0.109 
(3.28) (4.49) (2.28)    

-39.862 3.326*  39.606 0.110 0.098 
(-2.93) (3.33)  (1.80)    
-27.046  -31.847 69.624* 0.051 0.038 
(-1.86)  (-1.16) (2.79) 

 
  

-51.091 4.631* 51.54 11.390  0.122 0.104 
(-3.26) (3.43) (1.43) (0.39)  

 
 
 
 
 

  

Panel B: when the dependen  variable is . t 22
iHViATMi RRy ,, −=

      
0.039 0.016*   0.033 0.026 
(0.99) (2.24)     
0.126  -0.005  0.000 -0.007 
(1.72)  (-0.03)    
0.020   0.167 0.008 0.001 
(0.20)    (1.08)   
-0.081 0.020*  

 
 
 
 
 

0.226  0.042 0.029 
(-0.74) (2.53) (1.18)    
-0.014 0.015*  0.094 0.035 0.022 
(-0.15) (2.04) (0.60)    
0.038 -0.115 0.215  0.010 -0.003 
(0.37) (-0.60) (1.23)    
-0.073 0.021* 0.271 -0.054 0.043 0.023 

 (-0.65) (2.21) (1.05) (-0.26)   
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Table 9 Cross-sectional analysis of the relative performance of model-free volatility 
xpectation and historical volatility e 

The most general OLS regression results are for the equation iiDELTAiATMii TVTVNy εβββα +×+×+×+= ,, 3210 , 

where  in Panel A and  in panel B.  and , respectively, represent the log-
likelihood values of the ARCH models that only use ATM implied volatility and the loglilkelihood value of the 
GJR(1,1)-MA(1) model;  and  represent, respectively, the Adjusted 

iHViVEi LLy ,, −= 22
iHViVEi RRy ,, −= iiVEL , iHVL ,

2
iVER ,

2
iHVR ,

2R  values of the univariate regressions 
using model-free volatility expectation and historical volatility for firm i , when realized volatility is measured by high 
and low prices. iN  denotes the average value of the traded strike prices for firm i .  denotes the relative 
trading activity of at-the-money options for firm i , calculated as the time-series mean of the daily trading volume of the 
at-the-money option divided by the total trading volume.  denotes the  trading activity of intermediate delta 
options, calculated as the time-series mean of the daily trading volume of intermediate delta options divided by the total 
trading volume, where intermediate delta is defined as between 0.25 and 0.75. Estimation is across 149 firms. Numbers 
in parentheses are t-values, and the asterisk * indicates a significant estimate at the 5% level using a two tailed t-test. 

iATMTV ,

iDELTATV ,

 
 
 Intercept Number 

of strikes 
ATM 

volume 
Intermediate 
delta volume 

R-Square Adj. 
R-square 

Panel A: when the dependen  variable is 
 
 iHViVEi LLy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

t ,, −= . 
      

-15.150 3.136*   0.067 0.061 
(-2.78) (3.25)     
2.246  -0.769  0.000 -0.007 
(0.22)  (-0.03)    

-31.378   53.403* 0.040 0.034 
(-2.33)   (2.48)   
-39.439 4.039* 45.956  0.086 0.074 
(-2.63) (3.71) (1.74)    
-37.732 2.725*  39.799 0.088 0.076 
(-2.82) (2.78)  (1.84)   
-25.684  -35.842 68.496* 0.052 0.039 
(-1.82)  (-1.34) (2.83)   
-43.028 3.340* 24.307 26.492 0.091 0.073 
(-2.78) (2.51) (0.68) (0.91)   

Panel B: when the dependen  variable is . 22
iHViVEi RRyt ,, −=

      
0.025 0.016*   0.033 0.027 
(0.61) (2.25)     
0.127  -0.033  0.000 -0.007 
(1.68)  (-0.19)    
-0.035   0.237 0.015 0.008 
(-0.35)   (1.48)   
-0.081 0.020* 0.200  0.040 0.027 
(-0.72) (2.46) (1.00)    
-0.069 0.015*  0.165 0.040 0.027 
(-0.68) (1.96) (1.01)    
-0.003 -0.198 0.321  0.021 0.008 
(-0.03) (-0.99) (1.78)    
-0.094 0.017 0.117 0.101 0.041 0.022 
(-0.81) (1.74) (0.44) (0.46)   
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