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Abstract 
 

In an empirical study for the German stock market we use consensus analysts’ forecasts to 

derive estimates of implied expected returns using the Residual Income Model. In an out-of-

sample study we analyze if the optimal combination of these estimates with time series 

estimates from realized returns results in an improved performance when implementing 

portfolio optimization compared to traditional approaches. The results show that an estimator 

that combines information of analysts’ forecasts and time series data is superior to all other 

strategies. In most of the cases this superiority is even statistically significant. The results 

differ slightly with respect to different sub-periods and different market-segments. Our results 

demonstrate that the information contained in analysts’ forecasts helps to reduce the severe 

negative consequences of estimation risk in portfolio optimization. 

                                                 
∗ Corresponding Author. e-mail: hagemeister@wiso.uni-koeln.de, Tel: ++49-(0)221-4707379, Fax: ++49-
(0)221-4703992. 
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Employing the Residual Income Model in Portfolio Optimization 

 

1 Introduction 
 

Harry Markowitz (1952) analyzed in his seminal paper on portfolio selection the trade-off 

between risk and expected return of an investment portfolio. He showed how an investor 

should optimally choose her investment portfolio with respect to her individual preferences on 

risk and expected return. This choice depends on the expected returns, variances and 

covariances of the assets available to the investor. When implementing Markowitz-

optimization the problem arises that these true return parameters are not known to the 

investor. She has to make her portfolio choice based on estimates about the true return 

parameters. As the average performance of the investment portfolio is the higher the more 

precise the estimates about the return parameters are the investor wants to employ estimates 

that are as precise as possible. 

 

The return parameters can be estimated in several different ways. The traditional approach is 

to use the maximum-likelihood estimator based on time series data of past realized returns.1 

This estimator is unbiased, but shows up to have low precision. As shown by Merton (1980), 

while the precision of the maximum-likelihood estimator of the variance-covariance-matrix 

can be improved by an increase in data frequency this is not possible for the estimator of the 

expected return.2 As a low precision of the estimators of expected asset returns has negative 

consequences for the performance in portfolio optimization3 it is worthwhile to find 

alternative estimators of expected returns that have a higher precision. 

 

Several approaches have been proposed in the literature how to reduce estimation risk and its 

severe negative consequences. Grauer/Shen(2002) e.g. impose restrictions on the portfolio 

weights to avoid extreme positions. Other approaches combine estimators following the 

principle of rational information processing according to Bayes.4 Such a combination of 

estimators was used for the first time in portfolio optimization by Frost and Savarino (1986).  

They shrink the time series estimator towards an informative prior which is the average return 

                                                 
1 The maximum-likelihood estimator is equal to the arithmetic mean for most distributions as it is for the normal 
distribution which is usually assumed in the literature for the distribution of returns. For early implementations 
of Markowitz optimization based on time series estimators see, for example, Cohen/Pogue (1967), Grubel (1968) 
or Levy/Sarnat (1970). 
2 Empirical evidence of the high precision of the estimator for the variance-covariance matrix and the 
comparatively low precision of the estimator for expected returns can be found for example in Jorion (1991). 
3 See Chopra/Ziemba (1993). 
4 See Bayes (1763, 1764). 
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over all assets. Other approaches impose the structure of an asset pricing model on the prior, 

as e.g. the CAPM5. Black und Litterman (2000) combine an estimator obtained from the 

CAPM with another un-defined estimator (“subjective estimator”). Pastor (2000) uses the 

Bayesian procedure to combine an estimator obtained from the Arbitrage Pricing Theory with 

the time series estimator. 

 

In our paper we take a different approach. As an alternative to the traditional time series 

estimator expected returns can be estimated from analysts’ forecasts about future earnings or 

dividends etc. Other than time series data about past realized returns that is backward-looking 

by nature analysts’ forecasts about future developments are forward-looking information.6 

Several models exist that use this information to derive implied estimates about expected 

returns.7 These models can be grouped into models that are based on forecasts about future 

cash flows (e.g. Free-Cash-Flow Model) and models based on forecasts of accounting data 

like the Residual Income Model. Since Ohlson (1995) introduced the model it became 

increasingly popular in recent years. Using this model expected returns are estimated based on 

information about today’s book value of equity and expected earnings and book values of 

equity in the future. The first papers that used this model for an estimation of implied 

expected returns are Botosan (1997), Claus and Thomas (1998) and Gebhardt, Lee, 

Swaminathan (2000). Botosan analyzes the relationship between corporate information policy 

and implied expected returns. Claus and Thomas estimate the implied market risk premium 

using the Residual Income Model. Gebhardt, Lee and Swaminathan estimate the implied cost 

of equity capital of firms in a first step and reveal the characteristics of the firms that 

systematically influence the cost of equity capital in a second step. We build on this strand of 

literature by using the information contained in implied expected returns derived from the 

Residual Income Model to find an estimator that is more precise than the time series estimator 

and analyze if its use results in a higher performance when implementing Markowitz-

optimization. 

 

                                                 
5 See Sharpe (1964), Lintner (1965), Mossin (1966). 
6 These forecasts too do depend on information of the past, i.e. information that is available at the time the 
forecast is made. Which kind of information and which method was used to generate the forecast is not discussed 
in this paper. 
7 These models include e.g. the Dividend Discount Model, the Free-Cash-Flow Model or the Residual Income 
Model. Estimators of expected returns that are derived from this kind of models are referred to as implied 
expected returns or implied cost of equity capital because they are derived implicitly if the valuation equation of 
the model used is assumed to hold. 
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The contribution of our paper is the empirical investigation of the question if the use of 

implied expected returns based on analysts’ forecasts results in an improved investment 

performance. We employ the implied expected returns separately as well as in combination 

with the classical time series estimator. When combining the estimators our aim is to diversify 

estimation errors to obtain an estimator of increased precision. To our knowledge the usage of  

an estimator of expected returns derived from the Residual Income Model in portfolio 

optimization has not been considered in the literature so far.  

 

In an out-of-sample for the German stock market we analyze how the estimator derived from 

the Residual Income Model performs when compared to other traditional investment 

strategies. These other strategies are on the one hand strategies that are based on other well-

known estimation procedures like the time series estimator and the CAPM. On the other hand 

we use strategies that do not use estimates of expected returns like a naïvely diversified 

portfolio and the global minimum variance portfolio. As our analysis for the biggest German 

companies will show the separate use of the implied expected return estimates does not lead 

to a significantly better performance when compared to other strategies. However, in optimal 

combination with the time series estimator it results in a performance that is superior to the 

performance of all other strategies. Slightly different results are obtained with respect to 

different market-segments and sub-periods dependent on the different quality of the return 

estimates using analysts’ forecasts.  

 

Our paper is organized as follows: In chapter 2 we briefly describe the Residual Income 

Model that we use to estimate the implied expected returns. Furthermore, we describe how to 

optimally combine estimators and we present the alternative investment strategies used for 

comparison. The data used in our analysis is described in chapter 3. In chapter 4 we present 

our results. Chapter 5 concludes. 

 

2 Methodology 
 

2.1 Estimating the expected rate of return employing the Residual Income Model 
 

The Residual Income Model (alternatively Edwards/Bell/Ohlson Model) is derived from the 

Dividend Discount Model (DDM).8 The Dividend Discount Model determines the market 

value of a company as the present value of all expected future dividends, i.e. the sum of all 

                                                 
8 See Williams (1938). 
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expected dividends discounted by the risk-adjusted cost of equity capital μ 9. If the Clean-

Surplus-Relation holds the Dividend Discount Model can be transformed into the Residual 

Income Model that we will use to infer the implied cost of equity capital.  
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tV  denotes the market value and tB  the book value of the firm at time t . ˆ
tNI τ+  and ˆ

+tB τ  are 

forecasts about future earnings and future book values of the firm at time +t τ . These 

forecasts are typically generated by financial analysts. The difference between the expected 

earnings of a period and the book value of the preceding period multiplied by the cost of 

equity capital is the expected residual income of the period. If the expected residual income of 

a period is positive the company is expected to generate earnings that are higher than it would 

be “appropriate” with respect to the capital base of the firm in this period (in terms of book 

value) and its risk. The sum of the discounted expected residual incomes equals the difference 

between market and book value of the firm at time .t 10

 

The estimation approach requires forecasts about future earnings and book values for an 

infinite number of periods. But in reality analysts’ forecasts are available only for a maximum 

of four periods. Therefore we have to make simplifying assumptions about the development 

of earnings and book values in future periods. Several different approaches have been 

proposed in the literature.11 In our study we use the simplifying assumption that the residual 

income grows at a constant rate  in perpetuity from year 5 on.  g

 

2.2 Combination of estimates of expected returns 
 

We want to use the estimator of the expected rate of return on equity capital derived from the 

Residual Income Model in combination with the time series estimator. The motivation of this 

combination is to gather the information that is contained in each of the separate estimators in 

                                                 
9 The expected return μ  is equal to the internal rate of return, i.e. the expected return is assumed to be constant 
for all maturities. Claus/Thomas (2001) estimate the empirical market risk premium and use an approach where 
the size of the discount factor varies with maturity but the market risk premium remains constant.  
10 If we use an approach like (1) to estimate the implied cost of equity capital of a firm we do assume that the 
market value of the firm on the left-hand side of (1) is equal to the sum of the current book value and the present 
value of the expected future residual incomes of the firm on the right-hand side. This implies that the current 
value of the firm is assumed to be fair and that expected future prices will develop as the RIM implies. 
11 See e.g. Gebhardt/Lee/Swaminathan (1999) and Claus/Thomas (2001). 
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a single estimator. If the estimation errors of the estimators are not perfectly correlated a 

diversification of these errors can be reached by this combination.  

 

In order to optimally combine the estimators we follow the Bayesian approach.12 We assume 

a return generating process as shown in (2). 

 

t tr μ η= + �� � .  (2) 

 

tr�  is an -vector of the returns of  assets at time t . 1N × N μ�  und tη�  are the -vectors of 

expected returns and innovations, respectively, of the  assets at time . For the distribution 

of asset returns we assume a normal distribution as is usually done in the literature.  

1N ×

N t

 

( , )r N ημ μ ∑� � �∼ . (3) 

 

η∑  denotes the variance-covariance-matrix of innovations. The true mean μ�  of this 

distribution is unknown to the investor and as we are in the Bayesian framework this mean is 

not fixed but a random variable. The idea that the investor has got about the distribution of μ�  

is the prior distribution Pr ( )iork μ� . For μ�  we assume that 

 
Pr iorμ μ ε= + �� .  (4) 

 

The prior distribution of μ�  is given by 
Pr( ,iorN )εμ μ ∑� ∼ .13  (5) 

 

Using (2) and (4) we can rewrite the return generating process as 

 
Pr ior

tr tμ ε η= + +� �� . (6) 

 

If the investor has got any additional information about μ�  she has to adjust the assumed 

distribution of μ�  to rationally use all given information. With the additional information the 
                                                 
12 See Bayes (1763, 1764). 
13 The mean Pr iorμ  of this distribution is the most probable value for the true mean as long as no other 
information is available. 
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“new” most probable value of the unknown mean μ�  is the mean of the posterior distribution 

(Posteriork additional informationμ� ) . This posterior mean can be shown to be a weighted 

average of the prior mean Pr iorμ  and the mean given by the additional information .. .add infoμ 14

 

Pr Pr . .
Pr 1 . . Pr( ) (ior ior add info

Bayes ior add info ior
μ μ μ

μ μ μ μ−= + ∑ ⋅ ∑ +∑ ⋅ − ) . (7) 

 

Pr iorμ
∑  and  are -matrices of the variances and covariances of the error terms of 

the prior estimates and the estimates based on the additional information, respectively. The 

combined estimator according to 

. .add infoμ
∑ N N×

(7) is not unbiased but an μ σ− -optimizing investor can 

realize a higher utility on average when using this estimator instead of the maximum-

likelihood estimator.15 The average utility is the higher the more precise the estimator for the 

true mean.  

 

(7) can be easily interpreted if we consider the one-asset-case or assume alternatively 

uncorrelated errors for the prior estimates as well as for the estimates based on the additional 

information in the multi-asset-case. Then we obtain a simplified estimator for the posterior 

mean in (7): 

 
Pr . .
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⎛ ⎞ ⎛ ⎞
= ⋅ +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

iμ⋅ .  (8)  

  

The weights 
Pr

. . Pr

ior
i

add info ior
i i

ρ
ρ ρ

⎛ ⎞
⎜ ⎟+⎝ ⎠

 and 
. .

. . Pr

add info
i

add info ior
i i

ρ
ρ ρ

⎛ ⎞
⎜ +⎝ ⎠

⎟

                                                

 in (8) are relative precisions, i.e. the 

precisions of the prior estimator  and the estimator based on the additional information 

 for asset i  in relation to the sum both of these precisions. 

Pr ior
iρ

. .add info
iρ

 

In our empirical study we combine the RIM-estimator and the time series estimator 

(“TSE”).16 We use the RIM-estimator as prior estimate and adjust this prior estimate 

according to the additional information in form of  realized returns for each of the  m N

 
14 See, for example, Greene (2000), p. 87. 
15 See, for example, Memmel (2004). 
16 In the remainder of the paper we will use the expression , ,ˆ Bayes

i r tμ for the Bayesian estimator of the excess return 
above the risk-free rate of return. Estimators for expected excess returns are assigned with the subindex . r
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assets. Hence the posterior distribution is (Posterior mk �μ )r

)

. At each point of time t  we estimate 

the prior as well as the time series estimator based on the latest information. Accordingly the 

conditional mean at time  takes the formt 17

 
1

, , , , , , , ,
ˆ ˆ ˆˆ ˆ ˆ ˆ( ) (RIM RIM TSE

t t t

Bayes RIM TSE RIM
i r t i r t i r t i r t

−= + ∑ ⋅ ∑ +∑ ⋅ −
μ μ μ

μ μ μ μ .  (9)  

 

As our sample contains 206 companies the empirical implementation of the Bayesian 

approach would require to estimate more than 20,000 potential correlations between our 

estimators to proceed as shown in (9).18 However, this would lead us to estimate too many 

parameters out of our limited data to get the variance-covariance-matrices ∑̂ RIM
tμ

 and . 

To avoid this we use the simplifying approach as presented in 

ˆ
TSE
t

∑
μ

(8) that assumes that the errors 

of the estimators are pairwise uncorrelated so that ˆ
RIM
t

∑
μ

 and  become diagonal matrices 

and the combined estimator for asset i  becomes  

ˆ
TSE
t

∑
μ

 

, ,
, , , , , ,

, , , ,

ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ

RIM TSE
i t i tBayes RIM TSE
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To determine the precisions on the diagonal of matrix ˆ
RIM
t

∑
μ

 at time t  we use all of the data 

available at time t . We compute the mean squared error of the RIM-estimator as19

 

2
, , , ,

1

1ˆ ˆ ˆ( ) ( ) ( )
T

RIM RIM RIM
t i i t i t i i

2MSE E r r
T =

= − = −∑ τ τ
τ

μ μ μ . (11) 

 

T  is the number of past RIM-estimates of asset i  available at time t  (consequently T  is 

equal to or smaller than the number of periods at time ).t 20 As estimator of the precision we 

                                                 
17 The estimator for the expected excess return using the Residual Income Model is computed as 

. The time series estimator , , , ,ˆ ˆRIM RIM
i r t i t f trμ μ= − , ,ˆ TSE

i r tμ  for the expected excess return of asset  is the arithmetic 
mean of the realized excess returns of the T  periods preceding t . We choose weeks as estimation 
period. 

i
52=T

18 When empirical data is used to compute weights instead of employing pre-specified weights this estimation 
procedure is also referred to as ‚empirical Bayes’. See e.g. Jorion (1991).  
19 The MSE is computed based on weekly data: The RIM-estimates are inferred every week for a horizon of one 
year. Then this estimate is divided by 52 to attain an estimate that refers to the horizon of one week. From this 
estimate the realized return of the week following the estimation day is subtracted.  
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use the reciprocal of the MSE. We use an analogous procedure to estimate the precision of the 

time series estimator.  

 

2.3 Alternative estimation procedures and investment strategies 
 

Alternative estimators of the expected rate of return 
 

Our aim is to analyze if the use of the implied cost of equity capital obtained from the RIM 

leads to an empirically higher performance in the Markowitz optimization than other 

estimators. Therefore we compare its performance with the performance of investments 

strategies based on “traditional” estimators. These traditional estimators are the maximum-

likelihood estimator based on past returns (i.e. the time series estimator “TSE”), the estimator 

derived from the Capital Asset Pricing Model (“CAPM”) and the shrinkage estimator 

(“SHRK”).  

 

For the estimation of the expected excess return using the CAPM we employ the security 

market line: 

 

, , , , ,
ˆˆ (CAPM

i r t i t m r tμ β μ= ⋅ ˆ ) . (12) 

 

,î tβ  is estimated from the realized excess returns of asset  and the market index in the 

preceding 52 weeks. The estimator for the expected excess return of the market portfolio 

i

, ,ˆm r tμ  is the arithmetic mean of the realized excess returns of the market index over the last 52 

weeks.  

 

To obtain the shrinkage estimator (sometimes referred to as James/Stein-estimator21) for the 

expected excess return we shrink the time series estimator towards the long-term mean of the 

excess returns of the biggest German companies.22 The composition of the shrinkage-

estimator is as follows: 

 

                                                                                                                                                         
20 Because a reliable estimation of the precision via the MSE requires a sufficient amount of data we use the 
MSE as an estimator of the precision only if there are at least 52 weeks of data available at time t  to compute 
the MSE. Otherwise we assume the RIM-estimator and the time series estimator to be equally precise and give 
each a weight of 50 per cent.  
21 See Stein (1955) and James/Stein (1961). 
22 This approach was invented by Jorion (1985). The implementation in this paper follows 
Kempf/Kreuzberg/Memmel (2002).  
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( ) 1
2 2

, , , ,
ˆˆ ˆ ˆ ˆ1 (

−
= + ⋅ ∑ + ⋅ −SHRK TSE TSE

i r t t i r tT I T I 1)μ φ τ τ μ φ .  (13) 

 

∑̂TSE
t  is the time series estimator of the variance-covariance matrix.23 τ̂  is an estimator for the 

inhomogenity of the market: the larger τ̂  the higher the differences between the expected 

returns of the assets. φ  is an ( -vector of ones that is multiplied with the mean of the 

annual excess return of the biggest German companies. This mean is 6.5 per cent p.a. and was 

calculated for the time 1955 until 1993. For the period from 1955 to 1987 – before the index 

DAX 30 was calculated – we use the recalculated DAX 30 from Stehle (2004). Afterwards we 

use the DAX 30. 

1N × )

I  is an identity matrix of the dimension N N×  and 1  is a vector of  

ones. 

N

 

Like the Bayesian estimator  in , ,ˆ Bayes
i r tμ (9) the shrinkage-estimator  also is a combination 

of the time series estimator and another estimator. For the estimator  we use the 

additional information of analysts’ forecasts from which we can derive an individual prior 

estimate for the expected excess return on each asset. For the shrinkage-estimator  

instead we use only time series data from which we derive a single prior for all assets. 

, ,ˆ SHRK
i r tμ

, ,ˆ Bayes
i r tμ

, ,ˆ SHRK
i r tμ

 

Alternative investment strategies that are not based on estimation about expected earnings 
 

Even if the use of the implied cost of equity capital that we obtain from the Residual Income 

Model and its combination with the time series estimator will lead to a more precise estimator 

and hence to a better performance when implementing Markowitz-optimization it could still 

be more favourable to follow an investment strategy that does not depend on estimations 

about expected future returns at all. A strategy like this would totally avoid the negative 

consequences of estimation errors in expected returns. 

 

We want to enclose the alternative to totally avoid estimation risk in expected returns and 

therefore include three further strategies in our analysis: investing in the market according to 

the index weights (“HDAX”), investing in all assets with equal weight (naïve diversification 

“EQUAL”), and investing in the global minimum variance portfolio (“GMVP”). 

 
                                                 
23 The variance-covariance matrix is estimated using the approach of the single-index model according to 
n m

, , , , , , , ,
ˆ ˆ( , ) (i r t j r t i t j t m r tCov r r Var rβ β= ⋅ ⋅� � � ) .  
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2.4 Investment modalities 
 

Investments are made for a holding period of 13 weeks, then the portfolio is restructured. 

Companies are included in the investment universe at time t  for which (i) a time series 

estimator is available at time t , (ii) a RIM-estimator is available at time  and (iii) it applies 

that they are still member of the respective index at the end of the investment period, i.e. at 

time . 

t

13+t weeks

 

The portfolio that we invest in when implementing Markowitz-optimization is the portfolio of 

a μ σ− − optimizing investor. Her preference function is of the form 

 

2

2W W
γφ μ= − ⋅σ . (14) 

 

Wμ  and Wσ  are the expected return and standard deviation of returns of the portfolio. At the 

end of each investment period the portfolio is restructured according to adjustments in 

expected returns, variances and covariances of the assets and according to changes in the 

investment universe. γ  is the parameter of risk aversion. With the magnitude of γ  varies the 

part of the investment that is made in the riskless asset. The higher γ  the higher the weight in 

the riskless investment.24  

 

The vector  of the optimal weights of the investor in the assets is given by:*
tw N  25

 

* 1
,

1 ˆ ˆ(−= ⋅∑TSE
t tw )r tμ

γ
. (15) 

 

2.5 Performance measure 
 

For the comparison of the performance of the different investment strategies we use the 

empirical sharpe ratio (SR) 
 

                                                 
24 We choose 100γ = . The specific value of γ  does not influence our results as our performance measure 
presented in chapter 2.5 is independent of the value of γ . 
25 For the computation of the variance-covariance matrix please see footnote 24. 

 11



m
n

ˆ
fr

SR
μ
σ
−

= . (16) 

 

The empirical sharpe ratio is the average realized excess return in the investment period 

divided by the average risk taken to realize this return in form of the standard deviation of 

returns. We test for statistically significant differences in the empirical sharpe ratios of two 

strategies i  and  with the test of Jobson and Korkie (1981) and employ the correction of the 

test statistic according to Memmel (2003). 

j

 

m m

ˆ
iSR SRz

V

−
= j  (17)  

 

with m m2 2 2
,

1 1ˆ 2(1 ) ( (1 )
2

i ji j i j i jV SR SR SR SR
T

ρ⎡= − + + − +⎢⎣ ⎦
,ρ ⎤
⎥

                                                

. (18) 

 

3 Data 
 

Our empirical study is based on the companies of the German index DAX 100 and its 

„successor“ the HDAX, respectively. The DAX 100 was computed for the first time on April 

11, 1994 and contained the 30 biggest German companies of the blue chip index DAX 30 and 

the 70 next smaller companies of the mid-cap index MDAX. Since March 24, 2003 instead of 

the DAX 100 the HDAX is computed. The HDAX contains 110 instead of 100 firms: the 30 

firms of the DAX 30, the firms of the MDAX which were reduced to 50 on March 24, 2003 

and the 30 firms of the technology-oriented index TecDAX which was computed for the first 

time in March 2003.  

 

Our sample period covers 11 years. The investment period begins in April 1994 when the 

HDAX was computed for the first time. The last investment ends in July 2004.26

 

Data requirements and data preparation regarding the RIM-estimator 
 

As forecasts for expected earnings and book values we use the consensus forecasts of the 

I/B/E/S-database which are available through Thomson Financial Datastream. The history of 

 
26 All companies that were members of the indices HDAX, MDAX, and DAX 30 during our sample period are 
listed in Table 11 in the appendix. 
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consensus forecasts has a monthly frequency. We obtain the history of unadjusted stock prices 

 from the Worldscope Database of Thomson Financial Datastream on a weekly frequency. 

Time series data of realized earnings and book values are obtained from this database, too. 

According to the yearly frequency of financial statements these data have a yearly 

frequency.

tV

27

 

Table 1 summarizes the data types in our study and the various data sources. 
 

Data Type Data Source Data Frequency Used for estimator 

Performance index for all 

companies of the index and 

the index itself 

Datastream weekly ZEIT, SHRK, CAPM 

Realized stock prices Datastream weekly RIM  

Realized book values and 

earnings per share 

Datastream 

(WorldScope) 

yearly RIM 

Analysts’ forecasts of 

future book values and 

earnings per share 

Datastream 

(IBES) 

monthly RIM 

Risk-free rate of return 

(3-month-FIBOR) 

Datastream weekly - 

 

Table 1: Summary of data used in the empirical study 
 

Estimation in the case of incomplete data 
 

If there are data missing for realized stock prices or book values at a point of time we cannot 

estimate the implied cost of equity capital with the Residual Income Model. If forecasts about 

future earnings or book values are not completely available for the forecast horizon up to 4 

years we assume a constant growth rate from the year on for which the forecast with the next 

shorter horizon is available or – if there are no forecast available at all – from the realized 

values of earnings and book values at estimation time t  on.28  

 

                                                 
27 For the growth rate of residual income in perpetuity g  we assume a value of . Alternatively, we repeated the 
analysis with a growth rate of  accounting for inflation as in Claus/Thomas (1998) without altering the 
results substantially.  

0
0.03

28 Claus/Thomas (1998) proceed in a similar manner. However, they discard observations for which there are not 
at least earnings forecasts for year 1 and 2 and the long-term growth rate available. 
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Finally we check if the earnings forecasts for the fourth and the book value forecast for the 

third year following the estimation time t  is negative. For all t  for which these forecasts are 

not positive we do not calculate the implied expected returns as the results of these 

calculations have no economic intuition. A negative earnings or book value forecast in the 

respective periods would imply for the estimation approach chosen that from year 4 on the 

firm will never have positive earnings again or that from year 3 on the firm will never have a 

positive book value. 

 

In the case of no missing observations the total number of RIM estimates for companies when 

they are included in the HDAX would be 54,070. However, there are 3,905 estimates (about 7 

per cent) missing so that only 50,165 estimates are available.  

 

Characteristics of the RIM-estimates 
 

In Figure 1 we give an impression of the size and the distribution of the means of the RIM-

estimators. We depict the distribution of the means of the implied expected returns p.a. for the 

cross section of assets of the HDAX. 
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Figure 1: Distribution of means of the RIM-estimators for the members of the HDAX 

 

The distribution of the standard deviations of the RIM-estimator for each of the assets in the 

HDAX are depicted in Figure 2: 
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Figure 2: Distribution of standard deviations of the RIM-estimators for the members of the HDAX 

 

The particular characteristics of the estimators obtained from the Residual Income Model 

become particularly apparent when compared to other estimators like the time series 

estimator. The dispersion of the means is much smaller than it is for the time series estimator 

as the comparison of Figure 1 and Figure 3 shows.29 This is partly because estimates obtained 

from the RIM cannot become negative. But also in the positive range the dispersion of the 

means is much smaller than it is for the time series estimator. For example, we have only one 

company for which the mean of its RIM-estimators is above 20 per cent p.a. However, for the 

time series estimator we have 49 – about a quarter of all companies – that have a mean 

estimator above 20 per cent p.a. 

 

The difference in dispersion of the expected return estimates can be seen also when we 

compare the standard deviations of the different estimators for each asset in Figure 2 and 

Figure 4.30 For none of the firms is the standard deviation of the RIM-estimator higher than 

10 per cent. For the time series estimator, however, 95 per cent of all firms have a standard 

deviation higher than 10 per cent.  

 

                                                 
29 Please notice that class size in Figure 1 is only the fourth of class size in Figure 3. 
30 Please notice again the different class size that is only the tenth part in Ffigure 2 of the class size in Figure 4. 
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Figure 3: Distribution of means of the  time series estimators for the members  of the HDAX 
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Figure 4: Distribution of standard deviations of the  time series estimators for the members  of the HDAX 

 

To get further information about the characteristics of the RIM-estimator in comparison with 

the other estimators we also take a look at the Mean Squared Errors. For every company and 

every type of estimator we compute the mean squared difference between the estimated 

expected weekly return and the realized return for that week. Then we rank the different 

estimators for every single asset.31 In Table 2 we report the mean ranks of the different 

estimators over all assets.32

 
TSE RIM BAYES CAPM SHRK

Mean Rank 4.41 1.97 2.84 3.54 2.24  
Table 2: Mean ranks of  the  Mean Squared Errors of the different estimators 
                                                 
31 A similar approach was chosen by Jorion (1990). 
32 We do not report the results for each of the 206 stocks separately. 
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The RIM-estimator has the lowest MSE on average when compared to the other estimators. 

For about 46 per cent of all companies it has the lowest MSE of all estimators. The second 

best estimator regarding the average rank of the MSE over all assets is the shrinkage estimator 

followed by the combined estimator and the CAPM-estimator. The time series estimator is the 

worst. For most of the companies (about 72 per cent) it has the highest MSE of all estimators. 

 

So the different estimators have apparently different properties that makes it seem promising 

to use the RIM-estimators as an alternative source of parameter estimates in Markowitz-

optimization. 

 

4 Results 
 

The following table contains the average excess returns, the standard deviations and the 

empirical sharpe ratios of the different investment strategies when investing in the assets of 

the HDAX over the whole sample period from April 1994 to July 2004.   

 
HDAX
Strategy: TSE RIM BAYES CAPM SHRK EQUAL GMVP HDAX
Av.excess return: 0.20533 0.01377 0.11006 0.00541 0.01369 0.0442 0.0356 0.04488
Std. deviation: 0.1903 0.02642 0.09458 0.0156 0.02967 0.17869 0.1165 0.22463
Sharpe Ratio: 1.07898 0.52118 1.16363 0.34713 0.46145 0.24734 0.30559 0.19978  
Table 3: Sharpe-Ratios; Assets: HDAX; Investment Period: 14.04.1994-01.07.2004 
 

The results show a noticeable superiority of the investment strategy based on the time series 

estimator (TSE) with a sharpe ratio of about 1.08. In contrast, the second best strategy based 

on the RIM-estimator (RIM) has a sharpe ratio of 0.52 which is only half as high. But most 

importantly we find that through a combination of both of these estimators (BAYES) we can 

achieve a sharpe ratio of 1.16 that is superior to the performance when using both estimators 

independently.  

 

To test the statistical significance of the differences in the sharpe ratios we use the test of 

Jobson and Korkie. The results are summarized in Table 4.  
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TSE SHRK GMVP HDAX EQUAL RIM BAYES CAPM
TSE NA 0.61753 0.77339* 0.87919** 0.83163* 0.5578 -0.08465* 0.73185**
SHRK NA NA 0.15586 0.26167 0.21411 -0.05973 -0.70217* 0.11433
GMVP NA NA NA 0.10581 0.05825 -0.21558 -0.85803* -0.04153
HDAX NA NA NA NA -0.04756 -0.32139 -0.96384** -0.14734
EQUAL NA NA NA NA NA -0.27383 -0.91628** -0.09978
RIM NA NA NA NA NA NA -0.64245 0.17405
BAYES NA NA NA NA NA NA NA 0.8165**
CAPM NA NA NA NA NA NA NA NA
Table 4: Pairwise differences in Sharpe Ratios; Significance test according to  Jobson-Korkie (*** Significance 

at 1 per cent-level, ** 5 per cent-level, * 10per cent-level); Assets: HDAX; Investment Period: 14.04.1994-

01.07.2004 
 

The superiority of the combined estimator is statistically significant in six out of seven cases. 

Also when comparing the strategy based on the combined estimator with the strategy based 

on the RIM-estimator we find the performance of the combined estimator to be higher even 

though this difference is not statistically significant. The results show that the best investment 

strategy an investor could choose for the asset universe of the HDAX is an investment 

strategy based on the estimator of expected returns that combines the information contained in 

time series data about past returns and the information contained in analysts’ forecast about 

the future development of an asset. 

 

However, the result that the time series estimator performs well is astonishing and stands in 

contrast to earlier studies like Jorion (1991) or Jobson and Korkie (1980) who find the time 

series estimator to perform relatively bad.33 To analyze these results in detail we ask whether 

they are valid also for different segments of the market and for different time periods. 

Therefore we generate sub-samples: first, we divide the sample according to the membership 

of the companies to the sub-indices DAX 30 and MDAX and secondly, we split the sample in 

two time periods. 

 

4.1 Split of the sample in sub-indizes: DAX 30 and MDAX 

In our following analysis we will use the sub-samples of the DAX 30 and the MDAX. The 

DAX 30 contains the biggest German companies regarding the volume of the order book and 

                                                 
33 The performance of the time series estimator is also surprising when we compare the ranking of the sharpe 
ratios (TSE, RIM, BAYES, CAPM, SHRK) and the mean ranks of the MSE contained in Table 2. While within 
the mean ranks of the MSE the time series estimator was last, within the ranking of the sharpe ratios the time 
series estimator is second to the Bayes-estimator. However, also in Jorion (1990) the MSE-ranking and the 
sharpe ratio-ranking do not correspond exactly to each other. 
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the market capitalization. The MDAX contains the companies which are biggest next to the 

DAX 30.34  

 

With respect to the RIM-estimate the following hypothesis can be developed. Usually, bigger 

companies with a higher turnover in shares are followed by more financial analysts than 

smaller ones. According to the empirical findings that there is a positive relationship between 

the number of analysts who follow a company and the precision of their forecasts we expect 

the forecasts for the members of the DAX 30 to have a higher accuracy than the forecasts for 

the members of the MDAX.35 Therefore we would expect the investment strategy that is 

based on the estimators of the residual income model to have a better performance when 

applied for the assets contained in the DAX 30 than for the assets contained in the MDAX. 

 

With respect to the time series estimate we would expect to find a violation of the weak form 

market efficiency according to Fama (1970) to be more likely for the smaller companies of 

the MDAX than for the companies of the standard segment. This inefficiency in turn would 

imply a good performance of the time series estimator: if returns are positively autocorrelated, 

a strategy based on the time series estimator, i.e. a momentum strategy, shows a high 

performance.  

 

Table 5 and Table 6 contain the average realized returns p.a., the standard deviations and the 

empirical sharpe ratios of all investment strategies based on the DAX 30 and the MDAX, 

respectively, for the whole sample period. Splitting the sample in this way shows that the high 

performance of the strategy based on the time series estimator for the HDAX is mainly due to 

the performance of the members of the MDAX. Whereas in the standard segment the sharpe 

ratio of the strategy based on the time series estimator is similar to the performance of the 

index, in the mid-cap segment the sharpe ratio is much higher than the sharpe ratio of the 

corresponding index. The reason for the difference in accuracy could be a less efficient 

market for smaller companies. 

 

                                                 
34 We will not use the TecDAX in our further analysis which is part of the HDAX since March 2003 as there is 
only a very short history available for this index. 
35 Alford/Berger (1999), for example, find a positive relationship between analysts following a company and 
forecast accuracy. Furthermore, they find a positive relationship between turnover of shares and analysts 
following a company which implies an indirect positive relationship between turnover and forecast accuracy. 
Eddy/Seifert (1992) find a significantly positive relationship between company size and forecast accuracy.  
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DAX30 
Strategie: TSE RIM BAYES CAPM SHRK EQUAL GMVP DAX 30
durch. Rendite: 0.02338 0.00784 0.01642 0.00726 0.00774 0.07528 0.08012 0.04954
Standardabw.: 0.09584 0.01355 0.0505 0.01534 0.01209 0.231 0.19577 0.23861
Sharpe Ratio: 0.24395 0.57855 0.32511 0.47319 0.64036 0.32587 0.40925 0.20762
Table 5: Sharpe-Ratios; Assets: DAX 30; Investment Period: 14.04.1994-01.07.2004 

 
MDAX
Strategie: TSE RIM BAYES CAPM SHRK EQUAL GMVP MDAX
durch. Rendite: 0.16682 0.00309 0.08836 3.91E-04 0.00932 0.03211 0.04289 0.04186
Standardabw.: 0.12947 0.01874 0.06436 0.01403 0.02055 0.16184 0.11516 0.15974
Sharpe Ratio: 1.28854 0.16485 1.37301 0.02784 0.45363 0.19839 0.37242 0.26203
Table 6: Sharpe-Ratios; Assets: MDAX; Investment Period: 14.04.1994-01.07.2004 

 

Regarding the strategy based on the RIM-estimator we obtain the opposite result: while we 

have a remarkably good performance when investing in the assets of the DAX 30 we do not 

have a performance that is above average when investing in the assets of the MDAX. This 

result is an accordance to empirical studies that found a positive relationship between 

company size and forecast accuracy. The greater the analysts’ following the higher the 

precision of the return estimators based on these forecasts and the higher the performance 

based on the return estimators.  

 

The pairwise tests of the statistical significance of the difference in the sharpe ratios give the 

following results for the DAX 30: 

 
TSE SHRK GMVP HDAX EQUAL RIM BAYES CAPM

TSE NA -0.3964 -0.1653 0.03634 -0.08192 -0.3346 -0.08116* -0.22924
SHRK NA NA 0.23111 0.43274 0.31449 0.06181 0.31524 0.16717
GMVP NA NA NA 0.20164 0.08338 -0.1693 0.08414 -0.06394
HDAX NA NA NA NA -0.11826 -0.37093 -0.1175 -0.26558
EQUAL NA NA NA NA NA -0.25268 7.58E-04 -0.14732
RIM NA NA NA NA NA NA 0.25343 0.10536
BAYES NA NA NA NA NA NA NA -0.14808
CAPM NA NA NA NA NA NA NA NA
Table 7: Pairwise differences in Sharpe Ratios; Significance test according to  Jobson-Korkie (*** Significance 

at 1 per cent-level, ** 5 per cent-level, * 10per cent-level); Assets: DAX 30; Investment Period: 14.04.1994-

01.07.2004 
 

As we can see the pairwise tests identify only one strategy that is significantly better than 

another with respect to the sharpe ratio. This is the strategy based on the combined estimator 

when compared to the time series estimator.  

 

The remarkable difference in the sharpe ratios of the strategies based on the RIM-estimator 

and the time series estimator shows these two strategies are obviously based on different sets 
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of information. Through the combination of both of these estimators these different sets of 

information can be aggregated in a single estimator and estimation errors can be diversified 

away. The combination of both estimators results in an investment strategy that has a sharpe 

ratio that 8 per cent higher than the strategy based on the time series estimator alone with a 

marginal significance at the 10 per cent level. 

 

When we turn to the MDAX we find the results of the sharpe ratio difference tests to have a 

totally different structure:  

 
TSE SHRK GMVP HDAX EQUAL RIM BAYES CAPM

TSE NA 0.83491** 0.91612** 1.02651*** 1.09015*** 1.12369*** -0.08447* 1.2607***
SHRK NA NA 0.08121 0.1916 0.25524 0.28878 -0.91938** 0.42579
GMVP NA NA NA 0.11039 0.17403 0.20757 -1.00059** 0.34458
HDAX NA NA NA NA 0.06364 0.09718 -1.11097*** 0.23419
EQUAL NA NA NA NA NA 0.03354 -1.17461*** 0.17055
RIM NA NA NA NA NA NA -1.20816*** 0.13701
BAYES NA NA NA NA NA NA NA 1.34517***
CAPM NA NA NA NA NA NA NA NA
Table 8: Pairwise differences in Sharpe Ratios; Significance test according to  Jobson-Korkie (*** Significance 

at 1 per cent-level, ** 5 per cent-level, * 10per cent-level); Assets: MDAX; Investment Period: 14.04.1994-

01.07.2004 
 

The strategy based on the time series estimator leads to a very good performance that is 

significantly better at the 5 per cent and 1 per cent level compared to all other strategies that 

do not use the time series estimator. However, when we combine the time series estimator 

with the RIM-estimator and invest based on this combined estimator we can realize a 

performance that is again significantly better than all other strategies – even significantly 

better than the strategy based on the time series estimator alone. 

 

As we can see even if the strategy based on the RIM-estimator derived from the analysts’ 

forecasts performs poorly when used separately it still contains enough information in 

addition to the time series estimator to improve its performance significantly.  

 

Analysis of the performance of the time series estimator: Comparison of autocorrelations for 

the members of the DAX30 and the members of the MDAX 
 

We want to analyze if the excellent performance of the time series estimator for the MDAX is 

due to a violation of the weak form of market efficiency according to Fama (1970). We use a 

regression based approach as presented in (19). For every firm i  we do a regression of the 

quarterly returns on the quarterly returns of the preceeding period  
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ˆiγ  is the estimator of the autocorrelation coefficient between the quarterly returns. The 

distribution of the t-statistics of the adjusted estimated autocorrelation coefficients36 is 

represented in Figure 5. As Figure 5 shows we find a slight increase in positive 

autocorrelations. 
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Figure 5: Distribution of t-statistics of adjusted estimated autocorrelation coefficients 

 

As the investment over the quarter starting at time t  is based on the mean return of the 

preceeding 4 quarters we also analyze the correlation between the return of the quarter 

starting in t  with the returns of the preceeding 4 quarters according to the regression approach 

in (20). 
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The Ljung-Box test-statistics for the approach according to (20) shows a slight increase in 

significant autocorrelations, too. The number of the significant autocorrelations at the 10 per 

cent level is 22 instead of 14 to be expected. To summarize we find – even though weak – 

 
36 The estimated autocorrelation coefficient is biased downwards for a small number of observations, see 
Campbell/Lo/MacKinlay (1997), p. 46. The adjustment of the test-statistic is done according to Fuller (1976): 
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evidence for a violation of the weak form of market efficiency in the market segment of the 

MDAX. 

 

4.2 Split of the sample in sub-periods: April 1994-July 1999 and July 1999-July 2004 
 

We split our sample in two sub-periods of equal length. The first half encompasses the period 

from April 14, 1994 till July 8, 1999 and the second half the period from July 8, 1999 till July 

1, 2004. As we can see in Figure 6 the first half of our sample period is characterized by a  
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Figure 6: Development of the DAX100/HDAX in the sample Period 14.4.1994-1.7.2004  

 

general upward trend of the market whereas in the second half we have a downward trend. 

The all-time high in our sample period was realized on March 2, 2000. 

 
HDAX
Strategie: TSE RIM BAYES CAPM SHRK EQUAL GMVP HDAX
durch. Rendite: 0.23763 6.57E-04 1.17E-01 0.01012 0.0159 0.08056 0.0264 0.14347
Standardabw.: 0.20177 0.02345 0.10104 0.01898 0.0293 0.14812 0.11626 0.1817
Sharpe Ratio: 1.17771 0.02803 1.15775 0.53297 0.54261 0.54391 0.22709 0.78959  
Table 9: Sharpe-Ratios; Assets: HDAX; Investment Period: 14.04.1994-08.07.1999 
 

HDAX
Strategie: TSE RIM BAYES CAPM SHRK EQUAL GMVP HDAX
durch. Rendite: 0.17063 0.02748 0.10238 4.58E-04 0.01132 0.00586 0.04512 -0.05879
Standardabw.: 0.17694 0.02904 0.08709 0.01089 0.02999 0.20553 0.11652 0.2611
Sharpe Ratio: 0.96434 0.94623 1.17557 0.04205 0.37746 0.02849 0.38728 -0.22517  
Table 10: Sharpe-Ratios; Assets: HDAX; Investment Period: 08.07.1999-01.07.2004 
 

The splitting of our sample into two sub-periods leads to the following results: The strategy 

based on the RIM-estimator shows a weak performance compared to the other strategies in 

the first sub-period. This inferiority in performance is even significant when compared to the 

performance of the strategy based on the time series estimator and on the combined estimator. 
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The results are different, however, in the second sub-period: There the RIM-estimator shows 

an excellent performance. The time series estimator shows a very good performance in the 

first as well as in the second sub-period. According to the different quality of the RIM-

estimator in the first and the second sub-period a significant improvement through the 

combination of the time series estimator with the RIM-estimator in comparison to the separate 

use of the time series estimator can be detected only in the second but not in the first sub-

period as it can be seen in Table 11 and Table 12. 

 
TSE SHRK GMVP HDAX EQUAL RIM BAYES CAPM

TSE NA 0.6351 0.95062 0.38812 0.6338 1.14968* 0.01996 0.64473
SHRK NA NA 0.31552 -0.24698 -0.00129 0.51458 -0.61514 0.00964
GMVP NA NA NA -0.5625 -0.31682 0.19906 -0.93066 -0.30589
HDAX NA NA NA NA 0.24568 0.76156 -0.36816 0.25661
EQUAL NA NA NA NA NA 0.51587 -0.61384 0.01093
RIM NA NA NA NA NA NA -1.12972* -0.50494
BAYES NA NA NA NA NA NA NA 0.62477
CAPM NA NA NA NA NA NA NA NA
Table 11: Pairwise differences in Sharpe Ratios; Significance test according to  Jobson-Korkie (*** 

Significance at 1 per cent-level, ** 5 per cent-level, * 10per cent-level); Assets: HDAX; Investment Period:  

14.04.1994-08.07.1999 

 

TSE SHRK GMVP HDAX EQUAL RIM BAYES CAPM
TSE NA 0.58688 0.57706 1.18951* 0.93585 0.01811 -0.21122** 0.92229**
SHRK NA NA -0.00983 0.60263 0.34897 -0.56877 -0.7981 0.33541
GMVP NA NA NA 0.61245 0.35879 -0.55894* -0.78828 0.34523
HDAX NA NA NA NA -0.25366 -1.17139** -1.40073** -0.26722
EQUAL NA NA NA NA NA -0.91773** -1.14707 -0.01356
RIM NA NA NA NA NA NA -0.22934 0.90417
BAYES NA NA NA NA NA NA NA 1.13351**
CAPM NA NA NA NA NA NA NA NA
Table 12: Pairwise differences in Sharpe Ratios; Significance test according to  Jobson-Korkie (*** 

Significance at 1 per cent-level, ** 5 per cent-level, * 10per cent-level); Assets: HDAX; Investment Period:  

08.07.1999-01.07.2004  
 

A possible explanation for the fact that there cannot be achieved an improvement in 

performance in the first sub-period through a combination of the estimators could be that the 

accuracy of the analysts’ forecasts and therefore the accuracy of the RIM-estimators is 

relatively low when compared to the second sub-period. The presumably increased accuracy 

of analysts’ forecasts could be due to a better corporate information policy vis-á-vis financial 

analysts37 as well as to the empirically positive relationship between the number of analysts 

following a company and forecast accuracy.38 In our sample period the number of analysts 

increased from an average of 720 analysts employed in 55 brokerage houses between 1995 
                                                 
37 For the positive relationship between information disclosure and forecast accuracy see for example, Hope 
(2003) or Higgins (1998). 
38 See e.g. Alford/Berger (1999). 
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and 1999 to an average of 1.090 analysts of 77 brokerage houses between 1999 and 2002. 39 

However, our results do not support the empirical findings of Higgins (2002) who reports a 

deterioration of forecast accuracy in periods of economic downturns for the Japanese market. 

 

5 Summary 
 

In this paper we analyzed if the use of analysts’ forecasts to estimate expected stock returns in 

the context of Markowitz portfolio optimization results in a better performance when 

compared to “traditional” estimation and investment strategies. In an empirical study for the 

German stock market we used analysts’ forecasts to implement the Residual Income Model 

and inferred the implied cost of equity capital from the model. In a next step we combined the 

estimator obtained from the RIM with the time series estimator in an optimal way. As 

alternative investment strategies we considered three strategies that were based on estimators 

of expected returns, too: the time series estimator, the CAPM-estimator, and a shrinkage 

estimator proposed in the literature on estimation risk. Furthermore, we employed three other 

strategies for comparison that are not based on estimations of expected returns: the equally 

weighted portfolio, the global minimum variance portfolio and the market index. 

 

Our basic result is that for the universe of the largest 110 German stocks, the HDAX, the 

strategy based on the estimator that combines the information of analysts’ forecasts and time 

series data is superior to all other strategies – in all except of one cases even statistically 

significant.  

 

When we divide our sample in the sub-samples of the Blue Chip index DAX 30 and the mid-

cap index MDAX we find the RIM-estimator to perform very well for the DAX 30 and very 

poorly for the MDAX. The different structure of the results within the different market 

segments could be caused by the different accuracy of analysts’ forecasts in the different 

segments. This is in line with empirical studies that find analysts’ forecasts to be more precise 

for stocks in the standard segment than for second-line stocks.  

 

Nevertheless, the combination of the time series estimator with the RIM-estimator results in a 

significant improvement in performance compared to the time series estimator for both 

                                                 
39 See Henze/Röder (2005). The authors report the yearly number of analysts and brokerage houses between 
1987 and 2002. We compute the average analyst number for sub-period 1 only from 1995 on because the 
unusual small number of analysts in 1994 could be due to an error in the process of data collection as the authors 
notice.  
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market segments. Even if the RIM-estimator performs poorly for the mid-cap index when 

used separately it still contains enough valuable information to lead to a significant 

enhancement in performance when combined with the time series estimator. Furthermore, for 

the mid-cap index the combination of the estimators leads to a performance that is 

significantly superior to all other strategies. 

 

When we check the robustness of our results with respect to the time period we find that it is 

not possible to yield a higher performance when investing based on the combined estimator in 

the first half of our sample. In the second half instead we get an improvement of the sharpe 

ratio that is significant at the 5 per cent level. The reason for this result could be an increased 

precision of analysts’ forecasts throughout the whole sample period. 

 

Overall our results confirm that the information contained in analysts’ forecasts helps to 

reduce the severe negative consequences of estimation risk in portfolio optimization.  
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Appendix 
 

No. HDAX MDAX DAX30  No. HDAX MDAX DAX30 
1 AAREAL BANK x   56 DOUGLAS HOLDING  x  
2 ADIDAS-SALOMON  x x  57 DRAEGERWERK   x  
3 AEG DAIMLER-BENZ  x   58 DRESDNER BANK   x 
4 AGIV REAL ESTATE  x   59 DSL HOLDING x  
5 AIXTRON     60 DUERR  x  
6 ALLIANZ   x  61 DYCKERHOFF   x  
7 ALTANA  x x  62 E ON   x 
8 AMB GENERALI HDG.  x   63 EADS  x  
9 ARMSTRONG DLW  x   64 ELMOS SEMICON.     

10 ASKO  x   65 EPCOS  x x 
11 AT & S AUSTRIA TECH     66 ERGO VERSICHERUNG  x  
12 AVA  x   67 ESCADA AG  x  
13 AWD HOLDING  x   68 EVOTEC OAI    
14 AXA KONZERN  x   69 FAG KUGELFISCHER  x  
15 BAADER WERTPAH.  x   70 FELTEN&GUIL. ENERGIE  x  
16 BABCOCK BORSIG  x x  71 FIELMANN  x  
17 BANKGES. BERLIN  x   72 FJH    
18 BARMAG   x   73 FPB HOLDING    x 
19 BASF   x  74 FRAPORT  x  
20 BAYER   x  75 FREENET   
21 BAYER.HYPBK.  x  76 FRESENIUS MED.CARE  x x 
22 BAYER.HYPO-UND-VBK.   x  77 FRESENIUS   x  
23 BB BIOTECH    78 GEA  x  
24 BEATE UHSE  x   79 GERRESHEIMER GLAS  x  
25 BEIERSDORF  x   80 GFK  x  
26 BERU  x   81 GILDEMEISTER  x  
27 BEWAG   x   82 GOLD-ZACK  x  
28 BHW HOLDING  x   83 GPC BIOTECH    
29 BILFINGER BERGER  x   84 GROHE FRIEDR.   x  
30 BMW   x  85 HANNOVER RUCK.  x  
31 BOSS (HUGO)   x   86 HEIDELB.DRUCK.  x  
32 BRAU UND BRUNNEN  x   87 HEIDELBERGCEMENT  x  
33 BREMER VULKAN  x   88 HENKEL   x 
34 BUDERUS x   89 HERLITZ  x  
35 CARGOLIFTER  x   90 HOCHTIEF  x  
36 CELANESE  x   91 HOECHST   x 
37 CELESIO  x   92 HOLZMANN PHILIPP  x  
38 COMDIRECT BANK x   93 HORNBACH HLDG  x  
39 COMMERZBANK   x  94 HORNBACH-BAUMARKT  x  
40 COMPUTER 2000 x   95 HORTEN DEAD   x  
41 CONTINENTAL  x x  96 HYPO RLST.HLDG.  x  
42 DAIMLER-BENZ AG   x  97 IDS SCHEER    
43 DAIMLERCHRYSLER   x  98 IKB DT.INDSTRBK.  x  
44 DBV-WINTERTHUR HLDG  x   99 INDUS HOLDING  x  
45 DEGUSSA  x x  100 INFINEON   x 
46 DEPFA DEUTSCHE  x   101 ING BHF-BANK  x  
47 DEUTSCHE BANK   x  102 IVG IMMOBILIEN  x  
48 DEUTSCHE BOERSE  x x  103 IWKA  x  
49 DEUTSCHE LUFTHANSA   x  104 IXOS SOFTWARE   
50 DEUTSCHE POST   x  105 JENOPTIK  x  
51 DEUTSCHE TELEKOM   x  106 JUNGHEINRICH   x  
52 DEUTZ  x   107 K + S  x  
53 DIALOG SEMICON.     108 KAMPA-HAUS  x  
54 DIDIER-WERKE  x   109 KAMPS  x  
55 DIS DT.INDUSTRIE SVS.  x   110 KARSTADT QUELLE  x x 
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No. HDAX MDAX DAX30  No. HDAX MDAX DAX30 
111 KAUFHOF   x  166 SCHWARZ PHARMA  x  
112 KIEKERT x   167 SCM MICROSYSTEMS    
113 KLOECKNER-WERKE  x   168 SGL CARBON  x  
114 KOENIG & BAUER AG  x   169 SIEMENS   x 
115 KOLBENSCHMIDT PIERB.  x   170 SIEMENS NIXDORF AG   x 
116 KONTRON     171 SINGULUS TECH.    
117 KRONES AG  x   172 SIXT  x  
118 KRUPP STAHL   x   173 SKW TROSTBERG  x  
119 KSB   x   174 SOFTWARE  x  
120 LAHMEYER  x   175 SPAR HANDELS-AG  x  
121 LEIFHEIT  x   176 STADA ARZNEIMITTEL  x  
122 LEONI  x   177 STINNES x  
123 LINDE   x  178 STRABAG  x  
124 LINOTYPE-HELL x   179 SUEDZUCKER AG  x  
125 LION BIOSCIENCE    180 SUESS MICROTECH    
126 LOEWE  x   181 TARKETT  x  
127 MAN   x  182 TECHEM  x  
128 VODAFONE   x  183 TECIS HOLDING  x  
129 MANNHEIMER AG HLDG.  x   184 TELEPLAN INTL.  x  
130 MEDIGENE     185 TELES    
131 MEDION  x   186 THIEL LOGISTIC  x  
132 MERCK KGAA  x   187 THYSSENKRUPP   x 
133 METRO   x  188 T-ONLINE    
134 MG TECHNOLOGIES  x x  189 TUI   x 
135 MICRONAS SEMICON.     190 UNITED INTERNET     
136 MLP AG  x x  191 VARTA  x  
137 MOBILCOM     192 VCL FILM + MEDIEN  x  
138 MOKSEL A  x   193 VEW  x  
139 MPC MUENCHMAYER C. x   194 VIAG   x 
140 MUNCH.RUCK.REGD.  x x  195 VILLEROY& BOCH  x  
141 NORDDEUTSCHE AFFIN. x   196 VOLKSFUERSORGE HD. x  
142 NORDEX    197 VOLKSWAGEN   x 
143 PFEIFFER VAC TECH.     198 VOSSLOH  x  
144 PHOENIX  x   199 WAYSS & FREYTAG  x  
145 PLAMBECK NEUE ENGE.    200 WCM BETEILIGUNG  x  
146 PLETTAC  x   201 WEB DE   
147 PORSCHE   x   202 WEBER (GERRY) INTL.  x  
148 PROSIEBEN SAT 1   x   203 WEDECO WATER TECH.  x  
149 PUMA  x   204 WELLA  x  
150 QIAGEN     205 WERU  x  
151 QSC    206 ZAPF CREATION x  
152 REICHELT OTTO  x   ∑ 206 143 45 
153 REPOWER SYSTEMS       
154 RHEINMETALL  x      
155 RHOEN-KLINIKUM  x      
156 ROFIN SINAR TECHS.        
157 RUETGERS  x       
158 RWE   x     
159 SALAMANDER  x      
160 SALZGITTER  x      
161 SAP AG  x x     
162 SAP SYSTEMS        
163 SCA HYGIENE PROD.  x      
164 SCHERING   x     
165 SCHMALBACH-LUBECA  x      
 
Table 13: Companies contained in the indices HDAX, MDAX, and DAX 30 between 14.04.1994 and 01.07.2004. 
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