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1 Introduction

In recent years, many studies have attempted to overcome the limitations of the

popular normality assumption on the returns of stocks and other Þnancial assets, which

is systematically rejected in the empirical Þnance literature. Although this assumption

may still be reasonable if the interest focuses on the Þrst two moments (see Bollerslev and

Wooldridge, 1992), in many Þnancial applications the features under study are higher

order moments such as skewness and kurtosis. An important example is option pricing

theory, in which the Black and Scholes (1973) pricing formula, which remains the bench-

mark model because of its analytical tractability, also relies on the normality of returns.

Unfortunately, normality is too restrictive to approximate the complex shape of the dis-

tribution of most underlying asset returns, and more ßexible distributions may help to

explain the puzzles unresolved by the Black and Scholes (1973) framework, including

smiles and smirks.

However, any successful generalisation of the Gaussian assumption must satisfy two

crucial requirements: modelling ßexibility and analytical tractability. Both needs are

satisÞed by Gram-Charlier expansions, which were introduced in option pricing theory

by Jarrow and Rudd (1982), and have been used more recently by Corrado and Su (1996,

1997), Capelle-Blanchard, Jurczenko, and Maillet (2001), Jurczenko, Maillet, and Negrea

(2002a), and Lim, Martin, and Martin (2005). As is well known, most density functions

can be expressed as a possibly inÞnite expansion of the Gaussian density. In practice,

however, the expansion is usually truncated after the fourth power. Unfortunately, such

truncated expansions often imply negative densities over some interval of their domain

of variation, as Jondeau and Rockinger (2001) emphasize. This feature is particularly

worrying in option pricing applications because it allows some arbitrage opportunities.

For instance, the price of a butterßy spread with positive payoff over an interval of

negative density would necessarily be negative in those circumstances. As a solution to

this problem, Jondeau and Rockinger (2001) propose to restrict the parameters of the

expansion so that the density remains always positive. Unfortunately, their approach

can be very difficult to implement even when the truncation order is low. Furthermore,

the ßexibility of the positivity restricted distributions to model skewness and kurtosis

is rather limited. As we shall see, this lack of ßexibility turns out to be empirically
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restrictive in option pricing applications.

In this context, we propose the use of the semi-nonparametric distribution (SNP),

which was introduced by Gallant and Nychka (1987) for nonparametric estimation pur-

poses, as an equally ßexible and analytically tractable solution. The SNP density can be

regarded as an alternative expansion of the Gaussian density function, which is always

positive by deÞnition.

The properties of the SNP density from the nonparametric estimation point of view

have been studied in depth by Fenton and Gallant (1996) and Gallant and Tauchen

(1999). However, this density has not been treated from a purely parametric point of

view, that is, taking the SNP distribution as if it reßected the actual data generating

process instead of an approximating kernel. In this sense, our starting point will be the

assumption that asset returns follow a SNP distribution under the real measure. In this

framework, we will study Þrst the statistical properties of this distribution, including

moments, distribution of linear combinations, standardised versions, as well as its rela-

tionship to the Gram-Charlier densities. Then, we will combine it with an exponentially

affine assumption on the stochastic discount factor, which will enable us to transform

the real measure into the risk neutral measure required for the valuation of derivative

assets. We will obtain closed-form expressions for plain vanilla options by exploiting the

analytical tractability of the SNP distribution. We will also obtain the different option

sensitivities, commonly known as the �Greeks�. Finally, we will carry out an empirical

application to the S&P 500 options data of Dumas, Fleming, and Whaley (1998) in

which we will evaluate the performance of our pricing formulas.

The paper is structured as follows. In the next section, we study the statistical

properties of SNP densities, and compare them with those of Gram-Charlier expansions.

In section 3, we Þrst relate the real and risk neutral measures, and then focus on pricing

European options. Finally, section 4 presents the empirical application, followed by our

conclusions in section 5. Proofs and auxiliary results can be found in appendices.

2 Density deÞnition

We want to analyse the statistical properties of a random variable z which can be

expressed as a linear transformation of another random variable x, i.e. z = a + bx,

where the density of x belongs to the semi-nonparametric class introduced by Gallant
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and Nychka (1987). SpeciÞcally,

f(x) =
φ (x)

ν 0ν

Ã
mX
i=0

νiHi (x)

!2
, (1)

where ν = (ν0, ν1, · · · , νm)0 ∈ Rm+1, φ (·) denotes the probability density function (pdf)
of a standard normal random variable, and Hi (x) is the normalised Hermite polynomial

of order i. These polynomials can be deÞned recursively for i ≥ 2 as

Hi (x) =
xHi−1 (x)−

√
i− 1Hi−2 (x)√
i

, (2)

with initial conditions H0 (x) = 1 and H1 (x) = x. Importantly, {Hi (x)}i∈N constitutes
an orthonormal basis with respect to the weighting function φ (x), as illustrated by the

following two conditions:

(a)
R +∞
−∞ H2

i (x)φ (x) dx = 1, ∀i
(b)

R +∞
−∞ Hi (x)Hj (x)φ (x) dx = 0, ∀i 6= j.

The change of variable formula implies that the density function of z will be

g (z) =
1

b

1

ν 0ν
φ

µ
z − a
b

¶" mX
i=0

νiHi

µ
z − a
b

¶#2
, (3)

where we could interpret a as a location parameter and b as a scale parameter. Note

that both (1) and (3) are homogeneous of degree zero in ν, which implies that there is

a scale indeterminacy that we will solve by imposing a single normalising restriction on

these parameters, such as ν0 = 1 or preferably ν
0ν = 1.

If we expand the squared expression in (1), we can express the density as

f(x) = φ (x)
2mX
k=0

γk (ν)Hk (x) , (4)

where γk (ν) are functions of ν that satisfy the following general expression:

Proposition 1

γk (ν) =
ν 0Akν
ν 0ν

, (5)

where Ak is a (m+ 1)× (m+ 1) symmetric matrix whose typical element is

aij,k =
(i!j!k!)1/2¡

i+j−k
2

¢
!
¡
i+k−j
2

¢
!
¡
k+j−i
2

¢
!

if k ∈ Γ and zero otherwise, and

Γ =

½
k ∈ N : |i− j| ≤ k ≤ i+ j; i− j + k

2
∈ N

¾
.
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For instance, the values of γk (ν) when m = 2 are:

γ0 (ν) = 1,

γ1 (ν) = 2ν1
¡
ν0 +

√
2ν2
¢
/ν 0ν,

γ2 (ν) =
√
2
¡
ν21 + 2ν

2
2 +

√
2ν0ν2

¢
/ν 0ν,

γ3 (ν) = 2
√
3ν1ν2/ν

0ν,
γ4 (ν) =

√
6ν22/ν

0ν.

2.1 Moments of x and z

The Þrst four non-central moments of x, µ0x (k), can be obtained by using the rela-

tionship between the powers of x and the Hermite polynomials:

µ0x (1) ≡ Ef (x) = Ef [H1 (x)] ,

µ0x (2) ≡ Ef
¡
x2
¢
=
√
2Ef [H2 (x)] + 1,

µ0x (3) ≡ Ef
¡
x3
¢
=
√
3!Ef [H3 (x)] + 3Ef [H1 (x)] ,

µ0x (4) ≡ Ef
¡
x4
¢
=
√
4!Ef [H4 (x)] + 6

√
2Ef [H2 (x)] + 3, (6)

where the operator Ef [·] takes the expectation of its argument with respect to the density
function f(x) in (1). Note that we can rewrite both µ0x(3) and µ

0
x(4) as

µ0x (3) =
√
3!Ef [H3 (x)] + 3µ

0
x (1) ,

µ0x (4) =
√
4!Ef [H4 (x)] + 6µ

0
x (2)− 3.

Then, the corresponding central moments, µx (k), can be easily obtained from the rela-

tionships:

µx (2) = µ0x (2)− µ02x (1) ,
µx (3) = µ0x (3)− 3µ0x (2)µ0x (1) + 2µ03x (1) ,
µx (4) = µ0x (4)− 4µ0x (3)µ0x (1) + 6µ0x (2)µ02x (1)− 3µ04x (1) .

Finally, we can also compute the skewness and kurtosis coefficients, denoted by sk and

ku, respectively, which are deÞned as

sk =
µx (3)

µ
3/2
x (2)

; ku =
µx (4)

µ2x (2)
. (7)

But since µ0x (k) in (6) depends on {Ef [Hi (x)]}i∈N, we Þrst need to Þnd Ef [Hk (x)]:
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Proposition 2 Let f(·) denote the density function of the random variable x, which we
assume is given by (1). Then

Ef [Hk (x)] = γk (ν) , (8)

if k ≤ 2m, and zero otherwise.

On this basis, we can easily compute the Þrst four non-centred moments of x for the

important special case of m = 2:

Lemma 1 If the density function of the random variable x is given by (1) with m = 2,

then

µ0x (1) =
2ν1
ν 0ν

³
ν0 +

√
2ν2
´
,

µ0x (2) =
2

ν 0ν

³
ν21 + 2ν

2
2 +

√
2ν2ν0

´
+ 1,

µ0x (3) =
6ν1
ν 0ν

³
ν0 + 2

√
2ν2
´
,

µ0x (4) =
12

ν 0ν

³
ν21 + 3ν

2
2 +

√
2ν2ν0

´
+ 3.

In general, we can show that:

Proposition 3 The moment generating function corresponding to the SNP density (1)

is

Ef
£
etx
¤
= exp

µ
t2

2

¶
Λ(ν, t),

while its characteristic function is

ψSNP (it) = exp

µ−t2
2

¶
Λ(ν, it),

where i is the usual imaginary unit,

Λ(ν, t) =
2mX
k=0

γk (ν)
tk√
k!
,

and γk (ν) is deÞned in (5).

Since z is a linear transformation of x, it is trivial to Þnd the non-central moments

of z, µ0z (k), as a function of those of x. SpeciÞcally,

µ0z (n) ≡ Ef [(a+ bx)n] =
nX
i=0

µ
n
i

¶
an−ibiµ0x (i) .
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In this sense, notice that the skewness and kurtosis coefficients of z are exactly the same

as those of x because the relation between x and z is affine. In addition, we can always

choose the location and dispersion coefficients a and b such that z has zero mean and

unit variance. In particular, if we denote by z∗ the standardised variable

z∗ =
x− µ0x (1)p
µx (2)

, (9)

then its density function can be directly obtained from (3) with

a(ν) = − µ0x (1)p
µx (2)

(10)

and

b(ν) = 1/
p
µx (2). (11)

We can also use Proposition 3 to derive the distribution of linear combinations of

SNP variables (see Appendix B).

2.2 Gram-Charlier expansion of the semi-nonparametric den-
sity

Under certain regularity conditions, any density function h (y) can be expressed as

the product of a standard normal density times an inÞnite series of Hermite polynomials:

h (y) = φ (y)
∞X
k=0

ckHk (y) , (12)

where the coefficients ck are

ck =

∞Z
−∞

Hk (y)h (y) dy = Eh (Hk (y)) . (13)

This is the so-called Gram-Charlier series of Type A (see Stuart and Ord, 1977).

With this in mind, we will Þrst determine the Gram-Charlier expansion of the SNP

density of z, and then we will particularise it for the standardised random variable z∗ in

(9). In the case of z, we will use the fact that, according to (3) and (4), its density can

be written as

g (z) =
1

b
φ

µ
z − a
b

¶ 2mX
i=0

γi (ν)Hi

µ
z − a
b

¶
, (14)

where the coefficients γi are the functions of the vector ν described in Proposition 1.

Then, if we compare (13) and (14), we can write ck for z as

ck =
1

b

2mX
i=0

γi

∞Z
−∞

φ

µ
z − a
b

¶
Hi

µ
z − a
b

¶
Hk (z) dz, ∀ k ≥ 0,
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which, with the simple change of variable x = (z − a) /b, becomes

ck =
2mX
i=0

γiEφ [Hi (x)Hk (a+ bx)] , ∀ k ≥ 0. (15)

The following proposition gives a general formula for the expectations in (15):

Proposition 4

Eφ [Hi (x)Hk (a+ bx)] =

∞Z
−∞

Hi (x)Hk (a+ bx)φ (x) dx

=

r
k!

i!

bk−i2 cX
j=0

Hk−i−2j (a)

j!
p
(k − i− 2j)!2j b

i+2j

for i ≤ k and zero otherwise, where b·c rounds its argument to the nearest integer toward
zero.

In consequence, the coefficients of z deÞned in (15) will be

ck =

min(k,2m)X
i=0

bk−i2 cX
j=0

γi (ν)

j!2j

s
k!

(i!) (k − i− 2j)!Hk−i−2j (a) b
i+2j (16)

where γi (ν) is deÞned in (5). Finally, we can easily Þnd the coefficients of the Gram-

Charlier expansion of z∗ by substituting a and b by their respective values in (10) and

(11). Given the results in Stuart and Ord (1977) on Gram-Charlier series of Type A for

standardised random variables, it is not surprising that the coefficients of the expansion

of z∗ are precisely
c0 = 1,
c1 = c2 = 0,

c3 = sk/
√
3!,

c4 = (ku− 3) /
√
4!,

c5 = κ(5)/
√
5!

c6 = [κ(6) + 10sk
2] /
√
6!

...

(17)

where κ(k) is the kth-order cumulant of z∗.

These higher order coefficients will generally be different from zero in view of (16).

However, there is one instance in which the Gram-Charlier expansion of the SNP stan-

dardised density will be Þnite. SpeciÞcally, if ν1 = ν2 = 0 when m > 2, then it can

be shown that ck = 0 for k > 2m, since a(ν) = 0 and b(ν) = 1 in that case. Lim,

Martin, and Martin (2005) have explored this restricted parametrisation with m = 4 for

option pricing purposes. In this paper, though, we will not impose any restrictions on

the parameters of the SNP density.
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2.3 Comparison with a truncated Gram-Charlier expansion

Jondeau and Rockinger (2001) use as density function a truncated Gram-Charlier

expansion of the form

h
¡
z+
¢
= φ

¡
z+
¢ "
1 +

nX
i=3

ciHi
¡
z+
¢#
. (18)

Notice that this density function has zero mean and unit variance by construction. In

addition, if n = 2m, it involves exactly the same number of parameters as our standard-

ised SNP variable z∗. However, Jondeau and Rockinger (2001) need to impose further

restrictions on the parameters ci (i = 3, 4, · · · , n) to ensure that the pdf in (18) is non-
negative for all values of z+ ∈ (−∞,∞). Unfortunately, Jondeau and Rockinger (2001)
only determined those restrictions for n = 4, because it becomes exceedingly difficult to

Þnd them for higher n. In contrast, we can leave the vector of parameters ν free, except

for a scale restriction, because positivity is always satisÞed by a SNP density regardless

of the expansion order.

Given that both z∗ and z+ have zero mean and unit variance, the natural question

to ask is which of them leads to more general higher order moments. For the sake of

concreteness, we will answer this question in terms of the values of skewness and kurtosis

that each distribution can generate when m = 2 and n = 4. SpeciÞcally, we plot the

envelope of all the combinations of skewness and kurtosis that these two distributions can

generate in Figure 1.1 In addition, we also represent the skewness-kurtosis frontier that

no density function can surpass (see e.g. Stuart and Ord, 1977). As we can see in Figure

1, the combinations of skewness and kurtosis that the variable z+ can generate are well

within the combinations spanned by the SNP standardised variable z∗ with exactly the

same number of free parameters.2 For instance, while z+ could never be platykurtic, z∗

can indeed have kurtosis coefficients lower than 3. More importantly, the differences in

minimum and maximum skewness are also substantial. Finally, it is worth recalling that

the SNP distribution guarantees positive densities regardless of m. In this sense, Figure

1 shows that we could achieve much more ßexibility with just one additional parameter.

1We have used the procedure devised by Jondeau and Rockinger (2001) to obtain the frontier for a
positive Gram-Charlier distribution with n = 2, while we rely on (7) to represent the frontier of SNP
densities with m = 2 and m = 3.

2Although the SNP density is a function of the parameters ν0, ν1, and ν2, only 2 of them are
independent. To allow for ν0 = 0, we have used spherical coordinates in generating this graph.
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To get a clearer sense of the underlying differences between the distributions of z+

and z∗, we can compare their Gram-Charlier expansions.3 Since both variables are

standardised, both have c0 = 1 and c1 = c2 = 0. The third and fourth coefficients

are functions of the skewness and kurtosis of the distributions, which we have already

compared in the previous paragraph. Still, the main difference between z∗ and z+ is

found in the higher order coefficients. In particular, whereas (18) imposes that ck = 0

for all k > 4, such a restriction no longer holds for z∗. In other words, while the Gram-

Charlier expansion of z+ is Þnite, the Gram-Charlier expansion of z∗ is generally inÞnite

as we can see from (16).

3 Option valuation

3.1 From the real to the risk neutral measure, and vice versa

Consider a frictionless market with a risk free asset and a risky asset with price St at

time t. Assume that, for T > t, ST can be written in terms of St under the real measure

P as:

ST = St exp
£¡
µ− σ2/2¢ τ + σ√τz∗¤ , (19)

where τ = T − t, while µ and σ represent the instantaneous drift and volatility, re-
spectively, of ST , and z

∗ is deÞned in (9). That is, z∗ is the standardised version of a

random variable xP whose pdf is (1). In this context, we can write the log-return as

yT = log(ST/St) = δP + λPx
P, where δP = (µ− σ2/2) τ + σ√τa (ν), λP = σ√τb (ν), and

xP is a SNP variable with density function (1).

Following Bertholon, Monfort, and Pegoraro (2003), our solution to the option pricing

problem will be based on the use of a stochastic discount factor with an exponential affine

form:

Mt,T = exp(αyT + β), (20)

which is consistent with a constant relative risk aversion utility function where α is

(minus) the coefficient of relative risk aversion and β the discount factor.

The constraints induced by the arbitrage free conditions are

EP [Mt,T exp(rτ)| It] = 1,
EP [Mt,T exp(yT )| It] = 1,

¾
(21)

3Note that (18) is already a proper Gram-Charlier expansion.
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where r is the risk-free rate and It is the information available at time t. However, for

ease of notation we will suppress the explicit dependence on It in what follows. Equations

(21) give us the two restrictions that we need to Þnd the values of α and β. In particular:

Proposition 5

2mX
k=0

γk (ν)
(αλP)

k

√
k!

= exp

∙
−αδP − 1

2
α2λ2P − β − rτ

¸
, (22)

2mX
k=0

γk (ν)
(1 + α)k λkP√

k!
= exp

∙
− (1 + α) δP − 1

2
(1 + α)2 λ2P − β

¸
. (23)

In this context, if Q denotes the risk neutral measure whose numeraire is the risk

free asset, the real and risk-neutral measures can be easily related by means of the

Radon-Nykodym derivative, which in this case is proportional to the discount factor

dQ
dP

=
Mt,T

EP (Mt,T )
.

Hence

EQ (z (ST )) = EP
∙
dQ
dP
z (ST )

¸
, (24)

where z (·) is an arbitrary function and EP (Mt,T ) = exp(−rτ), so that the discount
factor correctly prices the risk-free asset. As a result, we can obtain the risk-neutral

density from (24) as

fQ (yT ) = exp(rτ)Mt,Tf
P (yT ) . (25)

On this basis, we can fully characterise the risk-neutral measure as follows:

Proposition 6 The asset price ST can be written under the risk neutral measure Q as

ST = St exp

"Ã
µQ −

¡
σQ
¢2
2

!
τ + σQ

√
τκ∗
#
, (26)

where κ∗ is a standardised SNP variable of the same order as the real SNP variable z∗,
whose parameters are:

µQ = µ+
σ2

2

"µ
b (ν)

b (θ)

¶2
− 1
#
+
σ√
τ

∙
a (ν)− a (θ) b (ν)

b (θ)

¸
+ ασ2b2 (ν) , (27)

σQ = σ
b (ν)

b (θ)
, (28)

and θ = (θ0, θ1, · · · , θm)0, with

θi =
mX
k=i

νi
(k − i)!

r
k!

i!
(αλP)

k−i . (29)
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Therefore, in a SNP context the change of measure affects not only the mean and the

variance of the log price, but also the higher moments, as can be seen from the difference

between θ and ν. For the case of m = 2, we can show that the relation between θ and

ν is

θ0 = ν0 + ν1αλP +
ν2√
2
α2λ2P,

θ1 = ν1 + ν2
√
2αλP,

θ2 = ν2.

Obviously, our framework also allows us to value derivative assets by focusing on the

risk-neutral measure directly without any reference to its relationship with the real mea-

sure, as in Jondeau and Rockinger (2001) or Jurczenko, Maillet, and Negrea (2002a,b).

To follow this second approach, we just have to regard θ, µQ and σQ as the structural

parameters. The following proposition gives the expression that the risk-neutral drift

must have to satisfy the martingale restriction (see Longstaff, 1995):

Proposition 7

µQ = r − 1
τ

∙
σQ
√
τa (θ) +

1

2

¡
σQ
¢2
τ
¡
b2 (θ)− 1¢+ logΛ(θ, λQ)¸ , (30)

where

Λ (θ, λQ) =
2mX
k=0

γk (θ)

¡
σQb (θ)

√
τ
¢k

√
k!

. (31)

Not surprisingly, we show in appendix D that (27) and (30) coincide, which implies

that both strategies are indeed equivalent. This implies for instance that the value of

an option obtained using the real-measure parameters µ, σ and ν together with the

stochastic discount factor Mt,T in (20) will be the same as the option price computed in

the risk-neutral world using the implied parameters θ, σQ and the drift µQ in (30). This

equivalence result has important computational advantages in empirical applications

that only use option price data, because it allows us to estimate the option values from

the risk neutral parameters without having to solve the nonlinear equations (22) and

(23) within the optimisation algorithm. At the same time, we can always obtain the

implied real-measure parameters if necessary. In particular, for a given drift µ, risk-

free rate r and risk neutral parameters σQ and θ, we can recover the parameters of the
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real measure σ and ν, together with the coefficient of relative risk aversion α, from the

following system of equations¡
µ− σ2/2¢ τ + σ√τa (ν) = δQ − αλ2Q,

σ
√
τb (ν) = λQ,

νi =
mX
k=i

θi
(k − i)!

r
k!

i!
(−1)k−i (λQα)k−i . (32)

Finally, the discount factor β can be obtained from either (22) or (23).

3.2 Option pricing

Let Ct be the value at time t of a European call option with strike price K and

expiration at time T , and let St be the underlying asset value. We can express Ct as

Ct = exp(−rτ)EQ
£
(ST −K)+

¤
, (33)

where (·)+ = max (·, 0). If we denote the indicator function as 1(·), and deÞne the region
A = {ST > K}, then we can rewrite (33) as

Ct = exp(−rτ)EQ [ST1(A)]−K exp(−rτ)EQ [1(A)] . (34)

Following Geman, Karouri, and Rochet (1995), we can simplify the calculations in

the above formula by changing the numeraire. SpeciÞcally, we consider as additional

numeraire the ratio of the risky asset prices ST/St, which gives an alternative risk-neutral

measure Q1. Then, if we use the Radon-Nikodym derivative:

dQ
dQ1

=
BT
Bt

St
ST

= exp(rτ)
St
ST
, (35)

we can easily express any expectation under Q in terms of Q1. SpeciÞcally, we will have

that

EQ [ST1(A)] = EQ1

∙
dQ
dQ1

ST1(A)

¸
= St exp(rτ)EQ1 [1(A)] ,

which, once introduced in (34), gives us the general formula

Ct = StEQ1 [1(A)]−K exp(−rτ)EQ [1(A)]
= St PrQ1 [ST > K]−K exp(−rτ) PrQ [ST > K] . (36)

The analytical tractability of the SNP distribution allows us to obtain closed form

expressions for the probabilities in (36):
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Proposition 8 The price of a European call option CSNPt written on a stock St with
strike price K can be expressed as:

CSNPt = St PrQ1 [x > d]−K exp(−rτ) PrQ [x > d] , (37)

where

PrQ [x > d] = Φ (−d) + φ (d)
2mX
k=1

γk(θ)√
k
Hk−1 (d) ,

PrQ1 [x > d] = exp(−rτ + δQ)
2mX
k=0

γk(θ)I
∗
k ,

I∗k =
1√
k
exp(λQd)Hk−1 (d)φ (d) +

λQ√
k
I∗k−1; I∗0 = exp(λ

2
Q/2)Φ (λQ − d) , (38)

δQ =

µ
µQ − σ

Q2

2

¶
τ + a(θ)σQτ,

d =
log(K/St)− δQ

λQ
; λQ = b(θ)σ

Q√τ

and Φ (·) is the cumulative distribution function of the standard normal density.

As expected, (37) reduces to the Black and Scholes (1973) formula, denoted as CBSt ,

when θ0 = 1 and θk = 0 ∀k ≥ 1, which corresponds to a lognormal distribution for the
underlying asset. SpeciÞcally

CBSt = StΦ (d1)−K exp(−rτ)Φ (d2) , (39)

where

d1 =
log (St/K) + (r + σ

2/2) τ

σ
√
τ

, (40)

and d2 = d1 − σQ√τ .
In Figure 2 we compare the range of call prices that the SNP density can produce with

the corresponding range when the assumed distribution is the restricted Gram-Charlier

expansion of Jondeau and Rockinger (2001). Not surprisingly, the higher ßexibility of the

SNP in modelling skewness and kurtosis that we saw in Figure 1 results in a wider range

of call prices. Similarly, a larger value of m also leads to a broader range. Nevertheless,

there is a close relationship between the different pricing models: the Gram-Charlier

call price formula can be obtained as a fourth-order Taylor expansion of (37), while

Black-Scholes corresponds to a second-order one (see appendix C for further details).

Option market participants often use the so-called �Greek� parameters, which mea-

sure the sensitivity of the option pricing formula to the different inputs, for hedging
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purposes. We will compute the three most important sensitivities: Delta, Gamma and

Vega. As is well known, Delta measures the sensitivity of the option price to changes in

the underlying asset price, Gamma measures the sensitivity of Delta to variations in the

underlying asset price; and Þnally, Vega measures the sensitivity of the option price to

volatility movements.

Proposition 9 When the European call option price is given by (37), the Delta, Gamma
and Vega can be written as:

∆c ≡ ∂Ct
∂St

= P1,

Γc ≡ ∂∆c
∂St

= − 1

λSt

∂P1
∂d
,

and

υc ≡ ∂Ct
∂σ

= St
√
τ
∂P1
∂στ

−Ke−rτ√τ ∂P2
∂d

∂d

∂στ
,

where στ = σ
Q√τ , and P1 and P2 denote the cumulative probabilities PrQ1 [x > d] and

PrQ [x > d], respectively, detailed in Proposition 8.

4 Empirical performance of SNP option pricing

In this section, we apply the SNP option valuation formula (37) in Proposition 8 to

S&P 500 index options using the same database as Dumas, Fleming, and Whaley (1998).

Option prices were collected every Wednesday between 2:45 p.m. and 3:45 p.m. from

June 1988 to December 1993, which makes a total number of 292 days. Options are

European-style and expire on the third Friday of each contract month. We will focus on

call options, and use the bid-ask mid price for estimation purposes. The riskless interest

rate will be proxied by the T-bill rate implied by the average of the bid and ask discounts

reported in the Wall Street Journal. To account for the presence of dividends, the

implied forward price is computed as the current stock price St minus the present value

of dividends D̄t times the interest accrued until maturity, i.e. Ft,T = (St − D̄t) exp(rτ)
(see Dumas, Fleming, and Whaley, 1998, for further details).

We will compare the performance of the SNP option valuation framework with the

standard Black and Scholes (1973) model. We will also consider the formulas provided

by Jondeau and Rockinger (2001), which impose positivity restrictions on the Gram-

Charlier density, and a variant of the Black-Scholes model in which volatility is assumed

to be a quadratic function of moneyness. We will call this methodology Practitioners�
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Black-Scholes, a name inspired by its wide use in the Þnancial industry. In order to

guarantee positivity, we will consider the parametrisation

σ(x) = c0 + c1(x− c2)2 (41)

where c0 > 0, c1 ≥ 0 and x = Ft,T/K. Finally, note that since we are using implied

forward prices, an adjustment in the spirit of Black (1976) is needed in all cases.

We consider separate estimations for short and long maturities, both of which are

carried out by minimising the sum of squared pricing errors. To select the short maturity

group, we begin by considering call options that mature in 45 days for the Þrst day in the

sample. We track those options every week until two weeks before they expire. Then, we

move to the next group of options that are 45 days away from expiration and start the

tracking process again. At the end, we have data on 3,462 call option prices with median

time to expiration of 24 days, and a number of options per day that ranges from 4 to

25, with a median of 11. In the long maturity group we follow an analogous selection

process. In particular, we have selected 4,310 call option prices with a median time to

maturity of 150 days. The number of prices per day also ranges between 4 and 25, but

the median is now 15.

Tables 1a to 1d report root mean square pricing errors (RMSE) of the four compet-

ing models when we re-estimate all the parameters each Wednesday. We also provide

information on the degree of Þt achieved for different degrees of moneyness using the

six categories proposed by Bakshi, Cao, and Chen (1997), together with the number of

options in each category. Tables 1a and 1c report in-sample RMSE�s based on the Þrst

four years of data. In contrast, Tables 1b and 1d report out-of-sample results based on

pricing errors for each Wednesday in the last year of the sample using the parameters

estimated on the previous Wednesday. We can observe in Table 1c that the SNP clearly

dominates in the longer maturity group. In the short maturity group, though, the to-

tal RMSE of the SNP is slightly higher than the one obtained with the Practitioner�s

Black-Scholes method (see Table 1a). Nevertheless, we still Þnd a better performance of

the SNP for all but the more in the money options. Out-of-sample results also seem to

favour our model. In addition, they provide strong evidence against the Practitioner�s

Black-Scholes approach. Indeed, it seems that this ad-hoc model tends to overÞt option

prices in-sample.
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In Figures 3a and 3b we have plotted the skewness and kurtosis values implied by

both the SNP and Joundeau and Rockinger�s model. Several important patterns arise

from these Þgures. First, there is high dispersion in the estimated higher order moments,

although skewness is usually negative and kurtosis is typically higher than 3. Second,

skewness and kurtosis tend to be lower when the time to expiration is longer. Further-

more, skewness and kurtosis in Gram-Charlier densities with positivity restrictions are

usually on the frontier of values admitted by these densities. In particular, market prices

often suggest a more (negative) skewness than the approach of Jondeau and Rockinger

(2001) is able to account for. However, some SNP estimates are also located on the

frontier, especially in the short maturity group. Although we could easily enlarge the

SNP frontier by simply increasing the order m (see Figure 1), it is interesting to analyse

in more detail the possible sources of the high sampling variability.

To do so, we have carried out the following bootstrap exercise. First, we group

the SNP pricing errors obtained for short maturities in the six moneyness categories

already considered. Then, we simulate prices for a speciÞc but broadly representative

day (November 13, 1991), by adding random pricing errors to the 19 prices of that day

estimated with the SNP model. In this sense, we sample the errors that we add to each

price from the same moneyness category to which that price belongs. In this way, we

take into account possible distributional differences between pricing errors for, say, deep

in the money and out of the money options. Finally, we re-estimate the SNP model on

the simulated data. We plot the implied skewness and kurtosis for 1,000 such simulations

in Figure 3c. As we can observe, the estimates are again highly disperse, and basically

cover the whole region of negative skewness. Nevertheless, the true option prices have

constant parameters by construction, which correspond to skewness of −1.5 and kurtosis
of 7.7, approximately (see Figure 3c).

Therefore, it may well be the case that, even if the true parameters are constant,

the high variation in skewness and kurtosis that we observe in Figures 3a and 3b simply

results from the relatively low number of prices with which we are estimating the daily

models. For that reason, we also study the performance of the different models under the

assumption that their shape parameters (i.e. ν in the SNP model, the skewness and kur-

tosis parameters in the Gram-Charlier density, and c1 and c2 in (41)) are time invariant,

while volatility (or the intercept c0 in Practitioner�s Black-Scholes) is allowed to change
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over time as before. Again, we carry out an in-sample and an out-of-sample analysis,

which are reported in Tables 2a to 2d. In order to estimate all the parameters for the Þve

year long in-sample period, we use the following iterative zig-zag method. Initially, we

estimate volatilities by Þxing the remaining shape parameters to some reasonable values,

a procedure which is easy to carry out since we can estimate volatility separately for each

day. Then we Þx those volatility estimates, and obtain the remaining parameters. We it-

erate this procedure until the change in RMSE between two successive iterations is lower

than 10−5. As Tables 2a to 2d show, the results are now even more in favour of the SNP

model. Out-of-sample RMSE�s are particularly supportive of our model. In addition,

if we compare the SNP pricing errors in Tables 2b and 2d with those of Tables 1b and

1d, we can observe that the assumption of a constant ν does indeed yield much better

out-of-sample results. Importantly, the SNP with Þxed parameters generally performs

better out-of-sample than Practitioner�s Black-Scholes with time varying parameters. In

terms of skewness and kurtosis, Figure 3d shows that SNP estimations are no longer at

the frontier. In contrast, Gram-Charlier estimates are pretty close (short maturities) or

exactly on its frontier (longer maturities). In any case, the tendency to lower kurtosis

and skewness for longer maturities is observed again, which is consistent with the ßatter

smiles typically found for longer maturities.

As a sanity check, we have also investigated whether the main differences between

Black-Scholes and the SNP model are observed in the tails of the distribution, and not

so much in the temporal evolution of the volatilities, which is conÞrmed by Figure 4.

Another interesting issue is whether the main reason for the rejection of the Black-

Scholes model is skewness or excess kurtosis. To Þnd out, we have re-estimated our SNP

model with Þxed parameters imposing zero skewness Þrst, and then kurtosis equal to

3. Interestingly, it turns out that when we force the skewness to be zero we obtain the

Black-Scholes special case. In contrast, if we Þx the kurtosis to 3, we obtain substantial

negative skewness for both the short and long maturity groups. Hence, it seems that

negative skewness plays a more fundamental role in determining option prices than excess

kurtosis, especially for longer maturities.

Finally, we compare the estimated risk-neutral densities in Figures 5a to 5d, having

obtained the density implied by the Practitioner�s Black-Scholes model from the second

derivative of the call price with respect to the strike (see Breeden and Litzenberger, 1978).
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All the models except Black-Scholes imply negative skewness and more peaked densities

due to the presence of leptokurtosis, but they are reasonably similar at the centre.

However, zooms of the left tails show that the Practitioner�s Black-Scholes model attaches

unreasonably high probabilities to extreme negative events. This result is consistent

with the fact that the Practitioner�s Black-Scholes method gives relatively good results

in-sample but extremely unrealistic implications when we extrapolate it out-of-sample.

In Figure 6 we provide an additional illustration of this phenomenon. In that Þgure,

we compare the smiles that each model can generate with the bid, ask and mid-price

quotes for the same day as in the bootstrap exercise before. Practitioner�s Black-Scholes

tries to Þt a quadratic curve to the smile, at the cost of providing low reliable results at

the extremes (see in particular the out-of-the money area). This picture also shows that

the rather limited amount of skewness allowed by �positive� Gram-Charlier densities

prevents their smile from reproducing the empirical smile as we get deeper in the money.

However, lack of liquidity is stronger in deep in-the-money options, so the real importance

of this result must be taken with some caution. In any case, the SNP density clearly

provides a much better Þt to the empirical smile.

5 Conclusions

In this paper we propose the use as a parametric model of the SNP distribution intro-

duced by Gallant and Nychka (1987) for nonparametric estimation purposes. The SNP

distribution shares the analytical tractability of truncated Gram-Charlier densities, but,

unlike them, it has a density function which is always positive. From the statistical point

of view, we give expressions for the moments and the distribution of linear combinations

of SNP variables. We also construct a standardised SNP variable and compare it with

the standardised Gram-Charlier random variable with positivity restrictions of Jondeau

and Rockinger (2001). In this sense, we show that the SNP distribution provides more

ßexibility in terms of both skewness and kurtosis.

Next, we focus our attention on option pricing. In this respect, we show that if

the log of the underlying asset price has a conditional SNP distribution under the real

measure, and the stochastic discount factor is exponentially affine, which is consistent

with constant relative risk aversion preferences, the log of the underlying asset price

will also have a conditional SNP distribution of the same order under the risk-neutral
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measure. On this basis, we obtain closed form expression for European option prices, as

well as their sensitivity to the model inputs (the �Greeks�). Alternatively, we can obtain

equivalent option prices by directly assuming that the log of the underlying asset price

follows a SNP distribution under the risk-neutral measure, although in this case we must

Þrst determine the risk-neutral drift which guarantees that the martingale restriction is

satisÞed. We also relate our pricing formulas to the ones of Black and Scholes (1973),

Corrado and Su (1996, 1997), and Jurczenko, Maillet, and Negrea (2002a). In this

respect, we show that their formulas can be obtained as second and fourth order Taylor

expansions of our formulas, respectively.

Finally, we carry out an empirical application to the S&P 500 options data of Dumas,

Fleming, and Whaley (1998) in which we evaluate the performance of our pricing for-

mulas using the Black and Scholes (1973) model as a benchmark. We also compare our

model with the so-called Practitioner�s Black-Scholes procedure, which Þts a quadratic

polynomial to the volatility smile, as well as with Gram-Charlier densities with positivity

restrictions. We Þnd that the SNP model generally beats its competitors, both in and out

of sample. Interestingly, we also Þnd a high dispersion in the daily estimates of skewness

and kurtosis. However, we show with a bootstrap exercise that this effect is probably

due to sampling variability. In this sense, we Þnd that the pricing performance of our

model improves out-of-sample if we keep the shape parameters constant over time. It is

also worth mentioning that although the empirical rejection of the Black-Scholes model

is due to the presence of both negative skewness and excess kurtosis, skewness seems to

be relatively more important than excess kurtosis, especially for longer maturities.

A fruitful avenue for future research would be to exploit the relationship between real

and risk-neutral measures in the estimation of our option pricing model by combining

data on the underlying asset price, which is informative about the real measure, with

option price data, which contains information about the risk-neutral measure. It would

also be interesting to explore possible time varying speciÞcations for the parameters of

the model, such as GARCH parametrisations for the volatility (see Heston and Nandi,

2000), and analogous extensions for the remaining shape parameters.
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Appendix

A Properties of Hermite polynomials

The jth derivative of a Hermite polynomial of order k (see Stuart and Ord, 1977), is

dj

dxj
Hk(x) =

s
k!

(k − j)!Hk−j(x)

if j ≤ k, and zero otherwise. Using this result, Hk(a+b) can be expressed as the following
Þnite order Taylor expansion around a

Hk(a+ b) =
kX
j=0

1

j!

dj

dxj
Hk(x)

¯̄̄̄
x=a

bj

=
kX
j=0

1

j!

s
k!

(k − j)!Hk−j(a)b
j (A1)

B Distribution of linear combinations

In this appendix, we study the distribution of linear combinations of SNP variables.

To address this problem, we will rely on the following lemma, which gives the character-

istic function of linear combinations of SNP variables.

Lemma 2 The characteristic function of the distribution of the linear combination of n
i.i.d. SNP variables xk with weights pk, (k = 1, 2, · · · , n)

q =
nX
k=1

pkxk

is

ψq(t) =
nY
k=1

(
exp

µ−p2kt2
2

¶ 2mX
j=0

(ipkt)
j

√
j!
γj

)
.

Notice that ψq(t) can always be written as

ψq(t) = exp

Ã
−t2 kpk2

2

!
2mnX
j=0

(it)j√
j!
kpkj dj (B2)

for some dj = dj(p, γ) j = 1, 2, · · ·n, p = (p1, · · · , pn)0 , γ (ν) = (γ0 (ν) , · · · , γm (ν))0 ,
and kpk =pPn

k=1 p
2
k, where d0 = 1. On this basis, it is easy to Þnd the distribution of

q:
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Proposition 10 The random variable q =
Pn

k=1 pkxk follows a Gram-Charlier distri-
bution with density function

ϕ (q) =
φ
³

q
kpk
´

kpk
2mnX
j=0

djHj

µ
q

kpk
¶
. (B3)

Thus, the distribution of a linear combination of SNP variables can also be written

as the product of a standard normal density and a Þnite but longer sum of Hermite

polynomials. Importantly, the resulting density is always positive by construction.

C Relationship with Gram-Charlier option pricing

models

Although the closed-form solution for the call price in Proposition 8 is easy to imple-

ment in practice, it is not easy to compare it to the Gram-Charlier and Black Scholes

pricing models. For this reason, we have obtained the following alternative expression:

Proposition 11 The call price CSNPt in (37) can be rewritten as the following inÞnite
expansion:

CSNPt = ξ0 + ξ3sk + ξ4(ku− 3) + ζ, (C4)

where

ζ = e−rτ
∞X
k=5

ck

Z ∞

ω

(ST (κ
∗)−K)Hk (κ∗)φ (κ∗) dκ∗,

ξ0 = Ste
(µQ−r)τΦ (d∗1)−Ke−rτΦ (d∗1 − στ ) ,

ξ3 =
1

3!
στSte

(µQ−r)τ £σ2τΦ (d∗1) + (2στ − d∗1)φ (d∗1)¤ ,
ξ4 =

1

4!
στSte

(µQ−r)τ £σ3τΦ (d∗1) + ¡3σ2τ − 3d∗1στ + d∗21 − 1¢φ (d∗1)¤ ,
ω = στ − d∗1,
στ = σQτ,

d∗1 =
log (St/K) + (µ

∗ + σ2/2) τ
σ
√
τ

,

ST (κ
∗) is (26) when regarded as a function of the standardised random variable κ∗, and

the values of ck are given in (16).

Expression (C4) allows us to relate our result to Corrado and Su (1996, 1997), who

proposed an option pricing model that accounts for departures from normality in skew-

ness and kurtosis by means of a Gram-Charlier density like (12), truncated after the
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Þrst Þve elements of the sum (i.e.: ck = 0, for k ≥ 5), and without imposing positivity
restrictions. In this respect, it is important to mention that the original Corrado-Su

formula, apart from containing a mistake in the deÞnition of the Hermite polynomials,

does not satisfy the martingale restriction (33). Both these problems are dealt with in

Jurczenko, Maillet, and Negrea (2002b), who provide an expression for the drift that

satisÞes the martingale restriction under the risk-neutral measure, as well as the cor-

responding option prices. The following result shows that the martingale restriction in

Jurczenko, Maillet, and Negrea (2002b) can be regarded as a truncated version of our

drift model (30), if we disregard the terms in σkτ for k > 4:

Lemma 3 The drift of the risk neutral price model can be written as

µQ = r − 1
τ
log

∙
1 +

sk

3!
σ3τ +

(ku− 3)
4!

σ4τ + o
¡
σ4τ
¢¸
.

On this basis, it is easy to show that the modiÞed Corrado-Su formula is an ap-

proximated version of our call formula in which we only retain the elements in σkτ for

0 ≤ k ≤ 4 in a Taylor expansion of the SNP call pricing formula:

Proposition 12 Consider the call price CSNPt in (C4). Then, if we neglect the term ζ,
CSNPt can be written as

CSNPt = C∗CSt + o
¡
σ4τ
¢
, (C5)

where C∗CSt is the modiÞed Corrado-Su formula (see Jurczenko et al., 2002b)

C∗CSt = C∗BSt + sk Q∗3 + (ku− 3)Q∗4, (C6)

C∗BSt = StΦ(d
∗)−Ke−rτΦ(d∗ − στ),

d∗ =
log (St/K) +

³
r + σ2

2

´
τ

στ

−
log
³
1 + sk

3!
σ3τ +

(ku−3)
4!
σ4τ

´
στ

,

Q∗3 =
στSt (2στ − d∗)φ (d∗)
3!
³
1 + sk

3!
σ3τ +

(ku−3)
4!
σ4τ

´ ,
and

Q∗4 =
στSt (3σ

2
τ − 3d∗στ + d∗2 − 1)φ (d∗)

4!
³
1 + sk

3!
σ3τ +

(ku−3)
4!
σ4τ

´ .
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The main difference between the SNP model and the modiÞed Corrado-Su formula

results from the fact that Corrado and Su do not impose positivity restrictions on the

density. In fact, a statistically correct version of the Corrado-Su model should impose

the positivity restrictions of Jondeau and Rockinger (2001) on the coefficients of the

Gram-Charlier density. In this sense, our SNP assumption, which implicitly guarantees

a non-negative density, leads to a slightly more complex formula for the same number of

parameters (i.e., for m = 2). However, as Proposition 12 shows, if we eliminate the less

important terms in (C4), the same fundamental effects of skewness and kurtosis emerge.

We can further explore the insights of our formula by neglecting the terms in σkτ for

k ≥ 3 in a Taylor expansion of (C6). In this way, we can relate the SNP and the Black-
Scholes model. A similar result is provided in Jurczenko, Maillet, and Negrea (2002b) for

the modiÞed Corrado-Su formula, under the name of �SimpliÞed Corrado-Su formula�.

However, we will not obtain exactly the formula since Jurczenko, Maillet, and Negrea

(2002b) approximate d∗ by d1, which implies that they are effectively discarding some

terms in σ2τ .

Proposition 13 We can write CSNPt as

CSNPt = CBSt + β3sk + β4(ku− 3) + o(σ2τ), (C7)

where CBSt is the Black-Scholes formula in (39), d1 is deÞned in (40) and

β3 =
1

3!
Stστ (στ − d1)φ (d1)

+
1

3!
K exp(−rτ)φ (d1)σ2τ ,

and

β4 =
1

4!
Stστ

¡
d21 − 3d1στ − 1

¢
φ (d1) .

We can also provide an approximate expression for the implied volatility in the SNP

model:

Proposition 14 Let CSNPt denote the market price on a European call option. Then
the implied volatility Ψ for a given moneyness and time to maturity can be written as

Ψ ' σ√τ + eβ3sk + eβ4(ku− 3), (C8)

where eβ3 = 1

3!
στ (2στ − d1) + 1

3!

K

St
exp(−rτ)σ2τ ,

and
�β4 =

1

4!
στ
¡
d21 − 3d1στ − 1

¢
.
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D Proofs

Proposition 1

We know that

1

ν 0ν

"
mX
i=0

νiHi(x)

#2
=

mX
i=0

mX
j=0

νiνj
ν 0ν

Hi (x)Hj (x) =
2mX
k=0

γk (ν)Hk (x) , (D9)

where it is veriÞed that ∀i, j

Hi (x)Hj (x) =
X
q∈Γ

1√
q!

µ
q

i−j+q
2

¶⎛⎝(i−j+q)/2−1Y
s=0

(i− s)
(j−i+q)/2−1Y

s=0

(j − s)
⎞⎠1/2

Hq (x) ,

(D10)

with

Γ =

½
q ∈ N : |i− j| ≤ q ≤ i+ j; i− j + q

2
∈ N

¾
.

We can rewrite (D10) as

Hi (x)Hj (x) =
X
q∈Γ

(i!j!q!)1/2¡
i+j−q
2

¢
!
¡
i+q−j
2

¢
!
¡
q+j−i
2

¢
!
Hq (x)

=
X
q∈Γ

aij,qHq (x)

after verifying that aij,q = aiq,j = aji,q = ajq,i = aqi,j = aqj,i by using some properties of

the binomial coefficients. Hence, we will have that

mX
i=0

mX
j=0

νiνj
ν 0ν

Hi (x)Hj (x) =
mX
i=0

mX
j=0

X
k∈Γ

νiνj
ν 0ν

ai,j,kHk (x) . (D11)

Finally, if we equate (D9) and (D11), we obtain the desired result.

Proposition 2

Consider the expanded SNP density function (4). Then

Ef [Hk (x)] =

∞Z
−∞

φ (x)Hk (x)

Ã
2mX
i=0

γk (ν)Hi (x)

!
dx

=
2mX
i=0

γk (ν)Eφ [Hi (x)Hk (x)]

We can easily obtain (8) by using the property that Eφ [Hi (x)Hk (x)] = 1 if i = k and

zero otherwise.
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Lemma 1

By using Proposition 2 we can directly obtain the matrices:

Ak =

⎛⎝ a00,k
a10,k a11,k
a20,k a21,k a22,k

⎞⎠
for k = 1, . . . , 4 and m = 2. SpeciÞcally,

A1 =

⎛⎝ 0
1 0

0
√
2 0

⎞⎠ ; A2 =

⎛⎝ 0

0
√
2

1 0 2
√
2

⎞⎠ ,
A3 =

⎛⎝ 0
0 0

0
√
3 0

⎞⎠ ; A4 =

⎛⎝ 0
0 0

0 0
√
6

⎞⎠ .
On this basis, we can directly compute Ef [Hk (x)] in (8). Finally, we can apply the

equations in (6) to obtain the values of µ0x (k).

Proposition 3

Note that

Ef
¡
etx
¢
=

2mX
k=0

γk(ν)

Z +∞

−∞
etxHk (x)φ (x) dx

=
2mX
k=0

γk(ν)Eφ
£
etxHk (x)

¤
, (D12)

and that Z
Hk (x)φ (x) dx =

−1√
k
Hk−1 (x)φ (x) . (D13)

If we consider (D13), and integrate by parts (D12), we obtain:

Eφ
£
etxHk (x)

¤
=

h
etxHk−1 (x)φ (x) /

√
k
i+∞
−∞

+
t√
k
Eφ
£
etxHk−1 (x)

¤
=

t√
k
Eφ
£
etxHk−1 (x)

¤
.

where the subindex φ denotes integration with respect to the standard normal density.

By l�Hospital rule, we can then verify that etxHk−1 (x)φ (x)→ 0 ∀k ≥ 1 when x→ ±∞.
Hence,

Eφ
£
etxHk (x)

¤
=

tk√
k!
et
2/2. (D14)
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In addition, given (D12) and (D14), we will have that:

E
¡
eλx
¢
= et

2/2
2mX
k=0

γk(ν)
tk√
k!

= eλ
2/2Λ(θ, t).

On the other hand, the characteristic function can be written as

ψsnp(t) =

+∞Z
−∞

exp (itx)φ (x)
2mX
j=0

γj(ν)Hj (x) dx

=
2mX
j=0

γj(ν)

+∞Z
−∞

exp (itx)φ (x)Hj (x) dx,

where
+∞Z
−∞

exp (itx)φ (x)H0 (x) dx = exp

µ−t2
2

¶
coincides with the characteristic function of a standard normal variable. Then, using

integration by parts we will have that

+∞Z
−∞

exp (itx)φ (x)H1 (x) dx = − exp (itx)φ (x)]+∞−∞ + it
+∞Z
−∞

exp (itx)φ (x) dx

= it exp

µ−t2
2

¶
.

Finally, we can combine the relationships in (2) with

H 0
k(x) =

√
kHk−1(x),

to show by induction that

+∞Z
−∞

exp (itx)φ (x)Hk (x) dx =
(it)k√
k!
exp

µ−t2
2

¶
.

Proposition 4

Consider the generating function of Hermite polynomials (see Bontemps and Med-

dahi, 2005):

exp

µ
zt− t

2

2

¶
=

∞X
k=0

Hk(z)√
k!
tk. (D15)
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Notice that, using both the relation z = a+ bx and (D15), we can write the generating

function as

exp

µ
zt− t

2

2

¶
= exp

µ
b2t2

2

¶
exp

µ
btx− b

2t2

2

¶
exp

µ
at− t

2

2

¶
= exp

µ
b2t2

2

¶( ∞X
s=0

Hs(x)√
s!
(bt)s

)( ∞X
m=0

Hm(a)√
m!

tm

)
. (D16)

If we compute the expected value of the product of the generating function in (D15)

times the Hermite polynomial of order i, both with argument x, where x is a standard

normal variable, we get:

Eφ

∙
exp

µ
(a+ bx)t− t

2

2

¶
Hi(x)

¸
=

∞X
k=0

Eφ [Hk(a+ bx)Hi(x)]√
k!

tk. (D17)

Analogously, we can obtain from (D16) that

Eφ

∙
exp

µ
(a+ bx)t− t

2

2

¶
Hi(x)

¸
= exp

µ
b2t2

2

¶( ∞X
m=0

Hm(a)√
m!

tm

)

×
( ∞X
s=0

Eφ [Hs(x)Hi(x)]√
s!

(bt)s

)
.

If we then combine the orthogonality property of the Hermite polynomials with the

Taylor expansion for the above exponential function, we obtain

Eφ

∙
exp

µ
(a+ bx)t− t

2

2

¶
Hi(x)

¸
=

(bt)i√
i!
exp

µ
b2t2

2

¶ ∞X
m=0

Hm(a)√
m!

tm

=
bi√
i!

∞X
j=0

∞X
m=0

Hm(a)

j!2j
√
m!
b2jt2j+i+m.

Finally, if we deÞne l = 2j + i+m, we can write the above equation as

Eφ

∙
exp

µ
(a+ bx)t− t

2

2

¶
Hi(x)

¸
=
bi√
i!

∞X
j=0

∞X
l=i+2j

Hl−i−2j(a)

j!2j
p
(l − i− 2j)!b

2jtl. (D18)

Next, we can Þnd the coefficients that multiply tk for k = 0, 1, 2, · · · , by comparing (D17)
and (D18):

� When i > k :
Eφ [Hk(a+ bx)Hi(x)] = 0.

� When i = k :
Eφ [Hi(a+ bx)Hi(x)] = b

i.
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� When k > i and k − i is an even number:

Eφ [Hk(a+ bx)Hi(x)] = b
i

r
k!

i!

k−i
2X
j=0

Hk−i−2j(a)

j!
p
(k − i− 2j)!2j b

2j.

� When k > i and k − i is an odd number:

Eφ [Hk(a+ bx)Hi(x)] = b
i

r
k!

i!

k−i−1
2X
j=0

Hk−i−2j(a)

j!
p
(k − i− 2j)!2j b

2j.

Proposition 5

Since we can write yT as yT = δP + λPx
P, the arbitrage free conditions become

EP
£
exp

¡
αλPx

P¢¤ = exp [−αδP − β − rτ ] ,
EP
£
exp

¡
(1 + α)λPx

P¢¤ = exp [− (1 + α) δP − β] .

Then, using Proposition 3, we can easily obtain (22) and (23) from the previous two

equations.

Proposition 6

Using (3) and (25) we can write

fQ (yT ) = exp(rτ) exp(αyT + β)

×
φ
³
yT−δP
λP

´
ν 0νλP

"
mX
i=0

νiHi

µ
yT − δP
λP

¶#2
. (D19)

We can rearrange the elements in (D19) as

fQ (yT ) = exp(rτ + β) exp

µ
αδP +

α2λ2P
2

¶

×
φ

µ
yT−(δP+αλ2P)

λP

¶
ν 0νλP

"
mX
i=0

νiHi

µ
yT − δP
λP

¶#2
(D20)

=
φ
³
yT−δQ
λQ

´
θ0θλQ

"
mX
i=0

θiHi

µ
yT − δQ
λQ

¶#2
, (D21)

where δQ = δP + αλ
2
P, λQ = λP. The parameters in the vector θ = (θ0, θ1, · · · θm) can be

easily obtained by noting that we can always rewrite (D20) in terms of a squared sum of
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Hermite polynomials in (yT − δQ) /λQ. That is, we can always Þnd the value of θ such
that

mX
i=0

θiHi

µ
yT − δQ
λQ

¶
=

mX
i=0

νiHi

µ
yT − δP
λP

¶
. (D22)

Starting from the right-hand side, we can write

mX
i=0

νiHi

µ
yT − δP
λP

¶
=

mX
i=0

νiHi

µ
yT − δQ
λQ

+ αλP

¶
. (D23)

Then, using (A1), we can show that (D23) equals

mX
k=0

kX
j=0

νk
1

j!

s
k!

(k − j)!Hk−j
µ
yT − δQ
λQ

¶
(αλP)

j ,

which, through the change of indices i = k − j becomes
mX
k=0

kX
i=0

νk
1

(k − i)!

r
k!

i!
Hi

µ
yT − δQ
λQ

¶
(αλP)

k−i . (D24)

Now, if we compare (D24) with (D22), it is straightforward to Þnd (29). Finally, we only

need to check that the integrating constants are equal, i.e.

θ0θ = ν 0ν exp
µ
−rτ − β − αδP − α

2λ2P
2

¶
. (D25)

We have already shown that both (D20) and (D21) are proportional. Since both ex-

pressions are well deÞned densities in the sense that both integrate to one, (D25) must

necessarily be satisÞed. In consequence, yT can be written under the risk neutral measure

as

yT = δQ + λQx
Q
T , (D26)

where xQT is a non-standardised SNP variable with parameters θ. Hence, both the real

and the risk-neutral measures have a SNP distribution of the same order. In particular,

if we express the asset price ST under the risk-neutral measure as in (26), where κT =

a(θ) + b(θ)xQT , then we can easily relate the risk-neutral drift and volatility by the

following relations Ã
µQ −

¡
σQ
¢2
2

!
τ + σQ

√
τa(θ) = δQ, (D27)

σQ
√
τb(θ) = λQ. (D28)

From (D28), it is straightforward to obtain (28), while the relationship for the drift can

easily be found by replacing (28) in (D27).
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Proposition 7

Let us start with (27). As we know, (21) implies

1 = EP [Mt,T exp(yT )]

= exp(−rτ)EQ [exp(yT )] .

Hence, since yT can be written as (D26) in the risk neutral measure, we can use (D14)

to show that

exp

µ
rτ − δP − αλ2P −

1

2
λ2P

¶
= Λ (θ, λQ) , (D29)

where Λ (θ, λQ) is given in (31). From (D29), we can write

ασ2b2 (ν) = r − µ− σ
2

2

¡
b2 (ν)− 1¢− σ√

τ
a (ν)− logΛ (θ, λQ) ,

which, once substituted in (27), yields (30).

Proposition 8

Consider the general option formula (36) and equation (19), and express the set

corresponding to {ST > K}, denoted as A for brevity, as {x > d}, where d is given in
Proposition 8. Then, (36) can be rewritten as

CSNPt = St PrQ1 [x > d]−Ke−rτ PrQ [x > d] .

If we apply the limits of integration +∞ and d to the indeÞnite integral (D13), taking

into account that Hk (x)φ (x)→ 0 when x→ +∞ (use L�Hospital rule), thenZ ∞

d

Hk (x)φ (x) dx =
1√
k
Hk−1 (d)φ (d) , k ≥ 1. (D30)

Given (4), (D30) and the fact that γ0 = 1, we can easily compute:

PrQ [x > d] =
2mX
k=0

γk(θ)

Z +∞

d

Hk (x)φ (x) dx

= Φ (−d) +
2mX
k=1

γk(θ)√
k
Hk−1 (d)φ (d) .

Next, we will solve EQ1 [1(A)] = PrQ1 [x > d] by working under the Q-measure, for which

we must apply the Radon-Nikodym derivative, which in this case is just the inverse of

(35), i.e.
dQ1
dQ

= e−rτ
ST
St
= e−rτ+δQ+λQx.
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Then,

EQ1 [1(A)] = EQ

µ
dQ1
dQ

1(A)

¶
= e−rτ+δQ

2mX
k=0

γk(θ)

Z ∞

d

eλxHk (x)φ (x) dx

= e−rτ+δQ
2mX
k=0

γk(θ)Eφ
£
eλQxHk (x)1(A)

¤
. (D31)

For the sake of brevity, deÞne I∗k as Eφ
£
eλQxHk (x)1(A)

¤
. The next step consists in

computing I∗k for each k. When k = 0, the integral is easy to obtain, namely, I∗0 =

eλ
2
Q/2Φ (λ− d). But since γ0 = 1, we can rewrite (D31) as

PrQ1 [x > d] = e
−rτ+δQ

"
eλ

2
Q/2Φ (λQ − d) +

2mX
k=1

γk(θ)I
∗
k

#
.

Now, we will obtain the value of I∗k when k ≥ 1. To do so, we will integrate by parts

taking (D13) into account, which results in

I∗k =

Z ∞

d

eλQxHk (x)φ (x) dx (D32)

= −
h
eλQxHk−1 (x)φ (x) /

√
k
i∞
d
+
λQ√
k

Z ∞

d

eλQxHk−1 (x)φ (x) dx

= −
h
eλQxHk−1 (x)φ (x) /

√
k
i∞
d
+
λQ√
k
I∗k−1.

Since it is veriÞed by applying L�Hospital rule that eλxHk−1 (x)φ (x)→ 0 ∀k ≥ 1 when
x→∞, then

I∗k =
1√
k
eλQdHk−1 (d)φ (d) +

λQ√
k
I∗k−1.

Finally, we can recursively obtain the formula for I∗k given in (38).

Proposition 9

The following derivatives are easily obtained:

∂P2
∂d

= φ (d)

"
−1− d

2mX
k=1

γk(θ)√
k
Hk−1 (d) +

2mX
k=2

γk(θ)

r
k − 1
k
Hk−2 (d)

#
,

∂P1
∂d

= e−rτ+δQ
2mX
k=0

γk(θ)
∂I∗k
∂d
,

∂P1
∂στ

=
∂δQ
∂στ

P1 + e
−rτ+δQ

2mX
k=0

γk(θ)
∂I∗k
∂στ

,
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and
∂d

∂στ
= − 1

λQ

µ
∂δQ
∂στ

+ b(θ)d

¶
.

Let ϕ (d) = eλdφ (d) and consider the following results: φ0 (x) = −xφ (x), H 0
k (x) =√

kHk−1 (x) and ϕ0 (d) = (λ− d)ϕ (d) , where the superscript �0� denotes the Þrst deriva-
tive of a function. The next step is to obtain the remaining derivatives:

∂I∗k
∂d
,
∂I∗k
∂στ
,and ∂δ

∂στ
.

� Let I∗0 = eλ
2
Q/2Φ (λQ − d), then ∂I∗0/∂d = −eλ

2
Q/2φ (λQ − d). Given this result, the

derivative of I∗k , with respect to d when k ≥ 1 is:

∂I∗k
∂d

=
λkQ√
k!

∂I∗0
∂d

+
(λQ − d)ϕ (d)√

k!

k−1X
j=0

p
j!λk−j−1Q Hj (d)

+
ϕ (d)√
k!

k−1X
j=1

p
j
p
j!λk−j−1Q Hj−1 (d) .

� The derivative of I∗0 with respect to στ is:
∂I∗0
∂στ

= eλ
2
Q/2

∙
b(θ)λQΦ (λQ − d) + φ (λQ − d)

µ
b− ∂d

∂στ

¶¸
,

and the derivative of I∗k with respect to στ when k ≥ 1 is:

∂I∗k
∂στ

=
λkQ√
k!

µ
b(θ)k

λQ
I∗0 +

∂I∗0
∂στ

¶
−
∙µ
∂δQ
∂στ

+ d
∂d

∂στ

¶µ
I∗k −

λk√
k!
eλ

2/2Φ (λQ − d)
¶¸

+
b(θ)ϕ (d)√

k!

k−1X
j=0

p
j! (k − j − 1)λk−j−2Hj (d)

+
ϕ (d)√
k!

∂d

∂στ

k−1X
j=1

p
j
p
j!λk−j−1Q Hj−1 (d) .

� Finally, given µ∗ in (30), we can express δQ as

δQ = rτ − b
2(θ)σ2τ
2

− logΛ(θ, λQ).

Then
∂δQ
∂στ

= −b(θ)λQ − 1

Λ(θ, λQ)στ

2mX
k=1

γk(θ)λ
k
Qk√

k!
.
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Lemma 2

Due to the independence of the variables x1, x2, · · · , xn, we can transform the n-

dimensional integral

ψq(t) =

+∞Z
−∞

· · ·
+∞Z
−∞

exp (itq1) dF (x1) · · · dF (xn)

into n one-dimensional integrals, each of which corresponds to the characteristic function

of a SNP variable:

ψq(t) =

+∞Z
−∞

exp (itp1x1) dF (x1) · · ·
+∞Z
−∞

exp (itpnxn) dF (xn)

=
nY
k=1

ψSNP (pkt),

which yields the required result.

Proposition 10

If we compute the density function of (B3), we will have that

+∞Z
−∞

exp (itq)
φ
³

q
kpk
´

kpk
2mnX
j=0

djHj

µ
q

kpk
¶
dq

which, with the change of variable x = q/ kpk, becomes
+∞Z
−∞

exp (it kpkx)φ (x)
2mnX
j=0

djHj (x) dx.

Then, we can use Proposition 3 to conclude that the result of the previous integral is

(B2).

Proposition 11

Given (26) for ST where κ
∗ has a pdf deÞned in (14), and considering (17), we have

that

g (κ∗) = φ (κ∗)
∞X
k=0

ckHk (κ
∗)

= φ (κ∗)

"
1 +

sk√
3!
H3 (κ

∗) +
ku− 3√
4!

+
∞X
k=5

ckHk (κ
∗)

#
.
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Therefore, the call price CSNPt can be rewritten as:

CSNPt = ξ0 + ξ3sk + ξ4(ku− 3) + ζ
= e−rτ

Z ∞

ω

(ST (κ
∗)−K)φ (κ∗) dκ∗

+
sk√
3!
e−rτ

Z ∞

ω

(ST (κ
∗)−K)H3 (κ∗)φ (κ∗) dκ∗

+
ku− 3√
4!
e−rτ

Z ∞

ω

(ST (κ
∗)−K)H4 (κ∗)φ (κ∗) dκ∗

+e−rτ
∞X
k=5

ck

Z ∞

ω

(ST (κ
∗)−K)Hk (κ∗)φ (κ∗) dκ∗,

where ω is such that ST (ω) = K. Next, we will compute the values of ξ.

� For ξ0:

ξ0 = e−rτ
Z ∞

ω

(ST (κ
∗)−K)φ (κ∗) dκ∗

= Ste
−rτ+µτ

Z ∞

ω

eστκ
∗
φ (κ∗) dκ∗ −Ke−rτΦ (−ω)

= Ste
(µQ−r)τΦ (d∗1)−Ke−rτΦ (d∗1 + στ) ,

where µτ =
¡
µQ − σ2/2¢ τ and d∗1 = στ − ω.

To obtain ξ3 and ξ4, we will use (38) and (D30). SpeciÞcally:

� For ξ3:

ξ3 =
1√
3!
e−rτ

Z ∞

ω

(ST (κ
∗)−K)H3 (κ∗)φ (κ∗) dκ∗

=
1√
3!

½
Ste

−rτ+µτ
Z ∞

ω

eστκ
∗
H3 (κ
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where I∗3 (στ , ω) denotes the value of I
∗
k for k = 3 as a function on (στ , ω) instead

of (λ, d). Since
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Plugging I∗3 (στ , ω) into equation (D33), we Þnally obtain
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Following the same idea as Jurczenko, Maillet, and Negrea (2002a), we can write:

(στ − ω)2 = ω2 + 2 log
¡
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¢
,

so that
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which implies that

Kφ (ω) = Ste
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If we substitute the above equation into (D34), we obtain:
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Following the same procedure as in ξ3, we can show that:
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From (30), we have
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where
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Then, from Proposition 1 we obtain that
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Next, if we use the property that o(np)o(nq) = o(np+q) (see Davidson and MacKinnon,

1993), we will have
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Finally, we can use tedious but otherwise straightforward algebraic operations to show

that a Taylor expansion of the argument in the logarithm of (D35) around στ = 0 yields

the proposed result.
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Proposition 12

We can rewrite (C4) as
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where we have neglected ζ. From lemma 3, we Þnally have that
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CSNPt = StΦ (d
∗
1)−Ke−rτΦ (d∗1 − στ)

+
sk

3!
στSt

(2στ − d∗1)φ (d∗1)
1 + sk

3!
σ3τ +

(ku−3)
4!
σ4τ

+
(ku− 3)
4!

στSt
(3σ2τ − 3d∗1στ + d∗21 − 1)φ (d∗1)

1 + sk
3!
σ3τ +

(ku−3)
4!
σ4τ .

(D37)

Then, using again lemma 3, we can obtain the relationship

d∗1 = d
∗ + o

¡
σ4τ
¢
,

which, once introduced in (D37), yields the Corrado-Su modiÞed formula after neglecting

the terms o (σ4τ).

Proposition 13

Expanding d∗1 around d1, we have
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Then, we can easily take a Taylor series expansion of (D37) around στ = 0. If we only

retain the terms in σkτ , for k = 0, 1, 2, we Þnally obtain the desired result.

Proposition 14

Ψ is the implied volatility that equates the call market price Ct to the Black-Scholes

formula, i.e. Ct = C
BS
t (Ψ) where CBSt (.) is the Black-Scholes formula in (39). Following

Jurczenko, Maillet, and Negrea (2002a), we can take a linear approximation of (39)

around the true volatility στ of the underlying asset
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t (Ψ) = CBSt (στ) +

∂CBSt (x)
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Since
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= Kφ [d1 (στ)− στ ] = Sterτφ [d1 (στ)] ,

then

Ct ' CBSt (στ) + Stφ [d1 (στ)] (Ψ− στ ) . (D38)

Finally, if the call market price follows the SNP model, i.e. Ct = C
SNP
t , we can equate

(C7) and (D38) to obtain the approximation to Ψ given in (C8).
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Table 1a

In-sample RMSE for the short maturity group with time-varying parameters.

Moneyness Black-Scholes Pract. Black-Scholes Jondeau-Rockinger SNP N

< 0.94 0.488 0.127 0.216 0.116 65
0.94-0.97 0.542 0.137 0.209 0.111 287
0.97-1.00 0.489 0.143 0.193 0.126 450
1.00-1.03 0.291 0.176 0.156 0.139 439
1.03-1.06 0.662 0.160 0.166 0.131 434
>1.06 0.732 0.284 0.432 0.338 1,176
Total 0.611 0.218 0.310 0.239 2,851

Table 1b

Out-of-sample RMSE for the short maturity group with time-varying parameters.

Moneyness Black-Scholes Pract. Black-Scholes Jondeau-Rockinger SNP N

< 0.94 0.637 0.079 0.391 0.039 2
0.94-0.97 0.855 0.238 0.759 0.431 40
0.97-1.00 1.044 0.531 0.841 0.665 91
1.00-1.03 0.836 0.721 0.770 0.748 107
1.03-1.06 1.041 1.141 0.677 0.760 106
>1.06 1.069 5.956 0.882 0.851 259
Total 1.008 3.944 0.815 0.768 605

Table 1c

In-sample RMSE for the long maturity group with time-varying parameters.

Moneyness Black-Scholes Pract. Black-Scholes Jondeau-Rockinger SNP N

< 0.94 1.877 0.326 0.837 0.258 360
0.94-0.97 1.634 0.284 0.626 0.209 366
0.97-1.00 1.196 0.244 0.376 0.191 458
1.00-1.03 0.634 0.222 0.332 0.215 475
1.03-1.06 0.974 0.247 0.459 0.166 440
>1.06 1.661 0.381 0.452 0.287 1,600
Total 1.464 0.320 0.502 0.245 3,699

Table 1d

Out-of-sample RMSE for the long maturity group with time-varying parameters.

Moneyness Black-Scholes Pract. Black-Scholes Jondeau-Rockinger SNP N

< 0.94 2.045 0.402 0.853 0.597 36
0.94-0.97 2.165 0.944 0.960 0.750 58
0.97-1.00 1.666 0.984 1.000 0.936 65
1.00-1.03 1.130 0.858 1.106 1.094 89
1.03-1.06 1.367 0.770 0.985 0.923 93
>1.06 1.841 1.948 0.918 1.170 253
Total 1.715 1.422 0.968 1.033 594

Notes: In-sample analysis uses different parameters for each Wednesday from 1988 to 1992, while Out-

of-sample tables use the parameters estimated on the previous Wednesday during 1993. Moneyness is

deÞned as the ratio of the implicit forward price of the underlying asset to the strike price. N denotes

the number of option prices per moneyness category.
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Table 2a

In-sample RMSE for the short maturity group with Þxed shape parameters.

Moneyness Black-Scholes Pract. Black-Scholes Jondeau-Rockinger SNP N

< 0.94 0.488 0.211 0.450 0.231 65
0.94-0.97 0.542 0.297 0.456 0.257 287
0.97-1.00 0.489 0.286 0.403 0.246 450
1.00-1.03 0.291 0.218 0.274 0.206 439
1.03-1.06 0.662 0.294 0.283 0.293 434
>1.06 0.732 0.503 0.303 0.442 1,176
Total 0.611 0.384 0.357 0.343 2,851

Table 2b

Out-of-sample RMSE for the short maturity group with Þxed shape parameters.

Moneyness Black-Scholes Pract. Black-Scholes Jondeau-Rockinger SNP N

< 0.94 0.637 0.129 0.225 0.132 2
0.94-0.97 0.855 0.554 0.407 0.427 40
0.97-1.00 1.044 2.697 0.668 0.695 91
1.00-1.03 0.836 3.088 0.724 0.719 107
1.03-1.06 1.035 1.742 0.638 0.632 106
>1.06 1.064 1.138 0.882 0.814 259
Total 1.005 1.967 0.759 0.728 605

Table 2c

In-sample RMSE for the long maturity group with Þxed shape parameters.

Moneyness Black-Scholes Pract. Black-Scholes Jondeau-Rockinger SNP N

< 0.94 1.877 0.582 0.851 0.553 360
0.94-0.97 1.634 0.526 0.636 0.454 366
0.97-1.00 1.196 0.406 0.406 0.356 458
1.00-1.03 0.634 0.270 0.343 0.265 475
1.03-1.06 0.974 0.312 0.449 0.253 440
>1.06 1.661 0.587 0.530 0.514 1,600
Total 1.464 0.501 0.540 0.444 3,699

Table 2d

Out-of-sample RMSE for the long maturity group with Þxed shape parameters.

Moneyness Black-Scholes Pract. Black-Scholes Jondeau-Rockinger SNP N

< 0.94 2.045 1.635 0.765 0.419 36
0.94-0.97 2.153 4.179 0.898 0.720 58
0.97-1.00 1.654 9.822 1.012 0.987 65
1.00-1.03 1.102 10.088 1.047 0.988 89
1.03-1.06 1.358 7.003 0.923 0.882 93
>1.06 1.838 3.541 0.848 0.905 253
Total 1.703 6.405 0.912 0.887 594

Notes: In-sample analysis uses different volatility parameters for each Wednesday, but all the other

parameters are kept Þxed, from 1988 to 1992. Out-of-sample tables use for each week in 1993 the

volatility estimated in the previous week while the remaining parameters are those estimated for the

Þrst Þve years. Moneyness is deÞned as the ratio of the implicit forward price of the underlying asset

to the strike price. N denotes the number of option prices per moneyness category.
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Figure 1
Regions of skewness and kurtosis
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Figure 2
Flexibility to model departures from Black-Scholes
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Note: This figure shows the minimum and maximum European call prices that each
distribution can yield for a strike price of 100, a maturity of 3 months and a risk
free interest rate of 3%.



Figure 3a
Skewness and kurtosis for the short
maturity group with time-varying

parameters
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Figure 3b
Skewness and kurtosis for the long maturity

group with time-varying parameters
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Figure 3c
Skewness and kurtosis of the bootstrapped

call prices
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Figure 3d
Skewness and kurtosis for fixed parameters

−3 −2 −1 0 1 2 3
1

2

3

4

5

6

7

8

9

10

11

ku
rt

o
si

s

skewness

SNP Short
SNP Long
JR Short
JR Long

Notes: The results in figures 3a and 3b correspond to separate estimations for each
Wednesday in-sample, while to obtain figure 3d all parameters except volatility are as-
sumed to be the same in the whole sample. SNP refers to a semi-nonparametric distribu-
tion of order 2. JR denotes Jondeau and Rockinger’s option pricing model, and “Short”
and “Long” denote the short and long maturity groups.



Figure 4
Volatility estimates for the short maturities
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Note: “Fixed SNP” assumes ν to be constant, while “Changing SNP” allows it to
be time varying. Both cases refer to a semi-nonparametric distribution of order 2.



Figure 5a
Risk-neutral density of log(ST /St) for the

short maturity group
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Figure 5b
Left tail of the risk-neutral density of

log(ST /St) for the short maturity group
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Figure 5c
Risk-neutral density of log(ST /St) for the

long maturity group
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Figure 5d
Left tail of the risk-neutral density of

log(ST /St) for the long maturity group
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Notes: These results are based on the volatility estimated on November 13, 1991, but
the shape parameters are estimated using data between 1988 and 1992. Pract. BS
denotes a model in which volatility is a quadratic function of moneyness. SNP refers
to a seminonparametric distribution of order 2.



Figure 6:
Implied volatility on November 13, 1991
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Note: All models used in Figure 4 assume time varying volatilities but constant
shape parameters. Moneyness defined as log(St/K) + r(T − t). SNP refers to a
seminonparametric distribution of order 2.


