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Abstract

This paper estimates a mixture multiplicative error model for the implied volatil-
ities of both call and put options on the Nikkei 225 index. Diagnostics show that
the mixture multiplicative model is a good fit to the data, and it outperforms a
multiplicative model with no mixture components. The forecast performance of the
mixture model is superior to that of simpler models for Nikkei call implied volatility,
but the directional forecast accuracy of an ARIMA model is slightly better than that
of multiplicative models for Nikkei put implied volatility.
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1 Introduction

Reliable volatility forecasts can greatly benefit professional option traders, market mak-
ers who need to price derivatives, and all investors with risk management concerns.
Implied volatilities, which can be garnered from option markets, can be particularly
useful in such contexts as they are forward-looking measures of the market’s expected
volatility during the remaining life of an option. A correct view of the direction of change
in implied volatility can facilitate entering into profitable positions in option markets,
and an expected change in the level of market volatility may lead to a need to change
stock portfolio weights or composition.

Implied volatility has traditionally been modeled with ARMA and other linear re-
gression models (e.g. Harvey & Whaley (1992) and Brooks & Oozeer (2002)), or with
ARMA models with exogenous regressors and GARCH errors (Ahoniemi (2006)). How-
ever, a new class of models, so-called multiplicative models, have been used successfully
in recent years to model volatility.

Engle & Gallo (2006), using data on the S&P 500 index, estimate a system of mul-
tiplicative error models for squared log returns, the square of the high-low price range,
and realized volatility. They compute one-month-ahead forecasts and use them as ex-
planatory variables in an AR(1) model for the VIX index, an index of S&P 500 index
option implied volatility. The conclusion is that the forecasts from the multiplicative
specification have significant explanatory power in modeling the value of the VIX.

Lanne (2006) builds a mixture multiplicative error model for the realized volatility
of the Deutsche Mark and Japanese Yen against the U.S. dollar. He finds that the in-
sample fit of the model is superior to that of ARFIMA models, and forecasts outperform
those from several competing models, including ARFIMA and GARCH models.

Multiplicative models are similar in structure to autoregressive conditional duration
(ACD) models, which were introduced by Engle & Russell (1998) and have since led
to an abundance of research1. So far, multiplicative modeling has not been applied to
implied volatility.

This paper models the implied volatility (IV) time series of call and put options
on the Nikkei 225 index with a mixture multiplicative model similar to that in Lanne
(2006). The model allows for two mean equations and two error distributions, allowing
days of large shocks to be modeled separately from more average trading days. The
model specification is a good fit to both the call and put IV time series, and produces
forecasts with directional accuracy of up to 69.1%. For the Nikkei call IV time series,
multiplicative models outperform ARIMA models as directional forecasters, but for the
put IV, ARIMA models fare just as well or even better than multiplicative models.

The paper is structured as follows. Section 2 presents the mixture multiplicative
error model, and Section 3 describes the data used in the study, the estimation results,
and diagnostics. Section 4 analyzes the forecasts from various competing models, and
Section 5 concludes.

2 The mixture-MEM model

Multiplicative error models (MEM) were first suggested by Engle (2002) for modeling
financial time series. Due to the way they are set up, multiplicative models can be used

1See e.g. Bauwens & Giot (2003), Ghysels et al. (2004), Manganelli (2005), Fernandes & Grammig
(2006) and Meitz & Teräsvirta (2006).
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for time series that always receive non-negative values, such as the time interval between
trades, the bid-ask spread, trading volume, or volatility. In traditional regression models,
logarithms are normally taken from time series data in order to avoid negative forecasts,
but this is not necessary with MEM models.

MEM models differ from traditional, linear regression models in that the mean equa-
tion µt is multiplied with the error term εt:

IVt = µtεt (1)

where IVt is the implied volatility time series under analysis. Shocks can be assumed to
be iid with mean 1 from a non-negative distribution. In this particular study, a mixture
multiplicative error model (MMEM) similar to that in Lanne (2006) has been estimated.
In such a specification, there are two possible mean equations:

µ1t = ω1 +
q1∑

i=1

α1iIVt−i +
p1∑

j=1

β1jµ1,t−j (2)

µ2t = ω2 +
q2∑

i=1

α2iIVt−i +
p2∑

j=1

β2jµ2,t−j (3)

Therefore, µt depends on q past observations of implied volatility and p past expected
implied volatilities, and the model is specified as MMEM(p1, q1; p2, q2). This autoregres-
sive form for the mean equations can help to capture possible clustering in the data.
Clustering is often present in financial time series, i.e. small (large) changes are more
likely to be followed by small (large) changes. The mixture specification is also extended
into the error term, with the error terms coming from two gamma distributions with
possibly different shape and scale parameters. Engle (2002) suggested the exponential
distribution for the error term, but the gamma distribution is more general, as it nests
e.g. the exponential distribution and the χ2 distribution.

The time-varying conditional mean and possibility for a mixture of two gamma dis-
tributions bring considerable flexibility into the model. These elements can help model
the fact that in financial time series, periods of business-as-usual alternate with periods
of large shocks, which can be captured by the second mixture components of the model.
The probability parameter π (0 < π < 1) dictates which state the model is in, i.e. the
conditional mean is µ1t and errors ε1t with probability π, and the conditional mean is
µ2t and errors ε2t with probability (1− π).

The conditional mean equations reveal that MEM (and ACD) models are similar in
structure to GARCH models. Therefore, parameter constraints that apply to GARCH
models also apply to MEM models (see Section 3.2 for further discussion). The shape
and scale parameters of the gamma distributions are constrained so that with ε1t ∼
Gamma(γ1, δ1), δ1 = 1/γ1 and with ε2t ∼ Gamma(γ2, δ2), δ2 = 1/γ2, or so that the
scale parameter is the inverse of the shape parameter, which ensures that the error term
will have mean unity.

When employing maximum likelihood (ML) estimation for the MEM model with
mixture components, the conditional distribution of IVt is:
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f(IVt; θ) = π
1

µ1tΓ(γ1)δ
γ1
1

(
IVt

µ1t

)γ1−1

exp

(
− IVt

δ1µ1t

)
+

(1− π)
1

µ2tΓ(γ2)δ
γ2
2

(
IVt

µ2t

)γ2−1

exp

(
− IVt

δ2µ2t

)
(4)

where θ is the parameter vector and Γ(·) is the gamma function. The log-likelihood
function can then be written as:

`(θ) =
T∑

t=1

ln[ft−1(IVt)] (5)

3 Estimation

3.1 Data

The underlying asset for the option data used in this study is the Nikkei 225 index,
which is a price-weighted average of 225 Japanese companies listed on the Tokyo Stock
Exchange and likely to be the most closely followed stock index in Asian markets. The
currency of denomination for the Nikkei 225 index is the Japanese Yen. The component
stocks of the index are reviewed once a year. The Nikkei 225 reached its all-time high in
December 1989, topping 38,900 at the time. In the sample used in this study, the index
value ranges from 7,608 to 23,801.

Data on the implied volatility of options on the Nikkei 225 index was obtained from
the Bloomberg Professional Service for both Nikkei 225 index call and put options for
the time period 1.1.1992 - 31.12.2004. The graphs of the time series of Nikkei 225 call
and put IV are shown in Figure 1. The use of separate time series of IV from calls and
puts can offer new insights into the analysis, and e.g. benefit investors wishing to trade
in only either call or put options.

The time series for put-side IV reacts particularly strongly on 9/11, which is a logical
reflection of the plummet in stock prices and the ensuing panic selling that took place at
the time. This high market uncertainty would have raised the demand for put options
more than the demand for call options.

The IV time series are calculated daily as the unweighted average of the Black-
Scholes implied volatilities of two near-term nearest-to-the-money options. Near-term
options tend to be most liquid, and therefore have the most accurate prices. Options
on the Nikkei 225 index are available with maturity dates for every month. Days when
public holidays fall on weekdays, or when there was no change in the value of call or
put implied volatility, were omitted from the data set. After this modification, the full
sample contains 3,194 observations.

Descriptive statistics for the Nikkei 225 call (NIKC) and put (NIKP) implied volatil-
ity time series are given in Table 1. The IV of puts has been slightly more volatile
during the time period in question. Both series are skewed to the right and they display
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Figure 1: Nikkei 225 index call implied volatility (upper panel) and put implied volatility (lower panel)

1.1.1992 - 31.12.2004.
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excess kurtosis. The autocorrelations for NIKC and NIKP are displayed in Figure 2,
revealing the relatively high degree of persistence in the data. A unit root is rejected by
the Augmented Dickey-Fuller test for both NIKC and NIKP.

NIKC NIKP
Maximum 70.84 74.87
Minimum 9.26 8.80

Mean 24.68 24.82
Median 23.42 23.84

Standard deviation 7.07 7.41
Skewness 1.10 0.94

Excess kurtosis 2.42 1.79

Table 1: Descriptive statistics for NIKC and NIKP for the full sample of 1.1.1992 - 31.12.2004.
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Figure 2: Autocorrelations for NIKC (upper panel) and NIKP (lower panel). The dashed lines mark the

95% confidence interval.

3.2 Model estimation

The in-sample period used in model estimation covered 2,708 observations from 2.1.1992
to 30.12.2002. The base case in the estimation was the MMEM(1,2;1,2) model, which
was found to be the best specification for the exchange rate realized volatility time series
used by Lanne (2006). However, the coefficient for α22 was not statistically significant
for NIKC or NIKP, so a (1,2;1,1) specification was also estimated for both time series.
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Table 2 presents the coefficients and log-likelihoods of the estimated models. As the
change in log-likelihoods is minimal, it can be concluded that the parameter α22 can be
dropped from the models.

NIKC NIKP
MMEM(1,2;1,2) MMEM(1,2;1,1) MMEM(1,2;1,2) MMEM(1,2;1,1)

Log likelihood -6422.82 -6422.85 -6384.90 -6385.10

π
0.821 0.822 0.940 0.940

(0.000) (0.000) (0.000) (0.000)

γ1
145.689 145.495 113.177 113.300
(0.000) (0.000) (0.000) (0.000)

ω1
0.264 0.261 0.288 0.292

(0.002) (0.002) (0.000) (0.000)

α11
0.637 0.638 0.573 0.571

(0.000) (0.000) (0.000) (0.000)

α12
-0.255 -0.261 -0.183 -0.177
(0.000) (0.000) (0.000) (0.000)

β1
0.606 0.610 0.595 0.590

(0.000) (0.000) (0.000) (0.000)

γ2
26.553 26.541 19.437 19.346
(0.000) (0.000) (0.000) (0.000)

ω2
0.674 0.717 3.528 2.228

(0.092) (0.060) (0.240) (0.148)

α21
0.339 0.324 0.543 0.587

(0.000) (0.000) (0.021) (0.005)

α22
-0.031 - 0.324 -
(0.808) - (0.491) -

β2
0.6742 0.657 0.119 0.409
(0.000) (0.000) (0.810) (0.001)

Table 2: Estimation results for the MMEM(1,2;1,2) and MMEM(1,2;1,1) models for NIKC and NIKP.

P-values for the significance of the coefficients are given in parentheses.

The estimated coefficients satisfy the constraints outlined in Nelson & Cao (1992)
for GARCH models. For the (1,2) model, the constraints are:

ωi ≥ 0

αi1 ≥ 0

0 ≤ βi < 1

β1αi1 + αi2 ≥ 0

with i = 1, 2. Therefore, in contrast to a (1,1) model, αi2 can be negative.
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Figure 3 shows the estimated densities of the error terms from the MMEM(1,2;1,1)
model for NIKC and NIKP. The densities for the more common, business-as-usual com-
ponent of the model are more concentrated around 1, and the densities for the second
mixture component are more dispersed and skewed to the right.
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Figure 3: Estimated densities of error terms from the MMEM(1,2;1,1) model for NIKC (left) and NIKP

(right). The solid line is the density of ε1t and the dashed line is the density of ε2t.

With financial market data, it may be that only the most recent history is relevant in
modeling and forecasting, so the MMEM(1,2;1,2) and MMEM(1,2;1,1) models were also
estimated for NIKC and NIKP using only the past 500 observations. This corresponds
to an in-sample of 20.12.2000 - 30.12.2002. The estimation results for this specification
are given in Table 3. As before, α22 is excluded from the models when choosing which
models to use for forecasts.

In order to investigate the necessity of the mixture components of the model, a
MEM(1,2) specification (i.e., a model with only one mean equation and error distribu-
tion) was also estimated for both the call and put IV time series. The results of this
estimation are given in Table 4. Coefficients are not statistically significant, and the pa-
rameters of the gamma distribution are very different from those for the MMEM models
(see also Figure 4).
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Figure 4: Estimated density of error terms from the MEM(1,2) model for NIKC and NIKP.

3.3 Diagnostics

Due to the use of the gamma distribution, it is not possible to conduct many standard
diagnostic tests for the MMEM models, as such tests assume a normal distribution.
In-sample diagnostic checks can be made by analyzing the so-called probability inte-
gral transforms of the data, as proposed by Diebold et al. (1998) and employed by
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NIKC NIKP
MMEM(1,2;1,2) MMEM(1,2;1,1) MMEM(1,2;1,2) MMEM(1,2;1,1)

Log likelihood -1227.03 -1227.37 -1200.32 -1200.69

π
0.871 0.870 0.928 0.930

(0.000) (0.000) (0.000) (0.000)

γ1
145.999 146.208 146.099 145.589
(0.000) (0.000) (0.000) (0.000)

ω1
0.644 0.654 0.894 0.880

(0.011) (0.011) (0.023) (0.026)

α11
0.505 0.491 0.458 0.452

(0.000) (0.000) (0.000) (0.000)

α12
-0.268 -0.248 0.035 0.042
(0.000) (0.001) (0.653) (0.597)

β1
0.741 0.735 0.475 0.475

(0.000) (0.000) (0.000) (0.000)

γ2
27.251 27.471 24.841 24.656
(0.000) (0.000) (0.004) (0.004)

ω2
0.000 0.000 1.495 1.522

(0.000) (0.060) (0.728) (0.667)

α21
0.487 0.633 0.367 0.548

(0.077) (0.006) (0.367) (0.060)

α22
0.469 - 0.411 -

(0.446) - (0.456) -

β2
0.025 0.353 0.223 0.427

(0.969) (0.139) (0.680) (0.167)

Table 3: Estimation results for the MMEM(1,2;1,2) and MMEM(1,2;1,1) models for NIKC and NIKP

with an in-sample of 500 observations. P-values for the significance of the coefficients are given in

parentheses.
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NIKC NIKP

Log likelihood 33.31 33.57

γ1
4.485 4.476

(0.000) (0.000)

ω
1.487 1.558

(0.830) (0.839)

α1
0.464 0.484

(0.520) (0.508)

α2
-0.188 -0.166
(0.894) (0.921)

β1
0.663 0.616

(0.630) (0.715)

Table 4: Estimation results for the MEM(1,2) model for NIKC and NIKP. P-values for the significance

of the coefficients are given in parentheses.

e.g. Bauwens et al. (2004) and Lanne (2006). The probability integral transforms are
computed as:

zt =
∫ IVt

−∞
ft−1(u)du (6)

where ft−1 is the conditional density of IVt relating to the model under analysis. The
framework of Diebold et al. (1998) was developed to evaluate density forecasts, but can
be used for in-sample diagnostics as well. The diagnostics are based on the idea that the
sequence of probability integral transforms of a model’s density forecasts are iid uniform
U(0, 1) if the model specification is correct. Diebold et al. (1998) recommend the use of
graphical procedures to interpret the fit of the models, which makes the approach simple
to use and also easily gives clues as to where a misspecification may lie.

Figure 5 plots 25-bin histograms of the probability integral transforms of both NIKC
and NIKP with the MMEM(1,2;1,1) model for estimations from the entire in-sample as
well as a sample of 500 observations. All columns fall within the 95% confidence interval,
so the model specification succeeds in taking account of the tails of the conditional
distribution for both NIKC and NIKP2. This holds true even when using only 500
observations in the estimation.

As a second diagnostic check, autocorrelation functions based on demeaned proba-
bility integral transforms and their squares were computed (see Figures 6 and 7). There
is some autocorrelation in the demeaned probability integral transforms of NIKP, as
well as in the squares of demeaned zt for both NIKC and NIKP. The autocorrelation in
squares was also present in the data of Lanne (2006). The situation improves clearly
when using only 500 observations in the model estimation3.

2With a perfect model, zt would be uniformly distributed and the columns of the histogram would
all be of exactly the same height. The confidence interval is calculated without taking estimation error
into account.

3The addition of the statistically insignificant parameter α22 to the diagnostic analysis does not
improve the autocorrelations.
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Figure 5: Histograms of probability integral transforms for NIKC (upper left panel) and NIKP (lower

left panel) with the MMEM(1,2;1,1) model. Histograms for the MMEM(1,2;1,1) model estimated with

500 observations are given on the right. The dotted lines depict the boundaries of the 95% confidence

interval.

Figure 6: Autocorrelation functions of demeaned probability integral transforms (upper panels) and

their squares (lower panels) from the MMEM(1,2;1,1) model. NIKC on left and NIKP on right. The

dotted lines depict the boundaries of the 95% confidence interval.

Figure 7: Autocorrelation functions of demeaned probability integral transforms (upper panels) and

their squares (lower panels) from the MMEM(1,2;1,1) model estimated with 500 observations. NIKC on

left and NIKP on right. The dotted lines depict the boundaries of the 95% confidence interval.

11



The necessity of using the mixture-MEM model specification is underscored when
inspecting the histogram of probability integral transforms with the MEM(1,2) model
(Figure 8). With no mixture component, the tails of the conditional distribution are
not modeled properly, with too much emphasis on the mid-range of the distribution.
The poor fit of the MEM(1,2) model is also visible in autocorrelation functions (Figure
9), with autocorrelations from even the level series falling well beyond the confidence
interval.
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Figure 8: Histograms of probability integral transforms with the MEM(1,2) model for NIKC (upper

panel) and NIKP (lower panel). The dotted lines depict the boundaries of the 95% confidence interval.

Figure 9: Autocorrelation functions of demeaned probability integral transforms (upper panels) and

their squares (lower panels) with the MEM(1,2) model. NIKC on left and NIKP on right. The dotted

lines depict the boundaries of the 95% confidence interval.

4 Forecasts

Forecasts were calculated from the chosen model specification of MMEM(1,2;1,1) as well
as from several competing models in order to assess the value of this modeling approach
for option traders and other investors. Of the 3,194 observations in the full sample, the
last 486 trading days were left as an out-of-sample period. This corresponds to 1.1.2003
- 31.12.2004.

In addition to the MMEM(1,2;1,1) model estimated from the entire in-sample, fore-
casts were calculated from the MMEM(1,2;1,1) model using 500 observations, as well
as from the MEM(1,2) model, which is expected to fare much worse in the forecast
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evaluation. Forecasts were calculated by keeping the estimated coefficients constant
throughout the out-of-sample period as well as by updating the coefficients each day. In
this case, the sample size was kept constant (2,708 or 500 observations), with the furthest
observation dropped and the newest observation added each day. In this alternative, the
most recent information is incorporated into the model estimation, which may result in
added value if the coefficients are not stable over time.

In practise, the forecasts from MMEM models are calculated as shown in Equation
7:

ÎV t+1 = πµ̂1,t+1 + (1− π)µ̂2,t+1 (7)

For comparison, ARIMA models were also estimated for the log time series of NIKC
and NIKP. This was done in order to see if the MEM specification has added value over
more traditional time series models. The chosen specifications are ARIMA(2,0,1) and
ARIMA(1,1,1). The former is based on values of the Schwarz Information Criterion for
models estimated from the level series and the latter on the previous finding that for the
VIX Volatility Index, the ARIMA(1,1,1) specification is best suited for the differenced
time series (Ahoniemi (2006)).

ARIMAX variants of both these models were also estimated, where the exogenous
regressors are the positive and negative log returns of the Nikkei 225 index. The re-
turns of the underlying index have been found to be significant explanatory variables for
changes in IV, and the separation of positive and negative returns allows for asymmetric
effects: negative shocks often raise volatility more than positive shocks. The ARIMAX
model is estimated as in Equation 8, where POS and NEG are the positive and negative
log returns of the Nikkei 225 index. All ARIMA and ARIMAX models were estimated
with rolling samples, with coefficients updated each day.

IVt = ci +
q∑

i=1

αiIVt−i +
p∑

i=1

βiεt−i + δ1POSt−1 + δ2NEGt−1 + εt (8)

The forecast performance of the various models in summarized in Table 5. Perfor-
mance is evaluated primarily with directional accuracy, and secondly with mean squared
error. Option traders can potentially enter into profitable positions in the market if their
expected directional change in IV (up or down) is correct. On the other hand, the level
of future volatility is of value from a risk management point of view.

In general, it appears to be somewhat easier to forecast NIKC than NIKP. The
results indicate that the coefficients of the MMEM(1,2;1,1) model are stable over time
when using the entire in-sample for estimation. The directional accuracy of the model
is exactly the same with fixed and updating coefficients for both NIKC and NIKP.
Therefore, it would seem that when using a sample period that is sufficiently long, the
choice of the sample period is not critical.

The MMEM(1,2;1,1) model forecasts the direction of change correctly on 69.1% of
trading days for NIKC and on 66.0% of trading days for NIKP. For e.g. option traders,
any level of accuracy over 50% can potentially be worth money. Also, comparing with
the findings of Ahoniemi (2006) for the VIX index, whose sign was predicted accurately
on 62% of trading days at best, the directional accuracy is clearly better for the Nikkei
225 implied volatility.

When incorporating only the most recent information, or estimating the model with
500 observations, the forecast performance deteriorates considerably. Also, the daily
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updating of coefficients becomes important, as the directional accuracy improves if us-
ing updating rather than fixed coefficients. In other words, a sample period of 500
observations is sensitive to the choice of sample period, and parameter stability is not
achieved.

The forecast performance of the MEM(1,2) model falls short of that of the MMEM(1,2;1,1)
estimated from the in-sample, but is no poorer than that of the MMEM(1,2;1,1) model
with fixed coefficients estimated from 500 observations. All in all, each model performs
at least slightly better in forecasting the direction of change of NIKC rather than NIKP.

When including ARIMA models in the comparison, the MMEM(1,2;1,1) model re-
mains the best predictor for NIKC despite the fact that the ARIMAX models contain
more information due to the inclusion of exogenous variables. However, for NIKP, the
ARIMAX(2,0,1) and the ARIMA(1,1,1) model outperform the MMEM(1,2;1,1) model,
and the ARIMA(2,0,1) model is just as accurate.

Actual outcome
Up Down Total

Forecast
Up 188 94 282

Down 56 148 204
Total 244 242 486

Table 6: NIKC 2x2 contingency table for the MMEM(1,2;1,1) model with updating coefficients

Actual outcome
Up Zero Down Total

Forecast
Up 178 1 101 280

Down 60 3 143 206
Total 238 4 244 486

Table 7: NIKP 2x2 contingency table for the MMEM(1,2;1,1) model with updating coefficients

Tables 6 and 7 show 2×2 contingency tables with forecasts from the MMEM(1,2;1,1)
model with updating coefficients and actual outcomes. For both NIKC and NIKP, the
true number of moves up and down is almost equal, but the model forecasts a move
upwards too often. In other words, the model makes more mistakes where the prediction
was up but the true change was down than vice versa. There were four days included in
the out-of-sample when the change in NIKP was zero, but the change in NIKC non-zero.

For the ARIMA models, the contingency tables are more balanced. Tables 8 and 9
and show 2× 2 contingency tables for the ARIMA(1,1,1) model.

Actual outcome
Up Down Total

Forecast
Up 161 76 237

Down 83 166 249
Total 244 242 486

Table 8: NIKC 2x2 contingency table for the ARIMA(1,1,1) model.
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Actual outcome
Up Zero Down Total

Forecast
Up 162 1 83 246

Down 76 3 161 240
Total 238 4 244 486

Table 9: NIKP 2x2 contingency table for the ARIMA(1,1,1) model.

MSE =
1
N

∑

N

(ÎV t − IVt)2 (9)

When evaluating the mean squared errors (calculated as in Equation 9) of the various
forecast series, values for NIKC are again superior to those for NIKP (see Table 5). From
the family of MEM models, the MMEM(1,2;1,1) model estimated with 500 observations
and updating coefficients emerges as the best specification. This is perhaps due to the
small sample including observations that are relatively near in value to the current level
of IV, whereas the entire in-sample contains observations that are tens of percentage
points apart.

For NIKC, the ARIMA(2,0,1) and ARIMAX(1,1,1) models outperform all MEM
models when compared with mean squared error. However, all mean squared errors for
NIKP ARIMA models are higher than those for most MEM models.

Forecast diagnostics

The value of the obtained directional forecasts can be assessed with the market timing
test developed by Pesaran and Timmermann (1992), and the mean squared errors can
be used in the test for superior predictive ability (SPA) due to Hansen (2005) to check
that the forecasts outperform a forecast series of zero change for each day.

The Pesaran-Timmermann test (PT test) stems from the case of an investor who
switches between stocks and bonds. The test statistic is computed from contingency
tables like the one in Table 6. For NIKP, the days when the actual outcome was 0 are
dropped from the analysis in order to run the test. The PT test statistic is computed as
in Equation 10 (this version of the test statistic is due to Granger and Pesaran (2000)).

PT =
√

NKS
(

π̂f (1−π̂f )
π̂a(1−π̂a)

)1/2
(10)

where

KS = Nuu
Nuu+Ndu

− Nud
Nud+Ndd

π̂a = Nuu+Ndu
N
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π̂f = Nuu+Nud
N

Nuu is the number of days when both the actual outcome and forecast are up, Ndd is the
number of days when both the actual outcome and forecast are down, Nud is the number
of days when the forecast is up but the actual outcome is down, Ndu is the number of
days when the forecast is down but the actual outcome is up, KS is the Kuiper score,
π̂a is the probability that the actual outcome is up, and π̂f is the probability that the
outcome is forecast to be up. The limiting distribution of the PT test statistic is N(0, 1)
when the null hypothesis is true.

NIKC NIKP
PT statistic p-value PT statistic p-value

MMEM(1,2;1,1) - updating 8.617 0.000 7.515 0.000
MMEM(1,2;1,1) - fixed 8.701 0.000 7.534 0.000

MMEM(1,2;1,1) - updating; 500 obs. 7.653 0.000 6.642 0.000
MMEM(1,2;1,1) - fixed; 500 obs. 6.722 0.000 6.028 0.000

MEM(1,2) - updating 6.898 0.000 6.451 0.000
MEM(1,2) - fixed 6.546 0.000 5.820 0.000
ARIMA(2,0,1) 7.927 0.000 7.452 0.000

ARIMAX(2,0,1) 8.195 0.000 7.642 0.000
ARIMA(1,1,1) 7.748 0.000 7.614 0.000

ARIMAX(1,1,1) 7.686 0.000 7.149 0.000

Table 10: Pesaran-Timmermann test statistics and their p-values.

The PT test shows that all the evaluated directional forecast series are statistically
significant, as the test statistic has a p-value of 0 for all forecast series. The values for
the test statistic and their p-values are summarized in Table 10.

SPA test: to be added soon.

5 Conclusions

A multiplicative error model with two alternative mean equations and two alternative
gamma distributions for the error term was estimated for time series of implied volatilities
derived from call and put options on the Nikkei 225 index. The mixture-MEM model
was found to be a good fit, possessing statistically significant coefficients and satisfactory
in-sample diagnostics. Without the mixture components, the model is a much worse fit
to the data.

Measured with directional accuracy, forecasts calculated from various MMEM models
outperform those from ARIMA models for the time series of call IV. ARIMA models fare
slightly better than MMEM models for the put-side implied volatility. Again, the lack
of a mixture component leads to poorer forecasts. When mean squared errors are used
for forecast evaluation, MMEM models are superior for put IV, with ARIMA models
leading to lower values for call IV.

These results indicate that option traders and others interested in forecasting the
direction of change of implied volatility in the Japanese market can benefit from using
the new class of multiplicative models, as directional accuracy is well over 50 percent. A
mixture specification seems to be necessary in order to obtain the best possible results.
Investors looking to forecast the future level of volatility implied by Nikkei 225 options
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or the future level of volatility in the returns of the Nikkei 225 index can also receive
added value from the forecasts of MMEM models.
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