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Abstract
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options traded on the CBOE contains any exploitable predictable patterns. In particular, we examine

the possibility that the dynamics in the volatility surface implicit in S&P 500 index options may be
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equity options. We find a strong relationship between equity and S&P 500 index option implied volatility

surfaces. In addition, we discover a remarkable amount of predictability in the movements over time of

both equity and stock index implied volatilities. We show that the predictability for equity options is

incrased by the incorporation in the model of recent dynamics in S&P 500 implied volatilities. Similarly,

when we examine the economic value of these predictability patterns (by proposing and simulating trading

strategies that exploit our 1-day head forecast of implied volatilities), we report that delta-hedged and

straddle portfolios that take trade on the entire implied volatility surface and across all contracts examined

produce high risk-adjusted profits which are maximum for the model that takes into account the feedback

from past market implied volatility changes to subsequent dynamics in individual equity options implicit

volatilities.
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Abstract

We investigate whether the dynamics in the volatility surface implicit in the prices of indi-

vidual equity options traded on the CBOE contains any exploitable predictable patterns. In

particular, we examine the possibility that the dynamics in the volatility surface implicit in S&P

500 index options may be associated and forecast subsequent movements in the implied volatil-

ity surface characterizing individual equity options. We find a strong relationship between equity

and S&P 500 index option implied volatility surfaces. In addition, we discover a remarkable amount

of predictability in the movements over time of both equity and stock index implied volatilities. We

show that the predictability for equity options is increased by the incorporation in the model of recent

dynamics in S&P 500 implied volatilities. Similarly, when we examine the economic value of these pre-

dictability patterns (by proposing and simulating trading strategies that exploit our 1-day head forecast

of implied volatilities), we report that delta-hedged and straddle portfolios that take trade on the entire

implied volatility surface and across all contracts examined produce high risk-adjusted profits which are

maximum for the model that takes into account the feedback from past market implied volatility changes

to subsequent dynamics in individual equity options implicit volatilities.
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1. Introduction

It is well known that the volatilities implicit in observed option prices are not constant across strikes and time

to maturity, as the Black—Scholes model would predict. Instead, they exhibit a smile/skew pattern across

strikes for a given time to maturity, which extends to an entire volatility surface when different maturities

are examined. These implied volatility (henceforth, IV) curves and surfaces also change through time,

raising the need for an accurate modeling of their dynamics. While there is now abundant evidence on the

existence and instability of an implied volatility surface (henceforth, IVS) in the case of stock index options

(such as S&P 500 and S&P 100 options), much less is known with reference to (allegedly) similar phenomena

involving the IVS of individual equity options, such as those traded on the Chicago Board Options Exchange

(CBOE) market. In this paper we ask two related questions, which — to the best of our knowledge — have

not been addressed by earlier research.1 First, are CBOE equity IV surfaces as unstable and predictable

over time as it has been shown to be case (see Dumas, Fleming and Whaley, 1998, Skiadopoulos et al.

1999, Cont and da Fonseca, 2002, Gonçalves and Guidolin, 2006) for the IVS that characterizes stock

index options? Second, can we find any reliable, exploitable predictive links between the dynamics in the

market index IVS (such as the IVS of S&P 500 index options) and the IV surfaces of individual equity

options? Our paper provided a positive answer to both questions. Importantly, our analysis is not confined

to the prediction aspects of the dynamic relationships and linkages that we document in our work, but

systematically extends to the assessment of whether such relationships contain any economic value, i.e.,

whether appropriate trading strategies can be set up to bet on the predictability patterns.

Although the celebrated Black-Scholes (1973, BS henceforth) formula is very popular among market

practitioners, when applied to (vanilla) call and put options it is very often reduced to a means of quoting

option prices in terms of another parameter, the IV. Contrary to the constant volatility assumption of BS

model, empirical research has revealed that implied volatilities usually depend on two parameters that define

option contracts: their strike price (moneyness) and time-to-maturity. The function σit : (Ki, τ i)→ σ(Ki, τ i)

which represents this dependence is the IVS for options on underlying stock i at date t. Modelling the IVS

at a given date is therefore equivalent to specifying prices of all (vanilla) calls and puts at that date. Two

features of this surface have captured the attention of researchers. First, the non-flat instantaneous profile of

the surface, whether it be a smile or skew, and the existence of a term structure, points out the insufficiency

of the Black—Scholes model for pricing options. Second, the level of IVs changes with time, deforming the

shape of the IVS. The evolution in time of this surface captures the evolution of prices in the options market

(see, e.g., Canina and Figlewski 1989; Rubinstein 1994; and Campa and Chang 1995).

The shortcomings of the BS option pricing model when compared to empirical data from the options

1Rubinstein (1985), Dennis and Mayhew (2002), and more recently Goyal and Saretto (2009) have used individual equity

options data to deal with issues related to implied volatility dynamics, although they ask rather different questions.
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market have led to the development of a considerable literature on alternative option pricing models, in

which the dynamics of the underlying asset is considered to be a nonlinear diffusion (e.g. Merton 1976),

a jump-diffusion process (e.g. Ball and Torous 1985; Bates 1988; and Amin 1993) or a latent stochastic

volatility model (e.g. Hull andWhite 1987; Scott 1987; Wiggins 1987; Johnson and Shanno 1987; and Heston

1993). A related class of models has captured latent stochastic volatility within ARCH-type frameworks

(e.g., Duan 1995; and Heston and Nandi 2000). These models attempt to explain the various empirical

deviations from BS by introducing additional degrees of freedom such as a local volatility function, a

stochastic diffusion coefficient, jump intensities, jump amplitudes etc. Another strand of literature has

insisted that the existence of an IVS is the result of precise economic risk factors and/or frictions being

incorporated in the way in which state contingent claims are priced. For instance, Geske (1979) and Toft and

Prucyk (1997) propose that leverage effects may be the reason for changes in implied volatilities. Franke,

Stapleton, and Subrahmanyam (1999) investigate the influence in option pricing models of utility functions

that introduce an undiversifiable background risk. Figlewski (1989) highlights the difficulty of implementing

dynamic arbitrage strategies in option markets, due to transaction costs. In an extension of his seminal

idea, Bollen and Whaley (2004) study the role of supply and demand (i.e. buying pressures) on specific

option contracts and the limited ability of arbitrageurs in bringing option prices back to their fundamental

value due to trading costs. David and Veronesi (2002) and Guidolin and Timmermann (2003) propose

dynamic equilibrium pricing models in which incomplete learning and the need to filter information in the

presence of structural instability would cause departures from BS baseline model. Although this literature

has contributed significantly to our understanding of option prices behavior, there seems to be no consensus

regarding a final explanation or on a optimal model for option pricing.

What the “structural” (pricing-type) and the economic explanations of IVS have in common is that

these amount to adding additional “dimensions” — often, parameters — to BS model. However, these

additional parameters usually enter the description of the infinitesimal, local stochastic evolution of the

underlying asset while the market usually quotes options directly in terms of their IVs which are global

quantities. In order to see whether a model reproduces empirical observations, one has to relate these two

representations: the infinitesimal description via a stochastic differential equation on one hand, and the

market description via IVs on the other hand. However, in the majority of these models it is impossible

to compute directly the shape of the IVS in terms of the model parameters. Although it is possible to

compute the IVS numerically, most of the papers in the literature have ended up concluding that simple

jump processes, one-factor stochastic volatility models, and other economic (friction-based) explanations

of departures from BS fail to reproduce correctly the profiles of empirically observed IV surfaces.2 In fact,

2This problem, already present at the static level, becomes more acute if one examines the consistency of model dynamics

with those observed in the options market. While a model with a large number of parameters — such as a non-parametric local
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Conte and da Fonseca (2002) arrive to conjecture that the inability of models based on the underlying asset

to describe the dynamic behavior of IV surfaces may be not simply due to their misspecification and that

there may be a deeper reason: since the creation of organized option markets in 1973, these markets have

become increasingly autonomous and option prices are driven, in addition to movements in the underlying

asset, also by internal supply and demand in the options market. This observation can be accounted for by

introducing sources of randomness which are specific to the options market and which are not present in the

underlying asset dynamics. Hence the distinct need to model the structure as well as (or more importantly)

the dynamics of the IVS, which is the objective pursued here.

Finally, it is easy to justify the role of producing economically valuable models that predict the IVS.

From the standpoint of a vanilla option market maker, producing reliable forecasts for the evolution of the

IVS on individual equity options is essential for two reasons. First, it provides an up-to-date indication

of where the market stands with reference to each specific underlying asset, which is essential for trading.

Second, it allows an efficient risk management of option portfolios that often include also (if not mostly)

individual equity options. Moreover the interplay between individual equity IV surfaces and the market

index IVS is potentially of great importance: in practice we do not observe simultaneous updates of the

entire market IVS, as new quotes for individual trades become available at different points in time. New

information is incorporated into the new trades and it becomes crucial for market makers to be able to

learn about the IVS from the quotes of the available trades, which are typically few and sometimes concern

individual equity options. This motivates us to also investigate the existence of predictive linkages between

CBOE IV surfaces and a general market index (such as the S&P 500) IVS. In practice, although since

Markowitz (1952, 1959) fathered finance into its modern era it is has been well understood that strong

relationships ought to exist between the volatility of individual equity returns and the volatility of returns

on the market portfolio, research remains scarce when it comes to investigate a similar relationship between

the IVs of individual equity options and the IVs on index options. We therefore ask whether it is reasonable

to think that equity and market index IVs may be related in any significant and exploitable way.

Our modelling strategy is inspired after the two-stage approach pursued by GG (2006): In the first

stage, we fit daily deterministic IVS models that describe implied volatilities as a function of moneyness

and time-to-maturity and of a few interpretable functions of these inputs. In the second stage, we fit time-

series models of a VAR type (also augmented with information from the market index options segment)

to capture the presence of time variation in the first stage estimated coefficients. Interestingly, as tighter

and tighter restrictions are imposed on the second-state VAR model, we recover frameworks that have also

volatility function or implied tree — may calibrate well the strike profile and term structure of options on a given day, the same

model parameters might give a poor fit at the next date, creating the need for constant re-calibration of the model. This time

instability of model parameters leads to large variations in sensitivities and hedge parameters, which is problematic for risk

management applications.
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been used in the previous literature, such as GG’s model applied to each individual underlying stock, and

DFW’s random walk framework.3

Our main results consists of showing the existence of a strong linear association — both contemporaneous

and, more significantly, lagged, which implies the existence of forecasting power from the former to the latter

— between the S&P 500 IVS and the coefficients characterizing the shape of the IVS for CBOE options.

More generally — i.e., with or without incorporating these effects from the dynamics of the S&P 500 IVS to

individual equity options IV surfaces — we report evidence of massive predictability of CBOE IV surfaces,

thus extending the econometric results in GG (2006) for index options. In particular, when we evaluate

the predictability performance of our baseline VAR model for IVS coefficients, we find that evidence of

quite accurate forecasting performance (for future, 1-day ahead IVs) according to standard criteria such as

root mean-squared forecast error and mean absolute percentage error. Our SPX-augmented version of GG

(2006) two-step VAR framework out-performs a number of competing benchmarks, such as a DFW-style

random walk model for the cross-sectional IVS coefficients and Duan and Simonato’s (2001) option-GARCH

model for American-style contracts.

We also investigate the realized, recursive out-of-sample performance of trading strategies built to exploit

our preliminary evidence of statistical predictability. We simulate fixed investments of $1,000 per day using

one-day-ahead delta-hedge and straddle portfolios, both (approximately) free of risk deriving from changes

in the price of the underlying stocks and only exposed to changes in value driven by the dynamics in the

IVS. Basically, we form these portfolios on a simple basis: when one of the competing models anticipates

that for a given option contract, IV will increase (decrease) between t and t+ 1, the contract is purchased

(sold). These strategies generate on average positive out-of-sample returns when transaction cost are not

imposed. Similarly to GG (2006), however most of this profitability disappears when we increase the level

of transaction costs, which is a finding consistent with the efficiency of option markets. All in all, it depends

on the level of transaction costs faced by an investor or trading desk whether our evidence of cross-sectional

CBOE IVS predictability may be put to service to generate abnormal profits.

A relatively small but growing literature on IVS modelling now exists. This is in part caused by the fact

that modeling the IVS poses two challenges. First, IV data have a degenerated design: by “degenerated

design” we refer to the institutional convention implying that option price data exist only for a small number

of maturities such as 1, 3, 6, and 12 months to expiry. Hence, IV observations appear in “strings”. As time

passes, these strings move along the maturity axis toward expiry while changing their levels and shapes in a

random fashion. A second challenge is that the observations do not always cover the desired estimation grid

3Competing models of the IVS are the dynamic Kalman filter approach in Bedendo and Hodges (2009), Fengler, Hardle,

and Mammen’s (2007) dynamic semiparametric factor models, or Daglish, Hull, and Suo’s (2007) factor model in which the

factors may be correlated with stock price movements.
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completely and observations can be missing in certain sub-regions in the moneyness dimension. However,

despite this peculiar structure, IVs are usually thought as being the observed structure of a smooth surface.

However, a few papers (besides DFW, 1998, and GG, 2006) can be considered as closely related to our

research. Empirical studies on the volatility dynamics normally consist in identifying the number and

shapes of the shocks in the IV via principal component analysis (PCA) (see, for example, Skiadopoulos et

al., 1999; Alexander, 2001; Cont and Da Fonseca, 2002). More recent contributions involve the specification

of a deterministic or stochastic model for the IVS, which fully describes its evolution through time. The

IVS models introduced by Derman (1999) assume that either the per-delta or the per-strike IVS has a

deterministic evolution. Rosenberg (2000) proposed a stochastic process for the ATM IV, while keeping the

shape of the curve fixed.

Dennis and Mayhew (2000, 2002) analyze different factors that may explain the volatility smile and risk-

neutral skewness for nearest-to-maturity CBOE equity option contracts. They report that the volatility

smile slope and the risk-neutral density on individual equity options are negative for equity and S&P 500

options, but that equity options smiles are much flatter than the smile implicit in the index options. They

also find that equity betas, size and trading volume are related to the cross-sectional volatility smile slope and

the risk-neutral density. Finally, they report a negative relationship between the level of market volatility

and the volatility smile and identical association with the risk-neutral skew. However, they do not explore

the term-structure dimension of the IVS and fail to assess the economic value of the empirical regularities

they have uncovered. Goyal and Saretto (2009) document the existence of economic predictability in the

cross-section of equity options IVs using delta-hedged and straddle positions. However, their strategies are

based on the differences between historical realized volatilities and at-the-money one-month IVs and not

on the predictable patterns affecting the entire IVS. They find abnormal profits using trading strategies

that are long (short) in the positions with large positive (negative) differences between these two volatility

proxies.

The paper is organized as follows. Section 2 provides an introduction to deterministic volatility surface

models and reviews our two-step approach. Section 3 describes the data and reports our main in-sample

estimation results. In section 4, we document the existence of cross-serial correlation structure in the

relationship between CBOE IVs and index options IVs and therefore introduce issues of modelling and

exploiting predictability. Sections 5 examines the out-of-sample statistical and economic performances.

Finally, the conclusions are presented in section 6.
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2. The Implied Volatility Surface

2.1. A Deterministic IVS Model

A convenient way to capture and quantify the shape characteristics of an IVS consists of fitting a linear

model linking implied volatilities on a given underlying stock to (functions of) time-to-maturity and mon-

eyness of a set of traded option contracts. Because these features are fully observable, the resulting models

are often called deterministic IVS models (henceforth, DIVSMs). Dumas et al. (1998), Peña et al. (1999),

and Gonçalves and Guidolin (2006) present competing specifications within the general class of polyno-

mial/spline DIVSMs. In this paper we adopt the DIVSM functional form proposed and successfully applied

by Gonçalves and Guidolin (2006), because in their empirical study they estimate a range of alternative

functional specifications and find that other representations yield a worse fit to empirical option data.4

Thus, the deterministic linear function used in our paper is:

lnσi(Mit, τ it) = βi0t + βi1tMit + βi2M
2
it + βi3τ it + βi4[Mit · τ it] + εit, (1)

where σi(Mit, τ it) is the implied volatility for the option contract written on stock i, with time-to-maturity

τ it and moneyness Mit “estimated” (computed) at time t = 1, ..., T ; Nt is the number of different types

of options contracts available on each day t, i.e., i = 1, ..., Nt, each with a common underlying stock; εit

is a random shock that may cause the estimated IV to deviate from what the DIVSM implies at time t,

for given moneyness and time-to-expiry. We use log implied volatility as the dependent variable. This has

the advantage of always producing non-negative fitted implied volatilities. In this paper, we follow a vast

literature (see, e.g., Tompkins, 2001) and define moneyness in time- and dividend-adjusted terms:

Mit ≡
ln
³

Ki
exp(rt→τitτ it)Sit−FV Dit→τ

´
√
τ it

, (2)

where rt→τ it is a default risk-free nominal interest rate applicable to the period [t, τ ], Sit is the time t

(closing) price of the underlying stock i, and FV Dit→τ is the time t forward value of all future dividends

to be paid by stock i over the period [t, τ ],

FV Dit→τ ≡
τX

s=t+1

exp[rt+s→τ (τ − s)]Di
t+s, (3)

and Ki is the option strike price (notice that strikes are constant over time). Clearly, Mit will be positive

for out-of-the-money call (in-the-money puts) and negative for in-the-money calls (out-of-the-money puts).

4On the one hand, we have experimented with a few alternative (simpler) functional forms and found that degree and

strenght of the IVS predictability patterns that can be captured in this way are generally weaker and yielding lower economic

benefits (trading profits). On the other hand, we consider (1) a sort of “upper bound” to the degree of sophisitcation that

we can afford in modelling cross-sectional IVS because (1) implies the need to estimate 5 parameters for each available time

period, which already imposes strong data requirements on a significant portion of the CBOE option universe.
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In (1), βi0t is an intercept/level coefficient: in the case in which βijt = 0 (j = 1, ..., 4), i.e., under a

simple constant volatility model, the level IV is simply given by σi(Mit, τ it) = exp(βi0t) for all strikes and

maturities.5 βi1t characterizes the moneyness (smile/skew) slope of the DIVSM; β
i
2t captures the moneyness

(smile/skew) curvature; βi3t is the maturity (term structure) slope coefficient. Finally, and βi4t will describe

any interaction between moneyness and time-to-maturity effects in the IVS, as commonly observed in the

empirical literature. The unknown but fixed (only at time t) coefficients in (1) are estimated on a daily

basis using generalized least squares (GLS) as recommended by Hentschel (2003).6 However, as a robustness

check we have also estimated the parameters using simple OLS as well.

The linear spline specification proposed in equation (1) facilitates the reproduction of multiple IVS

shapes with extraordinary flexibility on both moneyness and maturity dimensions. For instance, Figure 2

plots the IVS for Microsoft equity options on July 15, 2003 using market data and compares it with the

empirical fit obtained from the DIVSM in (1).7 The resemblance of the two functions is striking to say

the least, which shows that even a relatively parsimonious model with very few estimable parameters may

actually describe rather complex IVS characterized by asymmetric smiles, skews, and rich term-structure

effects.

2.2. Modelling the Joint Cross-Sectional Dynamics of Market vs. Cross-Sectional IV Surfaces

The DIVSM in Section 2.2 is a simple extension of models known and used in the literature since and DFW

(1998). Although its fit may be surprisingly good most of the time, it just captures the main features of

the IVS for one or more underlying assets only at one point in time. However, as early as DFW (1998) (see

also GG, 2006), it has been widely reported that such DIVSMs are extremely unstable, in the sense that

the shape and structure of the IVS would continuously move over time, often undergoing rather abrupt

and sudden changes. GG (2006) observe that what is actually challenging to empirical finance researchers

is not really the task of fitting the IVS at one point in time, but to actually propose useful (i.e., displaying

predictive power) econometric models able to capture the dynamics of the IVS over time.

Therefore in this sub-section we pursue the effort of proposing a model that is capable to test whether

the equity option IVS movements over time may be statistically predictable and, subsequently, whether it

5However σi(Mit, τ it) = exp(βi0t) fails to imply that option i volatility will be constant over time, i.e., it is not as simple

as a Geometric Brownian motion, Black-Scholes type world. For instance, a Geometric Brownian motion stochastic volatility

model with uncorrelated shocks to the underlying stock price and volatility will imply a particular process for βi0t.
6Hentschel (2003) shows that in application to IVS problems, the presence of pervasive measurement errors could introduce

heteroskedasticity and autocorrelation in the standard OLS residuals, thus making simple OLS estimators inefficient.
7To plot the right-hand side, we fit on July 15, 2003 the estimated equation (1) to the Microsoft option contracts traded

on that day. Subsequently, with the parameters estimated, we produce artificial data for the implied volatilities using different

moneynesses and maturities. The left-hand side presented a continuous IVS only as a result of interpolation and to favor the

comparison of the two plots.
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may provide economic value to traders and derivative portfolio managers. While this question has been

already researched by GG (2006) with reference to S&P 500 index (SPX) options only, here we extend

their model to encompass the case in which the dynamics of individual CBOE IV surfaces is the object of

interest.8 Additionally, we also ask whether the dynamics of the “market IVS” — here surrogated by the

IVS of SPX options — may influence the dynamics of individual equity options IV surfaces. Similarly to GG

(2006), we propose a vector time series model of VARX(p, q) type to be fitted to the first-pass coefficients

estimated from the DIVSM of Section 2.1:

β̂
i
t = φi

0 +

pX
j=1

Φi
jβ̂

i
t−j +

qX
j=1

Ψi
jβ̂

SPX
t−j + uit ut ∼ IID N(0,Ω), (4)

where β̂
i
t ≡ [βi0t βi1t βi2t βi3t βi4t]0 is the 5×1 vector time series of the first-pass estimated DIVSM coefficients

specific to each individual equity option i = 1, ..., N ; β̂
SPX
t is the similarly defined vector of 5×1 coefficients

characterizing the SPX IVS at each point in time; ut is a 5 × 1 vector of shocks that represent random

influences affecting the variation in β̂
i
t which cannot be explained by its own past and past values (more

correctly, estimates) of the coefficients that characterize the SPX IVS. This is a simple vector time series

model with a Markov structure, that implies that recent movements in the IVS of options written on stock

i as well as recent move in the market portfolio IVS should forecast subsequent moves in the IVS of options

written on i as well.9 We select the number of lags to be used in forecasting (p and q) using standard

information criterion, such as the Bayes Schwartz criterion (BIC), after setting an arbitrary maximum

value of 3.10 Notice that setting q ≥ 1 is empirically justified by the casual observation (see Section 3.2

for additional details) that there exists a strong linear association between IVS coefficients for individual

equity options and lagged coefficients describing the IVS for the S&P 500.

For comparative purposes, we compare our main model in (4) with three benchmarks that represent

simplifications of our baseline framework. The first benchmark is identical to (4) but it imposes q = 0, i.e.,

it is a VARX(p, 0) model very close in spirit to the empirical framework employed in GG (2006), in the

sense that only lagged features of the IVS for stock i are allowed to affect the subsequent shape of the IVS

8Using the notation introduced in (4), GG (2006) actually concerns only the dynamic process followed by β̂
SPX

t and

disregards completely the estimation and economic value of the process followed by β̂
i

t, i = 1, ...,N.
9Our approach is a reduced form approach to modeling the time variation in the implied volatility surface that results from

more structural models such as the investors’ learning models of option prices. In particular, if the state variables that control

the dynamics underlying the fundamentals in these models are persistent and follow a regime switching model (such as in David

and Veronesi (2002) or Garcia, Luger and Renault (2003)), a VAR model appears to be a reasonable reduced form approach

to model the predictability in the implied volatility surface.
10With reference to SPX options, GG find that usually more parsimonious models (here, with low values of p and q) tend to

outperform richer model. Hence our choice of a relatively modest maximum value for p and q in our empirical analysis.
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for the same set of options:11

β̂
i
t = δi0 +

pX
j=1

∆i
jβ̂

i
t−j + v

i
t vit ∼ IID N(0,ΩV ). (5)

Also in this case, we select p by minimizing the BIC, given a pre-selected maximum number of lags equal

to 3.

A second benchmark is naturally suggested by the work by DFW and Christoffersen and Jacobs (2004):

it is a simple random walk model for the CBOE IVS coefficients in which the best prediction for tomorrow’s

coefficients (hence, shape of the IVS) is simply given by today’s coefficients. In practice, this corresponds

to the case of a VARX(1,0) model in which ∆i
1 = I5 (the 5× 5 identity matrix) for all options i = 1, ...,N :

β̂
i
t = δi0 +β̂

i
t−1 + v

i
t vit ∼ IID N(0, diag{ξ}), (6)

so that the process of each individual coefficients simply becomes βijt = δj + βijt−1 + vijt. Although GG

(2006) have found that for SPX options this model is severely out-performed by a VARX(p), whether or

not this finding may extend to CBOE options remains an interesting empirical question.

A third benchmark consists of the IVS predicted by Duan and Simonato’s (2001) American option pricing

Markov Chain GARCH model (henceforth Opt-GARCH). The choice of an option-GARCH benchmark

intends to compare the performance of our two-stage, sequential approach with at least one “representative”

from the no-arbitrage, structural option pricing literature. In particular, recent years have proposed a

number of discrete time, single-factor ARCH type models that when applied to option pricing have provided

pricing performances often comparable to more complex, multi-factor structural models (e.g., including

jumps in the underlying assets and/or in volatility). For instance, Heston and Nandi (2000) report the

superior performance (in- and out-of-sample) of their ARCH option pricing model over DFW’s “ad-hoc

strawman” (our second benchmark) when estimated on weekly S&P 500 options data for the period 1992-

1994. Notice that with American options, the early exercise decision depends on the level of volatility,

because it determines the live value of option contracts. Therefore, with a GARCH-style approach it

is important to consider all possible paths that could be taken by the future conditional volatility in the

American contracts because they are relevant for the valuation function. Duan and Simonato (2001) develop

a numerical method to enable the valuation of American option contract in the GARCH framework using

Markov chains. However, in their study they do not estimate the parameters, they use an arbitrary set

of parameters to simulate American option prices to evaluate their model. Instead, we use nonlinear least

square (NLS) methods to estimate the parameters using trading options prices, which tries to match model

11Clearly, while in GG’s (2006) “uni-dimensional” exercise (i.e., limited to SPX only) such a model is the most sensible one,

in our research design it simply corresponds to a restriction of the general VARX(p, q) and it allows us to test whether there

is a market model-type effect in the IVS space.
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option values to observed option prices as closely as possible.12 In contrast to the dynamic IVS models

considered in our paper, notice that Duan and Simonato’s (2001) American option pricing Markov Chain

GARCH does not allow for time varying coefficients (although it implies time-varying risk neutral densities).

Thus, it seems sensible to require that (4) be able to out-perform at least this no-arbitrage/structural

benchmark.

3. In-Sample Estimation Results

3.1. The Data

We use a sample of daily data on equity and S&P 500 options (of American and European styles, respec-

tively) traded on the U.S. CBOE option market (calls and puts). Data are extracted from the OptionMetrics

IVY database covering the period January 4, 1996 - December 29, 2006 (i.e. a total of 2,764 trading days).

The database includes information about individual equity as well as and stock index options for the entire

U.S. option market, and contains daily closing bid and ask quotes, volume and open interest for each option

contract, as defined by the “intersection” of its underlying stock (or index), maturity, and strike price. In

addition, OptionMetrics provides a zero coupon, riskless yield curve, which we interpolate to match the

time-to-maturity of each contract, to compute rt→τ it . This database also collects information on the price

of the underlying stocks or indices (Si
t , in our notation). However, Battalio and Schultz (2006) have recently

questioned the quality of this portion of the OptionMetrics’ contents and have reported that the database

would often record the quotes for the options and the underlying asset prices at different times, which may

represent be a potential source of biases when arbitrage conditions are studied.13 Even though studying

the presence of arbitrage violations is not one of our main goals and as such (similarly to the argument in

Goyal and Saretto, 2009) these small mismatches between the time of recording of option and underlying

prices may have at most second-order effects, we have carefully proceed to use the NYSE TAQ database to

retrieve information on the posted bid and ask quotes for the underlying stocks with the reference to the

same time stamp as the option quotes (i.e., at 4:02 p.m.).14

OptionMetrics does provide data for several hundreds sets of option contracts that over time have been

12We would like to thank Prof. Jin-Chuan Duan for making his Matlab codes available to us. GG (2006) adopt a re-

lated benchmark (Henston and Nandi’s, 2000, NGARCH option pricing model) that would however be inappropriate to price

American options. Hence our choice of Duan and Simonato’s pricing framework.
13The main issue is that the OptionMetrics database matches underlying stock closing prices that occurred no later than

4:00 p.m. with closing option quotes that may have been posted as late as 4:02 p.m.
14Our claim on second order effects has one important caveats: non-synchroneous stock and option quotes that may show

up as apparent (in fact, they are not) violations of the lower bound for option prices, will imply negative estimates of the

underlying IV, which is clearly problematic (as we are taking logs of IVs) and makes little sense. After matching OptionMetrics

options data with TAQ stock quotes, we had no such occurrences in our analysis. Notice that resorting to TAQ NYSE implicitly

restricts our analysis only to options written on NYSE-listed companies.
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traded on each given underlying stock. In our empirical analysis we have adopted two basic selection

criteria. First, we focus only on options that have been continuously traded (with minor exceptions of a few

days at most) over our entire sample period, 1996-2006. Second, we focus only on options on underlying

stocks that are characterized by a high trading volume over our sample period, at least in average terms.

Although volume and liquidity are not identical concepts in microstructure theory, the idea is to avoid that

our conclusions on predictability and economic value may mostly depend on options that are infrequently

traded and whose quotes tend to be systematically stale. In practice, we have applied this second selection

criterion in the following way: after ranking all equity options on the basis of their daily average volumes

(across all strikes and maturities) in our sample period, we have selected the top 70 options.

After selecting these 70 underlying stocks, we have proceed to apply five exclusionary criteria destined to

filter out observations that contain obvious misrecordings and that may hardly be thought of as expressions

of well-functioning (liquid) markets. First, we exclude all observations — as defined by the data Ki, τ it, S
i
t,

{Di
s}τ its=t+1, {rs}

τ it
s=t+1, CALL(Ki, τ it), and PUT (Ki, τ it) — that violate at least one of the basic no-arbitrage

conditions, because such violations are presumably due to misrecordings. In the case of the American-style

equity options we require:

Si
t − PV Di

t(τ it)− PVKi
t(τ it) < CALL(Ki, τ it) < Si

t − PV Di
t(τ it) (7)

PVDi
t(τ it) + PVKi

t(τ it)− Si
t < PUT (Ki, τ it) < Ki (8)

where CALL(Ki, τ it) and PUT (Ki, τ it) are the call and put prices for strike Ki and expiry τ it, respectively,

and PVDi
t(τ it) and PVKi

t(τ it) are the present values of the series of future dividends on the underlying

stock between t and τ it and of the option strike, respectively.
15 In the case of the European-style SPX

options, we impose again (7), plus:

PVDi
t(τ it) + PV Ki

t(τ it)− Si
t < PUT (Ki, τ it) < PVKi

t(τ it). (9)

Second, we exclude thinly traded option contracts with an arbitrary cut-off chosen at 10 transactions per

day to avoid liquidity effects in option prices.16 Third, we drop all contracts with less than six (trading)

days and more than one year to expiration as their prices are usually noisy and, as argued by DFW, they

usually contain little information on the IVS. Fourth, as in Bakshi et al. (1997) and GG (2006) we exclude

contracts with prices lower than $0.30 for equity options and $3/8 for S&P 500 index options to mitigate the

impact of price discreteness on the IVS structure.17 Fifth, similarly to DFW (1998) and Heston and Nandi

15Their formal definitions are PV Di
t(τ it) ≡ τ

s=t+1 exp[rt+s→τ (τ − s)]Di
t+s and PVKi

t(τ it) ≡ exp[rt→ττ ]K
i, respectively.

In the following, we assume perfect foresight on future dividends, as common in many empirical applications (see e.g., Bakshi,

Cao, and Chen, 1996).
16For instance, Chan et al. (2002) exclude contracts with fewer than 20 transactions per day. We relax this constraint,

because on each day we need enough contracts over different moneyness and maturities to estimate our DIVSM.
17This is due to the proximity of these prices to the minimum tick size: for equity options the minimum tick is $0.05 for

trading prices bellow $3; for index options the smallest tick is $1/16.
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(2000), we exclude options contracts with moneyness either less than 0.9 or in excess of 1.1. Usually, deep

in- and out-of-the money options suffer from liquidity issues that even our volume filters cannot precisely

detect.

Finally, as in Bakshi et al. (1997) and DFW (1998), we assume dividend cash flows to be perfectly

anticipated by market participants. In what follows, we calculate the implied volatilities for American

options using a binomial tree model with the Cox, Ross, and Rubinstein (1979) approach, as in Goyal and

Saretto (2009). In the case of European-style contracts, we numerically invert Black and Scholes’ (1973)

model to obtain estimates of implied volatilities.

3.2. Fitting CBOE IV Surfaces and Their Dynamics

Given our selection criteria for CBOE contracts, we have ended up estimating at a daily frequency 71 sets

of DIVSM coefficients, i.e., 70 sets β̂
i
t ≡ [βi0t βi1t βi2t βi3t βi4t]0 for i = 1, ..., 70 and one additional set for SPX

implied volatilities, β̂
SPX
t , for t = 1, ...T . To observe the in-sample fit, we present in the Tables 1 and 2

summary statistics of the coefficients estimated, for the equity and S&P 500 IV surfaces respectively. On

average and similar to Dennis and Mayhew (2000) results, the IVS moneyness slopes are negative for equity

options (-0.257), but not as negatively steeped as S&P 500 option (-0.882). In addition, the moneyness

curvatures of the IV surfaces are on average higher for equity options (0.559) than index options (0.365).

In relation to the maturity dimension, the maturity slopes of the IVS are on average negative for equity

options (-0.039) and positive for S&P 500 options (0.082). The relations between maturity and moneyness

are negative and stronger for index (-0.591) than the equity (-0.242) options IV surfaces. In addition, Table

3 presents on average the IVS coefficients for different industry groups. An important observation to note is

that equity options in the technology group have IV surfaces with a particular behavior in relation to other

industry groups. For instance, IV surfaces of technology equities are the most volatile among all industry

groups, which is represented by the level coefficient (-0.839); the moneyness slopes and curvatures (-0.160

and 0.373) are smaller in absolute terms for technology IVS than other equity options IV surfaces; they

have a steeper negatively sloped IVS term-structures (-0.071); and the weakest maturity and moneyness

relationships (-0.175).

In relation to the equity-index IVS relationships, Table 4 presents correlations between equity and S&P

500 IVS coefficients estimated by equation (1). Practically, all coefficients are significant for the equity and

index IV surfaces. It is particularly interesting to highlight the relationships between the level coefficient

(β0,Equity,t) for equity options IV surfaces and all coefficients of the S&P 500 options IVS. Similarly, a strong

association is observed between the slopes of the equity IVS term-structures (β3,Equity,t) and all coefficients

of the S&P 500 options IVS. These relationships suggest a multivariate linear model for the set of estimated
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coefficients that should relate the equities and index IVS shape characteristics.

For instance, Table 5 presents linear correlations between equity and lagged S&P 500 options IV surfaces

coefficients. Table 5 reveals a high linear relation between equities and one-day lagged index IVS coefficients,

in which practically all values are significant. Similar to cross-sectional coefficients showed in Table 4, we

find an exceptionally strong association of the level (β0,Equity,t) and the term-structure slopes (β3,Equity,t)

of equity options IV surfaces in relation to all one-day lagged S&P 500 IVS coefficients. In addition, Table 6

and Table 7 exhibit linear correlations between equity options IVS coefficients and their lagged values, one-

day and three-days respectively. Table 6 shows that all correlations are significant between equities options

IVS coefficients and their one-day lagged coefficients. However, the highest correlation of each coefficient is

in relation to itself but lagged one period (β0,Equity,t and β0,Equity,t−1; β1,Equity,t and β1,Equity,t−1;and so on).

A similar effect is observed in Table 7 but with lower intensity due to the number lags in the coefficients.

Our VARX approach seems to be a reasonable and intuitive since we use the linear relationships present in

the data, which allow us to describe in a simple way the equity IVS dynamics.

4. Predictability Performance

4.1. Statistical Measures of Predictability

One of the main objectives of our research is to examine whether the movement over time of the IVS in

equity options may be modeled using our dynamic approach. In this section, we present statistical measures

to evaluate the IVS predictability for all models. Essentially, we analyze the level and the direction of change

of one-day-ahead implied volatilities and their respective option prices. We estimate on a daily frequency

all models for each equity options IVS over the period January 2, 1997 - December 28, 2006. The daily

calibrations use six months rolling estimation windows (i.e. between day t and day t-(252/2)). Thus,

we calculate daily one-day-ahead predictions of the equity options IVS coefficients bβEt+1, which allow us

to forecast implied volatilities for different moneyness and maturities on the equity IVS. Nevertheless, to

calculate the option prices, we do not have predictions for the stock prices and interest rates. Following GG

(2006), we suppose that good forecasts for those values on day t+1 are the prices on the day t. In addition,

since we are predicting equity options, which are American style, we calculate the forecasted option prices

using a binomial tree model with the Cox, Ross, and Rubinstein (1979) approach.

To evaluate the out-of-sample statistical performance of all models for each day and equity option IVS

we calculate the following statistical measures of implied volatilities and option prices:

i) The root mean squared prediction error (RMSE) in implied volatilities (RMSE-V) and in option

prices (RMSE-P).

ii) Since the RMSE statistic has scaling problems, and we are working with different equity op-
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tions with different levels of implied volatilities and option prices, we use the Theil U statistic for implied

volatilities (Utheil-V) and options prices (Utheil-P). The Theil U statistic is defined as:

Theil Ut =

vuuuuuuuut
1
Nt

NtX
i=1

¡
yi,t − fi,t|t−1

¢2
1
Nt

NtX
i=1

y2i,t

(10)

where i = 1, ...,Nt, and Nt is the number of options contracts available on each day t and for each group

of contracts with the same underlying. yi,t is the true value of the variable that we want to predict for the

contract i, and fi,t|t−1is the value of the forecasted variable at t− 1.

iii) The mean absolute prediction error (MAE) in implied volatilities (MAE-V) and option prices

(MAE-P).

iv) Similar to the RMSE, since the MAE statistic has scaling problems, we use the relative mean

absolute prediction error (MAE-Rel) in implied volatilities (MAE-Rel-V) and in option prices (MAE-Rel-P).

The MAE-Rel is defined as:

MAE-Rel t =
1

Nt

NtX
i=1

¯̄̄̄
yi,t − fi,t|t−1

yi,t

¯̄̄̄
(11)

v) The mean correct prediction of direction of change (MCPDC) that is the average frequency (%

of observations) for which the change in the value predicted by a model is of the same sign as the true value

observed. We calculate this value for implied volatilities (MCPDC-V) and option prices (MCPDC-P).

Table 8 reports out-of-sample averages for the statistical measures of predictability for the equity IVS

forecasts. We include additional to our Models (Model 1 and benchmarks models) a random walk for the

implied volatilities (i.e. for a contract, the best prediction of tomorrow’s implied volatility is the value

of today). Table 4 shows that the random walk models (for the IVS coefficients and volatilities) have a

better performance in relation to other models based on the statistics that evaluate the level of change in

the implied volatilities and the respective option prices. However, the random walk models have a poor

performance when it comes to evaluating the direction of change (i.e. MCPDC statistic) of one-day-ahead

implied volatilities and option prices. The intuition behind these results is that implied volatilities have a

high persistence, which can be observed in the correlation between the level coefficient (β0,Equity,t) and its

lagged values (β0,Equity,t−1 and β0,Equity,t−3) as reported in Table 6 and Table 7. This is not surprising since

implied volatilities should have a similar behavior to equity returns volatilities, which are characterized by

the grouping phenomenon and heteroscedasticity basis of GARCH models (a high persistence). However,

the random walk models, which are static by definition, perform poorly in forecasting the direction of

change of one-day-ahead predictions due to the fact that they do not take into account any dynamics
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of IVS movements over time. For this reason dynamic models are better to predict the direction of the

movements over time, which is extremely relevant when it is necessary to implement trading strategies as we

show in the following section. Among the dynamic models (i.e. Model 1; Model GG; and Option GARCH

model), Model 1 has the best performance, and the best performance of all models when it is necessary to

predict direction of movements of the implied volatilities (57.89%) and option prices (53.93%).

4.2. The Economic Value of Predictability

Additional to the statistical measures of predictability, it is important to examine whether our models may

generate economic value to agents in the market. We evaluate whether trading strategies using different

models may generate economic benefits to investors in the option markets. Similar to our statistical measures

of predictability, we study out-of-sample forecast over the period January 2, 1997 - December 28, 2006,

however we use trading strategies to evaluate the economic predictability of the models proposed. As in

Day and Lewis (1992), Harvey and Whaley (1992) and Gonçalves and Guidolin (2006), the main idea of

these strategies is: if a predictability model anticipates for the day t+1 an increase in the options price

in relation to the day t (given for a increment in the respective forecasted implied volatility) this option

contract is purchased. The contract is sold if the model anticipates that the implied volatility will decrease.

For this reason, the MCPDC statistic in the statistical measures of predictability is crucial and highly related

to our economic performance analysis. Correct prediction of directions of changes in the forecasted implied

volatilities and option prices give us right trading decision about buying and selling. Our hypothetical

trader invests $1,000 in delta-hedge and $1,000 in straddle portfolios, which are held for one trading day.

Delta-hedge portfolios are less profitable than straddle portfolios, since delta hedge positions benefit from

implied volatility predictabilities (through the IVS dynamics) of only one option (call or put). Instead,

straddle portfolios take advantage of our implied volatilities forecasts using two options (call and put),

which allow them to reach higher profits in each positions. However, delta-hedge portfolios have an inferior

transaction cost in relation to straddle portfolios, because stock trading costs are lower than transactional

costs in options. Similar to the procedure showed in the statistical measures of predictability, every day t

we forecast for the day t+1 implied volatilities and option prices (using all models). For the delta-hedge

positions, implied deltas are calculated with the binomial tree model with the Cox, Ross and Rubinstein

(1979) approach.

Suppose that a trading rule suggests that Q contracts should be traded at time t. Therefore, if Q = 0

the trader invest the $1,000 in the riskless asset for one trading period. Let V D−H
t be the total value of

all delta-hedge positions on day t, and for a portfolio of equity options with the same underlying asset (i.e.

to buy or sell, call and put option contacts):
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V D−H
t =
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where Ci,t (Pi,t) denotes the price of a call (put) contract i and at time t. Q

call
+ ( Qcall

− ) is the subset of

call contracts that should be bought (sold), and the same definition for put contracts; and ∆C
i,t (∆

P
i,t) is the

call (put) delta ratio. If the net value of the delta-hedge portfolio is positive or zero (i.e. V D−H
t ≥ 0) the

trader invests in her delta-hedge positions the quantity of XD−H
t = $1000/V D−H

t that has a total cost of

$1,000. Consequently, the one-day net gain (GD−H
t+1 ) is:
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If the net cost of the portfolio is negative (i.e. V D−H

t < 0) she invests in a portfolio with the positions

that have an active signal in the quantity XD−H
t = $1000/|V D−H

t | , and she takes the $1,000 generated by

the inflows plus the $1,000 initially on hand and invests this amount in a riskless asset that day. Therefore,

in this scenario the net gain is GD−H
t+1 +$2, 000 ·(exp(rt/252)−1) , where GD−H

t+1 is computed by the equation

(13).

The same course of action is exactly applied in straddle portfolios. However, the total value of all

straddle positions (V Straddle
t ) on day t and for the portfolio of equity options with underlying asset is

defined as:

V Straddle
t =

X
i∈Qcall

+

³
Ci,t + P

Ci,t
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where, P
Ci,t
i,t is the put contract with the same features of the contract Ci,t that causes the straddle

position (i.e. same strike price, maturity and underlying asset); and in the same way, C
Pi,t
i,t is the call

contract with the same features of the contract Pi,t that generates the straddle position. Similarly to delta-

hedge portfolios, if the net cost of the portfolio is positive or zero (i.e. V Straddle
t ≥ 0) the trader invests in

her straddle positions the quantity of XStraddle
t = $1000/V Straddle

t that has a total cost of $1,000. Thus,

the one-day net gain (Gt+1) is:

GStraddle
t+1 = XStraddle

t
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When the net cost of the portfolio is negative (i.e. V Straddle

t ≤ 0) she invests in a portfolio with the

straddle positions that have an active signal in the quantity XStraddle
t = $1000/|V Straddle

t | , and she takes

the $1,000 generated by the inflows plus the $1,000 initially on hand and invests this amount in a riskless

asset that day. Therefore, in this set-up the net gain is GStraddle
t+1 +$2, 000 ·(exp(rt/252)−1), where GStraddle

t+1

is calculated using equation (15).

We consider different trading rules. First, a strategy in which our hypothetical trader invests in all

contracts to exploit entirely the flexibility provided by our approach (henceforth Trading Rule A). There-

fore, Trading Rule A reflects all economic benefits of our equity-market IVS dynamic models completely.

However, due to the number of options and stock traded to use the complete equity IVS dynamics, the

transaction costs are prominent in delta-hedge and straddle portfolios when our investor follows Trading

Rule A. Second, in order to mitigate the effect of transaction costs, our investor selects one contract per

option in the IVS, which has the highest expected trading profit after transaction costs to generate her

delta-hedge and straddle portfolios (i.e. expected trading profit — expected transaction costs)(henceforth

Trading Rule B). Third, following Harvey and Whaley (1992), we consider a trading rule in which trades

only occur on closest-at-the-money and shortest-term contracts to produce a single position (henceforth

Trading Rule C).

As we mentioned previously, we analyze the trading strategies before and after transaction costs. Dy-
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namic transaction costs were incorporated using Bis-Ask spreads. In relation to equity options bid-ask

spreads, De Fontnouvelle, Fisher, and Harris (2003) and Mayhew (2002) report that the ratio of effective

to quoted spread is less than 0.5. Battalio, Hatch, and Jennings (2004) find that for a small group of equity

options the ratio of effective spread to quoted spread is around 0.8. Therefore, similar to Goyal and Saretto

(2009) we take two effective spread measures, 0.5 and 1.0 of the quoted spread, as our trading costs per

option traded. Similar rule is applied to stock trading costs (i.e. 0.5 and 1.0 of the quoted stock spread is

taken as trading costs per each transaction).

Table 9 and Table 10 present out-of-sample average returns before transaction costs for all trading

strategies using delta-hedge and straddle portfolios respectively. Table 9 and Table 10 show that all IVS

dynamic models (i.e. Model 1, Model GG and Opt-GARCH) are successful at generating profitable strate-

gies when trading costs are not applied. However, the random walk model, which is static by construction,

gives a poor economic performance, indeed negative profits for Trading Rule A in delta-hedge portfolios

(-0.053%). Table 9 and Table 10 report that Model 1 has the highest returns when Trading Rule A is

used in delta-hedge (0.476%) and straddle (4.513%) portfolios. These results are relevant for our research,

because Trading Rule A exploits entirely all economic benefits of the equity IVS dynamic models. As

expected, when our hypothetical trader follows trading rules that select a single option contract per equity

IVS, Trading Rule B obtains highest profits in relation to Trading Rule C, since Trading Rule B chooses the

equity option contract with highest expected benefits. Nevertheless, for all strategies, returns are statistical

significant only when trading occurs using straddle portfolios.

Table 11 and Table 12 report out-of-sample average returns, after transaction costs, for our trading

strategies with delta-hedge and straddle portfolios respectively. In Table 11 and Table 12, we use 0.5 of the

quoted bid-ask spreads as proxies of trading costs (for the equity option contracts and underlying assets).

Unsurprisingly, in Table 11 we can observe that Trading Rule A is affected enormously by transaction costs

in delta-hedge portfolios, in which the Model 1 has the best performance (-7.705%). However, the highest

effect of transaction costs in Trading Rule A is observed in Table 12 in straddle portfolios, since straddle

positions involve 2 option contacts that have higher trading costs than stocks. In straddle portfolios using

Trading Rule A, the best average returns are presented by Model 1 (-14.352). In addition, Table 11 and

Table 12 shows that transaction costs have minor effects when trading strategies involve a single position

(Trading Rule B and Trading Rule C). Nevertheless, all trading rules for delta-hedge and straddle portfolios

are not profitable on average when this level of transaction cost is applied. Similar observable facts and

effects are showed more intensely when a double level of transaction costs is used (Table 13). Table 13

reports out-of-sample average returns for the straddle-based trading strategies, when 1.0 of the quoted

bid-ask spreads are used as proxies of transaction costs. Table 13 shows an incremented negative effect

of transition costs, in relation to Tables 11 and 12, respectively, with all trading rules and portfolios, but
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specially in Trading Rule A with a the performance for model 1 in delta-hedge (-15.886%) and straddle

(-33.217%) portfolios. The effects of transaction costs in our trading strategies and portfolios reveal that the

equity IVS predictabilities found and modelled by our approach are not incompatible with market efficiency.

5. Conclusions

Empirical research has identified that implied volatilities tend to differ across strike prices and maturities.

These observable facts are known as the IVS. In addition, recent studies confirm that the IVS changes over

different periods as well. Even more, it has been suggested that there are some predictability patterns in

the IVS which can be exploited in practice (e.g. Gonçalves and Guidolin, 2006). However, there is a lack in

the literature in relations to research empirically IVS cross-sectional properties and predictable dynamics

with groups of equity options. Researchers usually develop set-ups in which options on a single underlying

asset are considered (principally index options). Furthermore, research remains scarce when it comes to

investigate relationships between equity option IVS and the market IVS implicit in index options.

In this paper we study the relationships between the equity and the market IV surfaces, and we use

these associations to model the equity IVS cross-sectional dynamics. First, we model 70 equity options IV

surfaces and the S&P 500 options IVS daily along the moneyness and time-to-maturity dimension using

a deterministic functional form to describe the IVS’s shape characteristics. Second, with the estimated

coefficients we calculate linear correlations between equity and index IVS shape characteristics to find

relationships. We find a strong association, using the cross-section and one-period lagged coefficients,

between equity options IV surfaces and S&P 500 IVS. In addition, we find a high association between

equity options IVS coefficients and their lagged values (i.e. lagged equity options IVS coefficients). Third,

with these relationships we forecast daily one-day-ahead values of the equity IVS shape characteristics using

a VARX models that include the index options’ IVS coefficients.

To empirically evaluate the statistical and economic performances of our approach we forecast daily

one-day-ahead implied volatilities (and their respective prices) using the equity options IVS forecasted by

our models. We show that our approach gives accurate forecast of the direction of change of one-day-ahead

implied volatilities and option prices, both in absolute and compared with other benchmark models, which is

extremely relevant when it is necessary to implement trading strategies to evaluate economically our models.

Correct prediction of directions of changes in the forecasted implied volatilities and option prices give us

right trading decisions about buying and selling in different trading strategies. In this fashion, to evaluate

the economic predictability of our models, we simulate fixed investments of $1,000 per day using one-step

ahead daily delta-hedge and straddle portfolios. For an option contract, if our models anticipate on the day

t+1 an increment of the implied volatility in relation to the current day t, this option contract is purchased.
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The contract is sold if the model anticipates that the implied volatility will decrease. These strategies

generate on average positive out-of-sample returns when transaction cost are not imposed. However, most

of this profitability disappears when we increase the level of transaction costs, which is in harmony with

market efficiency.

Our approach is intuitive since we are using a functional form to characterize the IV surface shape

characteristics, and it is easy-to-compute forecasts of implied volatilities and option prices using the equity

IVS dynamics. We find the fit provided by our models is remarkable and describe the dynamics of different

equity IVS. However, other interesting issues remain to be addressed. A complete explanation for the

existence of the IVS is beyond the scope of this paper. In addition, the reason of the equity-market IVS

relationships or proposes of possible option pricing model incorporating market information are left for

future research.
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Table 1 

Summary Statistics for Cross-Sectional CBOE IVS Coefficients: Averages Across Underlying 
Stocks and Over Time 

The table reports summary statistics obtained across time as well as “names” (defined as the underlying stock 
on which option contracts are written) for the coefficients in the deterministic implied volatility function 
model: 

tititititititi MMM ,,,0,3
2
,0,00, )(ln   , 

estimated over time for each individual underlying stock. In the table, RMSE is the root mean squared error 
for implied volatilities, MAE the mean absolute error, and relative MAPE the mean absolute percentage error. 
The upper panel of the table reports GLS estimates of the coefficients that account for heterogeneous 
measurement error (as induced by heterogeneous liquidity and market frictions across moneyness and term 
structure dimensions) on the IVS (see Hentschel, 2003). The lower panel report simpler, raw OLS estimates. 
 

Coefficients 

Statistics
Min. Max. Mean Std. Dev. Skew Kurtosis

β 0 ‐2.384 2.392 ‐1.125 0.406 0.140 ‐0.190

β 1 ‐67.42 213.8 ‐0.257 1.177 73.36 11640.5

β 2 ‐2044.6 1384.9 0.559 11.838 ‐31.21 13237.6

β 3 ‐14.54 7.041 ‐0.039 0.189 ‐5.258 404.91

β 4 ‐458.0 176.4 ‐0.242 2.039 ‐99.00 22894.5

R
2

0.010 0.999 0.600 0.457 ‐7.546 171.80

R
2
 adj.   0.009 0.999 0.452 0.657 ‐8.738 222.24

RMSE 0.001 0.790 0.038 0.027 3.266 29.290

Theil's U  0.002 1.181 0.038 0.034 5.762 69.236

MAE 0.001 0.600 0.026 0.017 4.408 58.668

MAPE 0.002 0.981 0.036 0.526 251.8 74738.3

β 0 ‐2.840 2.320 ‐1.125 0.410 0.140 ‐0.208

β 1 ‐143.2 104.4 ‐0.220 1.091 ‐1.202 4641.8

β 2 ‐2206.0 1561.6 0.551 11.362 ‐15.93 17358.0

β 3 ‐14.21 10.27 ‐0.039 0.215 ‐2.935 283.02

β 4 ‐444.8 195.8 ‐0.313 2.122 ‐76.30 17467.4

R
2

0.012 1.000 0.761 0.208 ‐1.266 1.009

R
2
 adj.   0.008 0.999 0.675 0.287 ‐1.361 1.466

RMSE 0.002 0.659 0.029 0.019 4.280 53.370

Theil's U  0.002 0.918 0.030 0.028 6.393 80.334

MAE 0.002 0.549 0.023 0.016 5.044 72.04

MAPE 0.001 0.936 0.032 0.489 245.6 69948.1

Average GLS Estimates and Statistics (Across Equity Options)

Average OLS Estimates and Statistics (Across Equity Options)
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Table 2 

Summary Statistics for SPX IVS Coefficients: Averages Over Time 

The table reports summary statistics obtained across time for the coefficients in the deterministic implied 
volatility function model: 

tititititititi MMM ,,,0,3
2
,0,00, )(ln    

applied to S&P 500 index options (SPX). In the table, RMSE is the root mean squared error for implied 
volatilities, MAE the mean absolute error, and relative MAPE the mean absolute percentage error. The upper 
panel of the table reports GLS estimates of the coefficients that account for heterogeneous measurement error 
(as induced by heterogeneous liquidity and market frictions across moneyness and term structure dimensions) 
on the IVS (see Hentschel, 2003). The lower panel report simpler, raw OLS estimates. 
 

Coefficients 

Statistics
Min. Max. Mean Std. Dev. Skew Kurtosis

β 0 ‐2.426 ‐0.869 ‐1.729 0.323 ‐0.066 ‐0.574

β 1 ‐2.304 0.486 ‐0.882 0.367 ‐0.757 0.571

β 2 ‐2.115 3.301 0.365 0.664 0.388 0.952

β 3 ‐0.598 0.565 0.082 0.173 ‐0.294 ‐0.036

β 4 ‐6.946 1.301 ‐0.591 0.429 ‐1.584 18.864

R
2

0.128 0.995 0.802 0.200 ‐1.867 3.626

R
2
 adj.   0.104 0.994 0.794 0.208 ‐1.862 3.606

RMSE 0.008 0.523 0.061 0.037 2.092 11.528

Theil's U  0.005 0.337 0.037 0.024 2.311 13.488

MAE 0.006 0.413 0.041 0.023 2.922 30.013

MAPE 0.004 0.395 0.026 0.017 5.435 86.746

β 0 ‐2.441 ‐0.856 ‐1.747 0.325 0.010 ‐0.528

β 1 ‐2.167 0.478 ‐0.796 0.409 ‐0.389 0.236

β 2 ‐1.210 6.072 0.716 0.854 1.529 3.834

β 3 ‐0.584 0.814 0.105 0.202 ‐0.282 ‐0.097

β 4 ‐6.936 1.301 ‐0.889 0.828 ‐1.510 4.731

R
2

0.170 0.997 0.853 0.136 ‐1.731 3.214

R
2
 adj.   0.146 0.997 0.847 0.142 ‐1.731 3.204

RMSE 0.008 0.512 0.053 0.031 2.423 20.379

Theil's U  0.005 0.329 0.032 0.020 2.656 22.012

MAE 0.006 0.421 0.041 0.024 2.711 25.851

MAPE 0.004 0.436 0.026 0.017 6.121 116.724

Average GLS Estimates and Statistics

Average OLS Estimates and Statistics
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Table 3 

Summary Statistics for Cross-Sectional CBOE IVS Coefficients: Averages and Standard 
Deviations by Industry Classifications and Over Time 

The table reports summary statistics obtained across time as well as industries (as defined by the three-digit 
SIC code to which the underlying stock belongs to) for estimated GLS coefficients in the deterministic implied 
volatility function model: 

tititititititi MMM ,,,0,3
2
,0,00, )(ln   , 

estimated over time for each individual underlying stock.  
 

Industry 

Groups

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Basic Materials ‐1.231 0.327 ‐0.210 0.401 0.518 2.140 ‐0.040 0.149 ‐0.259 0.871

Conglomerates ‐1.383 0.344 ‐0.369 0.321 0.706 1.902 0.004 0.179 ‐0.294 0.675

Consumer Goods ‐1.298 0.350 ‐0.298 0.441 0.662 2.871 ‐0.001 0.177 ‐0.264 0.902

Financial ‐1.254 0.404 ‐0.346 1.555 0.766 10.61 ‐0.011 0.222 ‐0.360 3.987

Healthcare ‐1.178 0.314 ‐0.294 0.780 0.636 5.387 ‐0.050 0.186 ‐0.218 1.451

Industry Goods ‐1.180 0.330 ‐0.239 0.412 0.437 2.213 ‐0.045 0.178 ‐0.300 0.790

Services ‐1.216 0.332 ‐0.303 0.702 0.543 5.971 ‐0.023 0.164 ‐0.195 1.137

Technology ‐0.839 0.396 ‐0.160 1.626 0.373 19.75 ‐0.071 0.194 ‐0.175 1.426

β 3 β 4β 0 β 1 β 2
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Table 4 

Simultaneous Correlations for Cross-Sectional CBOE and SPX IVS Coefficients 

The table reports pair-wise correlations statistics for average (across time and underlying stocks) CBOE cross-
sectional IVS coefficients and for SPX IVS coefficients, all obtained by GLS estimation of the deterministic 
implied volatility function model 

tititititititi MMM ,,,0,3
2
,0,00, )(ln   , 

estimated over time for each underlying stock or index. 
 

β 0,Equities,t β 1,Equities,t β 2,Equities,t β 3,Equities,t β 4,Equities,t β 0,SPX,t β 1,SPX,t β 2,SPX,t β 3,SPX,t β 4,SPX,t

β 0,Equities,t 1

β 1,Equities,t 0.139** 1

β 2,Equities,t ‐0.029** ‐0.381** 1

β 3,Equities,t ‐0.519** ‐0.146** ‐0.190** 1

β 4,Equities,t 0.010** ‐0.596** ‐0.089** 0.288** 1

β 0,SPX,t 0.614** 0.027** ‐0.017** ‐0.323** 0.046** 1

β 1,SPX,t 0.342** 0.017** ‐0.007* ‐0.155** 0.019** 0.545** 1

β 2,SPX,t ‐0.288** ‐0.019** 0.016** 0.123** ‐0.028** ‐0.410** 0.387** 1

β 3,SPX,t ‐0.402** ‐0.009** ‐0.004 0.329** ‐0.028** ‐0.752** ‐0.515** 0.125** 1

β 4,SPX,t 0.057** 0.000 ‐0.009** ‐0.007* 0.017** 0.099** ‐0.586** ‐0.595** 0.011** 1

** Correlation is significant at the 0.01 level (2‐tailed).

*   Correlation is significant at the 0.05 level (2‐tailed).

Correlations
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Table 5 

First Order Cross-Serial Correlations for CBOE and SPX IVS Coefficients 

The table reports first order cross-serial correlations statistics for average (across time and underlying stocks) 
CBOE cross-sectional IVS coefficients and for SPX IVS coefficients, all obtained by GLS estimation of the 
deterministic implied volatility function model 

tititititititi MMM ,,,0,3
2
,0,00, )(ln   , 

estimated over time for each underlying stock or index. The cross correlations intend to test whether the value 
of SPX IVS coefficients may forecast subsequent average values of IVS coefficients for individual equity 
options. 
 

β 0,Equities,t β 1,Equities,t β 2,Equities,t β 3,Equities,t β 4,Equities,t β 0,SPX,t‐1 β 1,SPX,t‐1 β 2,SPX,t‐1 β 3,SPX,t‐1 β 4,SPX,t‐1

β 0,Equities,t 1

β 1,Equities,t 0.139** 1

β 2,Equities,t ‐0.029** ‐0.381** 1

β 3,Equities,t ‐0.519** ‐0.146** ‐0.190** 1

β 4,Equities,t 0.010** ‐0.596** ‐0.089** 0.288** 1

β 0,SPX,t‐1 0.615** 0.029** ‐0.018** ‐0.327** 0.069** 1

β 1,SPX,t‐1 0.345** 0.017** ‐0.011** ‐0.164** 0.033** 0.545** 1

β 2,SPX,t‐1 ‐0.288** ‐0.024** 0.012** 0.123** ‐0.036** ‐0.410** 0.387** 1

β 3,SPX,t‐1 ‐0.401** ‐0.008** ‐0.000 0.335** ‐0.045** ‐0.752** ‐0.515** 0.125** 1

β 4,SPX,t‐1 0.054** 0.004 ‐0.005 0.000 0.019** 0.099** ‐0.586** ‐0.595** 0.011** 1

** Correlation is significant at the 0.01 level (2‐tailed).

*   Correlation is significant at the 0.05 level (2‐tailed).

Correlations
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Table 6 

First Order Cross-Serial Correlations for CBOE and IVS Coefficients 
The table reports first order cross-serial correlations statistics for average (across time and underlying stocks) CBOE cross-sectional IVS coefficients, all 
obtained by GLS estimation of the deterministic implied volatility function model in the main text. 

β 0,Equities,t β 1,Equities,t β 2,Equities,t β 3,Equities,t β 4,Equities,t β 0,Equities,t‐1 β 1,Equities,t‐1 β 2,Equitiest‐1 β 3,Equities,t‐1 β 4,Equities,t‐1

β 0,Equities,t 1

β 1,Equities,t 0.139** 1

β 2,Equities,t ‐0.029** ‐0.381** 1

β 3,Equities,t ‐0.519** ‐0.146** ‐0.190** 1

β 4,Equities,t 0.010** ‐0.596** ‐0.089** 0.288** 1

β 0,Equities,t‐1 0.990** 0.121** ‐0.025** ‐0.517** 0.079** 1

β 1,Equities,t‐1 0.171** 0.282** 0.190** ‐0.168** ‐0.280** 0.139** 1

β 2,Equities,t‐1 ‐0.041** 0.177** 0.192** ‐0.054** ‐0.222** ‐0.029** ‐0.381** 1

β 3,Equities,t‐1 ‐0.527** ‐0.121** ‐0.041** 0.825** 0.043** ‐0.519** ‐0.146** ‐0.190** 1

β 4,Equities,t‐1 0.086** ‐0.193** ‐0.165** 0.037** 0.306** 0.010** ‐0.596** ‐0.089** 0.288** 1

** Correlation is significant at the 0.01 level (2‐tailed).

*   Correlation is significant at the 0.05 level (2‐tailed).

Correlations

 
 

Table 7 

Third Order Cross-Serial Correlations for CBOE and IVS Coefficients 
The table reports third order cross-serial correlations statistics for average (across time and underlying stocks) CBOE cross-sectional IVS coefficients, all 
obtained by GLS estimation of the deterministic implied volatility function model in the main text. 
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β 0,Equities,t β 1,Equities,t β 2,Equities,t β 3,Equities,t β 4,Equities,t β 0,Equities,t‐3 β 1,Equities,t‐3 β 2,Equitiest‐3 β 3,Equities,t‐3 β 4,Equities,t‐3

β 0,Equities,t 1

β 1,Equities,t 0.139** 1

β 2,Equities,t ‐0.029** ‐0.381** 1

β 3,Equities,t ‐0.519** ‐0.146** ‐0.190** 1

β 4,Equities,t 0.010** ‐0.596** ‐0.089** 0.288** 1

β 0,Equities,t‐3 0.980** 0.111** ‐0.033** ‐0.483** 0.090** 1

β 1,Equities,t‐3 0.153** 0.143** 0.056** ‐0.119** ‐0.106** 0.139** 1

β 2,Equities,t‐3 ‐0.037** 0.066** 0.064** ‐0.020** ‐0.084** ‐0.029** ‐0.381** 1

β 3,Equities,t‐3 ‐0.503** ‐0.086** ‐0.009** 0.729** ‐0.005 ‐0.519** ‐0.146** ‐0.190** 1

β 4,Equities,t‐3 0.094** ‐0.092** ‐0.063** 0.003 0.161** 0.010** ‐0.596** ‐0.089** 0.288** 1

** Correlation is significant at the 0.01 level (2‐tailed).

*   Correlation is significant at the 0.05 level (2‐tailed).

Correlations
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Table 8 
Predictive Performance Measures for Alternative Models of the IVS Dynamics 

The table reports  
 

RMSE‐V
Utheil‐V

(%)
MAE‐V

MAE‐Rel‐V 

(%)

MCPDC‐V

(%)
RMSE‐P

Utheil‐P

(%)
MAE‐P

MAE‐Rel‐P

(%)

MCPDC‐P

(%)

Deterministic IVS Model with SPX IVS 0.027 7.31% 0.018 4.73% 57.89% 0.539 12.67% 0.499 16.19% 53.93%

Goncalves‐Guidolin Deterministic IVS Model 0.030 7.75% 0.020 4.90% 57.01% 0.545 13.44% 0.509 16.61% 53.90%

Random walk IVS (DWF "strawman") 0.017 4.98% 0.012 3.56% 51.35% 0.522 12.16% 0.490 15.61% 50.78%

Option GARCH(1,1) 0.032 7.94% 0.022 5.02% 56.89% 0.592 13.82% 0.544 17.38% 52.87%

Random walk IV 0.014 4.05% 0.010 2.99% NA 0.514 11.96% 0.486 15.45% NA

OLS Estimates
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Table 9 
Delta-Hedged Trading Performances for Alternative Models of the IVS Dynamics 

The table reports average (across the cross-section of CBOE underlying stocks) mean trading strategy returns, their average standard deviation, t-ratio, 
and Sharpe ratios, when the trading strategy consists of 
 

Averg. Mean 

Profit (%)

Averg. Stdr. 

Dev (%)

Averg. 

t‐ratio

Averg. Sharpe 

ratio

Deterministic IVS Model with SPX 0.476% 29.163% 0.734 1.578%

Goncalves‐Guidolin Deterministic IVS 0.440% 28.578% 0.650 1.484%

Random walk IVS (DWF "strawman") ‐0.053% 33.864% ‐0.028 ‐0.202%

Option GARCH(1,1) 0.157% 40.367% 0.173 0.349%

Deterministic IVS Model with SPX 0.158% 4.033% 1.794 3.527%

Goncalves‐Guidolin Deterministic IVS 0.162% 4.035% 1.872 3.613%

Random walk IVS (DWF "strawman") 0.135% 3.966% 1.566 3.001%

Option GARCH(1,1) 0.113% 4.688% 0.967 2.073%

Deterministic IVS Model with SPX 0.075% 2.488% 1.258 2.378%

Goncalves‐Guidolin Deterministic IVS 0.071% 2.528% 1.222 2.198%

Random walk IVS (DWF "strawman") 0.062% 2.488% 1.056 1.864%

Option GARCH(1,1) 0.060% 2.763% 0.828 1.619%

S&P buy and hold 0.040% 1.112% 1.272 2.221%

T‐Bill Portfolio 0.016% 0.007% 73.620 0.000%

Trading Rule A

Trading Rule B

Trading Rule C

Benchmark
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Table 10 
Trading Performances of Straddle Strategies Under Alternative Models of the IVS Dynamics 

The table reports average (across the cross-section of CBOE underlying stocks) mean trading strategy returns, their average standard deviation, t-ratio, 
and Sharpe ratios, , when the trading strategy consists of 
 

Averg. Mean 

Profit (%)

Averg. Stdr. 

Dev (%)

Averg. 

t‐ratio

Averg. Sharpe 

ratio

Deterministic IVS Model with SPX 4.513% 32.698% 5.958 13.754%

Goncalves‐Guidolin Deterministic IVS 4.390% 33.085% 5.879 32.751%

Random walk IVS (DWF "strawman") 4.258% 33.000% 6.486 12.855%

Option GARCH(1,1) 3.889% 39.883% 4.123 9.712%

Deterministic IVS Model with SPX 1.793% 8.218% 9.015 21.628%

Goncalves‐Guidolin Deterministic IVS 1.897% 8.302% 9.417 22.658%

Random walk IVS (DWF "strawman") 1.497% 8.423% 9.996 17.580%

Option GARCH(1,1) 1.479% 9.678% 6.874 15.118%

Deterministic IVS Model with SPX 1.119% 11.040% 4.151 9.990%

Goncalves‐Guidolin Deterministic IVS 1.135% 11.038% 4.200 10.142%

Random walk IVS (DWF "strawman") 1.096% 11.040% 4.126 9.782%

Option GARCH(1,1) 1.038% 11.874% 3.176 8.609%

S&P buy and hold 0.040% 1.112% 1.272 2.221%

T‐Bill Portfolio 0.016% 0.007% 73.620 0.000%

Trading Rule A

Trading Rule B

Trading Rule C

Benchmark
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Table 11 
Delta-Hedged Trading Performances for Alternative Models of the IVS Dynamics: Effects of Transaction Costs 

The table reports average (across the cross-section of CBOE underlying stocks) mean trading strategy returns, their average standard deviation, t-ratio, 
and Sharpe ratios, when the trading strategy consists of 
 

Averg. Mean 

Profit (%)

Averg. Stdr. 

Dev (%)

Averg. 

t‐ratio

Averg. Sharpe 

ratio

Deterministic IVS Model with SPX ‐7.705% 39.838% ‐8.593 ‐19.381%

Goncalves‐Guidolin Deterministic IVS ‐8.114% 39.339% ‐8.994 ‐20.667%

Random walk IVS (DWF "strawman") ‐8.688% 46.312% ‐8.262 ‐18.793%

Option GARCH(1,1) ‐9.584% 45.738% ‐9.365 ‐20.989%

Deterministic IVS Model with SPX ‐0.861% 4.067% ‐9.535 ‐21.565%

Goncalves‐Guidolin Deterministic IVS ‐0.842% 4.070% ‐9.271 ‐21.068%

Random walk IVS (DWF "strawman") ‐0.794% 4.002% ‐8.819 ‐20.232%

Option GARCH(1,1) ‐1.477% 4.618% ‐10.374 ‐32.319%

Deterministic IVS Model with SPX ‐0.744% 2.503% ‐13.654 ‐30.376%

Goncalves‐Guidolin Deterministic IVS ‐0.749% 2.544% ‐13.423 ‐30.040%

Random walk IVS (DWF "strawman") ‐0.757% 2.503% ‐13.841 ‐30.879%

Option GARCH(1,1) ‐0.780% 2.685% ‐14.137 ‐29.628%

S&P buy and hold 0.040% 1.112% 1.272 2.221%

T‐Bill Portfolio 0.016% 0.007% 73.620 0.000%

Trading Rule A

Trading Rule B

Trading Rule C

Benchmark
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Table 12 
Trading Performances of Straddle Strategies Under Alternative Models of the IVS Dynamics: Effects of Transaction Costs 

The table reports average (across the cross-section of CBOE underlying stocks) mean trading strategy returns, their average standard deviation, t-ratio, 
and Sharpe ratios, , when the trading strategy consists of 
 

 
Averg. Mean 

Profit (%)

Averg. Stdr. 

Dev (%)

Averg. 

t‐ratio

Averg. Sharpe 

ratio

Deterministic IVS Model with SPX ‐14.352% 46.282% ‐13.168 ‐31.044%

Goncalves‐Guidolin Deterministic IVS ‐15.314% 49.537% ‐13.362 ‐30.946%

Random walk IVS (DWF "strawman") ‐14.535% 45.484% ‐13.988 ‐31.990%

Option GARCH(1,1) ‐18.374% 52.288% ‐14.238 ‐35.170%

Deterministic IVS Model with SPX ‐1.077% 8.257% ‐5.270 ‐13.238%

Goncalves‐Guidolin Deterministic IVS ‐1.027% 8.355% ‐5.019 ‐12.480%

Random walk IVS (DWF "strawman") ‐0.990% 8.467% ‐4.800 ‐11.875%

Option GARCH(1,1) ‐1.284% 9.617% ‐6.837 ‐13.512%

Deterministic IVS Model with SPX ‐3.151% 11.194% ‐11.649 ‐28.290%

Goncalves‐Guidolin Deterministic IVS ‐3.143% 11.234% ‐11.644 ‐28.115%

Random walk IVS (DWF "strawman") ‐3.070% 11.199% ‐11.351 ‐27.552%

Option GARCH(1,1) ‐3.672% 12.454% ‐12.374 ‐29.614%

S&P buy and hold 0.040% 1.112% 1.272 2.221%

T‐Bill Portfolio 0.016% 0.007% 73.620 0.000%

Trading Rule A

Trading Rule B

Trading Rule C

Benchmark
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Table 13 
Trading Performances of Straddle Strategies Under Alternative Models of the IVS Dynamics:  

Profit-Destroying Transaction Costs 

The table reports average (across the cross-section of CBOE underlying stocks) mean trading strategy returns, their average standard deviation, t-ratio, 
and Sharpe ratios, , when the trading strategy consists of 

 
 

Averg. Mean 

Profit (%)

Averg. Stdr. 

Dev (%)

Averg. 

t‐ratio

Averg. Sharpe 

ratio

Deterministic IVS Model with SPX ‐33.217% 83.134% ‐16.780 ‐39.975%

Goncalves‐Guidolin Deterministic IVS ‐35.326% 89.221% ‐16.871 ‐39.612%

Random walk IVS (DWF "strawman") ‐35.143% 85.947% ‐17.506 ‐40.908%

Option GARCH(1,1) ‐39.738% 95.628% ‐18.587 ‐41.571%

Deterministic IVS Model with SPX ‐3.948% 8.574% ‐18.767 ‐46.227%

Goncalves‐Guidolin Deterministic IVS ‐3.951% 8.684% ‐18.677 ‐45.676%

Random walk IVS (DWF "strawman") ‐4.100% 8.824% ‐19.022 ‐46.641%

Option GARCH(1,1) ‐3.318% 8.467% ‐16.256 ‐39.369%

Deterministic IVS Model with SPX ‐7.421% 11.707% ‐26.074 ‐63.521%

Goncalves‐Guidolin Deterministic IVS ‐7.425% 11.748% ‐26.131 ‐63.334%

Random walk IVS (DWF "strawman") ‐7.340% 11.725% ‐25.762 ‐62.730%

Option GARCH(1,1) ‐7.937% 13.707% ‐27.364 ‐58.021%

S&P buy and hold 0.040% 1.112% 1.272 2.221%

T‐Bill Portfolio 0.016% 0.007% 73.620 0.000%

Trading Rule A

Trading Rule B

Trading Rule C

Benchmark
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Figure 1 
Dynamics of the IVS for Cisco System Options 
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Figure 2 
Fit of the Deterministic IVS Model to Microsoft IVS on July 15, 2003 
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