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Abstract

The paper shows that the difference in aggregate volatility risk can explain why
several anomalies are stronger among the stocks with low institutional ownership
(IO). Because of their desire to hedge against aggregate volatility or to exploit their
competitive advantage in obtaining and processing information, coupled with the
dislike of uncertainty and volatility, institutions tend to stay away from the stocks
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options. Consequentially, the spread in the measures of uncertainty and growth
options is wider for low IO stocks, and the same is true about the differential in
aggregate volatility risk. I demonstrate empirically that the ICAPM with the aggre-
gate volatility risk factor can completely explain why the negative relation between
market-to-book, idiosyncratic volatility, turnover, and analyst disagreement, on the
one hand, and future returns on the other is stronger for the stocks with low IO. The
same mechanism explains why the positive relation between IO and future returns
is stronger for growth firms and high uncertainty firms.
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1 Introduction

Institutional ownership (henceforth IO) is long recognized to be driven by a long list of firm

characteristics1, many of which can proxy for systematic risk. However, the existing asset

pricing studies usually use IO as a proxy for either investor sophistication2 or short sale

constraints3. Therefore, the link between IO and numerous anomalies is usually interpreted

as the evidence that these anomalies stem from investors’ data-processing biases and persist

because of limits to arbitrage.

This paper presents a risk-based story that explains why several important anomalies

- the value effect (Fama and French, 1993), the idiosyncratic volatility discount (Ang,

Hodrick, Xing, and Zhang, 2006), the turnover effect (Datar, Naik, and Radcliffe, 1998),

and the analyst disagreement effect (Diether, Malloy, and Scherbina, 2002) - are stronger

for low IO firms. The explanation is aggregate volatility risk: in the subsample with low IO,

the arbitrage portfolios that exploit the aforementioned anomalies severely underperform

the CAPM when expected aggregate volatility increases.

The reason why the sorts on market-to-book, idiosyncratic volatility, turnover, or an-

alyst disagreement produce wider aggregate volatility risk differential in the low IO sub-

sample is that, as I document in this paper, institutions tend to stay away from the firms

with extreme levels of volatility/uncertainty and growth options. On the one hand, port-

folio managers dislike the stocks with high volatility/uncertainty (see Shleifer and Vishny,

1997), which makes them decide against owning stocks with high market-to-book, high

idiosyncratic volatility, high analyst disagreement, or high turnover. On the other hand,

portfolio managers like the protection against aggregate volatility risk offered by the stocks

with high levels of volatility and growth options4. Portfolio managers also recognize that

they need some level of uncertainty to use their comparative advantage in access to infor-

mation and in ability to process it. As a result, institutions ignore both the firms with

low uncertainty (considering them unattractive) and the firms with high uncertainty (con-

1See, for example, Falkenstein (1996), Del Guercio (1996), Gompers and Metrick (2001)
2Bartov, Radhakrishnan, and Krinsky (2000), Collins, Gong, and Hribar (2003)
3Nagel (2005), Asquith, Pathak, and Ritter (2005)
4See Barinov (2009a) for the evidence that growth firms and high idiosyncratic volatility firm load

negatively on the aggregate volatility risk factor, and Barinov (2009b) and Barinov (2009c) for similar
evidence on high turnover firms and firm with high analyst forecast dispersion.
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sidering them too dangerous). Sorting on uncertainty measures in the low IO subsample

therefore produces the widest spreads in uncertainty.

Barinov (2009a) shows that higher idiosyncratic volatility and abundant growth op-

tions mean lower aggregate volatility risk. First, idiosyncratic volatility increases when

aggregate volatility goes up (see Campbell et al., 2001, for empirical evidence). Higher

idiosyncratic volatility during periods of high aggregate volatility means that the value of

growth options becomes less sensitive to the value of the underlying asset (because the

delta of the option declines in volatility) and the growth options become therefore less

risky precisely when risks are high. This effect is stronger for the firms with higher id-

iosyncratic volatility. Hence, firms with high idiosyncratic volatility and valuable growth

options will have procyclical market betas and will suffer smaller losses when aggregate

volatility increases and the risk and expected returns of all firms go up.

Second, all else equal, growth options increase in value when idiosyncratic volatility of

the underlying asset increases (see Grullon, Lyandres, and Zhdanov, 2007, for empirical

evidence). That makes the reaction of growth options to the increases of aggregate volatil-

ity (usually coupled with increases in idiosyncratic volatility) less negative. This effect is

also stronger for high idiosyncratic volatility firms, therefore high idiosyncratic volatility

firms, especially if they possess valuable growth options, tend to lose less value than other

firms with similar market betas when aggregate volatility and idiosyncratic volatility both

increase.

The fact that both the stocks with the lowest and the highest idiosyncratic volatility

and market-to-book end up in the low IO subsample means that the sorts on idiosyncratic

volatility (market-to-book) in this subsample will create the largest spread in idiosyncratic

volatility (market-to-book) and, consequentially, the largest spread in exposure to aggre-

gate volatility risk. Hence, the stronger idiosyncratic volatility discount and the stronger

value effect for the lowest IO firms should be explained by aggregate volatility risk. The

same should be true about the turnover effect and the analyst disagreement effect, because

both turnover and analyst forecast dispersion are strongly correlated with idiosyncratic

volatility.

Aggregate volatility risk is the risk of losing value when expected aggregate volatil-
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ity unexpectedly increases. Campbell (1993) creates a model where increasing aggregate

volatility is synonymous with decreasing expected future consumption. Investors would

require a lower risk premium from the stocks the value of which correlates positively with

aggregate volatility news, because these stocks provide additional consumption precisely

when investors have to cut their current consumption for consumption-smoothing and pre-

cautionary savings motives. Chen (2002) adds in the precautionary savings motive and

concludes that the positive correlation of asset returns with aggregate volatility changes is

desirable, because such assets deliver additional consumption when investors have to con-

sume less in order to boost precautionary savings. Ang, Hodrick, Xing, and Zhang (2006)

confirm this prediction empirically and coin the notion of aggregate volatility risk. They

show that the stocks with the most positive sensitivity to aggregate volatility increases

have abnormally low expected returns and that the portfolio tracking expected aggregate

volatility earns a significant risk premium. This paper builds on this literature and shows

that aggregate volatility risk helps to explain the link between IO and several asset pricing

anomalies.

I start my empirical tests by demonstrating that institutional investors indeed tend

to ignore the stocks with the extreme levels of market-to-book, idiosyncratic volatility,

turnover, and analyst disagreement. In cross-sectional regressions, the sign of the relation

between IO and these variables is positive when their values are low and becomes negative

when their values become higher. I confirm this result using double sorts on market-to-book

and IO and double sorts on idiosyncratic volatility and IO, which demonstrate that in the

market-to-book (idiosyncratic volatility) sorts the spread in market-to-book (idiosyncratic

volatility) is significantly larger if this sort is performed in the lower IO group. The same

is true about aggregate volatility risk: buying value and shorting growth, as well as buying

low and shorting high idiosyncratic volatility firms means greater exposure to aggregate

volatility risk if one follows these strategies in the lower IO subsample.

I proceed with demonstrating that the difference in aggregate volatility risk is enough

to explain why the value effect, the idiosyncratic volatility discount, the turnover effect,

and the analyst disagreement effect are stronger for the firms with low IO. When I look

at the CAPM alphas, the difference in the magnitude of these four effects between the

lowest and the highest IO quintiles varies between 0.5% and 1% per month. However, in
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the two-factor ICAPM with the market factor and the aggregate volatility risk factor this

difference is reduced by more than a half and usually becomes insignificant.

Next, I turn to explaining the positive link between IO and future returns. Gompers

and Metrick (2001) is one of the first studies to document this link. They interpret the

ability of IO to predict future returns either to the ability of the portfolio managers to

pick the right stocks, or to the demand pressure institutions exert on prices. Yan and

Zhang (2008) and Jiao and Liu (2008) show that the effect of IO on prices is higher for

small stocks, growth stocks, and high uncertainty stocks, consistent with the argument in

Gompers and Metrick (2001).

The evidence in Yan and Zhang (2008) and Jiao and Liu (2008) can be potentially

explained by aggregate volatility risk. As I show in this paper, in the subsamples with

high (low) uncertainty institutions tend to pick the firms with lower (higher) uncertainty

and therefore with higher (lower) aggregate volatility risk. Hence, my story also predicts

that the relation between IO and future returns should be the most positive for high

uncertainty firms.

Since the relation between IO and aggregate volatility risk should have different sign for

high and low uncertainty firms, it is an empirical question what is the correlation between

IO and aggregate volatility risk on average for all firms. The results of cross-sectional

regressions suggest that, holding all else equal and not controlling for the concavity of the

relation between IO and uncertainty, on average lower uncertainty means higher IO, and

consequentially, higher IO implies higher aggregate volatility risk.

In the asset pricing tests I find that the two-factor ICAPM with the market factor and

the aggregate volatility risk factor can explain the positive relation between IO and future

returns, as well as why this relation is stronger if market-to-book or volatility/uncertainty

measures are high.

I also perform two important robustness checks for all results discussed above. First,

I replace my aggregate volatility factor by the change in expected aggregate volatility (as

proxied for by the change in the VIX index), which is the variable mimicked by the aggre-

gate volatility factor. Using the change in VIX I show that during increases in expected

aggregate volatility the arbitrage portfolios exploiting the value effect, the idiosyncratic
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volatility discount, the turnover effect, and the analyst disagreement effect indeed under-

perform the CAPM more severely, if these arbitrage portfolios are formed in the low IO

subsample. I also demonstrate that, on average, low (high) IO firms tend to beat (trail)

the CAPM when expected aggregate volatility increases, and this is especially true in the

subsamples of growth firms and firms with high volatility/uncertainty.

Second, I turn to the conditional CAPM as a more conventional way to measure risk and

its changes. Barinov (2009a) argues that one reason why growth firms and volatile firms

have low expected returns is because they become less risky in recessions. In recessions,

both aggregate volatility and idiosyncratic volatility increase, which means that the value

of growth options becomes less sensitive to the value of the underlying asset and the growth

options therefore become less risky precisely when risks are high. This effect is stronger

for volatile firms. Hence, volatile firms and growth firms should have procyclical market

betas. Barinov (2009a) confirms this prediction empirically using the conditional CAPM.

If sorting on volatility/uncertainty measures and market-to-book creates larger spreads

in the sorting variables within the low IO subsample, I expect that the arbitrage portfolios

exploiting the value effect, the idiosyncratic volatility discount, the turnover effect, and

the analyst disagreement effect will have more countercyclical market betas in the low IO

subsample. I estimate the conditional CAPM and show that this prediction is strongly

supported by the data. Similarly, consistent with aggregate volatility risk being the ex-

planation of the positive relation between IO and future returns, low (high) IO firms have

procyclical (countercyclical) market betas, and this is especially true in the growth sub-

sample and the high uncertainty subsample. However, consistent with the Lewellen and

Nagel (2006) critique, the change in the betas of the arbitrage portfolios, while goes in the

right direction, is too small to explain the anomalies in question, which points towards the

ICAPM as the right model to explain the anomalies.

The paper proceeds as follows. Section 2 describes the data sources. Section 3 shows

that institutional investors tend to avoid the firms with extreme levels of market-to-book

and volatility, and demonstrates the consequent pattern in aggregate volatility risk expo-

sure in double sorts on market-to-book/volatility and IO. Section 4 explains the relation

between the anomalies and IO using the aggregate volatility risk factor. Section 5 uses

aggregate volatility risk factor to explain both the positive relation between IO and future
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returns and why this relation is stronger for growth firms and high volatility/uncertainty

firms. Section 6 performs the robustness checks, first, replacing the aggregate volatility risk

factor by the change in expected aggregate volatility and, second, estimating conditional

CAPM instead of the ICAPM. Section 7 concludes.

2 Data

2.1 Data Sources

The data in the paper come from CRSP, Compustat, IBES, Thompson Financial, and the

CBOE indexes databases. The sample period is from January 1986 to December 2006. IO

is the sum of institutional holdings from Thompson Financial 13F database, divided by the

shares outstanding from CRSP. If the stock is on CRSP, but not on Thompson Financial

13F database, it is assumed to have zero IO. If the stock’s capitalization is below the 20th

NYSE/AMEX percentile, its IO is assumed to be missing. The results in the paper are

robust to including in the sample the stocks from the bottom size quintile.

Following Nagel (2005), in asset pricing tests I use residual IO to eliminate the tight link

between size and IO and to make sure that I am not capturing any size effects. Residual

IO is the residual from

log(
Inst

1 − Inst
) = γ0 + γ1 · log(Size) + γ2 · log2(Size) + ε (1)

fitted to all firms within each separate quarter.

In Section 4, I look at four anomalies: the value effect, the idiosyncratic volatility

discount, the turnover effect, and the analyst disagreement effect. I measure the value

effect as the return differential between the bottom and top market-to-book quintiles.

Market-to-book is market value of equity (Compustat item #25 times Compustat item

#199) over the sum of book equity (Compustat item #60) and deferred taxes (Compustat

item #74). The quintiles are rebalanced annually, and the market-to-book is always from

the fiscal year ending no later than in June of the sorting year.

I define the idiosyncratic volatility discount as the return differential between the lowest

and the highest idiosyncratic volatility quintile. Idiosyncratic volatility is defined as the
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standard deviation of residuals from the Fama-French model, fitted to the daily data

for each month (at least 15 valid observations are required). The idiosyncratic volatility

quintiles are formed using the previous month idiosyncratic volatility and are rebalanced

monthly.

The turnover effect is the difference in returns between the firms with low turnover and

high turnover. Turnover is measured monthly and averaged in each firm-year (at least 5

months with valid observations are required). NASDAQ (exchcd=3) turnover is divided

by 2 to eliminate double-counting. The turnover quintiles are rebalanced annually.

The analyst disagreement effect is the return differential between the lowest and highest

analyst disagreement quintile. Analyst disagreement is measured as the standard devia-

tion of all outstanding earnings-per-share forecasts for the current fiscal year scaled by

the absolute value of the average outstanding earnings forecast (zero-mean forecasts and

forecasts by only one analyst excluded). Analyst disagreement is set to missing for the

firms with stock price lower than $5. The data on analyst forecasts are from IBES.

My proxy for expected aggregate volatility is the old VIX index. It is calculated by

CBOE and measures the implied volatility of one-month put and call options on S&P 100.

I get the values of the VIX index from CBOE data on WRDS. Using the old version of

the VIX gives me a longer data series compared to newer CBOE indices. The availability

of the VIX index determines my sample period that starts from January 1986 and ends in

December 2006.

To estimate the conditional CAPM in Section 6, I employ four commonly used con-

ditioning variables: the dividend yield, the default premium, the risk-free rate, and the

term premium. I define the dividend yield, (DIVt), as the sum of dividend payments to

all CRSP stocks over the previous 12 months, divided by the current value of the CRSP

value-weighted index. The default spread, (DEFt), is the yield spread between Moody’s

Baa and Aaa corporate bonds. The risk-free rate is the one-month Treasury bill rate,

(TBt). The term spread, (TERMt), is the yield spread between ten-year and one-year

Treasury bond. The data on the dividend yield and the risk-free rate are from CRSP. The

data on the default spread and the term spread are from FRED database at the Federal

Reserve Bank at St. Louis.
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2.2 Aggregate Volatility Risk Factor

I define FVIX, my aggregate volatility risk factor, as a factor-mimicking portfolio that

tracks the daily changes in the VIX index. The ICAPM suggests that the right variable

to mimic is the innovation to the state variable (expected aggregate volatility). As Ang,

Hodrick, Xing, and Zhang (2006) show, VIX index is close to random walk at the daily

level, therefore its daily change is a suitable proxy for the innovation in expected aggregate

volatility.

I regress the daily changes in VIX on the daily excess returns to the six size and book-

to-market portfolios (sorted in two groups on size and three groups on book-to-market).

The fitted part of this regression less the constant is the FVIX factor. I cumulate returns

to the monthly level to get the monthly return to FVIX. All results in the paper are

robust to changing the base assets from the six size and book-to-market portfolio to the

ten industry portfolios (Fama and French, 1997) or the five portfolios sorted on past

sensitivity to VIX changes (Ang, Hodrick, Xing, and Zhang, 2006). The daily returns

to the six size and book-to-market portfolios and the ten industry portfolios come from

Kenneth French website.

By construction, FVIX has a positive correlation (0.53, t-statistic 9.82) with the in-

novation to expected aggregate volatility. Thus, a negative FVIX beta means negative

reaction to unexpected increases in expected aggregate volatility, i.e., aggregate volatility

risk.

In my sample period, FVIX loses about 1% per month, t-statistic -4.35. This low return

is not surprising, because FVIX is the best possible hedge against aggregate volatility risk.

Also, FVIX is strongly negatively correlated with the market factor (the correlation is -

0.79, t-statistic -20.7), because market volatility usually increases when market drops. The

market beta of the FVIX factor is -0.68, t-statistic -11.5. The CAPM alpha of the FVIX

factor is -56 bp per month, t-statistic -3.0, suggesting that FVIX has a good potential to

complement the market factor in the ICAPM.

Prior research shows that FVIX is useful in explaining several prominent anomalies:

Barinov (2009a) shows that FVIX can explain the value effect and the idiosyncratic volatil-
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ity discount (the negative cross-sectional relation between idiosyncratic volatility and fu-

ture returns). Barinov (2009b) demonstrates that FVIX can explain the negative cross-

sectional relation between turnover and future returns (the turnover effect), and Barinov

(2009c) shows that FVIX explains the analyst disagreement effect (lower future returns to

firms with higher dispersion of analyst forecasts).

3 IO and Firm Characteristics

3.1 Idiosyncratic Volatility and Growth Options

In this subsection, I establish the concave relation between IO and the variables related to

idiosyncratic volatility and growth options by using Fama-MacBeth (1973) cross-sectional

regressions. Aside from these variables, I use the standard controls used by Gompers and

Metrick (2001) and related papers: size, age, the dummy variable for membership in the

S&P 500 index, the level of stock price, the cumulative returns in the past three months

and in the past year without the most recent quarter, and the dividend yield. All firm

characteristics are measured in the quarter before the one for which IO is reported.

The SEC regulation requires to report the holdings of securities that exceed $200,000.

For microcaps, many institutions are likely to own a smaller amount of shares, because

they do not intend to become a blockholder and fear that a larger amount would be difficult

to trade if needed. Thus, for microcaps a significant fraction of IO may go unreported in

13Fs. I decide therefore to discard from my sample the firms with market cap below the

20th NYSE/AMEX percentile, as Nagel (2005) also did. However, unreported robustness

checks show that keeping these observations in the sample does not materially impact my

results.

The hypothesis I am testing is that institutions are staying away from the firms with

both extremely low and extremely high levels of volatility. The reasons why institutions

dislike high idiosyncratic volatility are described, for example, in Shleifer and Vishny

(1997). First, while the investors can presumably diversify away the idiosyncratic risk, the

portfolio manager is underdiversified and will avoid idiosyncratic volatility if the interests

of the manager and the investors are not perfectly aligned. Second, greater idiosyncratic
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volatility means a higher chance of getting a margin call and having to close the correct

bet if the prices swerve in the opposite direction.

On the other hand, institutional investors also have reasons to avoid stocks with low lev-

els of idiosyncratic volatility. First, they arguably have comparative advantage in gathering

and processing information, and therefore need some uncertainty about the stock value

in order to make use of this comparative advantage. Second, as Barinov (2009a) shows,

low idiosyncratic volatility firms underperform the CAPM during increases in expected

aggregate volatility, which in undesirable both for investors and the portfolio managers.

Similar argument can be made about other related variables, such as turnover, analyst

forecast dispersion, and market-to-book, which are strongly correlated with idiosyncratic

volatility. I predict that in the regression of IO on all these variables and their squares

the variables will have positive coefficients, and their squares will have negative coeffi-

cients. Moreover, both coefficients will be such that IO peaks for the level of idiosyncratic

volatility (turnover, market-to-book, analyst disagreement) between the minimum and the

maximum sample values of these variables. In other words, the regressions of IO on idiosyn-

cratic volatility and idiosyncratic volatility squared should show that IO increases with

idiosyncratic volatility when idiosyncratic volatility is low, then peaks at some intermedi-

ate value of idiosyncratic volatility, and begins to decrease with idiosyncratic volatility as

idiosyncratic volatility becomes high. The same should be true if one replaces idiosyncratic

volatility with turnover, market-to-book, or analyst forecast dispersion.

In Panel A of Table 1 I regress IO (in percentage) on the controls and one of the four

variables of interest plus its square. All variables are transformed into percentage ranks

to eliminate their huge positive skewness. Therefore, the significant coefficient of -0.09

on idiosyncratic volatility in the bottom left panel means that as idiosyncratic volatility

increases from the 25th to the 75th percentile, IO will decrease by −0.09 · (−50) = 4.5%.

However, the next column of the bottom left shows that the link between idiosyncratic

volatility is more complicated, because, consistent with my hypothesis, after adding the

squared volatility the coefficient on idiosyncratic volatility becomes significantly positive,

and the coefficient on its square comes out significantly negative. This is consistent with

similar evidence reported in Falkenstein (1996).
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The values of the coefficients suggest that IO peaks at 0.367/(2 · 0.0048) = 38th id-

iosyncratic volatility percentile. At the 10th volatility percentile, IO reacts by a 0.367 −
2 · 0.0048 · 10 = 0.27% increase to the increase of idiosyncratic volatility by one percentile.

At the 90th volatility percentile, IO reacts by a 0.367 − 2 · 0.0048 · 90 = −0.5% decrease

to the increase of idiosyncratic volatility by one percentile.

The results with idiosyncratic volatility replaced by analyst forecast dispersion (bot-

tom right panel) are very similar. In the regressions with market-to-book I observe that

IO peaks at the 15th market-to-book quintile, suggesting that institutions almost always

prefer lower market-to-book levels, unless these levels are below the 15th percentile. In the

regressions with turnover, the peak is at the 97th turnover quintile, meaning that institu-

tions almost always prefer higher turnover to lower. This probably not surprising, because

high turnover can mean both high liquidity and high disagreement, and institutions always

prefer higher liquidity. While the relation between the disagreement part of turnover and

IO may peak at intermediate values of turnover, the presence of the liquidity part will

create the impression that turnover is almost always positively related with IO.

In Panel B of Table 1 I try putting several volatility measures and market-to-book in

one regression to control for the correlations between them. I find that the coefficients do

not change much compared to Panel A. I still find that in the regressions with the squared

variables all variables have significantly positive coefficients and all squares have signifi-

cantly negative coefficients. The only two exceptions are market-to-book, which changes

its sign in the presence of analyst forecast dispersion and its square, and the squared

analyst forecast dispersion, which becomes positive and insignificant in the presence of

squared turnover.

To sum up, in this subsection I find that IO significantly increases in idiosyncratic

volatility, market-to-book, turnover, and analyst disagreement if these variables are low,

and significantly decreases in them if these variables are high. This implies that institutions

prefer firms with intermediate values of idiosyncratic volatility, market-to-book, turnover,

and analyst disagreement, and the low IO subsample will include the firms with both

extremely high and extremely low levels of the four variables. Thus, sorting on any of

these variables in the low IO subsample will create a wider spread in the values of this

variable and, since all these variables are related to aggregate volatility risk (see Barinov,
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2009a, 2009b, 2009c), a wider spread in aggregate volatility risk. The wider spread in

aggregate volatility risk makes it unsurprising that the value effect, the turnover effect,

the idiosyncratic volatility discount, and the analyst disagreement effect are all stronger

in the low IO subsample.

3.2 Aggregate Volatility Risk

In Table 2, I perform double sorts on IO and market-to-book, as well as on IO and id-

iosyncratic volatility, to demonstrate more visibly how the correlation between IO and

market-to-book (idiosyncratic volatility) changes its sign when market-to-book (idiosyn-

cratic volatility) increases, and how this pattern is transformed into a similar pattern in

exposure to aggregate volatility risk.

In the left part of Panel A I sort firms independently into five quintiles on IO and

idiosyncratic volatility and report the median values of market-to-book for each portfolio

(the medians are computed separately for each portfolio and each quarter and then av-

eraged across quarters). I find that in the lowest market-to-book quintile, firms with the

lowest level of IO have the median market-to-book that is by 8% lower than that of the

firms with the highest level of IO. However, in the highest market-to-book quintile, firms

with the lowest level of IO beat the firms with the highest level of IO by 19% in terms of

median market-to-book. As a result, the market-to-book differential between value and

growth firms is by 25% higher in the lowest IO quintile. All these differences are highly

statistically significant.

In the right part of Panel A, I look at the FVIX betas in the same five-by-five sorts on

IO and market-to-book. FVIX is my aggregate volatility factor that mimics daily changes

in the VIX index, the implied volatility of S&P 100 options. The daily returns to the

factor-mimicking portfolios are then cumulated to the monthly level. The FVIX betas in

Table 2 are from the Fama-French model augmented with FVIX (i.e., the monthly excess

returns to each of the 25 portfolios are regressed on the excess market return, SMB, HML,

and FVIX, and the slope on FVIX is reported). The results from the two-factor ICAPM

with the market factor and FVIX are similar.

The right part of Panel A documents two results. Firstly and most importantly, the
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difference in FVIX betas between growth and value firms is 0.105, t-statistic 0.35, in

the highest IO quintile and 1.881, t-statistic 4.69, in the lowest IO quintile. This is

consistent with my prediction that the spread in market-to-book and aggregate volatility

risk increases from the highest to the lowest IO quintile, but the difference may seem

somewhat extreme. Indeed, sorting on market-to-book produces a large spread in market-

to-book even in the highest IO quintile. As unreported results suggest, the answer is the

use of the augmented Fama-French model. By construction, the HML factor captures the

majority of the risk differential between value and growth, and the FVIX factor in the

augmented Fama-French model picks up what is left. In the ICAPM with the market

factor and FVIX (results not reported to save space) the FVIX beta differential between

value and growth is large and significant both in the highest and the lowest IO quintiles,

but the FVIX beta differential is still several times wider in the lowest IO quintile.

Second, I observe that while the FVIX beta differential between low and high IO firms

increases monotonically from value to growth subsample (consistent with my prediction),

it remains positive even in the bottom market-to-book quintile. If FVIX betas in the

five-by-five sorts are driven by market-to-book, I would expect the FVIX beta differential

between low and high IO firms to be negative in the value quintile, because in these quintile

high institutional firms have higher market-to-book (see the left part of Panel A). Looking

at the FVIX betas from the ICAPM does not change the results. I conclude therefore that

the FVIX factor has the potential to explain why IO is positively related to future return

and why this relation is stronger for growth firms.

In Panel B, I look at the five-by-five independent sorts on idiosyncratic volatility and

IO. The results are even stronger than in Panel A. In the lowest volatility quintile, the

median idiosyncratic volatility of the firms with high IO is by 18% larger than the median

volatility of low IO firms. In the highest volatility quintile, the difference is the opposite:

firms with the lowest level of IO beat the firms with the highest level of IO in terms of

idiosyncratic volatility by 28%. Moreover, the differential in median idiosyncratic volatility

between the highest and the lowest volatility quintiles is by whole 65% wider in the lowest

IO quintile than in the highest IO quintile. All differences are statistically significant.

In the right part of Panel B I look at the FVIX betas from the Fama-French model

with FVIX. I observe that the FVIX beta differential between the highest and the lowest
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volatility quintile increases from 0.955, t-statistic 2.69, in the highest IO quintiles, to

2.153, t-statistic 6.92, in the lowest IO quintile, t-statistic for the difference 2.61. The

difference in the FVIX betas of the high minus low volatility portfolio is comparable to the

corresponding difference in the median idiosyncratic volatility (see the left part of Panel

B). I conclude that the loadings on FVIX can potentially explain why the idiosyncratic

volatility discount is stronger for low IO firms.

Also, the FVIX beta differential between high and low IO quintiles is quite weak

(though still positive) in the low volatility quintiles, but it becomes significantly more

positive in the high volatility quintiles (consistent with my story). I conclude that the

FVIX factor is a potential explanation why the positive relation between IO and future

returns is stronger for high volatility firms.

In results not reported for brevity, I also look at the double sorts on IO and either

turnover or analyst disagreement and obtain the same results in terms of the differentials

in the FVIX betas and the median firm characteristics.

To sum up, Table 2 shows the change in the sign of the correlation between IO and

market-to-book (idiosyncratic volatility) as market-to-book (idiosyncratic volatility) in-

creases. The consequent wider differential in market-to-book (idiosyncratic volatility)

when the firms are sorted on market-to-book (idiosyncratic volatility) in the lower IO

quintile corresponds to a similar wider differential in FVIX betas, which suggests that

aggregate volatility risk can potentially explain why the value effect (the idiosyncratic

volatility discount) is stronger in the low IO subsample. The same is true about the

turnover effect and the analyst disagreement effect.

4 IO, Anomalies, and Aggregate Volatility Risk

In this subsection, I use the aggregate volatility risk factor (FVIX) to explain why four

prominent anomalies - the value effect, the idiosyncratic volatility discount, the turnover

effect, and the analyst disagreement effect - are stronger for the firms with low IO. Prior re-

search (Barinov, 2009a, 2009b, 2009c) shows that idiosyncratic volatility, market-to-book,

turnover, and analyst disagreement are all negatively correlated with aggregate volatility
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risk, and this correlation explains their cross-sectional correlation with future returns (i.e.,

the anomalies in question). The story in this paper is that the anomalies are stronger in

the low IO subsample, because institutions tend to avoid the firms with extremely low

and extremely high levels of idiosyncratic volatility, market-to-book, turnover, or analyst

disagreement. Hence, these firms end up in the low IO group, and sorting on either of

the four variables in the low IO subsample creates a wider differential in the values of the

sorting variable and, as a consequence, in aggregate volatility risk.

4.1 Value Effect

In Panel A of Table 3, I start with looking at the value effect, defined as the difference in

returns between the lowest and the highest market-to-book quintiles, in each IO quintile.

In the top two rows I confirm the result in Nagel (2005), who finds that the CAPM and

Fama-French (1993) alphas of the value minus growth arbitrage portfolio are significantly

larger in the lowest institutional quintile.

In the next pair of rows, I report the ICAPM alphas and the FVIX betas from the

ICAPM. First, I find that adding the FVIX factor uniformly reduces the value effect in

all IO quintiles by about two thirds compared to the CAPM alphas and makes it at most

marginally significant. This evidence is consistent with Barinov (2009a), who also finds

that aggregate volatility risk can almost completely explain the value effect.

Second, I find that while the CAPM alphas of the value minus growth portfolios in the

lowest and the highest IO quintile are different by 58 bp per month, t-statistic 2.27, the

similar difference in the ICAPM alphas is only 24 bp per month, t-statistic 0.96. This is

consistent with my hypothesis that aggregate volatility risk, not short-sale constraints or

investor sophistication, is the explanation of why the value effect is stronger for low IO

firms.

Third, I show that the FVIX beta of the value minus growth portfolio increases in

absolute magnitude from -1.09, t-statistic -8.09, in the highest IO quintile to -1.69, t-

statistic -6.67, in the lowest IO quintile, the difference being significant with t-statistic

-2.29. Since FVIX is positively correlated with VIX changes by construction, the difference

in the FVIX betas shows that the value minus growth portfolio underperforms the CAPM
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during increases in expected aggregate volatility by a greater amount if formed in the

lowest IO quintile. It means that the exposure of the value minus growth portfolio to

aggregate volatility risk increases in IO, just as my story predicts.

In the last two rows of Panel A, I look at the alphas and the FVIX betas of the value

minus growth portfolio estimated from the Fama-French model augmented with FVIX.

The alphas of the Fama-French model with FVIX improve by at most 20 bp per month

compared to the Fama-French model itself, which is not surprising, because the Fama-

French model includes the HML factor and, in a sense, explains the value effect by the

value effect. However, after I control for the FVIX factor, the difference in the alphas of

the value minus growth portfolio between the lowest and the highest IO quintile declines

from 54 bp per month, t-statistic 2.37, to 36 bp per month, t-statistic 1.59. The difference

in the FVIX betas of the value minus growth portfolio between the lowest and the highest

IO quintile is -1.382, t-statistic -2.31, meaning that the exposure of the value minus growth

strategy to aggregate volatility risk decreases with IO, and, according to the alphas, this

difference in aggregate volatility risk is enough to explain why the value effect also decreases

with IO.

4.2 Idiosyncratic Volatility Discount

In Panel B of Table 3, I look at the variation in the idiosyncratic volatility discount

across IO quintiles. I define the idiosyncratic volatility discount as the return to the

arbitrage portfolio long in the lowest idiosyncratic volatility quintile and short in the

highest idiosyncratic volatility quintile (henceforth, the low minus high volatility portfolio).

In the top two rows I confirm the finding of Nagel (2005) that the CAPM and the Fama-

French alphas of the low minus high volatility portfolio are significantly larger in the lowest

IO quintile.

In the next pair of rows, I report the ICAPM alphas and FVIX betas of the low minus

high volatility portfolio for each IO quintile. I find that controlling for FVIX diminishes

the differential in the alphas of the low minus high volatility portfolio between the lowest

and the highest IO quintile from 1.23% per month, t-statistic 4.27, to 0.68%, t-statistic

3.6.
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The reduction in the alphas is driven by a large differential in the FVIX betas of the

low minus high volatility portfolio: in the lowest (highest) IO quintile the FVIX beta

is -1.943, t-statistic -14.8 (-0.973, t-statistic -10.2), the difference being highly significant

with t-statistic -8.59. The difference in the FVIX betas demonstrates that, consistent with

my story, during increases in expected aggregate volatility, the low minus high volatility

portfolio underperforms the CAPM more severely if the portfolio is formed in the lower

IO group.

The differential in the ICAPM alphas remains significant not because the idiosyncratic

volatility discount was left unexplained in the lowest IO quintile (as it was unexplained

by the CAPM and the Fama-French model). Panel B of Table 3 shows that FVIX in

fact overexplains the idiosyncratic volatility discount. Adding FVIX reduces the alpha of

the low minus high volatility portfolio in the lowest IO quintile from 1.18% per month, t-

statistic 3.06, in the CAPM to 0.09% per month, t-statistic 0.36, in the ICAPM. However,

the ICAPM alpha of the low minus high volatility portfolio in highest IO quintile is -0.59%

per month, t-statistic -2.49, down from -0.045% per month, t-statistic -0.19, in the CAPM.

In the last pair of rows in Panel B, I look at the alphas and the FVIX betas of the low

minus high volatility portfolio computed using the Fama-French model with FVIX. The

results are similar: the difference in the alphas of the low minus high volatility portfolio in

the lowest and the highest IO quintile is materially reduced compared to the conventional

Fama-French model, but still remains sizeable and statistically significant. The source of

the significance is primarily the negative alpha of the low minus high volatility portfolio in

the highest IO quintile. The difference in the FVIX betas of the low minus high volatility

portfolio in the lowest and the highest IO quintile confirms my idea that the idiosyncratic

volatility discount decreases with IO because the exposure of the low minus high volatility

portfolio to aggregate volatility risk does the same.

4.3 Turnover Effect

In Panel C of Table 3, I look at the turnover effect, defined as the difference in returns

between the lowest and the highest turnover quintiles, in each IO quintile. In the top

two rows I confirm the result in Nagel (2005), who finds that the CAPM alphas and the
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Fama-French alphas of the low minus high turnover portfolio are significantly larger in the

lowest institutional quintile. The difference in the CAPM alphas and the Fama-French

alphas is 1% per month, t-statistic 3.29, and 0.8% per month, t-statistic 3.1, respectively.

In the next pair of rows, I find that adding the FVIX to the CAPM reduces the alpha

differential to 0.46% per month, t-statistic 1.89. The key to the reduction is the difference

in the FVIX betas of the low minus high turnover portfolio: their absolute value increases

monotonically from -0.652, t-statistic -3.71, in the highest IO quintile, to -1.601, t-statistic -

15.4, in the lowest IO quintile, signifying the corresponding increase in aggregate volatility

risk. I conclude that the middle two rows of Panel C confirm my hypothesis that the

turnover effect is stronger for low IO firms, because for these firms buying low turnover

and shorting high turnover means more severe losses in response to unexpected increases

in aggregate volatility and, consequentially, higher aggregate volatility risk.

In the last pair of rows, I come to the same conclusion using the Fama-French model

with FVIX. The difference in the alphas between the low minus high turnover portfolios

in the lowest and the highest IO quintiles becomes 0.49% per month, t-statistic 2.06,

compared to the 0.8% per month difference, t-statistic 3.1, in the Fama-French alphas.

The corresponding differential in FVIX betas is -2.345, t-statistic -5.98.

4.4 Analyst Disagreement Effect

Lastly, in Panel D of Table 3, I look at the analyst disagreement effect across the IO

quintiles. I measure the analyst disagreement effect as the alpha differential between the

lowest and the highest quintile formed on analyst forecast dispersion. The top two rows

partially confirm the result in Nagel (2005): the alpha differential between the low minus

high disagreement portfolio in the lowest and the highest IO quintile is 46.5 bp per month,

t-statistic 1.83, in the CAPM, and 14 bp per month, t-statistic 0.7, in the Fama-French

model. In his sample period, Nagel (2005) reports the CAPM alpha differential of 69 bp

per month, t-statistic 1.92, and the Fama-French alpha differential of 50 bp per month,

t-statistic 1.57. The difference in our results stems from the different sample periods: I

look at the period between 1986 and 2006, and Nagel (2005) considers the period between

1980 and 2003. In unreported results, I find that the difference in our results arises almost
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exclusively because Nagel (2005) includes the 1980-1985 period, when the difference in the

analyst disagreement effect between low and high IO firms was particularly strong.

In the next two rows, I estimate the two-factor ICAPM with the market factor and

FVIX for the low minus high disagreement portfolio formed separately in each IO quintile.

I find that, once I control for the FVIX factor, the difference in the analyst disagreement

effect between the lowest and the highest IO quintile is only 2 bp per month, t-statistic

0.1. The FVIX factor is also able to explain the analyst disagreement effect in all IO

quintiles, except for, probably, the highest quintile (t-statistic for the alpha is 1.88), which

is consistent with Barinov (2009c). The key to the success is the difference in the FVIX

betas of the low minus high disagreement portfolio between the lowest and the highest

IO quintiles, which change from -0.343, t-statistic -2.1, in the lowest IO quintile to -1.131,

t-statistic -7.91, in the highest IO quintile.

In the last pair of rows, I estimate the Fama-French model with FVIX for the low

minus high disagreement portfolio formed separately in each IO quintile. I find that the

alpha differential between the lowest and the highest institutional quintile is -8 bp per

month, t-statistic -0.38, and the FVIX beta differential is -1.73, t-statistic -4.3, confirming

the results from the middle two rows and my hypothesis that the analyst disagreement

effect is stronger for low institutional firms, because for these firms sorting on analyst

disagreement creates a wider spread in aggregate volatility risk.

5 IO and Future Returns

In this section, I test whether aggregate volatility risk can explain the positive relation

between IO and future returns documented in Gompers and Metrick (2001), and the

increase in the strength of this relation with market-to-book (Yan and Zhang, 2008) and

uncertainty (Jiao and Liu, 2008).

The second regularity is easier to explain. The results in the previous two sections show

that in the subsample of firms with low market-to-book (volatility) institutions prefer firms

with higher market-to-book (volatility) and, consequentially, lower aggregate volatility

risk. In the subsample of firms with high market-to-book (volatility) the reverse is true:
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institutions pick the stocks with lower market-to-book (volatility) and higher aggregate

volatility risk. Hence, the strategy of buying high and shorting low IO firms will result in

negative exposure to aggregate volatility risk in the low market-to-book or low volatility

subsample, and in positive exposure to aggregate volatility risk in the high market-to-book

or high volatility subsample. Based on the difference in aggregate volatility risk alone I

would therefore predict that the return differential between high and low IO firms will

become more positive as either market-to-book or volatility increase.

On average, IO can be positively related to future returns if the relation between it and

aggregate volatility risk is weakly negative or zero in the low market-to-book/volatility

subsample and strongly positive in the high market-to-book/volatility subsample. As

Panels A2 and B2 of Table 2 show, this is close to what happens in the data, where the

relation between IO and aggregate volatility risk stays positive even if market-to-book and

volatility are low. Also, in Table 1 I show that on average IO is negatively correlated

with market-to-book and idiosyncratic volatility, which implies that on average IO should

correlate positively with aggregate volatility risk.

5.1 IO Effect

In Table 4 I report the alphas and the FVIX betas of the IO quintile portfolios. To control

for the size effects, the portfolios are formed using NYSE (exchcd=1) breakpoints and

residual IO (see Nagel, 2005, and Section 2 of this paper for description). Using CRSP

breakpoints makes the results stronger, using raw IO does not change them.

In the top two rows of Panel A (equal-weighted returns) and Panel B (value-weighted

returns) I report the CAPM alphas and the Fama-French alphas. Consistent with Gompers

and Metrick (2001), I find that the difference in the alphas between the highest and the

lowest IO quintiles is between 25 bp and 50 bp per month, usually marginally significant.

An interesting result from Table 4 is that the positive relation between IO and future

returns is driven exclusively by the underperformance of the low IO firms. This contrasts

with the conclusion of Gompers and Metrick (2001) and other researchers, who establish

the positive relation using cross-sectional regressions and interpret it as the evidence that

institutions, on average, have the ability to pick the right stocks. Table 4 suggests that
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the real cause of the positive relation is the underperformance of the stocks ignored by

institutions (the stocks in the bottom IO quintile have alphas between -20 bp and -30 bp

per month, usually at least marginally significant), whereas there is no evidence that the

stocks favored by institutions beat the CAPM or the Fama-French model (the alphas of

the stocks in the top IO quintile are usually within one standard error from zero).

In the other rows I find that adding FVIX either to the ICAPM (the middle two rows)

or the Fama-French model (the last two rows) reduces the differential to 0 bp to 15 bp,

with t-statistics 1.1 and below. The alphas of the IO quintiles portfolios also stay within 20

bp and one standard error from zero. For example, in equal-weighted returns the CAPM

alpha of the lowest IO quintile is -32 bp, t-statistic -1.79, and the ICAPM alpha is 7 bp

per month, t-statistic 0.36.

The key to the success of the ICAPM are the FVIX betas: in equal-weighted returns,

the difference in the FVIX betas between the lowest and the highest IO quintile is 0.628,

t-statistic 4.99. Consistent with the pattern in the CAPM alphas, the FVIX betas are

zero for high IO firms, but are significantly positive for low IO firms, suggesting that

investors tolerate the low expected returns to these firms because these firms tend to beat

the CAPM when aggregate volatility unexpectedly increases.

The last pair of rows looks at the alphas and the FVIX betas from the Fama-French

model with FVIX. The conclusion is similar: controlling for aggregate volatility risk ex-

plains the alpha differential between the firms with the lowest and the highest levels of

IO and explains the underperformance of firms with low IO. The explanation is the FVIX

betas, which vary from 0.748, t-statistic 2.76, in the lowest IO quintile to -0.987, t-statistic

-4.74, in the highest IO quintile, the difference being significant with t-statistic 4.15.

5.2 IO Effect and Market-to-Book

In Panel A of Table 5, I look at the IO effect on future returns across market-to-book

quintiles. In each market-to-book quintile, I form an arbitrage portfolio that buys the

highest and shorts the lowest IO quintile. The first two rows of Panel A report the CAPM

alphas and the Fama-French alphas of this arbitrage portfolio.
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I notice that the IO effect starts weak for value firms, but increases steadily with

market-to-book, reaching the CAPM alpha of 93.5 bp per month, t-statistic 4.05, in the

top market-to-book quintile. The difference in the IO effect between growth and value

firms tops 50 bp per month and is significant in both CAPM and Fama-French alphas.

The evidence in the top two rows of Panel A is consistent with Yan and Zhang (2008),

who use cross-sectional regressions to show that the positive relation between IO and

future returns is stronger for growth firms. Yan and Zhang (2008) interpret this result

as the evidence that institutional investors have comparative advantage in acquiring and

processing information, and they are better able to make use of this comparative advantage

in the case of growth firms, which are relatively hard to value.

However, Table 4 suggests that, contrary to the belief held in the literature, the IO

effect does not mean stock picking ability of institutional investors. The puzzle is not why

the stocks favored by institutional investors do so well - they do not, but why the stocks

ignored by institutional investors underperform.

In untabulated results, I find that the increase of the IO effect with market-to-book is

primarily driven by the deteriorating performance of low IO firms. The CAPM alpha of

value firms with the lowest IO is 83 bp per month, t-statistic 2.68, compared to -69 bp per

month, t-statistic -2.36 - the CAPM alpha of growth firms with the lowest IO. Moreover,

the CAPM alpha of growth firms with the highest IO is only 25 bp per month, t-statistic

1.08. I conclude that the IO effect is stronger for growth firms not because institutional

investors pick exceptionally good growth stocks, but because the growth stocks they ignore

have abnormally low returns.

In Section 3, I show that institutional investors prefer value to growth, and this pref-

erence becomes more pronounced in the subsamples with higher market-to-book. Hence,

as we move from value quintile to growth quintile, sorting stocks on IO creates a more

and more negative sort on market-to-book (see Table 2, Panel A1 for confirmation). Be-

cause for growth firms sorting on IO means more negative spread in market-to-book, the

respective difference in aggregate volatility risk becomes more positive and the IO effect

becomes stronger. Also, growth firms ignored by institutions are ignored because their

market-to-book is too high even for the growth subsample. But the high market-to-book
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means very low aggregate volatility risk (large and positive FVIX beta), which explains

why the CAPM alpha of growth stocks with low IO is so negative.

In the middle two rows of Panel A, Table 5, I show that controlling for aggregate

volatility risk explains why the IO effect increases with market-to-book and why it is so

high for growth firms. The ICAPM alpha of the high minus low IO portfolio formed in the

top market-to-book quintile is 45 bp per month, t-statistic 2.55, versus the similar CAPM

alpha of 93.5 bp per month, t-statistic 4.05. In all other market-to-book quintiles the high

minus low IO portfolio has insignificant ICAPM alphas. The difference in the alphas of

the high minus low IO portfolio between top and bottom market-to-book quintiles is 24

bp per month, t-statistic 0.96, for the ICAPM, and 58 bp per month, t-statistic 2.27, for

the CAPM.

The driving force behind the ICAPM results is the FVIX beta of the high minus low

IO portfolio, which changes from -0.263, t-statistic -1.74, in the value quintile to -0.863,

t-statistic -5.01, the difference being significant with t-statistic 2.29. In untabulated results

I also find that in explaining the IO effect for growth stocks, FVIX hits right home with

the FVIX beta of growth firms with the lowest IO at 1.63, t-statistic 10.3, which beats the

FVIX beta of growth firms with the highest IO by more than 100%.

The FVIX betas of the low minus high IO portfolio show that buying high and shorting

low IO firms becomes more profitable for the firms with higher market-to-book not because

institutions are better in picking growth stocks, but because during increases in aggregate

volatility this strategy trails the CAPM more severely if followed in the growth subsample.

The reason for this underperformance is that in the effort to stay away from growth stocks,

institutions forego important hedges against aggregate volatility risk, and they do it more

in the growth subsample, where their desire to avoid high market-to-book stocks is the

strongest (see Table 1 and Panel A1 of Table 2).

In the last two rows of Panel A, Table 5, I look at the alphas and FVIX betas from

the Fama-French model with FVIX. The results are similar to the ICAPM: FVIX explains

the difference in the IO effect between value and growth stocks, FVIX explains more than

half of the large IO effect in top market-to-book quintile, and both results are backed up

by significant FVIX betas.
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5.3 IO Effect and Volatility

Jiao and Liu (2008) find that positive relation between IO and future returns is stronger

for small stocks. Again, because the result comes from Fama-MacBeth regressions, Jiao

and Liu (2008) conclude that this is the evidence of stock picking ability of institutional

investors. If institutional investors have informational advantage, then it is natural to

expect that they will thrive in the environment with significant uncertainty, which is

characteristic of small stocks.

In Panels B to D, I look at the relation between the IO effect and the three variables

related to firm-level uncertainty: idiosyncratic volatility (Panel B), turnover (Panel C),

and analyst disagreement (Panel D). Consistent with Jiao and Liu (2008), I find that

the IO effect is significantly higher if either of the three variables is high. In the sorts

on idiosyncratic volatility, the difference in the IO effect between high and low volatility

firms is around 1% per month and highly significant. In the sorts on turnover, the similar

difference is around 0.9% per month and again highly significant. In the sorts on analyst

disagreement, where the cross-sectional sample size is much smaller, the difference is 46.5

bp per month and marginally significant.

However, untabulated results show again that the stronger IO effect for the firms with

high volatility/uncertainty exists because of the large underperformance of the firms with

high volatility/uncertainty and low IO (CAPM alphas between -0.6% and -1.3% per month,

highly significant), not because of the extremely good performance of the firms with high

volatility/uncertainty and high IO (CAPM alphas between -25 bp and 45 bp per month, all

insignificant). To put it differently, I find no evidence that in the high volatility subsample

institutional investors demonstrate the ability to pick the right stocks. Rather, they stay

away from the stocks that will do poorly according to the CAPM and the Fama-French

model.

In Section 3, I show that institutional investors tend to prefer intermediate levels of

volatility and ignore the stocks with extremely high and extremely low levels of volatility.

Therefore, as Panel B of Table 2 confirms, in the high volatility subsample, sorting on

IO implies reverse sorting on volatility and, consequentially, direct sorting on aggregate

volatility risk. Thus, my explanation of the relation between the IO effect and volatility and
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why this relation is mostly driven by the underperformance of volatile stocks ignored by

institutional investors, is the following: in the high volatility subsample, institutions tend

to ignore the stocks with high levels of volatility and extremely high hedging ability against

aggregate volatility risk. In the low volatility subsample they behave in the opposite way,

and as a result in cross-section the exposure of the portfolio long in the highest and short

in the lowest IO quintile to aggregate volatility risk increases with volatility.

In the middle rows of Panels B to D, Table 5, I look at the ICAPM alphas and FVIX

betas of the portfolio long in the highest and short in the lowest IO quintile. I find that,

compared to the CAPM, the two-factor ICAPM with the market factor and the FVIX

factor reduces the difference in the alphas of this portfolio between the lowest and the

highest volatility/uncertainty quintile by more than 50% and in all cases, except for Panel

B (idiosyncratic volatility) makes the difference insignificant. The same is true about the

ICAPM alphas of the low minus high IO portfolio in the highest volatility/uncertainty

quintile: they decline by more than 50%, but remain significant in Panel B (idiosyncratic

volatility) and Panel C (turnover).

I also find that the FVIX betas of the low minus high IO portfolio become significantly

more negative as one moves from low to high volatility/uncertainty subsamples, which

means that during unexpected increases in expected aggregate volatility the strategy of

buying high and shorting low IO firms underperforms the CAPM significantly more, if the

strategy is followed in the high volatility/uncertainty subsample. This is the reason why

FVIX is capable of explaining the increase in the IO effect with volatility/uncertainty.

It is also important that the FVIX factor explains the cross-sectional dependence of

the IO effect on volatility/uncertainty by tackling its underlying cause: the FVIX betas

of the firms with the lowest IO and the highest volatility/uncertainty are by far the most

positive in the five-by-five sorts on IO and volatility/uncertainty, and beat the FVIX betas

of the firms with the highest IO and the highest volatility/uncertainty by a factor of three

and more (results not reported to save space).

In the last two rows of Panels B through D I again look at the alphas and FVIX betas of

the low minus high IO portfolio, but now the alphas and FVIX betas come from the Fama-

French model with FVIX. The results are largely similar to what I have with the ICAPM

25



in the middle two rows, confirming that in the high volatility/uncertainty subsample, high

IO stocks beat low IO stocks not because institutional investors can pick future winners -

they cannot, but because they ignore firms with extreme levels of volatility and consequent

high ability to hedge against aggregate volatility risk, and these firms have low expected

returns.

6 Robustness Checks

In this section, I perform two robustness checks of my main results. First, I replace FVIX

by the change in VIX, which is the variable FVIX mimics, and check if this direct test

confirms that the anomalies I look at (the value effect, the idiosyncratic volatility discount,

the turnover effect, and the analyst disagreement effect) are indeed stronger for low IO firms

because exploiting the anomalies means greater losses when aggregate volatility increases.

I also use the change in VIX instead of FVIX to confirm that the positive relation between

IO and future returns, as well as the increase in strength of this relation for growth firms

and volatile firms are due to aggregate volatility risk.

Second, I look at the conditional CAPM and show that all return patterns described in

the previous paragraph can be partly explained by the fact that the betas of the portfolios

that try to exploit these patterns are countercyclical. To put it differently, the betas of the

firms with high levels of volatility or growth options and low levels of IO tend to decrease

sharply during recessions, which leads to the smaller increase in expected returns of these

firms and the smaller loss of value compared to the firms with similar market betas.

The tests in this section use five arbitrage portfolios. The first portfolio, Inst, buys

the firms from the top IO quintile and shorts the firms from the bottom IO quintile.

The second portfolio, Inst MB, buys the analogue of the Inst portfolio formed in the

top market-to-book quintile, and shorts the analogue of the Inst portfolio formed in the

bottom market-to-book quintile. The other three portfolios: Inst IVol, Inst Turn, and Inst

Disp, - are the same as Inst MB replacing the market-to-book with idiosyncratic volatility,

turnover, and analyst forecast dispersion, respectively.

It is important to note that Inst MB measures two return patterns simultaneously:
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the stronger IO effect for growth firms and the stronger value effect for low IO firms. To

see it, denote the portfolio of firms with the highest level of IO and the highest level of

market-to-book as HH, and the portfolio of the firms with the highest level of IO and

the lowest level of market-to-book as HL. The LH and LL portfolios are defined similarly.

Then Inst MB = (HH-LH) - (HL-LL), where (HH-LH) and (HL-LL) measure the IO effect

in the top and bottom market-to-book quintile, respectively. Rearranging, we also see that

Inst MB = (HH-HL) - (LH-LL), where (HH-HL) and (LH-LL) measure the value effect in

the top and bottom IO quintile, respectively. The similar double interpretation applies to

the other portfolios: Inst IVol, Inst Turn, and Inst Disp.

6.1 Aggregate Volatility Exposure

In Table 6, I regress daily returns to the five arbitrage portfolios (Inst, Inst MB, Inst IVol,

Inst Turn, and Inst Disp) on the market factor and either the change in VIX (the leftmost

column) or the FVIX factor (the second left column). I choose the daily frequency because

at this frequency VIX is closer to the random walk, and therefore its change is a better

proxy for the innovation in expected aggregate volatility, which is the variable of interest

in the ICAPM context. I reestimate the ICAPM for daily returns to make sure that my

results in the previous sections are robust to the change in the observation frequency. I also

use both equal-weighted (left panel of Table 6) and value-weighted (right panel) returns.

The second left column with daily FVIX betas shows that changing the observation

frequency from monthly to daily does not impact the results reported in the previous

sections. All daily FVIX betas are negative, economically large, statistically significant,

and reasonably close to the monthly FVIX betas. For example, the daily FVIX beta of

the Inst Disp portfolio (equal-weighted returns, left panel of Table 6) is -0.713, t-statistic

-12.5, and its monthly FVIX beta (Table 3, Panel D) is -0.788, t-statistic -8.17.

The leftmost column of both panels in Table 6 shows that in almost all cases one can

replace FVIX by the change in VIX it mimics, and slope on the change in VIX will have the

same sign and remain statistically significant. The only exception is the Inst IVol portfolio,

which has an insignificantly positive loading on change in VIX in both equal-weighted and

value-weighted returns. Also, in equal-weighted returns the Inst portfolio has zero loading
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on the VIX change, but the loading is reliably negative in value-weighted returns. In all

other cases, the sign of the exposure to the VIX change is negative and significant in both

columns.

Overall, the leftmost column shows significant exposure to innovations in expected

aggregate volatility for all but one (Inst IVol) portfolios. Hence, the existence of the IO

effect, its positive relation with market-to-book, turnover, and analyst forecast dispersion,

as well as the positive relation between IO and the value effect, the turnover effect, and

the analyst disagreement effect, can be explained by the fact that the portfolios trying

to exploit these returns patterns significantly underperform the CAPM when expected

aggregate volatility unexpectedly increases.

The magnitude of the slopes on the VIX changes seems to suggest that the impact of

aggregate volatility on the arbitrage portfolios is moderate. VIX values are around 15 in

expansions and can be over 40 in recessions5. Most slopes on the VIX change fall between

-0.015 and -0.035, which implies that the arbitrage portfolios in Table 6 will underperform

the CAPM by at most 50-120 bp as the economy goes all the way from expansion to

recession. However, the regression of the market factor on the VIX change also yields a

low, but highly significant coefficient of -0.13, implying that the market should drop by

about 4% during recessions. I attribute the low coefficients to the fact that VIX can be a

noisy estimate of the true expected aggregate volatility. This is supported by the evidence

that FVIX betas have much higher t-statistics than the loadings on the VIX change.

In the two right columns, I report the slopes from pairwise regressions of the five

arbitrage portfolios on the change in VIX or the FVIX factor (with the market factor

omitted) to underscore the conditional nature of my results: I do not argue that when

aggregate volatility increases, low IO firms or growth firms with low IO gain or that they

beat high IO firms or value firms with low IO. All I show is that when aggregate volatility

increases, low IO firms or growth firms with low IO, or other similar sort of firms perform

significantly better than what the CAPM predicts.

Most loadings on FVIX and the VIX change in the two right columns are indeed either

insignificant or have the wrong sign, confirming that firms with low IO, as well as growth

5VIX was 61.41 at the end of October 1987, going as high as 150.19 on October 19, 1987, and 61.38 at
the end of October 2008, hitting 103.41 on October 10, 2008.
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firms and high uncertainty firms with low IO, do not offer positive returns when aggregate

volatility increases. Their returns in these periods are simply not as bad as the CAPM

leads us to predict, hence their risk is lower than what the CAPM says, and this is the

explanation of why these types of firms have negative alphas.

6.2 Conditional CAPM

In this subsection, I corroborate the previous results with the FVIX factor and the VIX

change using the conditional CAPM. Prior research (Barinov, 2009a, 2009b, 2009c) shows

that firms with abundant growth options and high levels of firm-specific uncertainty beat

the CAPM when expected aggregate volatility increases. This effect has two causes. First,

all else equal, the value of growth options, especially if the underlying asset is volatile,

increases with volatility. Second, the beta of growth options decreases when uncertainty

about the underlying asset increases, which usually happens simultaneously with increases

in aggregate volatility (see Campbell, Lettau, Malkiel, and Xu, 2001, and Barinov, 2009c).

In recessions, the decrease in the beta mutes the increase in expected returns and makes

the corresponding value loss smaller.

In Section 3, I show that sorting on market-to-book and measures of firm uncertainty

produces a wider spread in these measures in the low IO subsample, because institutions

tend to avoid holding stocks with extreme levels of market-to-book and uncertainty. There-

fore, while prior research (Barinov, 2009a, 2009b, 2009c) predicts that value minus growth

portfolio, as well as the low minus high uncertainty portfolio, has countercyclical market

betas (higher in bad times), I extend this prediction by arguing that these portfolios will

have more countercyclical betas if formed in the low IO subsample, which partly explains

why the value effect, the idiosyncratic volatility discount, the turnover effect, and the

analyst disagreement effect are stronger in the low IO subsample. The flip side of this

prediction is that the Inst portfolio will have more countercyclical betas if formed in the

subsample of firms with high market-to-book or high uncertainty, and on average the betas

of the Inst portfolio are countercyclical, which can potentially explain its positive alpha.

In Table 7, I estimate the conditional CAPM betas of the five arbitrage portfolios (Inst,
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Inst MB, Inst IVol, Inst Turn, Inst Disp) by running the regression

Retit = αi +(β0i +β1iDIVt−1 +β2iDEFt−1 +β3iTBt−1 +β4iTERMt−1) ·(MKTt−RFt)+εit

(2)

where DIVt is dividend yield of the CRSP value-weighted index over the past twelve

months, DEFt is the default premium, defined as the difference in yields between Aaa and

Baa corporate bonds, TBt is the one-month Treasury bill rate, and TERMt is the term

premium, defined as the yield differential between ten-year and one-year Treasury bonds.

I define the conditional beta as

βi = β0i + β1i ·DIVt−1 + β2i ·DEFt−1 + β3i · TBt−1 + β4i · TERMt−1 (3)

In Table 7, I report the values of the conditional beta from (3) in recessions and

expansions, along with the difference between the two, for the five arbitrage portfolios -

Inst, Inst MB, Inst IVol, Inst Turn, and Inst Disp (the definitions are in the beginning of

the section). I define recessions as the months when the expected market risk premium is

above its in-sample median. The rest of the sample is labeled expansion. I estimate the

expected market risk premium from

MKTt −RFt = γ0 + γ1 ·DIVt−1 + γ2 ·DEFt−1 + γ3 · TBt−1 + γ4 · TERMt−1 + εt (4)

I expect the conditional betas of all portfolios to increase in recessions (which would

mean positive values in the Diff column in Table 7), if the risk shift is a potential explana-

tion of the stronger value effect, the stronger idiosyncratic volatility discount, the stronger

turnover effect, and the stronger analyst disagreement effect for low IO firms, as well as a

potential explanation of the IO effect and its positive dependence on market-to-book and

uncertainty.

The Diff column in Table 7 indeed shows that both in equal-weighted and value-

weighted returns the betas of all five arbitrage portfolio increase during recessions, con-

tributing to the explanation of the positive alphas of these portfolios. All differences in

betas are positive and significant. However, consistent with the Lewellen and Nagel (2006)

critique, their magnitude ranges between 0.05 and 0.2, implying that even if the risk pre-

mium increases during recessions by 1% per month, the change in betas can explain 5 bp
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to 20 bp per month of the portfolio alphas, whereas the alphas range between 50 bp and

100 bp per month (see Table 3 and Table 4). The consequent inability of the conditional

CAPM to explain the returns to the five arbitrage portfolios in Table 7 is further confirmed

by the conditional CAPM alphas (not reported to save space), which decline by 10-15 bp

compared to the unconditional CAPM alphas and remain significant.

The bottom line of the subsection is that the risk of the five arbitrage portfolios indeed

moves in the predicted direction, thus partly explaining why firms with low IO and firms

with high levels of uncertainty and market-to-book coupled with low IO beat the CAPM

when aggregate volatility increases. However, the change in risk is insufficient to explain

the magnitude of the returns to the five arbitrage portfolios, thus suggesting that one

should abandon the conditional CAPM in favor of the ICAPM in explaining the stronger

value effect, the stronger idiosyncratic volatility discount, the stronger turnover effect, and

the stronger analyst disagreement effect for low IO firms, as well as the IO effect and why

it is stronger for growth firms and high uncertainty firms.

7 Conclusion

The paper shows that aggregate volatility risk explains why several anomalies - the value

effect, the idiosyncratic volatility discount, the turnover effect, and the analyst disagree-

ment effect - are stronger for the firms with low IO. I document that institutional investors

tend to ignore both the firms with extremely low levels of market-to-book and uncertainty

(measured by either idiosyncratic volatility, or turnover, or analyst forecast dispersion)

and the firms with extremely high levels of market-to-book and uncertainty. Institutional

investors realize that they need some firm-specific uncertainty in their holdings to benefit

from their comparative advantage in obtaining and processing information, and therefore

they are reluctant to hold the stocks with very low levels of market-to-book, idiosyncratic

volatility, turnover, and analyst disagreement. However, portfolio managers also tend to

steer clear of the firms with high levels of volatility/uncertainty, because they cannot di-

versify away the impact of idiosyncratic risk on their compensation. Therefore, the firms

with extreme levels of market-to-book, idiosyncratic volatility, turnover, and analyst dis-

agreement are over-represented in the low IO subsample, and sorting on these variables
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in the low IO subsample creates a wider spread in these variables and, consequently, in

aggregate volatility risk6.

I find that the ICAPM with the market factor and the aggregate volatility risk factor

(the FVIX factor) can explain more than 50% of the decrease in the magnitude of the four

anomalies with IO, and the unexplained part is usually insignificant. I use both the FVIX

factor, which is the factor-mimicking portfolio for the change in VIX, and the change in

VIX itself to show that when aggregate volatility increases, the strategy that buys low and

shorts high uncertainty firms trails the CAPM more severely if followed in the subsample

of low IO firms. I also use the conditional CAPM to show that the market betas of this

strategy increase more during recessions in the low IO subsample.

The fact that the firms with low uncertainty and low IO have the highest aggregate

volatility risk, and the firms with high uncertainty and low IO have the lowest aggregate

volatility risk also implies that buying high and shorting low IO firms means negative

exposure to aggregate volatility risk if done in the low uncertainty subsample and positive

exposure if done in the high uncertainty subsample. Hence, aggregate volatility risk can be

an explanation of why the cross-sectional effect of IO on future returns is more positive for

growth firms (Yan and Zhang, 2008) and for high uncertainty firms (Jiao and Liu, 2008). I

show empirically that the two-factor ICAPM with the market factor and the FVIX factor

indeed explains why the IO effect is stronger for growth firms and high uncertainty firms.

I also use the change in VIX directly to show that when aggregate volatility increases,

low IO firms beat high IO firms with similar market betas in the growth subsample and

the high uncertainty subsample, but do not do so in the value subsample and the low

uncertainty subsample. Moreover, the conditional market betas of the high minus low

IO portfolio increase in recessions only in the growth subsample and the high uncertainty

subsample.

I also find that positive exposure of the high minus low IO portfolio to aggregate

volatility risk in the growth/high uncertainty subsample is much larger than the negative

exposure of the same portfolio in the value/low uncertainty subsample. Hence, on average

6See Barinov (2009a) for the evidence that higher market-to-book and higher idiosyncratic volatility
mean lower aggregate volatility risk and that aggregate volatility risk can explain the value effect and the
idiosyncratic volatility discount. See Barinov (2009b) for similar evidence on turnover/turnover effect,
and Barinov (2009c) for similar evidence on the analyst disagreement effect.
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buying high IO firms and shorting low IO firms implies bearing aggregate volatility risk,

which turns out to be sufficient to explain the positive alpha of this strategy. I also find that

the positive cross-sectional relation between IO and future returns is driven exclusively by

the negative alphas of the low IO firms, which is consistent with and successfully explained

by the aggregate volatility risk story, but is inconsistent with the view of the positive

cross-sectional relation between IO and future returns as the evidence that institutions

have superior stock picking ability.
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Table 1. IO, Uncertainty, and Growth Options

The table presents the results of firm-level Fama-MacBeth regressions of IO on market-
to-book, or turnover, or idiosyncratic volatility, or analyst forecast dispersion (and their
squares).

IO is the sum of institutional holdings from Thompson Financial 13F database, divided
by the shares outstanding from CRSP and reported in percentage. If the stock is on CRSP,
but not on Thompson Financial 13F database, it is assumed to have zero IO. If the stock’s
capitalization is below the 20th NYSE/AMEX percentile, its IO is assumed to be missing.

Market-to-book is defined as market value of equity (Compustat item #25 times Com-
pustat item #199) divided by book equity (Compustat item #60) plus deferred taxes
(Compustat item #74). Turnover is trading volume divided by shares outstanding (both
from CRSP). Turnover is measured monthly and averaged in each firm-year (at least 5
months with valid observations are required). NASDAQ (exchcd=3) turnover is divided
by 2 to eliminate double-counting.

Idiosyncratic volatility is defined as the standard deviation of residuals from the Fama-
French model, fitted to the daily data for each month (at least 15 valid observations are
required). Analyst disagreement is measured as the standard deviation of all outstanding
earnings-per-share forecasts for the current fiscal year scaled by the absolute value of
the average outstanding earnings forecast (zero-mean forecasts and forecasts by only one
analyst excluded). Analyst disagreement is set to missing for the firms with stock price
lower than $5.

The regressions also use the conventional controls: size, age, membership in the S&P500
index, stock price, cumulative returns in the past three months, cumulative return between
month -4 and month -12, and dividend yield. All variables are percentage ranks and are
computed before the start of the period for which IO is reported.

The breakpoint percentile at the bottom of each panel is the percentile of the corre-
sponding independent variable, after which its slope changes from positive to negative.

The t-statistics use Newey-West (1987) correction for heteroscedasticity and autocor-
relation. The sample period is from January 1986 to December 2006.
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Panel A. Separate Regressions

MB -0.120 0.048 Turn 0.206 0.506
t-stat -24.8 3.86 t-stat 21.3 16.9
MB2 -0.0016 Turn2 -0.0026
t-stat -16.3 t-stat -12.2
R-sq 0.242 0.244 R-sq 0.266 0.271
Adj. R-sq 0.241 0.243 Adj. R-sq 0.265 0.270
Controls YES YES Controls YES YES

Breakpoint pctl=15 Breakpoint pctl=97

IVol -0.090 0.367 Disp -0.004 0.046
t-stat -12.4 16.5 t-stat -0.91 4.49
IVol2 -0.0048 Disp2 -0.0005
t-stat -24.8 t-stat -6.14
R-sq 0.252 0.263 R-sq 0.251 0.252
Adj. R-sq 0.251 0.262 Adj. R-sq 0.250 0.251
Controls YES YES Controls YES YES

Breakpoint pctl=38 Breakpoint pctl=46

Panel B. Multiple Regressions

MB -0.1112 0.0278 -0.1407 -0.0816 -0.1194 -0.0426
t-stat -25.2 2.27 -31.0 -5.45 -26.8 -2.92
IVol -0.1693 0.2108 -0.1804 0.1429
t-stat -23.9 9.73 -30.8 7.10
Disp -0.0224 0.0121 -0.0426 -0.0529
t-stat -5.31 1.27 -10.9 -6.41
Turn 0.2670 0.4774 0.3337 0.5451
t-stat 23.2 14.8 37.8 22.2
MB2 -0.0013 -0.0006 -0.0007
t-stat -13.06 -4.23 -5.43
IVol2 -0.0037 -0.0033
t-stat -16.4 -15.6
Disp2 -0.0003 0.0001
t-stat -4.26 1.56
Turn2 -0.0019 -0.0018
t-stat -9.32 -11.1
Controls YES YES YES YES YES YES
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Table 2. IO, Uncertainty, Growth Options, and Aggregate Volatility Risk

The table presents independent five-by-five double sorts on IO and market-to-book (Panel A) and IO and idiosyncratic
volatility (Panel B). The sorting uses NYSE (exchcd=1) breakpoints. Market-to-book quintiles are rebalanced annually, IO
quintiles are rebalanced quarterly, idiosyncratic volatility quintiles are rebalanced monthly.

The left part of Panel A (B) reports the medians of market-to-book (idiosyncratic volatility) for each of the 25 portfolios.
The bottom row of each left panel reports the percentage change of the respective median characteristic between the lowest
and the highest IO quintile. The right part reports the FVIX betas from the Fama-French model augmented by the FVIX
factor. FVIX is the factor-mimicking portfolio that tracks the daily changes in VIX, the implied volatility of one-month
options on S&P 100.

The t-statistics use Newey-West (1987) correction for heteroscedasticity and autocorrelation. The sample period is from
January 1986 to December 2006.

Panel A. Market-to-Book and IO

Panel A1. Market-to-Book Ratios Panel A2. FVIX Betas

MB1 MB2 MB3 MB4 MB5 5-1 MB1 MB2 MB3 MB4 MB5 5-1

Inst1 0.833 1.327 1.844 2.630 5.774 4.941 Inst1 -0.232 0.223 0.104 0.573 1.649 1.881
t Inst1 34.9 40.1 44.8 40.9 32.8 28.6 t Inst1 -0.63 0.86 0.56 2.01 6.58 4.69
Inst2 0.857 1.329 1.824 2.621 5.402 4.546 Inst2 -0.741 -0.459 -0.379 -0.092 0.978 1.719
t Inst2 37.1 42.3 42.8 40.7 35.9 30.6 t Inst2 -2.28 -1.79 -1.58 -0.30 3.54 4.84
Inst3 0.863 1.325 1.815 2.618 5.040 4.177 Inst3 -0.675 -1.238 -0.977 -1.015 -0.076 0.599
t Inst3 38.5 41.8 42.4 41.2 26.7 22.5 t Inst3 -2.96 -6.07 -4.12 -3.95 -0.29 1.52
Inst4 0.892 1.342 1.821 2.626 4.818 3.926 Inst4 -1.103 -1.645 -1.504 -1.265 -0.775 0.328
t Inst4 38.0 41.4 44.2 39.6 30.2 25.6 t Inst4 -3.00 -6.32 -6.10 -5.42 -2.39 0.88
Inst5 0.902 1.343 1.832 2.624 4.847 3.945 Inst5 -1.187 -1.238 -1.609 -1.535 -1.081 0.105
t Inst5 38.9 41.3 43.0 41.1 29.5 25.0 t Inst5 -4.25 -3.58 -5.79 -6.24 -3.30 0.35
1-5 -0.068 -0.016 0.012 0.006 0.927 0.995 1-5 0.955 1.461 1.713 2.108 2.730 1.776
t(1-5) -10.2 -3.67 2.83 0.70 19.7 20.7 t(1-5) 2.41 3.79 7.17 5.66 6.38 3.46
1-5 -8% -1% 1% 0% 19% 25%
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Panel B. Idiosyncratic Volatility and IO

Panel B1. Idiosyncratic Volatility Panel B2. FVIX Betas

IVol1 IVol2 IVol3 IVol4 IVol5 5-1 IVol1 IVol2 IVol3 IVol4 IVol5 5-1

Inst1 0.009 0.013 0.016 0.021 0.033 0.023 Inst1 -0.771 -1.350 -1.100 -0.560 1.382 2.153
t Inst1 32.0 32.9 36.6 35.2 31.6 29.1 t Inst1 -4.81 -10.11 -7.71 -2.82 6.03 6.92
Inst2 0.009 0.013 0.017 0.021 0.031 0.022 Inst2 -0.888 -1.039 -1.023 -0.814 0.880 1.768
t Inst2 31.2 35.4 37.4 35.9 32.6 29.8 t Inst2 -6.86 -6.60 -5.13 -3.64 3.69 7.47
Inst3 0.010 0.013 0.016 0.020 0.028 0.018 Inst3 -1.258 -1.445 -1.331 -0.961 0.062 1.320
t Inst3 32.3 35.7 37.2 36.4 31.7 28.6 t Inst3 -8.71 -8.01 -8.00 -3.92 0.27 5.47
Inst4 0.011 0.014 0.016 0.020 0.026 0.015 Inst4 -1.401 -1.618 -1.612 -1.522 -0.620 0.781
t Inst4 34.1 34.8 36.5 34.8 30.6 25.2 t Inst4 -7.41 -9.15 -6.35 -4.78 -1.82 2.51
Inst5 0.012 0.014 0.016 0.019 0.026 0.014 Inst5 -1.650 -1.685 -1.705 -1.809 -0.695 0.955
t Inst5 33.7 33.5 35.3 34.1 29.8 23.9 t Inst5 -7.84 -9.46 -7.09 -5.73 -2.16 2.69
1-5 -0.002 -0.001 0.000 0.001 0.007 0.009 1-5 0.879 0.335 0.606 1.249 2.077 1.198
t(1-5) -19.6 -5.96 2.62 12.4 27.5 28.3 t(1-5) 3.39 1.68 2.48 3.41 4.79 2.61
1-5 -18% -4% 2% 8% 28% 65%
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Table 3. IO, Anomalies, and Aggregate Volatility Risk

The table reports the alphas and the FVIX betas for the several anomalous arbitrage
portfolios formed separately within each IO quintile. The following models are used for
measuring the alphas and betas: the CAPM, the Fama-French model, the CAPM aug-
mented with FVIX (ICAPM), and the Fama-French model augmented with FVIX (FF4).
FVIX is the factor-mimicking portfolio that tracks the daily changes in VIX, the implied
volatility of one-month options on S&P 100.

The arbitrage portfolio in Panel A buys the stocks in the lowest market-to-book quintile
and shorts the stocks with the highest market-to-book quintiles. The arbitrage portfolio
in Panel B, (C, D) does the same with extreme idiosyncratic volatility (turnover, analyst
forecast dispersion) quintiles.

All quintiles, including the IO quintiles, use NYSE (exchcd=1) breakpoints. Market-to-
book and turnover quintiles are rebalanced annually, IO quintiles are rebalanced quarterly,
idiosyncratic volatility and analyst disagreement quintiles are rebalanced monthly. The
definition of all variables is in the heading of Table 1.

The t-statistics use Newey-West (1987) correction for heteroscedasticity and autocor-
relation. The sample period is from January 1986 to December 2006.

Panel A. Value Effect and IO

Low Inst2 Inst3 Inst4 High 1-5

αCAPM 1.516 1.048 1.019 0.937 0.936 0.581
t-stat 3.71 3.36 3.26 3.23 2.88 2.27
αFF 0.795 0.508 0.420 0.311 0.259 0.536
t-stat 2.99 2.11 1.95 1.65 1.23 2.37
αICAPM 0.563 0.409 0.449 0.350 0.321 0.242
t-stat 2.03 1.64 1.90 1.69 1.40 0.96
βFV IX -1.690 -1.132 -1.011 -1.040 -1.090 -0.599
t-stat -6.67 -5.21 -6.68 -7.78 -8.09 -2.29
αFF4 0.556 0.378 0.423 0.284 0.198 0.358
t-stat 2.22 1.53 1.85 1.52 0.98 1.59
βFV IX -1.859 -1.013 0.020 -0.205 -0.477 -1.382
t-stat -4.10 -2.54 0.06 -0.48 -1.43 -2.31
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Panel B. Idiosyncratic Volatility Discount and IO

Low Inst2 Inst3 Inst4 High 1-5

αCAPM 1.183 0.516 0.255 0.032 -0.045 1.228
t-stat 3.06 1.61 0.88 0.12 -0.19 4.27
αFF 0.644 0.078 -0.194 -0.285 -0.269 0.913
t-stat 2.87 0.41 -1.16 -1.64 -1.45 4.55
αICAPM 0.087 -0.432 -0.665 -0.679 -0.594 0.681
t-stat 0.32 -1.68 -2.61 -3.00 -2.49 3.60
βFV IX -1.943 -1.679 -1.630 -1.260 -0.973 -0.969
t-stat -14.8 -12.6 -10.2 -13.3 -10.2 -8.59
αFF4 0.332 -0.196 -0.392 -0.405 -0.357 0.688
t-stat 1.65 -1.14 -2.69 -2.56 -2.00 3.41
βFV IX -2.426 -2.128 -1.543 -0.934 -0.681 -1.745
t-stat -7.20 -7.66 -5.38 -3.17 -2.30 -4.13

Panel C. Turnover Effect and IO
Low Inst2 Inst3 Inst4 High 1-5

αCAPM 1.616 1.845 1.022 0.939 0.617 1.000
t-stat 4.51 5.03 3.50 4.21 2.61 3.29
αFF 1.049 1.327 0.543 0.582 0.250 0.799
t-stat 3.97 4.82 2.69 3.12 1.30 3.10
αICAPM 0.713 0.998 0.325 0.521 0.249 0.464
t-stat 2.87 3.90 1.61 2.86 1.27 1.89
βFV IX -1.601 -1.501 -1.235 -0.740 -0.652 -0.949
t-stat -15.4 -11.4 -13.1 -5.41 -3.71 -5.08
αFF4 0.760 0.999 0.364 0.561 0.274 0.486
t-stat 3.03 3.84 1.85 2.90 1.42 2.06
βFV IX -2.247 -2.556 -1.391 -0.160 0.188 -2.435
t-stat -6.24 -5.41 -3.50 -0.41 0.48 -5.98

Panel D. Analyst Disagreement Effect and IO

Low Inst2 Inst3 Inst4 High 1-5

αCAPM 1.096 0.643 0.547 0.595 0.631 0.465
t-stat 3.61 2.51 2.31 2.88 2.68 1.83
αFF 0.834 0.526 0.471 0.601 0.692 0.142
t-stat 3.34 2.15 2.06 2.93 3.00 0.70
αICAPM 0.458 0.159 0.150 0.327 0.437 0.020
t-stat 1.88 0.54 0.59 1.39 1.67 0.10
βFV IX -1.131 -0.858 -0.703 -0.475 -0.343 -0.788
t-stat -7.91 -4.27 -5.48 -3.92 -2.10 -8.17
αFF4 0.466 0.236 0.230 0.387 0.547 -0.081
t-stat 2.24 1.10 1.12 2.02 2.39 -0.38
βFV IX -2.863 -2.254 -1.880 -1.663 -1.133 -1.730
t-stat -7.87 -5.23 -5.22 -5.81 -4.01 -4.30
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Table 4. IO Effect and Aggregate Volatility Risk

The table reports the alphas and the FVIX betas of the IO quintile portfolios. The
quintiles use NYSE (exchcd=1) breakpoints and are rebalanced quarterly. The following
models are used for measuring the alphas and betas: the CAPM, the Fama-French model,
the CAPM augmented with FVIX (ICAPM), and the Fama-French model augmented with
FVIX (FF4). FVIX is the factor-mimicking portfolio that tracks the daily changes in VIX,
the implied volatility of one-month options on S&P 100. Panel A looks at equal-weighted
returns, Panel B considers value-weighted returns. The t-statistics use Newey-West (1987)
correction for heteroscedasticity and autocorrelation. The sample period is from January
1986 to December 2006.

Panel A. Equal-Weighted Returns

Low Inst2 Inst3 Inst4 High 1-5

αCAPM -0.318 -0.105 0.181 0.223 0.179 0.497
t-stat -1.79 -0.62 1.07 1.15 0.80 2.33
αFF -0.250 -0.199 0.046 0.016 -0.003 0.247
t-stat -2.52 -2.65 0.58 0.17 -0.03 1.70
αICAPM 0.067 0.095 0.284 0.243 0.209 0.142
t-stat 0.36 0.50 1.54 1.23 0.97 1.10
βFV IX 0.682 0.354 0.182 0.035 0.053 -0.628
t-stat 6.10 4.84 2.42 0.45 0.55 -4.99
αFF4 -0.156 -0.173 -0.024 -0.097 -0.169 -0.013
t-stat -1.59 -2.04 -0.31 -1.08 -1.63 -0.11
βFV IX 0.727 0.199 -0.547 -0.883 -1.293 -2.020
t-stat 4.56 1.06 -3.26 -4.35 -7.94 -7.81

Panel B. Value-Weighted Returns

Low Inst2 Inst3 Inst4 High 1-5

αCAPM -0.217 -0.020 0.149 0.099 0.065 0.282
t-stat -1.99 -0.25 1.71 1.30 0.60 1.44
αFF -0.176 -0.064 0.039 0.064 0.120 0.296
t-stat -1.56 -0.78 0.50 0.78 1.36 1.68
αICAPM -0.116 -0.033 0.044 -0.012 0.009 0.125
t-stat -0.97 -0.41 0.53 -0.14 0.10 0.67
βFV IX 0.179 -0.023 -0.186 -0.197 -0.099 -0.278
t-stat 1.72 -0.37 -3.84 -2.92 -0.92 -1.41
αFF4 -0.080 -0.021 -0.028 -0.001 -0.007 0.072
t-stat -0.61 -0.25 -0.36 -0.01 -0.09 0.38
βFV IX 0.748 0.332 -0.527 -0.509 -0.987 -1.736
t-stat 2.76 1.80 -3.75 -3.82 -4.74 -4.15
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Table 5. IO Effect, Uncertainty,

Growth Options, and Aggregate Volatility Risk

The table reports the alphas and the FVIX betas of the arbitrage portfolio that buys
the highest and shorts the lowest IO quintile. This arbitrage portfolio is formed separately
in each market-to-book quintile (Panel A), each idiosyncratic volatility quintile (Panel
B), each turnover quintile (Panel C), and each analyst disagreement quintile (Panel D).
All quintiles use NYSE (exchcd=1) breakpoints. Market-to-book and turnover quintiles
are rebalanced annually, IO quintiles are rebalanced quarterly, idiosyncratic volatility and
analyst disagreement quintiles are rebalanced monthly. The definition of all variables is
in the heading of Table 1. The following models are used for measuring the alphas and
betas: the CAPM, the Fama-French model, the CAPM augmented with FVIX (ICAPM),
and the Fama-French model augmented with FVIX (FF4). FVIX is the factor-mimicking
portfolio that tracks the daily changes in VIX, the implied volatility of one-month options
on S&P 100. The t-statistics use Newey-West (1987) correction for heteroscedasticity and
autocorrelation. The sample period is from January 1986 to December 2006.

Panel A. IO Effect and Market-to-Book

Value MB2 MB3 MB4 Growth 5-1

αCAPM 0.354 0.444 0.474 0.525 0.935 0.581
t-stat 2.01 2.29 2.74 2.47 4.05 2.27
αFF 0.168 0.294 0.380 0.339 0.704 0.536
t-stat 0.91 1.70 2.18 1.77 3.97 2.37
αICAPM 0.205 0.235 0.298 0.208 0.448 0.242
t-stat 0.98 1.40 1.68 1.08 2.55 0.96
βFV IX -0.263 -0.370 -0.313 -0.562 -0.863 -0.599
t-stat -1.74 -4.11 -3.07 -3.88 -5.01 -2.29
αFF4 0.066 0.112 0.193 0.118 0.424 0.358
t-stat 0.35 0.69 1.15 0.64 2.20 1.59
βFV IX -0.799 -1.419 -1.454 -1.719 -2.181 -1.382
t-stat -2.83 -6.57 -7.58 -6.18 -4.79 -2.31
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Panel B. IO Effect and Idiosyncratic Volatility

Low IVol2 IVol3 IVol4 High 5-1

αCAPM -0.053 -0.103 0.154 0.233 1.176 1.228
t-stat -0.37 -0.93 1.15 1.38 3.87 4.27
αFF -0.056 -0.146 0.079 0.154 0.857 0.913
t-stat -0.41 -1.41 0.67 1.08 3.94 4.55
αICAPM -0.017 -0.122 0.106 0.108 0.664 0.681
t-stat -0.12 -1.17 0.83 0.81 3.47 3.60
βFV IX 0.062 -0.035 -0.085 -0.223 -0.907 -0.969
t-stat 0.85 -0.58 -0.92 -2.58 -6.68 -8.59
αFF4 -0.171 -0.220 -0.023 -0.007 0.518 0.688
t-stat -1.35 -2.15 -0.21 -0.06 2.78 3.41
βFV IX -0.895 -0.575 -0.792 -1.253 -2.641 -1.745
t-stat -4.48 -4.00 -3.95 -4.89 -7.81 -4.13

Panel C. IO Effect and Turnover
Low Turn2 Turn3 Turn4 High 5-1

αCAPM 0.144 0.468 0.280 0.633 1.143 1.000
t-stat 0.89 2.01 1.09 2.24 3.66 3.29
αFF 0.011 0.215 0.037 0.255 0.810 0.799
t-stat 0.08 0.98 0.16 1.18 3.53 3.10
αICAPM 0.095 0.191 -0.103 0.020 0.559 0.464
t-stat 0.56 0.89 -0.42 0.09 2.78 1.89
βFV IX -0.087 -0.490 -0.679 -1.087 -1.036 -0.949
t-stat -1.11 -4.69 -3.10 -6.32 -6.23 -5.08
αFF4 -0.040 0.002 -0.264 -0.069 0.446 0.486
t-stat -0.26 0.01 -1.26 -0.33 2.19 2.06
βFV IX -0.397 -1.659 -2.342 -2.517 -2.832 -2.435
t-stat -2.41 -7.04 -6.84 -7.85 -7.03 -5.98

Panel D. IO Effect and Analyst Disagreement

Low Disp2 Disp3 Disp4 High 5-1

αCAPM -0.138 -0.148 0.139 -0.030 0.327 0.465
t-stat -0.85 -0.91 0.70 -0.12 1.15 1.83
αFF -0.176 -0.155 0.040 -0.242 -0.034 0.142
t-stat -1.14 -1.10 0.24 -1.23 -0.17 0.70
αICAPM -0.233 -0.161 0.060 -0.297 -0.213 0.020
t-stat -1.60 -1.19 0.34 -1.52 -1.24 0.10
βFV IX -0.169 -0.023 -0.141 -0.472 -0.957 -0.788
t-stat -1.57 -0.19 -1.04 -3.51 -8.85 -8.17
αFF4 -0.321 -0.303 -0.142 -0.481 -0.402 -0.081
t-stat -2.13 -2.24 -0.84 -2.62 -2.54 -0.38
βFV IX -1.127 -1.152 -1.421 -1.853 -2.857 -1.730
t-stat -4.60 -4.91 -4.34 -4.45 -8.12 -4.30
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Table 6. IO, Anomalies, and Aggregate Volatility Exposure

The table reports the sensitivity to aggregate volatility changes of the anomalous arbitrage portfolios. The sensitivity is
measured by estimating the following regressions:

Ret = α + βMKT ·MKT + βCAP M
∆V IX · ∆V IX (5)

Ret = α + βMKT ·MKT + βCAP M
F V IX · FV IX (6)

Ret = α + β1f
∆V IX · ∆V IX (7)

Ret = α + β1f
F V IX · FV IX (8)

Inst is the portfolio long in the highest and short in the lowest IO quintile. Other portfolios measure the difference in the
Inst portfolio returns between the highest and the lowest quintiles of the variables mentioned in their name. For example,
Inst Turn is the return differential between the Inst portfolio formed in the highest turnover quintile and the Inst portfolio
formed in the lowest turnover quintile. The detailed description of the variables is in the header of Table 1. The t-statistics
use Newey-West (1987) correction for heteroscedasticity and autocorrelation. The sample period is from January 1986 to
December 2006.

Equal-Weighted Returns Value-Weighted Returns

βCAPM
∆V IX βCAPM

FV IX β1f
∆V IX β1f

FV IX βCAPM
∆V IX βCAPM

FV IX β1f
∆V IX β1f

FV IX

Inst 0.003 -0.325 0.007 -0.022 Inst -0.021 -0.416 -0.028 -0.146
t-stat 0.33 -5.31 0.90 -1.24 t-stat -4.31 -5.58 -7.28 -9.67
Inst MB -0.035 -0.335 -0.049 -0.201 Inst MB -0.014 -0.406 -0.021 -0.144
t-stat -5.61 -4.22 -8.90 -8.66 t-stat -1.65 -4.04 -2.74 -4.45
Inst IVol 0.020 -0.567 0.051 0.158 Inst IVol 0.007 -0.742 0.063 0.317
t-stat 1.69 -7.30 3.71 4.17 t-stat 0.49 -4.60 4.07 7.10
Inst Turn -0.024 -0.609 -0.010 -0.024 Inst Turn -0.071 -0.894 -0.011 0.254
t-stat -1.97 -8.25 -0.81 -1.16 t-stat -6.51 -6.86 -1.18 5.41
Inst Disp -0.020 -0.713 0.019 0.166 Inst Disp -0.035 -0.673 -0.001 0.114
t-stat -1.90 -12.5 1.52 7.79 t-stat -4.27 -8.01 -0.13 4.10
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Table 7. IO, Anomalies, and Conditional CAPM

The table reports conditional CAPM betas across different states of the world for the
arbitrage portfolio long in the highest and short in the lowest IO quintile (Inst portfolio), as
well as the conditional CAPM betas of the arbitrage portfolios that measure the difference
in the value effect (Inst MB), the difference in the idiosyncratic volatility discount (Inst
IVol), the difference in the turnover effect (Inst Turn), and the difference in the analyst
disagreement effect (Inst Disp) between the lowest and the highest IO quintiles. The
detailed description of the variables is in the header of Table 1.

Recession (Expansion) is defined as the period when the expected market risk pre-
mium is higher (lower) than its in-sample median. The expected risk premiums and the
conditional betas are assumed to be linear functions of dividend yield, default spread,
one-month Treasury bill rate, and term premium. The left panel presents the results with
equal-weighted returns, and the right panel looks at value-weighted returns. The standard
errors reported use Newey-West (1987) correction for heteroscedasticity and autocorrela-
tion. The sample period is from January 1986 to December 2006.

Equal-Weighted Returns Value-Weighted Returns

Rec Exp Diff Rec Exp Diff

Inst 0.181 -0.023 0.204 Inst 0.120 -0.074 0.194
t-stat 7.57 -0.54 4.45 t-stat 4.24 -1.92 4.33
Inst MB 0.020 -0.034 0.054 Inst MB -0.066 -0.117 0.051
t-stat 1.26 -1.40 1.97 t-stat -4.49 -8.17 2.65
Inst IVol -0.224 -0.388 0.164 Inst IVol -0.142 -0.386 0.244
t-stat -7.96 -8.74 3.30 t-stat -6.57 -9.80 5.65
Inst Turn -0.124 -0.368 0.244 Inst Turn -0.024 -0.448 0.424
t-stat -2.20 -5.59 3.07 t-stat -0.47 -5.84 4.86
Inst Disp -0.179 -0.367 0.188 Inst Disp -0.041 -0.213 0.172
t-stat -6.38 -7.69 3.58 t-stat -2.91 -13.85 8.39
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