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Abstract 
 

This paper examines the risk-return trade-off in Spain during the last 15 years. The 
study is developed in a multi-factor framework where not only the market risk is 
considered but also potential changes in the investment opportunity set. Although 
previous studies find no clear evidence about a positive and significant relation between 
return and risk, favourable evidence can be obtained if a non-linear relation between 
return and risk is established. Despite the importance of the intertemporal hedging 
component in the risk premium demanded by investors, the evidence obtained is 
independent of the choice of the proxy used. Different patterns for the risk premium 
dynamics in low and high volatility periods are obtained, both in risk prices and risk 
(conditional second moments) patterns.  
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1. Introduction 

The relation between expected return and risk has motivated many studies in the 
financial literature. Most of the recent asset pricing models are based in this 
fundamental trade-off, so understanding the dynamics of this relation is a key issue in 
finance. One of the first studies establishing a theoretical relation between expected 
return and risk is the Sharpe (1964) and Lietner (1965) CAPM model. These authors 
proposed a positive linear relationship between the expected return of any asset and its 
covariance with the market portfolio; in other words, the expected return of the market 
portfolio is proportional to its conditional variance. This static model has been analyzed 
empirically in several studies obtaining no clear evidence about the sign and 
significance of this relationship (Campbell 1987), Harvey 1989, Glosten et. al 1993). 
Merton (1973) proposed an extension of this model adding a second risk factor in the 
relationship that may improve the static CAPM model. The market risk premium in the 
Merton’s model is proportional to its conditional variance and the conditional 
covariance with the investment opportunity set (hedging component). This framework 
established in a time-continuous economy is an extension of the static CAPM model 
assuming a stochastic set of investment opportunities. The expected market risk 
premium in equilibrium is: 
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where ( )·J  is the utility function (subindex represents partial derivatives), ( ), 1t M tE R + is 

the expected excess market return, 2
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 could be viewed as the risk prices 

of the sources of risk. 
 

Assuming risk-averse investors 0WJ >  and 0WWJ < , the model establishes a positive 

relation between risk premium and market volatility. However, the relation between the 

risk premium with the second risk factor (mbσ  ) depends on the sign of WBJ  and mbσ . If 

WBJ  and mbσ share the same sign the investors demand a lower risk premium, but if the 

sign is different a higher risk premium is demanded.  Assuming that Equation 1 is the 
proper model for the empirical study of the risk-return trade-off, the omission of this 
risk factor could lead to misspecifications of the empirical models and misleading 
evidence about the risk-return relationship. 

Despite the important role of this trade-off in the financial literature, there is no clear 
consensus about its empirical evidence. In the theoretical framework, all the parameters 
(the risk prices in brackets) and the variables (the sources of risk) are allowed to be 



time-varying. However, to make this model empirically tractable one must make several 
assumptions; the most common is considering constant risk prices (Goyal and Santa-
Clara 2003, Bali et. al 2005). Another common assumption made in the empirical 
analysis of the risk-return trade-off is considering a set of investment opportunities 
constant over time, the market risk remaining as the only source of risk (Baille and Di 
Gennaro 1990, Glosten et al. 1993). This assumption leads to the validation of the static 
CAPM model. It is also necessary to assume specific dynamics for the conditional 
second moments. The most common are the GARCH models (Bollerslev 1986).2 
Finally, the empirical model is established in a discrete time economy instead of the 
continuous time economy used in the equilibrium model of the theoretical approach. 
Many of the empirical papers studying the risk-return use one or more of the 
assumptions explained above.  

The great controversy in the empirical validation of the risk-return trade-off is 
motivated by the disappointing results obtained about the sign and significance of this 
relation. There is no consensus about whether these results are due to: (1) wrong 
specifications of conditional second moments, Guo and Neely (2008), Leon et al. 
(2007); (2) misspecifications of the empirical models caused by the omission of the 
hedge component, Scruggs (1998); (3) both causes. However, another potential problem 
related with the empirical validation of the risk-return trade-off is the assumption of a 
linear relationship between return and risk. Some authors (Whitelaw 2000, Mayfield 
2004) are concerned with this point and develop alternative theoretical models for the 
risk-return trade-off where non-linear patterns are included through regime-switching 
models. The equilibrium model in Whitelaw (2000) is slightly different from Merton’s 
approach. A more complex, non-linear and time-varying relation between expected 
return and volatility is obtained. Whitelaw also remarks on the importance of the hedge 
component in the determination of the risk-return trade-off in his non-linear framework. 

This study tries to shed light on the empirical validation of the risk-return trade-off. 
Although there is a large literature focused on the empirical validation of the ICAPM 
model, there are only few studies using multi-factor models that consider the hedge 
component3. Furthermore, the main empirical approach used in the literature is the 
GARCH-M framework, which assumes a linear relation between return and risk. The 
weak evidence obtained in the existing literature could be due to a misspecification of 
the empirical model in terms of the dynamics for conditional second moments, by the 
omission of the hedge component, or by the assumption of a linear relationship between 
return and risk. Therefore, we incorporate all these features in our empirical models to 
analyze what are the key issues to consider in the empirical models that let us obtain 
favorable evidence as theoretical intuition suggests. 

                                                           
2 Ghysels et al. (2005) proposes an alternative specification, the MIDAS regression, for modelling 
conditional second moments against GARCH models. 
3 One of the most common assumptions in the literature is the consideration of a constant set of 
investment opportunities, or, alternatively, independent and identically distributed rates of return. This 
assumption implies that the market risk premium only depends on its conditional variance and could be 
validated using univariate rather than multi-factor models. 



The main contributions of this paper are the following: Firstly, this study analyzes the 
risk premium evolution in Spain during the last few years. Secondly, it proposes a 
multi-factor model (considering a stochastic set of investment opportunities) where both 
the risk prices and sources of risk are state-dependent, allowing us to consider non-
linear relationships between them. Thirdly, it shows differences in the patterns followed 
by risk prices and conditional volatilities in different states. This non-linear framework 
allows us to distinguish between low and high volatility states.  

Generally, the following results are noteworthy: a) The empirical results show that the 
risk price values are lower in high volatility states and the conditional volatility is more 
persistent in low volatility states. b) Favorable evidence for a positive and significant 
risk-return tradeoff in Spain is obtained, noting that the relevant aspect for this evidence 
is the assumption of a non-linear relation between return and risk, although the hedge 
component is also important in this framework. 

This paper is organized as follows. Section 2 provides the data. Section 3 develops the 
empirical framework used in the paper. Section 4 gives the main empirical results and 
Section 5 concludes. 

2. Data description 
 
This study uses 720 weekly4 excess market returns from the Spanish market, including 
observations from 1 January 1996 to 15 October 2009. The excess market returns are 
computed using the quotations of the IBEX-35 index, first obtaining logarithmic 
returns5 and then subtracting from these returns the risk-free rate. Following Leon et al. 
(2007) the market money rate suitably compounded at the weekly frequency is used as 
the proxy for the risk-free rate. The choice for the proxy used as the hedging component 
against changes in the investment opportunity set are the followings rates for the 
Spanish market (Bali and Engle (2009, a,b) use these proxies for the American case): 1-
year Treasury bill, 3-year Treasury bond, 5-year Treasury bond, 10-year Treasury bond, 
an equally averaged portfolio with the previous 3 bonds and the difference between the 
yields on the 10-year and the 3-year Treasury bond. Thomson Datastream is used to 
obtain the data about the stock index, International Financial Statistics for the data 
corresponding to the risk-free rate and AFI for the data about the proxies used as the 
intertemporal hedging component. Table 1 shows the main summary statistics for 
excess market returns and the intertemporal hedging alternatives rates. 

TABLE 1.- Summary statistics for excess market returns and intertemporal hedging proxies 
 

Panel A.- Summary statistics  
 

 Excess 1-year T- 3-year T- 5-year T- 10-year T- Averaged Term 

                                                           
4
 Even though there are slight differences in the parameter estimations using different data frequency, 

there is no particular reason that the conclusions in this study should be affected by the selection of data 
frequency. Some authors remark on this point in their studies (De Santis and Imhoroglu 1997, Shin 2005, 
Lundblad 2007). 
5
 We use logarithmic returns multiplied by 100 to facilitate the convergence of the empirical models. 



market 
return  

bill bond bond bond portfolio Spread  

Minimum -23.032 -0.7516 -0.9480 -1.319 -3.220 -1.893 -1.298 
Maximum 13.784 0.6022 1.1246 1.854 2.363 1.662 1.698 
Median 0.1514 0.0116 0.0398 0.0606 0.0815 -0.0335 0.0489 

Std. 
deviation 

3.105 0.1039 0.2698 0.4447 0.6705 0.4706 0.4163 

Skewness -0.7825 0.4097 -0.1785 -0.1001 -0.3863 -0.3149 -0.0790 

Kurtosis 8.808 13.386 4.1338 3.7837 4.271 3.781 3.775 

J-B 1085.681 3256.582 42.392 19.631 66.450 30.198 18.798 

L-B (6)   42.186 61.842 30.622 21.217 18.997 15.924 20.596 

L-B2 (6)  224.899 251.798 132.371 151.362 68.0186 67.018 152.579 

Panel B.- Correlation matrix 
 

 
Excess 
market 
return 

1-year T-
bill 

3-year T-
bond 

5-year T-
bond 

10-year 
T-bond 

Averaged 
portfolio 

Term 
Spread  

IBEX-35 1 -0.0105 -0.0830 -0.0508 -0.0317 -0.0523 -0.0516 

1-year    T-
bill 

·  1 0.4319 0.3813 0.3059 0.3603 0.1576 

3-year    T-
bond 

· · 1 0.9525 0.8420 0.9265 0.9096 

5-year    T-
bond 

· · · 
1 0.9313 0.9815 0.9729 

10-year    T-
bond 

· · · · 
1 0.9773 0.9184 

Averaged 
portfolio 

· · · · · 
1 0.9585 

Term 
Spread 

· · · · · · 1 

Panel A shows summary statistics for excess markets returns and alternative hedging proxies. JB is the 
Jarque-Bera (1989) test for normality distribution. LB(6) and LB2(6) are the Ljung-Box test for serial 
autocorrelation in levels and squares respectively. Panel B presents the correlation matrix for all the 
series included in this study. 
 
All series included in this study present non-normal unconditional distributions with 
strong evidence for skewness and kurtosis. This result suggests fat tails in the 
unconditional distributions. Furthermore, all series exhibit conditional 
heteroskedasticity problems (serial autocorrelation in square returns). With these serial 
patterns, the use of GARCH models to represent the dynamics of conditional second 
moments, which has a large support in the previous literature, is totally understandable. 
It is also observed that the temporal series in levels do not exhibit serial autocorrelation 
so the inclusion of any structure6 in the mean equation is not necessary. Finally, the 
correlation matrix for the different proxies shows a low correlation between the excess 
returns of the market portfolio and the potential alternative investments. This result 
shows that the last series could be considered as proxies reflecting the alternative 
investment set available to the investors. Due to the lack of consensus in the literature 

                                                           
6 The 1-year T-Bill series exhibit these problems, but after modelling the variance as a GARCH 
specification the serial autocorrelation disappears without including any lag in the mean equation. 
 



about the best proxy representing the alternative investment set (Scruggs and 
Glabadanidis 2003, Whitelaw 2006, Bali 2008), this study uses the different assets 
shown above which present different characteristics (in their terms and maturity) and 
add robustness to the study.   
 
3. Empirical methodology 
 
This section presents the empirical models used in the study. The main contribution of 
this paper is the assumption of a state-dependent risk price and state-dependent 
conditional volatilities, which implies a non-linear relationship between return and risk, 
following the equilibrium model in Whitelaw (2000). So, assuming bivariate GARCH 
dynamics for conditional volatilities, (more specifically, the BEKK model of Baba et. al 
(1990), state-independent multi-factor models that establish a linear relation between 
return and risk are presented in Section 3.1, followed by state-dependent multi-factor 
models that establish a non-linear risk-return trade-off through regime-switching both in 
the risk premium and conditional volatilities, in Section 3.2.7 
 
3.1. State-independent multi-factor model 
 
This section presents a multi-factor model derived from Merton’s (1973) ICAPM 
model. The ‘general’ model allows time-varying conditional second moments, but the 

risk aversion (risk price) coefficients for market risk WB

W

J W

J

 
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 and intertemporal 

component risk WW

W

J W

J

 
 
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are constant over time (Scruggs and Glabadanidis 2003). 
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                     (2) 

 
where ijλ for i,j=1,2 are the parameters to estimate and represent the different risk prices 

and 2
,m tσ , 2

,b tσ , ,mb tσ   represent the conditional second moments (market variance, 

intertemporal hedging component variance and covariance between market portfolio 
and hedging component). A restricted model is also estimated, where the alternative 
investment set is time invariant (21 22 0λ λ= = ) (Scruggs 1998). 

 
As we explained above, it is necessary make an assumption about the dynamics of the 
volatilities in order to empirically validate the theoretical ICAPM model. To analyze 
bivariate relationships, one of the most used models in the literature is the BEKK model 
of Baba et al. (1990). This model sets the following variance equation:   
 

                                                           
7 The asymmetric response of volatility to news of different signs (leverage effect) is not considered for 
two reasons: (1) there is no improvement about the significance of the risk-return trade-off in previous 
studies (Aragó and Salvador 2010); (2) the convergence of the proposed models is harder to achieve due 
to the inclusion of the new parameters. These reasons lead to the consideration of a more parsimonious 
model.  
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where C is a lower triangular 2x2 matrix of constants, A and B are 2x2 matrices of 
parameters, 1tε − is a Tx2 vector of innovations and 1tH − is the lagged covariance matrix. 

 

The model is estimated by the maximization of the QML function Bollerslev-
Wooldrige, assuming that the innovations follow a normal bivariate 
distribution ( )~ 0,t tN Hε , which allows us to obtain robust estimates of standard 

errors. 
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where | Ht | represents the determinant of the covariance matrix and the remaining terms 
have been defined above.   

 
3.2. Regime-switching multi-factor model 
 
This section introduces a new multi-factor model where both the risk prices and the 
conditional second moments are dependent of the state in the economy. In this case, we 
propose two states8. The consideration of regime-switching in the empirical relation 
allows us to obtain state-dependent estimations for the risk prices and conditional 
second moments. This implies a non-linear and state-dependent relation between 
expected return and risk. 
 
The mean equation specification in this model is 
 

2
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for 1,2ts =  where 
tsλ are state-dependent parameters, , , tm t sr and , , tb t sr are the state-

dependent excess market and hedging component returns, 2
, , tm t sσ , 2

, , tb t sσ  and , , tbm t sσ are 

the state-dependent conditional second moments, and , , tm t sε  and , , tb t sε are the state-

dependent innovations9.  

                                                           
8
 Previous studies considering three states (e.g., Sarno and Valente 2000) show that the third state only 

reflects odd jumps in the return series.The explanatory power of the third state is low and it is worthless 
in light of the difficulties of the estimation process that it produces.  

9 We also estimate a restricted model where 21 22 0λ λ= = . 



It is assumed that the state-dependent conditional second moments follow a GARCH 
bivariate dynamics (more specifically, a BEKK model). That is, there are as many 
covariance matrices as states. The state-dependent covariance matrices are 

2
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                (6) 

The consideration of several states leads to a noteworthy rise in the number of 
parameters to estimate. In order to reduce this over-parameterization we only let 
parameters accompanying lagged innovations and lagged variances to be regime-
switching10. Furthermore, the difference among states is defined by two new parameters 
sa and sb that properly weight the estimations obtained in one state for the other state. 
Therefore, the state-dependent covariance matrices in our model are: 
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where 2 1·A sa A=  and 2 1·B sa B= , A1 and   B1 are 2x2 matrices of parameters, and C is a 

2x2 lower triangular matrix of constants (the same for the 2 states). 

The shifts from one regime to another are governed by a hidden variable following a 
second order Markov process with transition matrix 

( ) ( )
( ) ( )
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ˆ
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s s p s s q

− −

− −

 = = = = = = −
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where p and q are the probability of being in state 1 and 2 if in the previous period the 
process was in state 1 and 2 respectively. 

Due to this state-dependence and the recursive nature of GARCH models, the 
construction and estimation of the maximum likelihood function would be intractable 
unless independent estimates for innovations and covariances were obtained. In order to 
solve this problem, we use a recombinative method similar to that used in Santos (1999) 
that lets us obtain state-independent estimations for the covariance matrix and the 
innovations weighting the state-dependent covariance matrix and innovations by the ex-
ante probability of being in each state. 

( ) ( )1 , 1 1 , 21 ; 2 ;
t tt t t t s t t t sH P s H P s Hθ θ− = − == = Ω + = Ω

                          (8) 
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 Capiello and Fearnley (2000) make a similar assumption to avoid potential convergence problems.  
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                                   (9) 

where Ht  and εt are the state-independent estimations for the covariance matrix and the 
innovations  

The ex-ante probabilities (the probabilities of being in each state in the period t using 
the information set at t-1) are (10.1) and (10.2): 
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( ) ( )1 12 ; 1 1 ;t t t tP s P sθ θ− −= Ω = − = Ω  ,                   (10.2)      
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for k=1, 2 are the filtered probabilities (the probabilities of being in each state in the 
period t with the information set up to t). 

 

Assuming state-dependent innovations following a normal bivariate distribution 

( ), ,~ 0,
t tt s t sN Hε , the vector of unknown parameters θ  is estimated by maximizing the 

following maximum-likelihood function: 
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where the state-dependent likelihood function is weighted by the ex-ante probability of 
being in each state. 

 

4.- Empirical results 

This section presents the empirical results for the models proposed. We estimate the 
models explained in the previous section for the different proxies used as the 
intertemporal hedging component; models using the 1-year T-bill, the 3-year T-bond, 
the 5-year T-bond, the 10-year T-bond, the equally-weighted bond portfolio and the 
term spread are named .a, .b, .c, .d, .e, .f for brevity. Section 4.1 shows the results for 
the linear models (without regime-switching) in the two cases mentioned: general and 
restricted version. Section 4.2 explains the results for the non-linear multi-factor models 
(general and restricted), including regime switching. Section 4.3 describes the risk 
premium evolution in Spain during the last years according to each model and analyzes 
the reason for the differences between them. Finally, Section 4.4 performs some 
specification tests over the estimation residuals in order to detect any problems related 
with a potential misspecification of the empirical model. 



4.1.- Multi-factor models estimations 

The estimated models in this section are those introduced in section 3.1. The case 
without restrictions is named general model and the restricted version are the model 
where we assume constant risk premiums for the hedge component λ21 = λ22 = 0. The 
estimated parameters for the mean equation are presented in Table 2.

 

Table 2. Mean equation estimations for multi-factor models 

 
2

, 10 11 , 12 , ,

2
, 20 21 , 22 , ,

m t m t mb t m t

b t bm t b t b t

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +  

 Model 2.a Model 2.b Model 2.c Model 2.d Model 2.e Model 2.f 

10λ
 

R 0.1639 0.1192 0.1388 0.1851 0.1487 0.1297 

G 0.1722
 

0.1858 0.1706 0.1992 0.1782 0.1626 

11λ
 

R 0.0125 0.0221 0.0151 0.0126 0.0190 0.0221 
G 0.0107 0.0162 0.0163 0.0139 0.0176 0.0205 

12λ
 

R -0.2247
 

0.4998
 

0.2283
 

-0.0171
 

0.2779
 

0.4398
 G -0.0433

 
0.7222

 
0.3634

 
0.0127

 
0.4165

 
0.5212

 
20λ

 
R 0.0008 0.0243**

 
0.0387**

 
0.0631**

 
-0.0505***

 
0.0173**

 G -0.0033
 

-0.0103
 

-0.0187
 

-0.0040
 

-0.1169*
 

-0.0091
 

21λ
   G 0.2417

 
0.0701

 
0.0864

 
0.0402

 
0.0688

 
0.0495

 

22λ
   G 0.2597

 
0.6618

 
0.4032*

 
0.1720

 
0.3700

 
0.6155

 
Estimated parameters for the mean equation in multifactor models. ***, **and * represents significance 
at 1%, 5% and 10% levels. 

It is clear that most of the parameters in this multi-factor model are non-significant for 
the mean equation. The coefficients that reflect the market risk price (λ11) are positive 
but non-significant in all cases considered. Similar results are obtained for the hedging 
component risk factor (λ12).   

Table 3 shows the parameter estimates for the variance equation. These parameters 
define the dynamics and patterns followed by the conditional second moments. 

Table 3. Variance equation estimations for multi-factor models  
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 Model 2.a Model 2.b Model 2.c Model 2.d Model 2.e Model 2.f 

11c
 

R 0.3068*** 0.3403** 0.3180*** 0.2912*** 0.2971** 0.3298** 
G 0.3017*** 0.3276** 0.3139*** 0.2886** 0.2972** 0.3276* 

12c
 

R -0.0178** -0.0256 -0.0350 -0.0427 -0.0622 -0.0183 
G -0.0172 -0.0178 -0.0283* -0.0407 -0.0475** -0.0168 

22c
 

R 0.0241*** -0.0102 -2.80E-05 0.1192*** 9.00E-06 0.01669 

G 0.0242** 8.76E-04 -2.50E-07 0.1162*** 1.60E-08 -0.0102 

11a
 

R 0.2815*** 0.2932*** 0.2912*** 0.2801*** 0.3005*** 0.2933*** 

G 0.2777*** 0.2890*** 0.2903*** 0.2804*** 0.2965*** 0.2948*** 

12a
 

R -0.0024 0.0052 0.0092 -0.0166 0.0034 0.0043 

G -0.0019 0.0072* 0.0111** -0.0141 0.0078 0.0052 



21a
 

R -1.4984* -0.7233 -0.4042 0.0651 -0.3442 -0.6339 

G -1.5390 -0.4929 -0.3152 0.0618 -0.2850 -0.4930 

22a
 

R 0.5630*** 0.2190*** 0.1846*** 0.2421*** 0.1807*** 0.2264*** 

G 0.5659*** 0.1968*** 0.1733*** 0.2397*** 0.1603*** 0.2146*** 

11b
 

R 0.9556*** 0.9509*** 0.9527*** 0.9586*** 0.9514*** 0.9526*** 
G 0.9566*** 0.9537*** 0.9538*** 0.9587*** 0.9530*** 0.9529*** 

12b
 

R 0.0012* -0.0022 -0.0040** 0.0047 -0.0019 -0.0020* 
G 0.0010 -0.0026 -0.0044*** 0.0038 -0.0033 -0.0022 

21b
 

R 0.8897** 0.3620 0.1950 0.0038 0.1849 0.3643 
G 0.8853 0.2680** 0.1627 0.0084 0.1566 0.3219 

22b
 

R 0.8118*** 0.9675*** 0.9761*** 0.9491*** 0.9734*** 0.9664*** 

G 0.8121*** 0.9740*** 0.9786*** 0.9515*** 0.9795*** 0.9706*** 

Estimated parameters for the variance equation in the multi-factor models. ***, ** and * represents 
significance at 1%, 5% and 10% levels. 

The results reflect that the bivariate GARCH specification fit and properly capture the 
conditional second moments dynamics. Significance in the parameters representing 
shocks in volatility (a11, a22) and persistence of past variance (b11, b22) is observed for 
both risk factors (market risk and investment opportunity set component). However, the 
impact of one risk factor in the composition of the other factor’s volatility is not 
significant, neither the impact of shocks (a12, a21) nor persistence (b12, b21). There is 
another remarkable result about volatility dynamics; the persistence level in the two 
sources of risk—market risk (b11)  and hedging component (b22)—are relatively high 
using multi-factor models, with values close to 1. This high persistence level suggests 
the presence of several regimes in the volatility process (Lameroux and Lastrapes 
1990). Ignoring these regime shifts could lead to inefficient volatility estimations. 
Regime-Switching (RS)-GARCH models let us consider different states in the volatility, 
process as we explain in the next sub-section, and overcome this limitation. 

4.2-  Regime-Switching multi-factor models estimation 

This section shows the estimations for the state-dependent models presented in Section 
3.2. These models exhibit state-dependent risk prices and conditional moments. Table 4 
describes the estimation for the state-dependent mean equation in all cases considered. 
As we explain below in Figure 2, we can associate states 1 and 2 with low and high 
volatility periods respectively.  

Table 4.- Mean equation estimations for non-linear multi-factor models  

 

2
, , 10, 11, , , 12, , , , ,

2
, , 20, 21, , , 22, , , , ,

t t t t t t t

t t t t t t t

m t s s s m t s s mb t s m t s

b t s s s bm t s s b t s b t s

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +  

Panel A. Low volatility state (st =1) 
 Model 2.a Model 2.b Model 2.c Model 2.d Model 2.e Model 2.f 

10, 1tsλ =

 

R -1.1540** -0.8954 -2.3156*** -2.3689*** -2.7943*** -2.4819** 

G -0.8077 -1.5745*** -2.6614*** -2.5942*** -2.2375*** -4.0322*** 

11, 1tsλ =

 

R 0.4044** 0.1169** 0.1311** 0.1867*** 0.2980** 0.2270** 
G 0.3415** 0.1682** 0.1144*** 0.1982*** 0.0758** 0.3011** 

12, 1tsλ = R 2.7521 4.6265 3.7124** 2.0452*** 1.6691** 1.3646*** 



 G 7.6601*** 1.8731** -0.3294 2.5449*** 0.0169** 1.6573*** 

20, 1tsλ =

 

R 0.0099 0.0406** 0.0742** 0.0785 -0.0745** 0.0524** 
G -0.0009 0.0096 0.4503 -0.0172 -0.2907** 0.1715*** 

21, 1tsλ =    G -0.1518 0.1997*** 0.4438** -0.0479 -0.8829*** -0.4219** 

22, 1tsλ =    G 1.8914 0.4396 0.9609 0.3025 0.2076 -1.3879** 

Panel B. High volatility state (st =2) 

10, 2tsλ =

 

R -1.4062** 0.3597*** 0.3436* 0.3502** 0.2323*** 0.2662* 
G -1.2897** 0.1993** 0.1891 0.3652** 0.3583*** 0.2908** 

11, 2tsλ =

 

R 0.0733 0.0198 0.0137 0.0043 0.0191 0.0153 
G 0.0662 0.0302*** 0.0337 0.0111 2.8310 0.0169 

12, 2tsλ =

 

R -1.2216 0.3280 -0.3172 -0.3739 -0.0507 -0.7152 
G -1.4985 0.3132 0.7456* -0.4473 -0.0323 -0.2767 

20, 2ts
λ =

 

R -0.0027 0.0210 0.0354 0.0605 -0.0404** 0.0183** 

G -0.0117*** -0.0355 -0.1469* 0.03480 -0.0768 -0.0184 

21, 2ts
λ =    G -0.1059 -0.1202* 0.1151 0.0637 0.0540 -0.0215 

22, 2ts
λ =    G 0.9297 1.0195 1.1358** 0.0635 0.1869 0.7740* 

This table shows the estimated parameters for the mean equation in the non-linear multi-factor model. 
***, ** and * represents significance at 1%, 5% and 10% levels. 

Positive and significant estimations for the market risk price in low volatility states 
(λ11,s=1) are obtained in all cases considered (for all proxies used as the intertemporal 
hedging component in the general and restricted version of the model)11. A positive and 
significant influence over the market risk premium of the risk price is also observed, 
representing the covariance between risk premium and hedging component (λ12,s=1) in 
low volatility states. Generally, this covariance exhibits a negative influence in the total 
risk premium demanded (see Figure 1). So, the product of the risk price times the 

covariance between excess market return and hedging component ( )12 , , 1tmb t sλ σ =  shows 

that the total risk premium required by the investor ( )2
11 , , 1 12 , , 1t tmb t s mb t sλ σ λ σ= =+ is slightly 

lower than the market risk premium. Only when the covariance is positive does the 
premium associated with the hedging component lead to higher values of the total risk 
premium regarding the market risk premium. 

Figure 1- Covariance between excess market returns and the intertemporal component 

                                                           
11

 The results for the intercept are also significant. Some authors (Ghysels et. al. 2005, Leon et al. 2007) 
interpret this fact as market imperfections. 
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Covariance between excess market returns and 10-year T-bond used as intertemporal hedging 
component. 

Panel B of Table 4 shows the results obtained for state 2. Generally, a significant 
relation is not observed between expected return and risk in high volatility states. A 
positive but no significant estimation is obtained for the risk price (market risk (λ11,s=2), 
and covariance between market risk and hedge component (λ12,s=2)). Moreover, the risk 
aversion coefficients in state 1 (corresponding to low volatility states) are higher than 
those corresponding to state 2 (high volatility states). This result suggests that there is 
less risk aversion in high volatility states. This finding is not consistent with the spirit of 
the theoretical models that suggests that higher volatility should be compensated with 
higher returns. However, Mayfield (2004), Lettau and Ludvingson (2003), and 
Lundblad (2007) found the same evidence: during high volatility states there is a 
decreasing level of risk aversion. One possible explanation could be the different risk 
aversion profile for investors in each state (Schmeling, 2009). During calm (low 
volatility) periods more risk-averse investors are trading in markets, but in high 
volatility periods only the less risk-averse investors remain in the market because they 
are the only investors interested in assuming such risk levels, decreasing the risk 
premium demanded during these periods. However, the specification presented here 
may be confounding expected returns with realized returns, particularly in the less 
common high volatility states (corresponding generally with recession periods) often 
associated with low or even negative markets returns (Lundblad, 2007).  

Table 5 shows the estimations for the state-dependent variance equations. Again, 
significant estimates are obtained for the parameters accompanying the shock impact 
(a11, a22) and the persistence (b11, b22) in the volatility formation in both risk factors. 
Most of the cross-relationships between factors (a12, a21, b12, b21) in the volatility 
construction are non-significant, that is, shocks or volatility persistence in one factor has 
no effect in the other volatility factor. 

 



Table 5. Variance equation estimations for non-linear multi-factor models  
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2 1·A sa A= ; 
2 1·B sa B=  

 Modelo 2.a Modelo 2.b Modelo 2.c Modelo 2.d Modelo 2.e Modelo 2.f 

11c
 

R 1.3614*** 0.6107*** 0.4977*** 0.5162*** 0.3707*** 0.4648*** 
G 1.2338*** 0.3035*** 0.6063*** 0.5194*** 0.4119*** 0.3766*** 

12c
 

R -0.0026 -0.0299* -0.0254* -0.0155 -0.0486*** -0.0072 

G -0.0004 -0.0095 -0.0508*** -0.0073 -0.0170 0.0038 

22c
 

R 0.0346*** 0.0689*** 0.0798*** 0.1836*** 0.0590*** 0.0577*** 

G 0.0315*** -0.0273*** 0.1324*** 0.1988*** 0.1173*** -0.0513*** 

11a
 

R 0.1161** 0.0933 0.0114 0.2236*** 0.3318*** 0.2073*** 

G 0.1011 0.4130*** 0.2184*** 0.2401*** 0.2074*** 0.1215*** 

12a
 

R 0.0002 0.0053 -0.0001 -0.0165** -0.0029 -0.0024 

G 0.0095 0.0014 0.0203* -0.0230** -0.0086* 0.0001 

21a
 

R 0.2580 0.1096 0.0040 -0.0143 -0.4763** 0.0340 

G -0.0404 -0.1642 0.0716* 0.0687 0.2727* 0.1531 

22a
 

R 0.2748*** 0.1227 0.0207 0.2369*** 0.2318*** 0.2699*** 

G 0.2654*** 0.2776*** 0.3075*** 0.2473*** 0.2163*** 0.1572*** 

11b
 

R 0.9778*** 1.0321*** 1.0486*** 1.0049*** 0.9764*** 1.0562*** 
G 0.9851*** 0.9545*** 1.0183*** 1.0021*** 1.0405*** 1.0502*** 

12b
 

R -7.50E-04 -0.0020* -0.0008 0.0032 -0.0006 0.0007 
G -0.0014* -0.0011 -0.0064* 0.0059** 0.0017 -0.0009 

21b
 

R 0.9677 0.1022 0.0740 0.0211 0.1758*** -0.0523 
G 1.2557 0.1564 0.1670* -0.0343 -0.0615 -0.0162 

22b
 

R 0.9111*** 0.9857*** 1.0132*** 0.9742*** 0.9856*** 1.0213*** 

G 0.9187*** 0.9677*** 0.9477*** 0.9671*** 1.0128*** 1.0167*** 

sa 
R 2.7440** 3.2140*** 17.1565*** 1.1736*** 1.1979*** 1.1136*** 
G 2.8049*** 1.0111*** 1.1758*** 1.0667*** 1.0861*** 1.8867*** 

sb 
R 0.6393*** 0.8370** 0.8918*** 0.9111*** 0.3590*** 0.8743*** 
G 0.6524*** 0.2353** 0.8845*** 0.9035*** 0.8939*** 0.8979*** 

p 
R 0.98 0.97 0.98 0.98 0.98 0.97 
G 0.97 0.97 0.98 0.96 0.96 0.97 

q 
R 0.97 0.98 0.98 0.98 0.98 0.97 
G 0.96 0.96 0.97 0.98 0.97 0.96 

Estimated parameters for the variance equation in the  non-linear multi-factor models. ***, ** and * 
represents significance at 1%, 5% and 10% levels. 

Furthermore, the volatility formation depends on the regime considered in this 
framework. For low volatility regimes there is observed a higher influence of the lagged 
variance (matrix B) even than the non-switching case (with values higher than unity in 
some cases). Moreover, in these states, there is also a lower impact of shocks (matrix A) 
in volatility formation. This result means that the volatility observed in a period t in a 
low volatility state is determined overall by the variance observed in the previous period 
and less by the shock occurring in period t. However, there is an increase of the shock 
influence in the volatility formation in high volatility regimes (determined by the 
product sa·A). There is also a decrease of the volatility persistence in these high 
volatility states (sb·B). In this case, the volatility observed in a period t in a high 
volatility state is less determined by the variance observed in the previous period and 



more by the shock occurring in this period t. These results suggest that linear GARCH 
models could lead to sub-estimation of volatility persistence in high volatility periods 
and over-estimation of volatility persistence in high volatility periods, where there is a 
higher presence of shocks in volatility formation (Marcucci 2005).  
 
In addition, the non-linear multi-factor model lets us associate the different states that 
follow the volatility process with low (state 1) and high volatility (state 2) market 
periods. The median of the estimated volatility for state 1 are

 
2

, 1ˆ
tM sσ = =6.8718 , 2

, 1ˆ
tB sσ =  = 

0.3740 and , 1ˆ
tMB sσ =  = -0.0982 while the median of estimated volatility series in state 2 

are 2
, 2ˆ

tM sσ = = 8.5479 , 2
, 2ˆ

tB sσ =  = 0.4496 and , 2ˆ
tMB sσ =  = -0.1215. These results (jointly with 

Figure 2) let us associate the states defined in the non-linear model with low (state 1) 
and high volatility states (state 2). 

 
Figure 1 show the smooth probabilities12 of being in state 1 during the sample period for 
the 10-year T-bond13 as hedging component case. 

Figure 2.-  Smooth probabilities for low volatility states 
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Probability of being in a low probability state for the case where the 10-yearT-bond is the alternative 

investment. 

There are four patterns in the volatility process. The first part of the sample (until 2000 
approximately) shows market uncertainty about the main regime in the market with 
sudden regime shifts (as the 1997 crisis). After that, high volatility periods seem to 
govern the process during the 2000-latest 2002 period, coinciding with the dot-com 
bubble. After this turbulent period, low volatility regimes govern again the Spanish 
market during the 2003-latest 2007 period, coinciding with a great expansion period of 
the Spanish economy. Then, coinciding with the global financial crisis of late 2007, 

                                                           
12

 The smooth probability is defined as the probability of being in each state considering the entire 
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13
 For brevity, only the figure for the 10-year T-bond as alternative investment in the general model is 

considered; the dynamics of the probability in the rest of the cases are very similar. Results are available 
from the authors upon request. 



high volatility regimes govern again the volatility process. Despite these continuous 
changes in regime low volatility regimes show a higher presence during the sample 
period governing the volatility process. The number of periods where the volatility 
process is in a low volatility state (probability of being in a low volatility states is higher 
than 0.5) are 496 periods, corresponding to 69% of the total sample 

The results obtained about the significance of the risk-return trade-off in both multi-
factor models suggest that the lack of empirical evidence in previous studies could be 
due to the strong assumption of a linear risk-return trade-off. Non-linear assumptions 
lead us to favorable evidence of the risk-return trade-off in low volatility states but we 
cannot obtain favorable evidence when a linear trade-off is assumed. We also obtain a 
significant impact of the intertemporal component in the risk-return relation similar to 
Whitelaw (2000).  

Summing up, we can only obtain favorable evidence for a positive and significant risk-
return trade-off for low volatility regimes (state 1). As the differences in the risk price 
show, there is a real risk-return trade-off in this ‘dominant’ state, but such a relation is 
not observed in secondary states (high volatility). The lack of evidence in the linear case 
could be due to the existence of several periods in the sample where there is not a risk-
return trade-off (corresponding to secondary states), causing a non-significant risk-
return trade-off for the whole sample. However, if we distinguish among states we can 
identify dominant and secondary states and identify a significant trade-off essentially in 
the dominant state.  

4.3.- Risk premium evolution 

This section describes the risk premium evolution demanded by the investors in Spain, 
distinguishing between what proportions of the risk premium correspond to each risk 
factor: the market risk and the hedging component. We compute the premium 
associated with the market risk by the product of the risk price with idiosyncratic risk 

2
11 ,m tλ σ  for linear multi-factor models (and similarly for the hedging component 

premium). For the non-linear case, this risk premium is obtained using the state-
dependent market risk premium weighted by the smooth probability of being in each 

state ( ) ( )2 2
11, , , 11, , ,1 ; 1 ;

t t t tt T s m t s t T s m t sP s P sθ λ σ θ λ σ= Ω + = Ω (and similarly for the hedging 

component premium). The total risk premiums are computed by the sum of the two 
factor premiums. 

For brevity, we only show the results corresponding to the 10-year T-bond as alternative 
investment case.14 Figure 2 describes the risk premium for the linear and non-linear 
cases. 

Figure 2.- Risk Premium evolution in Spain 

Figure 2.a.- Risk Premium for the linear multi-factor model 

                                                           
14

 The dynamics of the risk premium evolution in the rest of the cases are very similar. Results are 
available from the authors upon request.  
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Estimated risk premium for the Spanish market using the linear multi-factor model. The greenline  is the 
market risk, the red line is the premium associated with the  hedging component and blue line represents 
the total risk premium. 

Figure 2.b.- Risk Premium for the non- linear multi-factor model 
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Estimated risk premium for the Spanish market using the non- linear multi-factor model. The greenline  is 
the market risk, the red line is the premium associated with the  hedging component and blue line 
represents the total risk premium. 

Both figures share similar patterns and only differ because of the scale of the risk price. 
The dynamics for the source of risk are very similar. There is a common rise of the 
market risk premium coinciding with high volatility periods (dot-com bubble period 
(2000-2002) and the last financial crisis (2007-2009)). The median15 of the weekly risk 
premiums series shows that over the past 15 years the risk premium in Spain has 
remained at approximately 4% to 7% per annum16 depending on the model used. 
Furthermore, the total risk premium is essentially defined for the risk associated with 
the market. The percentage of the total risk premium corresponding to the hedging 
component is relatively small for the linear model. More specifically, over the total risk 
                                                           
15 We use the median rather the mean of the conditional second moments as a proxy for the average non-
diversifiable risk in each period because it is less affected by outliers. 
16 The descriptive statistics for the risk premiums are not shown but they are available from the authors 
upon request. 



premium estimated, only 95.5% and 74% of the premium are due to the market factor in 
the linear and non-linear multi-factor models respectively. 

In order to detect the differences in the risk premium between the models proposed, 
Figure 3 presents the evolution of the differences between the total risk premium 
obtained in each model17. 

Figure 3.- Risk Premium differences between linear and non-linear models 
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Differences in the total risk premium estimated using linear and non-linear multi-factor model.  

A similar evolution of the total risk premium is observed in both models during low 
volatility states (2002-2007). However, non-linear models exhibit higher estimations of 
the risk premium during high volatility periods (such as 2000-2002 and 2008 periods). 
According to this evidence, the assumption of linear patterns in the risk-return trade-off 
could lead to underestimations of the risk premium in high volatility periods.  

4.4.- Specification test 

This section performs several specification tests in order to check the adequacy of the 
QML estimations of the multi-factor models. For this reason, we analyze the properties 

of the standardized residuals (, , ,/i t i t ii thε∈ = ) and the product of the standardized 

residuals for the models proposed. Only the results for the 10-year T-bond case18 are 
shown for brevity for the linear and non-linear models. 

Table  6.- Specification test for the standardized residuals 

Panel A.- Linear 
Model ,ˆ m t∈

 ,ˆ b t∈
 

2
,ˆ m t∈

 , ,ˆ ˆm t b t∈ ∈
 

2
,ˆ b t∈

 
Mean -0.0643 0.0078 0.9850 0.0162 1.013 

                                                           
17 For brevity, only the figure for the 10-year T-bond as alternative investment in the general model are 
shown; the dynamics of the differences in the risk premium evolution in the rest of the cases are very 
similar. Results are available from the authors upon request. 
18

 Results for all models are available from the authors upon request 



Std. Dev 0.9910 1.007 2.9696 1.377 1.760 
Skewness -1.072 -0.4084 18.9559 7.897 5.684 
Kurtosis 9.857 4.0290 443.3336 138.792 61.417 
J-B test 1546.78** 51.714** 5 851 793.34** 559 890.43** 106 

109.44** 
L-B (6) 24.507 16.609 6.927 20.2143 15.106 

t-stat for H0: -1.740 0.2096    
t-stat for H1:   -0.1354 0.3156 0.1993 

Panel B.-  
Non linear-

Model 

,ˆ m t∈
 ,ˆ b t∈

 
2

,ˆ m t∈
 , ,ˆ ˆm t b t∈ ∈

 
2
,ˆ b t∈

 

Mean 0.0271 -0.0037 1.075 0.0374 0.9877 
Std. Dev 1.0375 0.9945 2.250 1.236 1.5652 
Skewness -0.4701 -0.3271 10.508 2.550 3.5096 
Kurtosis 5.42261 3.50276 176.96414 32.28573 22.115248 
J-B test 202.31153** 20.40111** 919 878.21** 26 473.38** 12 422.63** 
L-B (6) 28.57888 17.44660 17.37963 10.78957 19.30694 

t-stat for H0: 0.70157 -0.10188    
t-stat for H1:   0.90324 0.81193 -0.21049 

This table shows the statistics for the standardized residuals for both models used: GARCH-M and RS-
GARCH framework. J-B test is the Jarque-Bera test for normality. L-B (6) is the Ljung-Box 
autocorrelation test including 6 lags. It also presents tests about the first two moments of the standardized 
residuals to validate consistent estimations of the QML procedure from deviations to normality. .***, **, 
* represent significance at 1%, 5% and 10% levels. H0 and H1 represent the t-statistic for the two 
moment order test developed in Bollerslev-Wooldrige (1992). 

The first part of the table shows summary statistics for the standardized residuals of the 
estimated multi-factor models. The mean value is around 0 in both cases with a standard 
deviation nearly to 1. The two cases (linear and non-linear) exhibit good properties. A 
reduction in the skewness and kurtosis of the residuals is observed compared to the 
original series. An even higher reduction is observed in the skewness and kurtosis in the 
non-linear case, suggesting a more accurate description and fit of the conditional second 
moment dynamics. The Ljung-Box test performed over the standardized residuals reveal 
a lack serial autocorrelation neither in levels nor in their cross-products. It is also 
removed the original heterokedasticty problem present in the original series.  

The bottom of the table presents two moment tests to analyze the consistence of the 
QML estimations performed (Bollerlev and Wooldrige (1992)). These authors explain 
that, even in deviations from normality, consistent estimations are obtained if 

( )1 ,ˆ 0t i tE − ∈ = , ( )2
1 ,ˆ 1t i tE − ∈ =  and ( )1 , ,ˆ ˆ 0t i t j tE − ∈ ∈ =  for i,j = m,b where ,ˆ i t∈ are the 

standardized residuals. 

The results obtained do not reject the null hypothesis assumed about the considered 
value of the two first order moments. These results confirm the consistency of the 
estimations of our models even for deviations from normality.  

5.- Conclusion 

This paper analyzes empirically the risk-return trade-off for the Spanish market using 
several proxies for the alternative investment set. We propose two multi-factor models 
considering conditional second moments according a bivariate GARCH specification in 



a linear and non-linear framework (using a model with regime-switching GARCH). The 
results show that only a positive and significant risk-return trade-off is obtained in the 
non-linear case and only in the states governed by low volatility process (State 1). The 
evidence suggested in the theoretical intuition is only observed in the ‘dominant’ 
volatility states. The weight of the hedging component in the risk premium is less 
important than the market risk factor although the former has also a significant impact 
in low volatility periods. However, it is found no favorable evidence either in the linear 
framework or in secondary volatility states (high volatility). Strong assumptions of a 
linear relation between return and risk could lead to model misspecification and an 
inability of the empirical model to capture a significant risk-return relationship since the 
existence of periods where a risk-return trade-off is not observed could lead to non-
significant estimation of this relation for the entire sample.  

The risk premium evolution in Spain is close to the market volatility. The risk premium 
demanded for the investors presents a higher value than other sample periods during 
2000-2003 and 2007-2009 (coinciding with crisis periods). It is also observed a lower 
risk price during high volatility periods than the observed in low volatility states. The 
investor profile in each context may also have influence in this lower risk aversion 
coefficient during high volatility periods although this approach may be confounding 
realized (often lower even negative during high volatility states) with expected returns. 
Despite the decrease in the risk price, there is an extremely rise in the market risk that 
lead to higher risk premiums during the high volatility periods. The two multi-factor 
models also estimate noteworthy different risk premium during these periods. Non-
linear models estimate higher risk premium during these periods, although for the rest 
of the sample the estimations are quite similar. Furthermore, the linear framework 
presents higher persistence of volatility shocks in the volatility formation during low 
volatility periods (and vice-versa). This fact is corrected with the introduction of the 
regime-switching, obtaining lower persistence volatility estimation in high volatility 
periods and higher persistence volatility estimation in low volatility periods. 

In sum, the non-linear framework presented here shows an improvement about the 
empirical evidence of the risk-return trade-off in Spain not only about the significance 
of the relationship but also in the estimated risk premium in high volatility periods. 
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