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Abstract

This paper examines the risk-return trade-off iraiSpduring the last 15 years. The
study is developed in a multi-factor framework waerot only the market risk is
considered but also potential changes in the invest opportunity set. Although
previous studies find no clear evidence about &ipesand significant relation between
return and risk, favourable evidence can be obthih@ non-linear relation between
return and risk is established. Despite the impagaof the intertemporal hedging
component in the risk premium demanded by investtre evidence obtained is
independent of the choice of the proxy used. Deffiérpatterns for the risk premium

dynamics in low and high volatility periods are abed, both in risk prices and risk
(conditional second moments) patterns.
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1. Introduction

The relation between expected return and risk hasvaied many studies in the
financial literature. Most of the recent asset ipgc models are based in this
fundamental trade-off, so understanding the dynsrafcthis relation is a key issue in
finance. One of the first studies establishing @othtical relation between expected
return and risk is the Sharpe (1964) and Lietn@6%) CAPM model. These authors
proposed a positive linear relationship betweenettjgected return of any asset and its
covariance with the market portfolio; in other werthe expected return of the market
portfolio is proportional to its conditional variee This static model has been analyzed
empirically in several studies obtaining no clearidence about the sign and
significance of this relationship (Campbell 198MAgrvey 1989, Glosten et. al 1993).
Merton (1973) proposed an extension of this modelireg a second risk factor in the
relationship that may improve the static CAPM modéle market risk premium in the
Merton’s model is proportional to its conditionakrnance and the conditional
covariance with the investment opportunity set ¢negl component). This framework
established in a time-continuous economy is annsite of the static CAPM model
assuming a stochastic set of investment opporasitiirhe expected market risk
premium in equilibrium is:

E (RM,t+1) :{_J\\;\ANW}Oﬁ +{_J\\]NBW:|UW 1)

where J () is the utility function (subindex represents rtlerivatives),E, (RMM) is

the expected excess market retugyf, and o, are, respectively, the conditional
variance and the conditional covariance of thaketaexcess return with the
JuwW

investment opportunity set, ar{dJ ‘S'BW} [

} could be viewed as the risk prices
w

W
of the sources of risk.

Assuming risk-averse investo, >0 andJ,,, <0, the model establishes a positive
relation between risk premium and market volatilldpwever, the relation between the
risk premium with the second risk factar { ) depends on the sign df; ando,, . If

J,s and o, share the same sign the investors demand a loskepremium, but if the

sign is different a higher risk premium is demandégssuming that Equation 1 is the
proper model for the empirical study of the riskdra trade-off, the omission of this
risk factor could lead to misspecifications of tempirical models and misleading
evidence about the risk-return relationship.

Despite the important role of this trade-off in tieancial literature, there is no clear
consensus about its empirical evidence. In therétieal framework, all the parameters
(the risk prices in brackets) and the variableg @burces of risk) are allowed to be



time-varying. However, to make this model empiticédactable one must make several
assumptions; the most common is considering consisi prices (Goyal and Santa-
Clara 2003, Bali et. al 2005). Another common agsiion made in the empirical
analysis of the risk-return trade-off is considgria set of investment opportunities
constant over time, the market risk remaining &dahly source of risk (Baille and Di
Gennaro 1990, Glosten et al. 1993). This assum|bigafs to the validation of the static
CAPM model. It is also necessary to assume spedifitamics for the conditional
second moments. The most common are the GARCH ma@sllerslev 19867.
Finally, the empirical model is established in acdete time economy instead of the
continuous time economy used in the equilibrium elaaf the theoretical approach.
Many of the empirical papers studying the risk-netwse one or more of the
assumptions explained above.

The great controversy in the empirical validatioh the risk-return trade-off is
motivated by the disappointing results obtainedualtioe sign and significance of this
relation. There is no consensus about whether thesdts are due to: (1) wrong
specifications of conditional second moments, Guad &leely (2008), Leon et al.
(2007); (2) misspecifications of the empirical misdeaused by the omission of the
hedge component, Scruggs (1998); (3) both causesettr, another potential problem
related with the empirical validation of the riskurn trade-off is the assumption of a
linear relationship between return and risk. Somthas (Whitelaw 2000, Mayfield
2004) are concerned with this point and develoermétive theoretical models for the
risk-return trade-off where non-linear patterns em@uded through regime-switching
models. The equilibrium model in Whitelaw (2000)sIghtly different from Merton’s
approach. A more complex, non-linear and time-vagyrelation between expected
return and volatility is obtained. Whitelaw alsenaks on the importance of the hedge
component in the determination of the risk-retuaté-off in his non-linear framework.

This study tries to shed light on the empiricalidation of the risk-return trade-off.
Although there is a large literature focused ondhwgpirical validation of the ICAPM
model, there are only few studies using multi-facgtmdels that consider the hedge
component Furthermore, the main empirical approach usethén literature is the
GARCH-M framework, which assumes a linear relatb@miween return and risk. The
weak evidence obtained in the existing literatuwald be due to a misspecification of
the empirical model in terms of the dynamics fonaitional second moments, by the
omission of the hedge component, or by the assompfi a linear relationship between
return and risk. Therefore, we incorporate all éhesatures in our empirical models to
analyze what are the key issues to consider irethgirical models that let us obtain
favorable evidence as theoretical intuition suggest

2 Ghysels et al. (2005) proposes an alternativeifsgeon, the MIDAS regression, for modelling
conditional second moments against GARCH models.

® One of the most common assumptions in the liteeais the consideration of a constant set of
investment opportunities, or, alternatively, indegent and identically distributed rates of retuFhis
assumption implies that the market risk premiunmyatépends on its conditional variance and could be
validated using univariate rather than multi-factardels.



The main contributions of this paper are the folloyv Firstly, this study analyzes the
risk premium evolution in Spain during the last fg@ars. Secondly, it proposes a
multi-factor model (considering a stochastic seihgéstment opportunities) where both
the risk prices and sources of risk are state-digy@n allowing us to consider non-
linear relationships between them. Thirdly, it skadifferences in the patterns followed
by risk prices and conditional volatilities in difent states. This non-linear framework
allows us to distinguish between low and high vbigistates.

Generally, the following results are noteworthy:Tée empirical results show that the

risk price values are lower in high volatility statand the conditional volatility is more

persistent in low volatility states. b) Favorabigdence for a positive and significant

risk-return tradeoff in Spain is obtained, notihgttthe relevant aspect for this evidence
is the assumption of a non-linear relation betwestarn and risk, although the hedge
component is also important in this framework.

This paper is organized as follows. Section 2 mtesithe data. Section 3 develops the
empirical framework used in the paper. Sectionvegithe main empirical results and
Section 5 concludes.

2. Data description

This study uses 720 weeRlgxcess market returns from the Spanish markdtding
observations from 1 January 1996 to 15 October 2008 excess market returns are
computed using the quotations of the IBEX-35 indérst obtaining logarithmic
returns and then subtracting from these returns the risk-fate. Following Leon et al.
(2007) the market money rate suitably compoundeatieatveekly frequency is used as
the proxy for the risk-free rate. The choice fa iroxy used as the hedging component
against changes in the investment opportunity settle followings rates for the
Spanish market (Bali and Engle (2009, a,b) usectpesxies for the American case): 1-
year Treasury bill, 3-year Treasury bond, 5-yeaasury bond, 10-year Treasury bond,
an equally averaged portfolio with the previousoBdis and the difference between the
yields on the 10-year and the 3-year Treasury bdhdmson Datastream is used to
obtain the data about the stock index, Internatidi@ancial Statistics for the data
corresponding to the risk-free rate and AFI for ta@a about the proxies used as the
intertemporal hedging component. Table 1 shows rfa@n summary statistics for
excess market returns and the intertemporal heddiaghatives rates.

TABLE 1.- Summary statistics for excess market returns and intertemporal hedging proxies

Panel A.- Summary statistics

| Excess | 1-yearT} 3-yearT- 5-yearT- 10-year[T- Avetag| Term

* Even though there are slight differences in theapeter estimations using different data frequency,
there is no particular reason that the conclusinnhis study should be affected by the selectibdata
frequency. Some authors remark on this point iir $tedies (De Santis and Imhoroglu 1997, Shin 2005
Lundblad 2007).

> We use logarithmic returns multiplied by 100 toilisate the convergence of the empirical models.



market bill bond bond bond portfolio Spread
return
Minimum -23.032 -0.7516 -0.9480 -1.319 -3.220 -B.89 -1.298
Maximum 13.784 0.6022 1.1246 1.854 2.363 1.662 8..69
Median 0.1514 0.0116 0.0398 0.0606 0.08156 -0.0335 .0489
S.td'. 3.105 0.1039 0.2698 0.4447 0.6705 0.4706 0.4163
deviation
Skewness -0.7825 0.4097 -0.1785 -0.1001 -0.3863 3140. -0.0790
Kurtosis 8.808 13.386 4.1338 3.783y 4.271 3.781 8.7
J-B 1085.681 3256.582 42.397 19.631 66.450 30.198 8.798
L-B (6) 42.186 61.842 30.622 21.217 18.997 15.924 20.596
L-B2 (6) 224.899 251.798 132.371 151.362 68.0186 67.018 5192.
Panel B.- Correlation matrix
E]);Cri:' l-year T- | 3-year T-| 5-year T-| 10-year Averaged Term
bill bond bond T-bond portfolio Spread
return
IBEX-35 1 -0.0105 -0.0830 -0.050¢4 -0.0317 -0.0523 0.0516
”fi‘lj T- 1 04319 | 0.3813| 0.3059 0.3603 0.1576
3-year T- 1 0.9525 |  0.8420 0.9265 0.909¢
bond
Syear T- 1 0.9313 0.9815 0.9729
bond
10-year T- 1 0.9773 0.9184
bond
Averaged ' ' ' ' ' 1 0.9585
portfolio
Term . . . . . . 1
Spread

Panel A shows summary statistics for excess markets returns and alternative hedging proxies. JB is the
Jarque-Bera (1989) test for normality distribution. LB(6) and LB%6) are the Ljung-Box test for serial
autocorrelation in levels and sgquares respectively. Panel B presents the correlation matrix for all the
seriesincluded in this study.

All series included in this study present non-ndrimaconditional distributions with
strong evidence for skewness and kurtosis. Thislltresuggests fat tails in the
unconditional  distributions.  Furthermore, all  serie exhibit  conditional
heteroskedasticity problems (serial autocorrelatioaquare returns). With these serial
patterns, the use of GARCH models to represendjmamics of conditional second
moments, which has a large support in the previtersiture, is totally understandable.
It is also observed that the temporal series irl&edo not exhibit serial autocorrelation
so the inclusion of any structirén the mean equation is not necessary. Finally, th
correlation matrix for the different proxies shoa$ow correlation between the excess
returns of the market portfolio and the potentiiéraative investments. This result
shows that the last series could be consideredrasgep reflecting the alternative
investment set available to the investors. Dueh®lack of consensus in the literature

® The 1-year T-Bill series exhibit these problemst hfter modelling the variance as a GARCH
specification the serial autocorrelation disappeatisout including any lag in the mean equation.



about the best proxy representing the alternatimeestment set (Scruggs and
Glabadanidis 2003, Whitelaw 2006, Bali 2008), thiady uses the different assets
shown above which present different characterigiicgheir terms and maturity) and
add robustness to the study.

3. Empirical methodology

This section presents the empirical models usdti@rstudy. The main contribution of
this paper is the assumption of a state-dependshkt price and state-dependent
conditional volatilities, which implies a non-linegelationship between return and risk,
following the equilibrium model in Whitelaw (2000%0, assuming bivariate GARCH
dynamics for conditional volatilities, (more spécdily, the BEKK model of Baba et. al

(1990), state-independent multi-factor models #wtablish a linear relation between
return and risk are presented in Section 3.1, iahb by state-dependent multi-factor
models that establish a non-linear risk-returndratf through regime-switching both in

the risk premium and conditional volatilities, ir@ion 3.2"

3.1. Sate-independent multi-factor model

This section presents a multi-factor model deriyemim Merton’s (1973) ICAPM
model. The ‘general’ model allows time-varying ctiimhal second moments, but the

risk aversion (risk price) coefficients for markask {M} and intertemporal
W

component risEJVgNW}are constant over time (Scruggs and Glabadanidi3)20
w

— 2
rm,t _/110+/1110-mt +Alp—rrbt +£mt,

— 2
rb,t _/120+/‘210-bmt +/12pbt +£bt,

(2)

where 4, for i,j=1,2 are the parameters to estimate ancesepit the different risk prices

and o, o0.,,0,,, represent the conditional second moments (mavkeance,

intertemporal hedging component variance and camaé between market portfolio
and hedging component). A restricted model is astbimated, where the alternative
investment set is time invariant, = A,,=0) (Scruggs 1998).

As we explained above, it is necessary make amgggan about the dynamics of the
volatilities in order to empirically validate théeoretical ICAPM model. To analyze
bivariate relationships, one of the most used nwoutethe literature is the BEKK model
of Baba et al. (1990). This model sets the follagywariance equation:

" The asymmetric response of volatility to news iffedent signs (leverage effect) is not consideied

two reasons: (1) there is no improvement aboutstgeificance of the risk-return trade-off in prews
studies (Arag6 and Salvador 2010); (2) the convergef the proposed models is harder to achieve due
to the inclusion of the new parameters. These realad to the consideration of a more parsimonious
model.



2
Un‘b,t Jb,t

2
On. O, oo :
Ht :( m nb,t) = CC + Agt—lgt—lA + BHt—lB (3)
where Cis a lower triangular 2x2 matrix of constants, AddB are 2x2 matrices of
parametersg,_; is a Tx2 vector of innovations artd,_, is the lagged covariance matrix.

The model is estimated by the maximization of th&LQfunction Bollerslev-
Wooldrige, assuming that the innovations follow aormal bivariate

distributione, ~N(O,Ht), which allows us to obtain robust estimates ohdaad
errors.

i
L(6) =3[ (1, 2:6)] where f (1,,0,:6) =(27)"|H,[ 2 exp{—%e]H[lgtj

t=1

(4)

where | H| represents the determinant of the covariancexratd the remaining terms
have been defined above.

3.2. Regime-switching multi-factor model

This section introduces a new multi-factor modelevéhboth the risk prices and the
conditional second moments are dependent of the istdhe economy. In this case, we
propose two statdsThe consideration of regime-switching in the encpl relation
allows us to obtain state-dependent estimationstHer risk prices and conditional
second moments. This implies a non-linear and -stapendent relation between
expected return and risk.

The mean equation specification in this model is

— 2
I’m,t,sﬁ _/1105 +/111§0-mt$t +A1§0-n‘bt,§ +£mt,§

(5)

— 2
I’b,t,q _/120,3 -l-/121§0-bmts;t +A225LJbt,st +£bt,§

for 5=1,2 where A are state-dependent parameters, and r,,  are the state-
dependent excess market and hedging componentsetsf, ., oz, . and g,,, . are
the state-dependent conditional second moments, gand and &, are the state-

dependent innovatioAs

® Previous studies considering three states (e.gnoSand Valente 2000) show that the third statg onl
reflects odd jumps in the return series.The exptagagower of the third state is low and it is woess
in light of the difficulties of the estimation press that it produces.

° We also estimate a restricted model whése = A,,=0.



It is assumed that the state-dependent conditise@dnd moments follow a GARCH
bivariate dynamics (more specifically, a BEKK maqdelhat is, there are as many
covariance matrices as states. The state-depecolgriance matrices are

2
Hey =| omts Omis oo e A gLEL A +BHB, (6)
ts ~ 2 T M8 A& t-1 t—lpﬁ s t-17%

Ohmmq Oqu

The consideration of several states leads to awootky rise in the number of
parameters to estimate. In order to reduce thig-pammeterization we only let
parameters accompanying lagged innovations andethg@riances to be regime-
switching®. Furthermore, the difference among states is déffy two new parameters
sa andsb that properly weight the estimations obtained e gtate for the other state.
Therefore, the state-dependent covariance mainams model are:

2
Jm Um” _ , \ , ,
Hoo=| ™ D' [=CC+Ag & A +BH,_B, (6.1)
cjﬁbﬁi 67511
2
O, g, , Co .
Hoo=| ™2 ' |=CC+Ag 5 A, +BH,_B, (6.2)
O}bmz 0%12

where A, =sa-A and B, =sa:B;, A; and B are 2x2 matrices of parameters, and C is a
2x2 lower triangular matrix of constants (the sdorghe 2 states).

The shifts from one regime to another are governed hidden variable following a
second order Markov process with transition matrix

g,_[ Prs =ds,=9=p Ps=15,= 3= (’:qj
Pris=25,=9=@p) P{s=4&.=2=q

(7)

where p and g are the probability of being in statnd 2 if in the previous period the
process was in state 1 and 2 respectively.

Due to this state-dependence and the recursiverenaiti GARCH models, the
construction and estimation of the maximum liketiddfunction would be intractable
unless independent estimates for innovations amdr@nces were obtained. In order to
solve this problem, we use a recombinative methhmdas to that used in Santos (1999)
that lets us obtain state-independent estimati@nstfe covariance matrix and the
innovations weighting the state-dependent covaeganatrix and innovations by the ex-
ante probability of being in each state.

H, =P(s =2Q_;;0)H, ., +P(s =2Q,_;6)H

ts=1

(8)

'° Capiello and Fearnley (2000) make a similar assiompo avoid potential convergence problems.



& = P(st =1|Qt;6)£t,§=1+ P(st =2Q, ;0)(9@:2 ©)

where H ande; are the state-independent estimations for ther@nwee matrix and the
innovations

The ex-ante probabilities (the probabilities offgein each state in the period t using
the information set at t-1) are (10.1) and (10.2):

P(s =1Q.,;6) = p*P(s.,=1/Q,_;8) +(1-a) P(s_, = 2Q,_,:) (10.1)
P(s=2/Q.,:60)=1-P(5=1Q,,:6) , (10.2)
where

P(s =K|0,:6) = 19,6 1{1fs =00 (11)

> P(s =k|Q;6) f (r]s =k.Q,;6)

2
k=1

for k=1, 2 are the filtered probabilities (the pabidities of being in each state in the
period t with the information set up to t).

Assuming state-dependent innovations following amab bivariate distribution

&s ~N (O,HLS ) the vector of unknown parametefsis estimated by maximizing the

following maximume-likelihood function:

L(@é'ﬂ{ép(s=k|Qt:0)f(n,Qt:6’)} where 1 (1,0,:6) =(27)"|H: eX{-%finstj

(12)

where the state-dependent likelihood function igghted by the ex-ante probability of
being in each state.

4.- Empirical results

This section presents the empirical results for rttadels proposed. We estimate the
models explained in the previous section for th#exint proxies used as the
intertemporal hedging component; models using Hyeak T-bill, the 3-year T-bond,
the 5-year T-bond, the 10-year T-bond, the equa#ighted bond portfolio and the
term spread are named .a, .b, .c, .d, .e, .f fevity. Section 4.1 shows the results for
the linear models (without regime-switching) in tweo cases mentioned: general and
restricted version. Section 4.2 explains the redolt the non-linear multi-factor models
(general and restricted), including regime switghisection 4.3 describes the risk
premium evolution in Spain during the last yearsoading to each model and analyzes
the reason for the differences between them. Kin&kection 4.4 performs some
specification tests over the estimation residualerder to detect any problems related
with a potential misspecification of the empiricabdel.



4.1.- Multi-factor models estimations

The estimated models in this section are thosedoted in section 3.1. The case
without restrictions is named general model andrésricted version are the model

where we assume constant risk premiums for theenedgiponent,; = 1,2 = 0. The
estimated parameters for the mean equation arergegsin Table 2.

Table 2. Mean equation estimations for multi-factor models

rm,t = /110 +/1110-|i1 +Alp—mbt +£mL
rb,t = /120 +A210-bmt +/1 prt +£bt
Model 2.a Model 2.b Model 2.c Model 2.d Model 2.e Model 2.f
1 R 0.1639 0.1192 0.1388 0.1851 0.1487 0.1297
e 0.1722 0.1858 0.1706 0.1992 0.1782 0.1626
p) R 0.0125 0.0221 0.0151 0.0126 0.0190 0.0221
111G 0.0107 0.0162 0.0163 0.0139 0.0176 0.0204
p) R -0.2247 0.4998 0.2283 -0.0171 0.2779 0.4398
12 | G -0.0433 0.7222 0.3634 0.0127 0.4165 0.5212
1 R 0.0008 0.0243** 0.0387** 0.0631** -0.0505*** 0.0173**
20 | G -0.0033 -0.0103 -0.0187 -0.0040 -0.1169* -0.0091
/]21 G 0.2417 0.0701 0.0864 0.0402 0.0688 0.0495
/]22 G 0.2597 0.6618 0.4032* 0.1720 0.3700 0.6155

Estimated parameters for the mean equation in multifactor models. ***, **and * represents significance

at 1%, 5% and 10% levels.

It is clear that most of the parameters in thistrfattor model are non-significant for
the mean equation. The coefficients that refleetrtiarket risk price)y;) are positive
but non-significant in all cases considered. Simésults are obtained for the hedging
component risk factoiv(>).

Table 3 shows the parameter estimates for the nagiquation. These parameters
define the dynamics and patterns followed by thed@@mnal second moments.

Table 3. Variance equation estimations for multi-factor models

Ur?lt Urrbt 1 ' ' '
H=| ™ 2| =CC'+ Ag A +BH,_B
Umb,t Ub,t
Model 2.a Model 2.b Model 2.c Model 2.0 Model 2.e Model 2.f
R | 0.3068*** 0.3403* 0.3180"* | 0.2912*** 0.2971* 03298**
Q1 TG T 03017 0.3276** 0.3139%* 0.2886** 0.2972** B276*
¢ R | -0.0178* -0.0256 -0.0350 -0.0427 -0.0622 -0.0183
| G -0.0172 -0.0178 -0.0283* -0.0407 -0.0475*1 -0.0168
c, R | 00241% -0.0102 -2.80E-05 0.1192*** 9.00E-06 00669
G 0.0242** 8.76E-04 -2.50E-07 0.1162%*+ 1.60E-08 002
a, | R | 02816% | 020327 | 0.2012%* | 0.2801"* | 0.3005** | 0.2933"*
G | 02777 | 0.2890** | 0.2903** | 0.2804** | 0.2965** | 0.2948%*
a, LR -0.0024 0.0052 0.0092 -0.0166 0.0034 0.0041
G -0.0019 0.0072* 0.0111* -0.0141 0.0078 0.0052




a, R -1.4984* -0.7233 -0.4042 0.0651 -0.3442 -0.6339
G -1.5390 -0.4929 -0.3152 0.0618 -0.2850 -0.4930
a,, R 0.5630*** 0.2190*** 0.1846*** 0.2421*** 0.1807*** 0.2264***
G 0.5659*** 0.1968*** 0.1733%* 0.2397*** 0.1603*** 0.2146***
b1 R 0.9556*** 0.9509*** 0.9527*** 0.9586*** 0.9514*** 0.9526***
11 G 0.9566*** 0.9537*** 0.9538*** 0.9587*** 0.9530*** 0.9529***
b1 R 0.0012* -0.0022 -0.0040** 0.0047 -0.0019 -0.00207
2|1 G 0.0010 -0.0026 -0.0044*** 0.0038 -0.0033 -0.0022
bz R 0.8897** 0.3620 0.1950 0.0038 0.1849 0.3643
11 G 0.8853 0.2680** 0.1627 0.0084 0.1566 0.3219
b22 R 0.8118*** 0.9675*** 0.9761*** 0.94971*** 0.9734*** 0.9664***
G 0.8121*** 0.9740*** 0.9786*** 0.9515*** 0.9795*** 0.9706***

Estimated parameters for the variance equation in the multi-factor models. ***, ** and * represents
significance at 1%, 5% and 10% levels.

The results reflect that the bivariate GARCH speatfon fit and properly capture the
conditional second moments dynamics. Significantehie parameters representing
shocks in volatility (&, &2) and persistence of past variance,(by) is observed for
both risk factors (market risk and investment opjoaty set component). However, the
impact of one risk factor in the composition of tbther factor's volatility is not
significant, neither the impact of shocksa(ai) nor persistence (B b»1). There is
another remarkable result about volatility dynamite persistence level in the two
sources of risk—market risk {f) and hedging component,gp—are relatively high
using multi-factor models, with values close toThis high persistence level suggests
the presence of several regimes in the volatilitgcpss (Lameroux and Lastrapes
1990). Ignoring these regime shifts could lead riefficient volatility estimations.
Regime-Switching (RS)-GARCH models let us consdifferent states in the volatility,
process as we explain in the next sub-sectionpaactome this limitation.

4.2- Regime-Switching multi-factor models estimation

This section shows the estimations for the stapedéent models presented in Section
3.2. These models exhibit state-dependent rislepramd conditional moments. Table 4
describes the estimation for the state-dependeahraquation in all cases considered.
As we explain below in Figure 2, we can associtdtes 1 and 2 with low and high
volatility periods respectively.

Table 4.- Mean equation estimations for non-linear multi-factor models

+/112§0-mbt,§ +tE

— 2
rb,l,q _/]205 +/]21§0-bmt§ + ZAUbt,s +Eb1,s

Panel A. Low volatility state {s1)

— 2
rm,t,§ _/]10,3 +/]115(0-mt§ mt,s

Model 2.a Model 2.b Model 2.c Model 2.4 Model 2.e Model 2.f

Mot R -1.1540** -0.8954 -2.3156*** | -2.3689*** | -2.7943* -2.4819**
G -0.8077 -1.5745%** | -2.6614*** -2.5942%** | .2 2375* -4,0322%**

Ao | R 0.4044** 0.1169** 0.1311** 0.1867*** 0.2980** 0.270**
G 0.3415** 0.1682** 0.1144*** 0.1982%*** 0.0758** BO11**

A, R 2.7521 4.6265 3.7124** 2.0452*** 1.6691** 1.3646*




G | 7.6601*** 1.8731** -0.3294 2.5449*** 0.0169** B573**
Aol R 0.0099 0.0406** 0.0742** 0.0785 -0.0745* 0.0524*

G -0.0009 0.0096 0.4503 -0.0172 -0.2907% 0.1715*%*
Aig=1 G -0.1518 0.1997*** 0.4438** -0.0479 -0.8829*** -0.42**
A1 G 1.8914 0.4396 0.9609 0.3025 0.2076 -1.38797*

Panel B. High volatility state (s2)

Mg | R | -1.4062* 0.3597*** 0.3436* 0.3502** 0.2323*** 2662*

G| -1.2897* 0.1993** 0.1891 0.3652** 0.3583*** 0.28**
Mg | R 0.0733 0.0198 0.0137 0.0043 0.0191 0.0153

G 0.0662 0.0302*** 0.0337 0.0111 2.8310 0.0169
Ape-n| R -1.2216 0.3280 -0.3172 -0.3739 -0.0507 -0.715p

G -1.4985 0.3132 0.7456* -0.4473 -0.0323 -0.2767
Aros=2 R -0.0027 0.0210 0.0354 0.0605 -0.0404** 0.0183*f

G| -0.0117*** -0.0355 -0.1469* 0.03480 -0.0768 -08a1
Aig=2 G -0.1059 -0.1202* 0.1151 0.0637 0.0540 -0.0215
Aog=2 G 0.9297 1.0195 1.1358** 0.0635 0.1869 0.7740%

This table shows the estimated parameters for the mean equation in the non-linear multi-factor model.
**% **% and * represents significance at 1%, 5% and 10% levels.

Positive and significant estimations for the marksk price in low volatility states
(M1s=) are obtained in all cases considered (for alkig® used as the intertemporal
hedging component in the general and restrictesio@of the modet}. A positive and

significant influence over the market risk premiwithe risk price is also observed,
representing the covariance between risk premiuchhetging componeni, s-) in

low volatility states. Generally, this covariancéibits a negative influence in the total
risk premium demanded (see Figure 1). So, the ptodfithe risk price times the

covariance between excess market return and heatghmgponent(/]lzanbmﬂ) shows

that the total risk premium required by the inves(tdharfbm:l +)l120m$(:])is slightly

lower than the market risk premium. Only when tlwaziance is positive does the
premium associated with the hedging component teddgher values of the total risk

premium regarding the market risk premium.

Figure 1- Covariance between excess market returns and the intertemporal component

" The results for the intercept are also signific&ume authors (Ghysels et. al. 2005, Leon et 8720

interpret this fact as market imperfections
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Covariance between excess market returns and 10-year T-bond used as intertemporal hedging
component.

Panel B of Table 4 shows the results obtained fates2. Generally, a significant
relation is not observed between expected retuthresk in high volatility states. A
positive but no significant estimation is obtairfedthe risk price (market risk{1,s-=2),
and covariance between market risk and hedge coemp@i,s-2)). Moreover, the risk
aversion coefficients in state 1 (correspondindpt® volatility states) are higher than
those corresponding to state 2 (high volatilitytetq This result suggests that there is
less risk aversion in high volatility states. Thigling is not consistent with the spirit of
the theoretical models that suggests that highkatility should be compensated with
higher returns. However, Mayfield (2004), Lettaudahudvingson (2003), and
Lundblad (2007) found the same evidence: duringh higlatility states there is a
decreasing level of risk aversion. One possibldamgiion could be the different risk
aversion profile for investors in each state (Sdimge 2009). During calm (low
volatility) periods more risk-averse investors drading in markets, but in high
volatility periods only the less risk-averse instremain in the market because they
are the only investors interested in assuming gqislh levels, decreasing the risk
premium demanded during these periods. However speeification presented here
may be confounding expected returns with realizetirns, particularly in the less
common high volatility states (corresponding geltenaith recession periods) often
associated with low or even negative markets rst(icandblad, 2007).

Table 5 shows the estimations for the state-depgndariance equations. Again,
significant estimates are obtained for the pararaedaecompanying the shock impact
(211, &@2) and the persistencefbbyy) in the volatility formation in both risk factors.
Most of the cross-relationships between factors, (@1, bz, bp1) in the volatility
construction are non-significant, that is, shocksaatility persistence in one factor has
no effect in the other volatility factor.



Table 5. Variance equation estimations for non-linear multi-factor models

2

H = a-m,t,q
ts

a-nh,t,s(

amb ts

bt,s

A =saA,; B, =saB,

e ST RN S

D

Modelo 2.a Modelo 2.b Modelo 2.¢ Modelo 2/d Mod2le Modelo 2.f
R 1.3614*** 0.6107*** 0.4977*** 0.5162*** 0.3707*** 0.4648***
G G 1.2338*** 0.3035*** 0.6063*** 0.5194*** 0.4119*** 0.3766***
R -0.0026 -0.0299* -0.0254* -0.0155 -0.0486**F -0
G G -0.0004 -0.0095 -0.0508*** -0.0073 -0.0170 0.0038
C,, R 0.0346*** 0.0689*** 0.0798*** 0.1836*** 0.0590*** 0.0577***
G 0.0315*** -0.0273*** 0.1324*** 0.1988*** 0.1173** -0.0513***
a, R 0.1161** 0.0933 0.0114 0.2236*** 0.3318*** 0.2073
G 0.1011 0.4130*** 0.2184*** 0.2401*** 0.2074*** QL215%**
a, R 0.0002 0.0053 -0.0001 -0.0165* -0.0029 -0.0024
G 0.0095 0.0014 0.0203* -0.0230** -0.0086* 0.0001
a,, R 0.2580 0.1096 0.0040 -0.0143 -0.4763* 0.0340
G -0.0404 -0.1642 0.0716* 0.0687 0.2727% 0.1531
a,, R 0.2748*** 0.1227 0.0207 0.2369*** 0.2318*** 0.26%**
G 0.2654*** 0.2776*** 0.3075*** 0.2473*** 0.2163*** 0.1572***
b1 R 0.9778*** 1.0321%** 1.0486*** 1.0049%** 0.9764*** 1.0562***
11 G 0.9851*** 0.9545*** 1.0183*** 1.0021%** 1.0405%** 1.0502%**
b1 R -7.50E-04 -0.0020* -0.0008 0.0032 -0.0006 0.0007
2|1 G -0.0014* -0.0011 -0.0064* 0.0059** 0.0017 -0.0009
bz R 0.9677 0.1022 0.0740 0.0211 0.1758**f -0.0523
11 G 1.2557 0.1564 0.1670* -0.0343 -0.0615] -0.0162
b22 R 0.91171%*= 0.9857*** 1.0132%** 0.9742%** 0.9856*** 1.0213***
G 0.9187*** 0.9677*** 0.9477*** 0.9671*** 1.0128*** 1.0167**
sa R 2.7440** 3.2140*** 17.1565*** 1.1736*** 1.1979%** 1.1136***
G 2.8049*** 1.0111%** 1.1758*** 1.0667*** 1.0861*** 1.8867***
b R 0.6393*** 0.8370** 0.8918*** 0.91717*=*=* 0.3590*** 0.8743***
G 0.6524*** 0.2353** 0.8845*** 0.9035*** 0.8939*** 0.8979***
R 0.98 0.97 0.98 0.98 0.98 0.97
P G 0.97 0.97 0.98 0.96 0.96 0.97
R 0.97 0.98 0.98 0.98 0.98 0.97
q G 0.96 0.96 0.97 0.98 0.97 0.96

Estimated parameters for the variance equation in the non-linear multi-factor models. ***, ** and *
represents significance at 1%, 5% and 10% levels.

Furthermore, the volatility formation depends ore thegime considered in this
framework. For low volatility regimes there is obgsd a higher influence of the lagged
variance (matrix B) even than the non-switchingec@gith values higher than unity in
some cases). Moreover, in these states, thersasadbwer impact of shocks (matrix A)
in volatility formation. This result means that thelatility observed in a period t in a
low volatility state is determined overall by thariance observed in the previous period
and less by the shock occurring in period t. Howgtreere is an increase of the shock
influence in the volatility formation in high volbty regimes (determined by the
product sa-A). There is also a decrease of thetiMylgpersistence in these high
volatility states (sb-B). In this case, the voistilobserved in a period t in a high
volatility state is less determined by the varianbserved in the previous period and



more by the shock occurring in this period t. Thesmilts suggest that linear GARCH
models could lead to sub-estimation of volatiligrgstence in high volatility periods
and over-estimation of volatility persistence igthiolatility periods, where there is a
higher presence of shocks in volatility formatidfafcucci 2005).

In addition, the non-linear multi-factor model lets associate the different states that
follow the volatility process with low (state 1) éirhigh volatility (state 2) market
periods. The median of the estimated volatility $tate 1 areﬁ§]§:1:6.8718 ,6;51:1 =
0.3740 andd,z ., = -0.0982 while the median of estimated volatigries in state 2
are Gy, . .,= 8.5479 ,G; _, = 0.4496 and, 5 ., = -0.1215. These results (jointly with

Figure 2) let us associate the states definedamtmn-linear model with low (state 1)
and high volatility states (state 2).

Figure 1 show the smooth probabilifiesf being in state 1 during the sample period for
the 10-year T-borfd as hedging component case.

Figure 2.- Smooth probabilities for low volatility states
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Probability of being in a low probability state for the case where the 10-year T-bond is the alternative
investment.

There are four patterns in the volatility proceRse first part of the sample (until 2000
approximately) shows market uncertainty about ttennregime in the market with
sudden regime shifts (as the 1997 crisis). Aftat,timigh volatility periods seem to
govern the process during the 2000-latest 20020¢@geoinciding with the dot-com
bubble. After this turbulent period, low volatiligegimes govern again the Spanish
market during the 2003-latest 2007 period, coimgdyvith a great expansion period of
the Spanish economy. Then, coinciding with the gldimancial crisis of late 2007,

 The smooth probability is defined as the probapitif being in each state considering the entire
. . P(s,, =1Q.;8 P(s..=2Q;;¢
information set.P(81 :1|QT;9):P(§ =10, ;9) o (Su _ | T' ) +| (1-p) (S 1 - | T. )
P(Sﬂ _1|Qt ’9) P(St+1 - 2|Qt ’9)
 For brevity, only the figure for the 10-year T-boas alternative investment in the general model is

considered; the dynamics of the probability in thst of the cases are very similar. Results ardadla
from the authors upon request.



high volatility regimes govern again the volatiliprocess. Despite these continuous
changes in regime low volatility regimes show ahleigpresence during the sample
period governing the volatility process. The numbérperiods where the volatility
process is in a low volatility state (probabiliti/leing in a low volatility states is higher
than 0.5) are 496 periods, corresponding to 69%efotal sample

The results obtained about the significance ofrible-return trade-off in both muilti-
factor models suggest that the lack of empiricatlevce in previous studies could be
due to the strong assumption of a linear risk-retwade-off. Non-linear assumptions
lead us to favorable evidence of the risk-retuaderoff in low volatility states but we
cannot obtain favorable evidence when a linearet@tl is assumed. We also obtain a
significant impact of the intertemporal componanthe risk-return relation similar to
Whitelaw (2000).

Summing up, we can only obtain favorable evidemceafpositive and significant risk-
return trade-off for low volatility regimes (stai8. As the differences in the risk price
show, there is a real risk-return trade-off in thisminant’ state, but such a relation is
not observed in secondary states (high volatilityle lack of evidence in the linear case
could be due to the existence of several periodsarsample where there is not a risk-
return trade-off (corresponding to secondary s}atesusing a non-significant risk-
return trade-off for the whole sample. Howevenvéd distinguish among states we can
identify dominant and secondary states and ideatiygnificant trade-off essentially in
the dominant state.

4.3.- Risk premium evolution

This section describes the risk premium evolutiemdnded by the investors in Spain,
distinguishing between what proportions of the ggkmium correspond to each risk
factor: the market risk and the hedging componé&lie compute the premium
associated with the market risk by the producthef tisk price with idiosyncratic risk
Alla,fm for linear multi-factor models (and similarly fahe hedging component
premium). For the non-linear case, this risk premiis obtained using the state-
dependent market risk premium weighted by the simpobbability of being in each
state P(s =1|Q;;0) A, 02, +P(s =1Q; :8) A,,, 02, , (and similarly for the hedging
component premium). The total risk premiums are mated by the sum of the two
factor premiums.

For brevity, we only show the results correspondothe 10-year T-bond as alternative
investment cas¥. Figure 2 describes the risk premium for the linead non-linear
cases.

Figure 2.- Risk Premium evolution in Spain

Figure 2.a.- Risk Premium for the linear multi-factor model

" The dynamics of the risk premium evolution in thestrof the cases are very similar. Results are
available from the authors upon request.
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Estimated risk premium for the Spanish market using the linear multi-factor model. The greenline isthe
market risk, the red line is the premium associated with the hedging component and blue line represents
the total risk premium.

Figure 2.b.- Risk Premium for the non- linear multi-factor model

éan Jan-00 Jan-02 Jan-04 Jan-06 Jan-

Estimated risk premium for the Spanish market using the non- linear multi-factor model. The greenline is
the market risk, the red line is the premium associated with the hedging component and blue line
represents the total risk premium.

Both figures share similar patterns and only diffecause of the scale of the risk price.
The dynamics for the source of risk are very similehere is a common rise of the
market risk premium coinciding with high volatilifyeriods (dot-com bubble period
(2000-2002) and the last financial crisis (2007200The medial? of the weekly risk
premiums series shows that over the past 15 yéargisk premium in Spain has
remained at approximately 4% to 7% per antfubepending on the model used.
Furthermore, the total risk premium is essentidiyined for the risk associated with
the market. The percentage of the total risk premaorresponding to the hedging
component is relatively small for the linear modébre specifically, over the total risk

* We use the median rather the mean of the conditiserond moments as a proxy for the average non-
diversifiable risk in each period because it islafected by outliers.

'® The descriptive statistics for the risk premiums mot shown but they are available from the awsthor
upon request.



premium estimated, only 95.5% and 74% of the premawe due to the market factor in
the linear and non-linear multi-factor models respely.

In order to detect the differences in the risk pgrembetween the models proposed,
Figure 3 presents the evolution of the differenbeswveen the total risk premium
obtained in each modél

Figure 3.- Risk Premium differences between linear and non-linear models
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Differencesin the total risk premium estimated using linear and non-linear multi-factor model.

A similar evolution of the total risk premium is s#yved in both models during low

volatility states (2002-2007). However, non-lineaodels exhibit higher estimations of

the risk premium during high volatility periods ¢suas 2000-2002 and 2008 periods).
According to this evidence, the assumption of linggtterns in the risk-return trade-off

could lead to underestimations of the risk premiarigh volatility periods.

4.4 .- Specification test

This section performs several specification testerder to check the adequacy of the
QML estimations of the multi-factor models. Forstineason, we analyze the properties

of the standardized residual§] (=¢,/./h;,) and the product of the standardized

residuals for the models proposed. Only the redattgshe 10-year T-bond caSeare
shown for brevity for the linear and non-linear ratsd

Table 6.- Specification test for the standardized residuals

Panel\l/l,g\a—ell_mear Dm’t Db’t Dan . Dm,t Db,t Dﬁ,t
Mean -0.0643 0.0078 0.9850 0.0162 1.013

" For brevity, only the figure for the 10-year T-lbas alternative investment in the general model ar
shown; the dynamics of the differences in the psgmium evolution in the rest of the cases are very
similar. Results are available from the authorsnumuest.

'® Results for all models are available from the arghgpon request



Std. Dev 0.9910 1.007 2.9696 1.377 1.760
Skewness -1.072 -0.4084 18.9559 7.897 5.684
Kurtosis 9.857 4.0290 443.3336 138.792 61.417
J-B test 1546.78** 51.714** 5851 793.34*F 559 898** 106
109.44**
L-B (6) 24.507 16.609 6.927 20.2143 15.106
t-stat for HO: -1.740 0.2096
t-stat for H1.: -0.1354 0.3156 0.1993
Nonnear- | U o o O =
Model
Mean 0.0271 -0.0037 1.075 0.0374 0.9877
Std. Dev 1.0375 0.9945 2.250 1.236 1.5652
Skewness -0.4701 -0.3271 10.508 2.550 3.5096
Kurtosis 5.42261 3.50276 176.96414 32.28573 224852
J-B test 202.31153* 20.40111* 919 878.21* 26 438 | 12 422.63**
L-B (6) 28.57888 17.44660 17.37963 10.78957 19.3069
t-stat for HO: 0.70157 -0.10188
t-stat for H1: 0.90324 0.81193 -0.21049

This table shows the statistics for the standaddiesiduals for both models used: GARCH-M and RS-
GARCH framework. J-B test is the Jarque-Bera test riormality. L-B (6) is the Ljung-Box
autocorrelation test including 6 lags. It also pres tests about the first two moments of the statided
residuals to validate consistent estimations of QML procedure from deviations to normality. .****,

* represent significance at 1%, 5% and 10% levElB.and H1 represent the t-statistic for the two
moment order test developed in Bollerslev-Woold(it@92).

The first part of the table shows summary stasshic the standardized residuals of the
estimated multi-factor models. The mean valueasiad O in both cases with a standard
deviation nearly to 1. The two cases (linear and-lintear) exhibit good properties. A
reduction in the skewness and kurtosis of the uedsdis observed compared to the
original series. An even higher reduction is obsdrin the skewness and kurtosis in the
non-linear case, suggesting a more accurate déeargnd fit of the conditional second
moment dynamics. The Ljung-Box test performed akierstandardized residuals reveal
a lack serial autocorrelation neither in levels mortheir cross-products. It is also
removed the original heterokedasticty problem presethe original series.

The bottom of the table presents two moment test@ntlyze the consistence of the
QML estimations performed (Bollerlev and Wooldri92)). These authors explain
that, even in deviations from normality, consistestimations are obtained if

E[_l(Di't) =0, E[_l(th) =1 and E[_l(DivtD”) =0 for ij = m,b where(], are the

standardized residuals.

The results obtained do not reject the null hypsih@ssumed about the considered
value of the two first order moments. These resadisfirm the consistency of the
estimations of our models even for deviations fraormality.

5.- Conclusion

This paper analyzes empirically the risk-returrdéraff for the Spanish market using
several proxies for the alternative investment 8é&t. propose two multi-factor models
considering conditional second moments accordibiyariate GARCH specification in



a linear and non-linear framework (using a mod¢hwegime-switching GARCH). The

results show that only a positive and significask-return trade-off is obtained in the
non-linear case and only in the states governeldwywolatility process (State 1). The
evidence suggested in the theoretical intuitionomy observed in the ‘dominant’

volatility states. The weight of the hedging com@ainin the risk premium is less
important than the market risk factor although fibvener has also a significant impact
in low volatility periods. However, it is found rfavorable evidence either in the linear
framework or in secondary volatility states (higblatility). Strong assumptions of a
linear relation between return and risk could Iéadnodel misspecification and an
inability of the empirical model to capture a sigrant risk-return relationship since the
existence of periods where a risk-return tradei®fhot observed could lead to non-
significant estimation of this relation for the ieatsample.

The risk premium evolution in Spain is close to mharket volatility. The risk premium
demanded for the investors presents a higher vhke other sample periods during
2000-2003 and 2007-2009 (coinciding with crisisiqds). It is also observed a lower
risk price during high volatility periods than tedserved in low volatility states. The
investor profile in each context may also haveufice in this lower risk aversion
coefficient during high volatility periods althoughis approach may be confounding
realized (often lower even negative during highatibty states) with expected returns.
Despite the decrease in the risk price, there iexaremely rise in the market risk that
lead to higher risk premiums during the high vditgtiperiods. The two multi-factor
models also estimate noteworthy different risk prem during these periods. Non-
linear models estimate higher risk premium durimgse periods, although for the rest
of the sample the estimations are quite similantifeumore, the linear framework
presents higher persistence of volatility shockshia volatility formation during low
volatility periods (and vice-versa). This fact isrected with the introduction of the
regime-switching, obtaining lower persistence \vbtgtestimation in high volatility
periods and higher persistence volatility estintatiolow volatility periods.

In sum, the non-linear framework presented herevshan improvement about the
empirical evidence of the risk-return trade-offSpain not only about the significance
of the relationship but also in the estimated psimium in high volatility periods.
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