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Measuring Systematic Risk Using Implied Beta in 
Option Prices 

 

ABSTRACT 

This paper provides a novel method to estimate β thoroughly based on option prices. 
Through combining the market model and the multivariate risk-neutral valuation 
relationship in Stapleton and Subrahmanyam (1984) and Câmara (2003), we develop 
a pricing model for individual stock options involving the volatility of the market 
index level and the levels of the β and the idiosyncratic risk of the underlying stock 
asset. Based on this option pricing model, it is possible to estimate β implicitly from 
the current prices of index options and individual stock options rather than from the 
historical stock prices in the traditional method. The proposed option pricing model 
can explain some aspects of volatility smiles and term structures. The empirical 
studies for the component stocks in Dow Jones Industrial Average (DJIA) show that 
the option-implied β from this novel method can provide reasonable estimates of β 
and perform better than historical β in predicting the realized value of β in future 
periods of time. Furthermore, the results of the competitive regression suggest that 
the option-implied β contains the information different from that in the historical β. 
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I. Introduction 

In order to estimate the forward-looking β, this paper develops a pricing model for 

individual stock options involving the volatility of the market index level and the 

levels of the β and the idiosyncratic risk of the underlying stock asset. Equipped with 

this novel model, we are able to estimate β for a future period of time purely based on 

the current prices of index options and individual stock options. Since the seminal 

work of Capital Asset Pricing Model (CAPM) in Sharpe (1964) and Lintner (1965), 

the systematic risk and its measurement β are the standard textbook measure of risk. 

The CAPM and the information of β are commonly used in finance, for instance in 

calculating the cost of capital, pricing the value of investments, or constructing a 

portfolio with a desired level of the systematic risk. Although CAPM has been 

subject to some criticisms (e.g., Roll (1977) and Fama and French (1992)), CAPM 

remains well on the frontier of both academic research and industry applications. 

Thus, pursuing accurate estimates of β, in particular for future periods of time, is an 

important issue for so long. 

Although the information of β should reflect the sensitivity of the individual 

stock return to the return of the market portfolio for a future period of time, it is 

unobservable and estimated from a backward viewpoint traditionally, i.e., using 

historical excess returns of the individual stock and the market portfolio to estimate 

the β of an asset based on the regression model. This method was first proposed by 

Jensen (1968), who noted that the Sharpe-Lintner version of the linear relation 

between expected excess returns and the β also implies a regression test. It is known 

as the market or single-index model which takes the following form: 

ܴ௜,௧ െ ௙ܴ,௧ ൌ ௜ߙ ൅ ௜൫ܴ௠,௧ߚ െ ௙ܴ,௧൯ ൅  ,௜,௧ߝ

where ܴ௜,௧ െ ௙ܴ,௧  and ܴ௠,௧ െ ௙ܴ,௧  are the excess returns on the asset i and the 
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market portfolio at time t, respectively. The random variable ߝ௜,௧ is a white noise and 

independently identical distributed over time. The coefficients ߙ௜  and ߚ௜  are 

constant parameters to be estimated. Under the normal assumptions, the ordinary 

least squares method provides unbiased estimates for ߙ௜ and ߚ௜. The level of ߚ௜ 

assesses the impact of the price changes in the market portfolio on the price changes 

in asset i. The CAPM implies that the intercept term ߙ௜ in the regression, also 

termed “Jensen’s alpha,” should be zero for any asset. 

This traditional backward-looking method to estimate (or to extrapolate) the 

future β may not perform well unless the patterns of beta are known and stable in the 

near future. However, numerous studies find that violations of the assumption of 

stationarity and independently identical distributed returns are rules rather than 

exceptions, such as Blume (1971, 1975), Baesel (1974), Klemkosky and Martin 

(1975), Roenfeldt,  Griepentrog, and Pflaum (1978), Fabozzi and Francis (1978), 

Theobald (1981), Bos and Newbold (1984), Collins, Ledolter, and Rayburn (1987) 

and Faff, Lee, and Fry (1992). Moreover, when firms are involved in some events, 

like mergers or acquisitions, undertaking large-scale projects, or changing their 

capital structure, historical returns cannot provide adequate information to estimate 

the future β reliably. Although there are several financial econometric models to 

remedy this problem,1 it is difficult to assess the bias associated with the estimation 

of ex ante information using ex post historical data. 

To estimate the future β, some authors combine the implied volatilities from 

option prices and the historical correlation of individual equity and equity index 

prices, e.g., French, Groth, and Kolari (1983). However, a radically different 

                                                 
1 For instance, the conditional beta or other time-varying models of beta are considered in Ferson, 

Kandel, and Stambaugh (1987), Jagannathan and Wang (1996), Ferson and Harvey (1999), Park 
(2004), Fraser, Hamelink, Hoesli, and Macgregor (2004), and Adrian and Franzoni (2009). 
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methodology to estimate a forward-looking beta based on option prices is first 

introduced by Siegel (1995). Given the implied volatilities of the individual stock and 

the market portfolio, he exploits the option valuation model for exchange options 

developed in Margrabe (1978) to price an option which exchanges the individual 

stock return to the market index return and thus can calibrate the β from option prices. 

The core of Siegel’s model depends on the existence of that kind of exchange option 

traded in the market. However, that kind of exchange option is not generally available 

in the market, so Siegel’s method to estimate β is not practical. 

There are several empirical studies, such as Bates (1998), Buraschi and 

Jackwerth (2001), Dennis and Mayhew (2002), and Bakshi, Kapadia, and Madan 

(2003), demonstrating the existence of systematic risk factors in option prices. 

Therefore, some academics try to extract the market beta from option prices. 

Husmann and Stephan (2007), extending the model in Jarrow and Madan (1997) 

to price stock index options in an incomplete market, introduce an option pricing 

formula for individual equity options based on the CAPM so that the value of β can 

be estimated implicitly from the current market prices of individual equity options. 

However, since their model do no rely on the risk neutral valuation method, in 

addition to the correlation (or the β) parameter, there are other risk preference 

parameters in their option pricing formula, such as the expected returns of the 

individual stock as well as the market portfolio. Chen, Kim, and Panda (2009) and 

Chang, Christoffersen, Jacobs, and Vainberg (2010) also estimate the β from current 

option prices. To estimate option-implied β for a future period of time, Chen et al. 

(2009) derive the counterpart of the Black-Scholes formula under the physical 

measure and then links the expected returns of the underlying stock and the option 

with a single-index model. It is unavoidable that they require the expected stock 

return, which is preference-dependent, in their option pricing formula. Chang et al. 
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(2010) extend the method in Bakshi, Kapadia, and Madan (2003), which studies the 

relationship between the option-implied variance and skewness of the underlying 

asset return. However, this stream of models ignores that the possible conflict 

between the assumptions of the normal distribution in CAPM and the existence of 

skewness in stock returns. 

Building on Siegel (1995) and Husmann and Stephen (2007), we propose a new 

method to estimate β purely based on quoted option prices. The core of this new 

method is to develop an option pricing model by combining the market model with 

the multivariate risk-neutral valuation relationship (RNVR) in Stapleton and 

Subrahmanyam (1984) and Câmara (2003). The RNVR is a very useful technique for 

asset pricing, especially for derivatives whose payoffs are determined by one or 

several underlying variables, whether traded or non-traded. The RNVR-based models 

exploit simply the relationship between derivatives and their underlying assets to 

derive the preference-free derivative pricing formula. As a consequence, the 

preference parameters are not involved in the valuation equation of the derivatives, 

and the expected return on the underlying assets is the riskless return. 

The RNVR was first developed by Rubinstein (1976) and Brennan (1979) for 

derivatives pricing when there is only one underlying variable. Under the sufficient 

conditions that there is a representative agent whose risk preference is with an 

exponential representation, and his period-end wealth and the underlying asset price 

are jointly normally distributed, the RNVR can generate a preference-free option 

pricing formula, which could be identical to the formula in Black and Scholes (1973). 

Stapleton and Subrahmanyam (1984) extend the model in Brennan (1979) by 

allowing for multiple underlying variables. More recently, Câmara (2003) provides a 

generalized RNVR framework to encompass a family of bivariate transformed 

normal distribution for the period-end wealth and the underlying asset price to price 
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derivatives. The transformed normal distributions considered in Câmara (2003) 

include the normal, lognormal, displaced lognormal, negatively skew lognormal, and 

SU distributions. Câmara (2005) expands Câmara (2003) to a multivariate setting. By 

considering the multivariate transformed normal distribution, Câmara’s method 

contributes substantially to the literature to provide different risk-neutral option 

pricing formulae with different preferences and alternative joint distributions of the 

state variables. 

In comparison with the continuous time option pricing model proposed in Black 

and Scholes (1973), the discrete time RNVR-based model is less popular. However, 

Black and Scholes only assume that investors prefer more wealth to less but assume 

nothing about the risk preference of an investor. In contrast, the RNVR approach is 

based on the market equilibrium rather than on the no-arbitrage argument in the 

Black and Scholes framework. Therefore, the RNVR approach is highly general and 

useful in asset pricing especially when additional assumptions are imposed on the 

model. Our option pricing model is based on the RNVR approach together with the 

assumption that returns of individual stocks follow the market model. 

We consider a general exponential form of marginal utility function for the 

representative agent and transformed normal distributions for state variables. 

Additionally, according to the market model, the return of the individual stock is 

assumed to be the sum of the market risk premium and an idiosyncratic risk 

component. Thus, the two state variables in the RNVR are the market index return 

and the idiosyncratic risk component of the individual stock. Finally, a 

preference-free pricing model for individual stock options is derived, based on the 

volatility of the market index level and the levels of the β and the idiosyncratic risk of 

the underlying stock asset. This novel option pricing formula enables the estimation 

of β purely based on prices of stock index and individual stock options. This paper 
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not only provides an alternative to estimating β but is the first model to estimate β in 

a purely forward-looking way based only on quoted option prices. 

The remainder of this paper is organized as follows. Section II presents the 

framework of multivariate risk-neutral valuation relationship. Section III is devoted 

to derive an explicit risk-neutral option pricing model for European calls and discuss 

the relationship between the implied volatility smiles or term structures and the levels 

of the β and the idiosyncratic risk of the individual stock. Section IV presents the 

empirical results of this paper, including the description of the data of option prices, 

the introduction of the calibration procedures, and the analysis of the calibrated 

results. Section V concludes this paper. 

II. The General Multivariate Risk-Neutral Valuation Relationship 

In a one-period economy, for the case of multiple underlying processes, the standard 

pricing relationship for derivatives considered in Brennan (1979), Stapleton and 

Subrahmanyam (1984), and Câmara (2003) is 

ܸ ൌ ௙ܴ
ିଵܧ௉ሾܥሺ܆ሻ · ܼሺ܆ሻሿ,                       (1) 

where ܸ is the price of a derivative contract today, Rf is the gross return of the 

risk-free asset for the examined period, and ܧ௉ሾ·ሿ stands for the expectation operator 

under the actual probability measure. The variable X is a vector of payoffs of n 

underlying processes and ܆Ԣ ؠ ሾ ଵܺ, ܺଶ, … ܺ௡ሿ, C(X) is the payoff function for the 

derivative contract, and ܼሺ܆ሻ is the asset-specific pricing kernel. Following Câmara 

(2003), the definition of ܼሺ܆ሻ is given by: 

ܼሺ܆ሻ ൌ ாುൣ௎ᇲሺ௪ሻห܆൧
ாುሾ௎ᇲሺ௪ሻሿ ,                        (2) 
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where ܷᇱሺݓሻ is the marginal utility function of the wealth of the representative 
agent on the maturity date. 

In addition, the period-end wealth, w, is assumed to follow a transformed normal 

distribution:2 

݃ሺݓሻ~ܰሺߤ௪, ௪ߪ
ଶ ሻ, 

where ߤ௪  and ߪ௪
ଶ  are the mean and variance of  ݃ሺݓሻ, and ݃(·) is a strictly 

monotonic and differentiable function. Following the method in Câmara (2003) to 

generalize the Brennan-Rubinstein approach for pricing derivatives, we assume that 

the representative agent’s marginal utility is of the exponential form: 

ܷᇱሺݓሻ ൌ expሾ݃ߙሺݓሻሿ, 

where α is a constant preference parameter. As a consequence, it is straightforward to 

infer that lnܷᇱሺݓሻ~ܰሺߤߙ௪, ௪ߪଶߙ
ଶ ሻ. Câmara (2003) argues that the exact functional 

form of ݃ሺ·ሻ is not critical as long as ݃ሺݓሻ is normally distribution. For example, 

if the period-end wealth is normally distributed, ܷᇱሺݓሻ ൌ expሺݓߙሻ  given 

݃ሺݓሻ ൌ  should be considered, which implies that the representative agent has ݓ

constant absolute aversion; it is a necessary condition to derive the RNVR for a 

bivariate normal distribution of the price of the underlying assets and period-end 

wealth. On the other hand, if the period-end wealth follows a lognormal distribution, 

the representative individual’s marginal utility ܷᇱሺݓሻ is a power function, that is 

ܷᇱሺݓሻ ൌ ሻݓఈ given ݃ሺݓ ൌ ln  which implies that the representative agent is with ,ݓ

constant proportional aversion; it is a necessary condition to derive the RNVR for a 
                                                 

2 The definition of the transformed normal random variable is that a random variable Y can be 

expressed as ܻ ൌ ݂ିଵሺܼߪ ൅  ሻ, where ܼ~ܰሺ0,1ሻ, and f is a strictly monotonic differentiableߤ

function. 
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bivariate lognormal distribution of the price of the underlying assets and period-end 

wealth. 

As to the underlying assets or state variables, we assume the joint distribution of 

the underlying assets at the end of the period to be a multivariate transformed normal 

distribution:  

ሻ܆ሺܐ ൌ ൫݄ଵሺ ଵܺሻ, ݄ଶሺܺଶሻ, … , ݄௡ሺܺ௡ሻ൯்~ܰሺૄ, ઱ሻ, 

where µ and ઱ are the mean vector and the variance-covariance matrix of the 

underlying multivariate normal distribution, and hi’s are arbitrarily strictly monotonic 

and differentiable functions. The probability density function of the underlying assets 

ଵܺ, ܺଶ, … , ܺ௡ is: 

߶௉ሺ ଵܺ, ܺଶ, … , ܺ௡ሻ ൌ ଵ
ሺଶగሻ೙ మ⁄ |઱|భ మ⁄ ሻ|exp܆ᇱሺܐ| ቂെ ଵ

ଶ
൫ሺܐሺܠሻ െ ૄሻ൯்઱ିଵ൫ሺܐሺܠሻ െ ૄሻ൯ቃ. (3)  

In addition, the wealth of the representative agent and the underlying asset prices 

at the end of the period are further assumed to follow a jointly transformed normal 

distribution. Therefore, the conditional distribution of the representative agent’s 

marginal utility is 

ሺlnܷᇱሺݓሻ|વሻ~ܰሺߤߙ௪ ൅ ઱௪܆઱ିଵሺܐሺ܆ሻ െ ૄሻ, ௪ߪଶߙ
ଶ െ ઱௪܆઱ିଵ઱௪܆

் ሻ, 

where ઱௪܆ is a row vector representing the covariances between lnܷᇱሺݓሻ and વ. 

According to the property of the lognormally distribution, it is straightforward to 

drive ܧ௉ሾܷᇱሺݓሻ|܆ሿ  and ܧ௉ሾܷᇱሺݓሻሿ . As a result, the pricing kernel ܼሺ܆ሻ  is 

expressed as 

ܼሺ܆ሻ ൌ exp ቂα઱௪܆઱ିଵ൫ሺܐሺ܆ሻ െ ૄሻ൯ െ ఈమ

ଶ
઱௪܆઱ିଵ઱௪܆

் ቃ .              (4) 
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Substituting Equations (3) and (4) into Equation (1), the derivative valuation 

formula becomes as follows.

 
 

ܸ ൌ ௙ܴ
ିଵ ׬ ׬ ڮ ׬ ஼ሺ܆ሻ

ሺଶగሻ೙ మ⁄ |઱|భ మ⁄ ሻ|௑భ௑೙షభ௑೙܆ᇱሺܐ|
   

      · exp ൤െ ଵ
ଶ

ሾܐሺ܆ሻ െ ሺૄ ൅ ሻ܆ሺܐሻሿ்઱ିଵሾ܆઱௪ߙ െ ሺૄ ൅ ሻሿ൨܆઱௪ߙ ݀ ଵܺ݀ܺଶ … ݀ܺ௡,  (5)                

  

and the current price of the underlying assets P is 

۾ ൌ ௙ܴ
ିଵ ׬ ׬ … ׬ ܆

ሺଶగሻ೙ మ⁄ |઱|భ మ⁄ ሻ|௑భ௑೙షభ௑೙܆ᇱሺܐ|
  

  · exp ൤െ ଵ
ଶ

ሾܐሺ܆ሻ െ ሺૄ ൅ ሻ܆ሺܐሻሿ்઱ିଵሾ܆઱௪ߙ െ ሺૄ ൅ ሻሿ൨܆઱௪ߙ ݀ ଵܺ݀ܺଶ … ݀ܺ௡,   (6) 

where the location parameter of the density of the underlying assets is a 

preference-related term ૄ ൅  Under the market equilibrium, if the expectation .܆઱௪ߙ

of Equation (6) has an inverse function for its location parameter ૄ ൅  then the ,܆઱௪ߙ

resulting expression can be substituted into Equation (5), i.e., ૄ ൅  can be ܆઱௪ߙ

replaced by a function of ۾ · ௙ܴ
ିଵ. As a consequence, the probability density function 

of ܆ without preference parameters can be derived, and thus the price of the 

derivative can be written as a preference-free option pricing equation: 

ܸ ൌ ௙ܴ
ିଵܧொሾܥሺ܆ሻሿ,                                

where ܧொሾ·ሿ denotes the expectation under the risk-neutral probability measure Q. 

Since the location parameter is a function of ௙ܴ in the corresponding risk-neutral 

probability density function of X, it is consistent to the classic option pricing theory 

that to price derivatives in the risk-neutral world, the expected returns of all assets are 

equal to the riskless return. In the next section, we will apply this RNVR method to 
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the pricing of individual stock options by incorporating the market model to 

formulate the return of the underlying stock price. 

III. The Option Pricing Model Involving β 

III.1 Distributions of Underlying Variables and the Aggregate Wealth 

In the case of pricing individual stock options, we consider two points of time–today 

is time 0 and the maturity date of the option is time T. Taking European call options 

as examples,3 the payoff at the time point T is 

     maxሺ்ܵ െ ,ܭ 0ሻ. 

In addition, according to the market model, we can transform the payoff of the equity 

call option into a multivariate function of the market index return and an idiosyncratic 

risk component. That is 

maxሺ்ܵ െ ,ܭ 0ሻ  

ൌ ܵ଴ · max ቂௌ೅ି௄
ௌబ

, 0ቃ ؠ ܵ଴ · maxሺ்ܴ െ ݇, 0ሻ  

ൌ ܵ଴ · max ቄቀሺ1 െ ሻߚ ௙ܴ ൅ ௠ܴߚ ൅ ௘ቁݎ ܴ௤
ିଵ െ ݇, 0ቅ  

ؠ ,ሺܴ௠ܥ   ௘ሻ,                                                           (7)ݎ

where ST is the stock price at time T, S0 is the stock price at time 0, and k is defined as 

K/S0. In addition, RT≣ST/S0 is the gross return on the underlying stock, Rf is the 

gross return of the risk-free asset between time 0 and time T, and Rm is the gross 

                                                 
3 As for individual put options, it is straightforward to derive the counterpart option pricing formulae 

by simply considering the payoff of put options in Equation (7) and following the same procedure 
mentioned as follows. 



 

 12

return on the market portfolio from time 0 to time T and assumed to follow a 

lognormal distribution, i.e., lnܴ௠~ܰሺߤ௠ܶ, ௠ߪ
ଶ ܶሻ , where ߤ௠   is the annualized 

expected return of the market portfolio, and ߪ௠
ଶ  is the variance of the annualized 

market index return. The idiosyncratic (or firm-specific) risk component re associated 

with the underlying individual stock is assumed to follow ܰሺ0, ௘ߪ
ଶܶሻ, where the 

expected return on the idiosyncratic risk component is zero by definition, and ߪ௘
ଶ is 

the corresponding annual variance for the idiosyncratic risk component. Finally, 

ܴ௤ ؠ ݁௤், where q  is the annualized dividend yield, reflecting the decline of the 

stock price due to dividend payments . 

Following the RNVR approach introduced in Section II, we assume that the 

period-end wealth of the representative agent w, the gross return on the market 

portfolio Rm, and the idiosyncratic risk component re follow the trivariate transformed 

normal distribution as follows.  

ቌ
݃ሺݓሻ
݄ଵሺܴ௠ሻ ൌ lnሺܴ௠ሻ
݄ଶሺݎ௘ሻ ൌ ௘ݎ

ቍ ~ܰ

ۉ

ቆۇ
  ௪ߤ

 ௠ܶߤ
0

ቇ , ቌ
௪ߪ

ଶ ܶ√௠ߪ௪ߪ௪௠ߩ ܶ√௘ߪ௪ߪ௪௘ߩ
ܶ√௠ߪ௪ߪ௪௠ߩ ௠ߪ

ଶ ܶ 0
ܶ√௘ߪ௪ߪ௪௘ߩ 0 ௘ߪ

ଶܶ
ቍ

ی

ۊ , 

where the idiosyncratic risk component is assumed to be independent of the return on 

the market portfolio according to the assumption of the market model, and the 

correlations between ݃ሺݓሻ  and ln(Rm) or re are assumed to be ρwm and ρwe, 

respectively. 

Since the representative agent’s marginal utility follows 

ܷᇱሺݓሻ ൌ exp൫݃ߙሺݓሻ൯, 

where ߙ  is a constant preference parameter. Therefore, ܷᇱሺݓሻ  is lognormally 
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distributed with the mean αμw and the variance ߙଶߪ௪
ଶ . Consequently, the mean of 

this lognormal random variable is  

ሻሿݓ௉ሾܷᇱሺܧ ൌ exp ቀߤߙ௪ ൅ ଵ
ଶ

௪ߪଶߙ
ଶ ቁ. 

Furthermore, since 

ሺlnܷᇱሺݓሻ|ܴ௠, ௪ߤߙ௘ሻ~ܰሺݎ ൅ ௪௠ߩߙ
ఙೢ

ఙ೘√்
ሺlnܴ௠ െ ௠ܶሻߤ ൅ ௪௘ߩߙ

ఙೢ
ఙ೐√்

ሺݎ௘ െ 0ሻ, 

௪ߪଶߙ                                               
ଶ ሺ1 െ ௪௠ߩ

ଶ െ ௪௘ߩ
ଶ ሻ൯, 

we can obtain that 

,ሻ|ܴ௠ݓ௉ሾܷᇱሺܧ ௘ሿݎ ൌ exp ቆߤߙ௪ ൅ ௪௠ߩߙ
௪ߪ

ܶ√௠ߪ
ሺlnܴ௠ െ ௠ܶሻߤ ൅ ௪௘ߩߙ

௪ߪ

ܶ√௘ߪ
ሺݎ௘ െ 0ሻ 

                                       ൅ ଵ
ଶ

௪ߪଶߙ
ଶ ሺ1 െ ௪௠ߩ

ଶ െ ௪௘ߩ
ଶ ሻ൰. 

Following Equation (2), we can obtain the asset-specific pricing kernel 

ܼሺܴ௠,  .௘ሻ as followsݎ

ܼሺܴ௠, ௘ሻݎ ൌ ாುൣ௎ᇲሺ௪ሻ|ோ೘,௥೐൧
ாುሾ௎ᇲሺ௪ሻሿ ൌ exp ቀߩߙ௪௠

ఙೢ
ఙ೘√்

ሺlnܴ௠ െ ௠ܶሻߤ ൅ ௪௘ߩߙ
ఙೢ

ఙ೐√்
ሺݎ௘ െ 0ሻ  

                                                                 െ ଵ
ଶ

௪௠ߩଶߙ
ଶ ௪ߪ

ଶ െ ଵ
ଶ

௪௘ߩଶߙ
ଶ ௪ߪ

ଶ ቁ              ሺ8ሻ 

III.2 The Risk Neutral Valuation Relationship 

According to the assumption about the return on the market portfolio and the 

idiosyncratic risk component following a bivariate transformed normal distribution 

by setting ݄ଵሺܴ௠ሻ ൌ lnሺܴ௠ሻ and ݄ଶሺݎ௘ሻ ൌ ௘, we can derive ݄ଵݎ
ᇱ ሺܴ௠ሻ ൌ 1 ܴ௠⁄  and  

݄ଶ
ᇱ ሺݎ௘ሻ ൌ 1 and rewrite Equation (3) as follows. 
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                    ߶௉ሺܴ௠, ௘ሻݎ ൌ ଵ
√ଶగఙ೘√்ோ೘

exp ቂെ ଵ
ଶఙ೘

మ ்
ሺln ܴ௠ െ ௠ܶሻଶቃߤ ·  

                    ଵ
√ଶగఙ೐√்

exp ቂെ ଵ
ଶఙ೐

మ்
ሺݎ௘ െ 0ሻଶቃ.                     ሺ9ሻ 

Given the density of ߶௉ሺܴ௠,  ௘ሻ in Equation (9) and the asset-specific pricingݎ

kernel ܼሺܴ௠,        :௘ሻ in (8), the option pricing formula (5) can be rewritten asݎ

ܸ ൌ ௙ܴ
ିଵ ׬ ׬ ஼ሺோ೘,௥೐ሻ

√ଶగఙ೘√்ோ೘

ஶ
଴

ஶ
ିஶ · exp ቂെ ଵ

ଶఙ೘
మ ்

൫lnܴ௠ െ൫ߤ௠ܶ ൅ ௠√ܶ൯൯ߪ௪ߪ௪௠ߩߙ
ଶ

ቃ ·  

ଵ
√ଶగఙ೐√்

exp ቂെ ଵ
ଶఙ೐

మ்
൫ݎ௘ െ൫0 ൅ ௘√ܶ൯൯ߪ௪ߪ௪௘ߩߙ

ଶ
ቃ ܴ݀௠݀ݎ௘.      (10) 

According to Equation (6), we can obtain the present value for the market portfolio 

return and the idiosyncratic risk component to be  

۾ ൌ ൬ ௠ܲ

௘ܲ
൰  

ൌ ௙ܴ
ିଵ ׬ ׬ ൬ܴ௠

௘ݎ
൰ ·ஶ

଴
ஶ

ିஶ
ଵ

√ଶగఙ೘√்ோ೘
· exp ቂെ ଵ

ଶఙ೘
మ ்

൫lnܴ௠ െ൫ߤ௠ܶ ൅ ௠√ܶ൯൯ߪ௪ߪ௪௠ߩߙ
ଶ

ቃ   

   · ଵ
√ଶగఙ೐√்

exp ቂെ ଵ
ଶఙ೐

మ்
൫ݎ௘ െ൫0 ൅ ௘√ܶ൯൯ߪ௪ߪ௪௘ߩߙ

ଶ
ቃ ܴ݀௠݀ݎ௘.  

The current prices of the underlying variables Rm and re, which are the return on 

the market portfolio and the idiosyncratic risk component for the individual stock, are 

1 and 0 by definition. Hence 

ቆ
1

0
ቇ ௙ܴ ൌ ൭

exp ቀߤ௠ܶ ൅ ܶ√௠ߪ௪ߪ௪௠ߩߙ ൅ ଵ
ଶ

௠ߪ
ଶ ܶቁ

0 ൅ ܶ√௘ߪ௪ߪ௪௘ߩߙ
൱.  

Then we can obtain the following relationship: 
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ቆߤ௠ܶ ൅ ܶ√௠ߪ௪ߪ௪௠ߩߙ
0 ൅ ܶ√௘ߪ௪ߪ௪௘ߩߙ

ቇ ൌ ቆln ௙ܴ െ ଵ
ଶ

௠ߪ
ଶ ܶ

0
ቇ.                (11) 

Substituting Equation (11) into Equation (10), the current price of the option is given 

by 

ܸ ൌ ௙ܴ
ିଵ ׬ ׬ ஼ሺோ೘,௥೐ሻ

√ଶగఙ೘√்ோ೘

ஶ
଴

ஶ
ିஶ · exp ൤െ ଵ

ଶఙ೘
మ ்

ቀlnܴ௠ െ ቀln ௙ܴ െ ଵ
ଶ

௠ߪ
ଶ ܶቁቁ

ଶ
൨ ·  

ଵ
√ଶగఙ೐√்

· exp ቂെ ଵ
ଶఙ೐

మ்
ሺݎ௘ െ0ሻଶቃ ܴ݀௠݀ݎ௘  

ؠ     ௙ܴ
ିଵܧொሾܥሺܴ௠, ௘ሻሿ,                                              (12)ݎ                   

with a preference-free probability density function  

߶ொሺܴ௠, ௘ሻݎ ൌ ଵ
√ଶగఙ೘√்ோ೘

· exp ቈെ ଵ
ଶఙ೘

మ ்
൬ln ܴ௠ െ ቀln ௙ܴ െ ଵ

ଶ
௠ߪ

ଶ ܶቁ൰
ଶ

቉ ·  

           ଵ
√ଶగఙ೐√்

exp ቂെ ଵ
ଶఙ೐

మ்
ሺݎ௘ െ 0ሻଶቃ. 

Finally, by substituting the payoff function in Equation (7) into Equation (12) 

and defining lnRm = Zm , and re = Ze, we can obtain: 

ܸ ൌ ௙ܴ
ିଵ ׬ ׬ ܵ଴ · max ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ቁ ܴ௤

ିଵ െ ݇, 0ቃ ·ஶ
ିஶ

ஶ
ିஶ   

                                             ଵ
√ଶగఙ೘√்

· exp ቂെ ଵ
ଶఙ೘

మ ்
ሺܼ௠ െ ௠ߤ

כ ሻଶቃ ·  

                    ଵ
√ଶగఙ೐√்

· exp ቂെ ଵ
ଶఙ೐

మ்
ሺܼ௘ െ ௘ߤ

ሻଶቃכ ܼ݀௠ܼ݀௘,          (13) 

where ߤ௠
כ ൌ ln ௙ܴ െ ଵ

ଶ
௠ߪ

ଶ ܶ and ߤ௘
כ ൌ 0. Finally, the RNVR expression for the call 

option price in a bivariate normal distribution can be presented as:
 

ܸ ൌ ௙ܴ
ିଵ ׬ ׬ ܵ଴ ·ஶ

ିஶ
ஶ

ିஶ max ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ቁ ܴ௤
ିଵ െ ݇, 0ቃ  ሺܼ௘ሻܼ݀௠ܼ݀௘, (14)כ߶ሺܼ௠ሻכ߶

where ߶כሺܼ௠ሻ and ߶כሺܼ௘ሻ are the normal probability density functions for ܼ௠~ 
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ܰ ቀln ௙ܴ െ ଵ
ଶ

௠ߪ
ଶ ܶ, ௠ߪ

ଶ ܶቁ and ܼ௘~ሺ0, ௘ߪ
ଶܶሻ. 

III.3 Deriving the Pricing Formula for European Calls 

In order to eliminate the max function in the payoff of the European call option in 

Equation (14), we need to figure out the constraints for Zm and Ze such that the call 

option is in the money at maturity. Three cases are considered as follows: 

Case 1: When β  > 0, we can infer that ݁ߚ௓೘
 
is positive for any value of Zm. 

Therefore, the payoff function of the call option in Equation (14) is in the money if 

ቀሺ1 െ ሻߚ ௙ܴ ൅ ܼ௘ቁ ܴ௤
ିଵ െ ݇ ൐ 0. On the contrary, if ቀሺ1 െ ሻߚ ௙ܴ ൅ ܼ௘ቁ ܴ௤

ିଵ െ ݇ ൑ 0, 

a constraint for Zm is needed to ensure that the call option is in the money at maturity. 

Consequently, the following two situations can be derived. 

i. ܼ௘ ൐ ܴ௤݇ െ ሺ1 െ ሻߚ ௙ܴ  and െ∞ ൏ ܼ௠ ൏ ∞. 
ii. ܼ௘ ൑ ܴ௤݇ െ ሺ1 െ ሻߚ ௙ܴ  and  ݁ߚ௓೘ െ ൣܴ௤݇ െ ሺ1 െ ሻߚ ௙ܴ െ ܼ௘൧ ൐ 0, 

which implies  ܼ௠ ൐ ln ቂோ೜௞ିሺଵିఉሻோ೑ ି௓೐

ఉ
ቃ.  

As a result, the option price V can be expressed as 

ܸ ൌ ௙ܴ
ିଵܵ଴ න න ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ቁ ܴ௤

ିଵ െ ݇ቃ
ஶ

ିஶ

ஶ

ோ೜௞ିሺଵିఉሻோ೑ 

ሺܼ௠ሻכ߶ ܼ݀௠ ሺܼ௘ሻכ߶ ܼ݀௘ 

൅ ௙ܴ
ିଵܵ଴ ׬ ׬ ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ቁ ܴ௤

ିଵ െ ݇ቃஶ
୪୬ሺ௔ି௕௓೐ሻ

ோ೜௞ିሺଵିఉሻோ೑ 
ିஶ ሺܼ௠ሻכ߶ ܼ݀௠ ሺܼ௘ሻכ߶ ܼ݀௘, (15) 

where ܽ ൌ ோ೜௞ିሺଵିఉሻோ೑ 

ఉ
 and ܾ ൌ ଵ

ఉ
. The integration result of the above equation is 

shown as follows: 

          ܸ ൌ ܵ଴݁ି௥்ൣ൫݁ሺ௥ି௤ሻ் െ ݇൯ · ܰሺܯଵሻ ൅ ݁ି௤்ߪ௘√ܶ ·݊ሺെܯଵሻሿ  

                   ൅ܵ଴݁ି௥் ׬ ൛ൣ൫ሺ1 െ ሻ݁௥்ߚ ൅ ܼ௘൯݁ି௤் െ ݇൧ · ܰሺܦଶሻ௘೜೅௞ିሺଵିఉሻ௘ೝ೅

ିஶ   
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                                                                     ൅݁ߚሺ௥ି௤ሻ் · ܰሺܦଵሻሽ · ሺܼ௘ሻכ߶ ܼ݀௘,        (16) 

where 

ଵܯ ൌ ሺଵିఉሻ௘ೝ೅ି௘೜೅௞
ఙ೐√்

, 

ଵܦ                ൌ
ି ୪୬ሺ௔ି௕௓೐ሻା൬௥்ା഑೘మ ೅

మ ൰

ఙ೘√்
, 

ଶܦ ൌ ଵܦ െ  ,ܶ√௠ߪ

and ܰሺ·ሻ and nሺ·ሻ  are the cumulative distribution function and the probability 

density function of the standard normal distribution. In addition, the definitions of 

௙ܴ ؠ ݁௥் and ܴ௤ ؠ ݁௤் are introduced to further simplify the above equation. The 

details to derive Equation (16) are presented in Appendix II. 

Case 2: When β = 0, the integral for Zm is not needed and thus can be dropped. In 

addition, the option is in the money at maturity when  ൫ ௙ܴ ൅ ܼ௘൯ܴ௤
ିଵ െ ݇ ൐ 0 , 

i.e., ܼ௘ ൐ ܴ௤݇ െ ௙ܴ. As a consequence, we can obtain the option price V as follows. 

The details to derive Equation (17) are presented in Appendix II. 

ܸ ൌ ௙ܴ
ିଵܵ଴ න ൣ൫ ௙ܴ ൅ ܼ௘൯ܴ௤

ିଵ െ ݇൧
ஶ

ோ೜௞ିோ೑

· ሺܼ௘ሻכ߶ ܼ݀௘ 

                                ൌ ܵ଴݁ି௥்ൣ൫݁ሺ௥ି௤ሻ் െ ݇൯ · ܰሺܯଶሻ ൅ ݁ି௤்ߪ௘√ܶ · ݊ሺെܯଶሻ൧,    (17) 

where 

ଶܯ ൌ ௘ೝ೅ି௘೜೅௞
ఙ೐√்

. 

The option pricing formula in this case is consistent with the formula in the case of 

the jointly normal distribution for the underlying stock price and the aggregate wealth 

in Brennan (1979). 
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Case 3: When β < 0, as long as  ܼ௘ ൐ ܴ௤݇ െ ሺ1 െ ௓೘݁ߚ ሻܴ௙, andߚ ൅ ሾܼ௘ െ ܴ௤݇ ൅  

ሺ1 െ ሻߚ ௙ܴሿ ൒ 0, the option is in the money at maturity. Thus we can obtain the 

constraints for Ze and Zm as follows:  ܼ௘ ൐ ܴ௤݇ െ ሺ1 െ ሻܴ௙   and   ܼ௠ߚ ൑

ln ቂோ೜௞ିሺଵିఉሻோ೑ି௓೐

ఉ
ቃ ൌ ln ሺܽ െ ܾܼ݁ሻ. 

Consequently, we can express the option price as 

ܸ ൌ ௙ܴ
ିଵܵ଴ ׬ ׬ ൣ൫ሺ1 െ ሻܴ௙ߚ ൅ ௓೘݁ߚ ൅ ܼ௘൯ܴ௤

ିଵ െ ݇൧୪୬ሺ௔ି௕௓೐ሻ
ିஶ

ஶ
ோ೜௞ିሺଵିఉሻோ೑

ሺܼ௠ሻכ߶ ܼ݀௠ ሺܼ௘ሻכ߶ ܼ݀௘.  

As shown in Appendix II, the result of the above integration is as follows. 

ܸ ൌ ܵ଴݁ି௥் ׬ ൛ൣ൫ሺ1 െ ሻ݁௥்ߚ ൅ ܼ௘൯݁ି௤் െ ݇൧ · ܰሺെܦଶሻஶ
௘೜೅௞ିሺଵିఉሻ௘ೝ೅   

        ൅݁ߚሺ௥ି௤ሻ் · ܰሺെܦଵሻൟ · ሺܼ௘ሻכ߶ ܼ݀௘.          (18) 

As a result, the option pricing formulae for individual call options are expressed 

in Equations (16) to (18). 

Moreover, it is worth to note that in Case 1, if we restrict β = 1 and ߪ௘ ൌ 0, 

which implies ݎ௘ ൌ ܼ௘ ൌ ௘ߤ
כ ൌ 0 with probability 1, Equation (7) reduces to the 

payoff function for the market index call option if S0 represents the index level today. 

Since ܼ௘ ൌ 0 and ܴ௤݇ െ ሺ1 െ ሻܴ௙ߚ ൌ ܴ௤݇ is positive due to β = 1, we can derive 

െ∞ ൏ ܼ௘ ൏ ܴ௤݇ െ ሺ1 െ ሻܴ௙ߚ ൌ ܴ௤݇, and thus it is necessary to consider only the 

second term in Equation (15). Then the formula for the market index call option can 

be shown as follows, and the details to derive this formula are presented in Appendix 

III. 

ܸ ൌ ௙ܴ
ିଵܵ଴ න ൫ܴ௤

ିଵ݁௓೘ െ ݇൯
ஶ

୪୬ሺ௔ି௕·଴ሻୀ୪୬ோ೜௞ 
ሺܼ௠ሻכ߶ ܼ݀௠ 
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    ൌ ܵ଴ܴ௤
ିଵ · ܰ ൭

୪୬ቀೄబ
಼ ቁା୪୬ ோ೑ି୪୬ ோ೜ା഑೘మ ೅

మ
ఙ೘√்

൱ െ ௙ܴ
ିଵ · ܭ · ܰ ൭

୪୬ቀೄబ
಼ ቁା୪୬ ோ೑ି୪୬ ோ೜ି഑೘మ ೅

మ
ఙ೘√்

൱  

  ൌ ܵ଴ · ݁ି௤்ܰ ൭
୪୬ቀೄబ

಼ ቁାሺ௥ି௤ሻ்ା഑೘మ ೅
మ

ఙ೘√்
൱ െ ௥்ି݁ܭ · ܰ ൭

୪୬ቀೄబ
಼ ቁାሺ௥ି௤ሻ்ି഑೘మ ೅

మ
ఙ೘√்

൱,        (19) 

which is identical to the Black-Scholes formula. The above result demonstrates the 

Black-Scholes formula is a special case of our model when β = 1 and σe = 0, and for 

pricing market index call options, our model is equivalent to the classic 

Black-Scholes model. 

Finally, the pricing formulae in Equations (16) and (18) are semi-analytical 

solutions and should be computed with numerical techniques. For the remaining 

integral over Ze, we exploit the Gaussian quadrature method to complete the 

computation of option prices. In our computer program, 2000 points are considered in 

the Gaussian quadrature method, and the option prices converge within 10–7, which 

guarantees that option prices generated through our model converge to the theoretical 

ones. In addition, the speed of our computer program is also fast. It takes less than 0.1 

second to compute each option price. 

III.4 Implied Volatility Smiles Based on Our Model 

Under the Black-Scholes model, the risk-neutral probability density function of the 

underlying price is a lognormal distribution with a constant volatility. However, this 

pattern has been convincingly rejected (see, for example, Macbeth and Merville 

(1979) and Rubinstein (1985)). In the literature, there are in general two ways to 

remedy this problem. The first way is to develop alternative stochastic processes, 

which in turn imply risk-neutral densities more similar to the implied risk-neutral 
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density from the market prices of options. The other way is to extract implied 

risk-neutral densities from option prices in markets directly (e.g., Rubinstein (1994)). 

Many existing studies, like Jackwerth (2000), Dennis and Mayhew (2002), and 

Bakshi, Kapadia, and Madan (2003), have found that implied risk-neutral densities 

tend to be more negatively skewed than the lognormal density, which is the reason for 

the implied volatility smiles and term structures. 

The model proposed in this paper provides an alternative explanation for the 

causation of the implied volatility smiles and term structures. We find that the levels 

of the β and the idiosyncratic risk can influence the implied volatility smile, and this 

effect diminishes for options with longer time to maturities.  

Table 1 and its corresponding Figure 1 report the implied volatilities of option 

values calculated by our model given different combinations of the values of beta and 

the strike price. The values of other parameters in the base example in Table 1 are as 

follows: the current stock price S0 is $50, the risk-free rate r is 0.1, the dividend yield 

q is 0, the time to maturity T is 1, the volatility of the market index level σm is 0.15, 

the idiosyncratic volatility σe is 0.3, and the examined strike prices are from $30 to 

$70 with an increment of $5. For each result in Table 1, we compute the option values 

via our model first, and next derive the corresponding implied volatilities based on 

the Black-Scholes model. The slope of the implied volatility curve is defined as 

൫ܫ ௄ܸୀଷ଴ – ܫ ௄ܸୀ଻଴൯/ (30 – 70), where IV is the abbreviation of implied volatility. For 

example, the slope for β = 0.25 is –0.0031, which is obtained from (0.3682 – 0.2436) 

/ (30 – 70). By observing the slope for the implied volatility curve of each β, we find 

that the implied volatility curves are with more negatively slopes for higher values of 

β than lower values of β. In other words, the implied volatility smile phenomenon is 

more significant for the underlying asset with a higher level of the systematic risk. 
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Our results are consistent with those found in Duan and Wei (2009). They find that a 

higher degree of systematic risk leads to higher implied volatilities and a steeper 

slope of the implied volatility curve. In fact, the option pricing model proposed in this 

paper is the first to incorporate this feature found in the empirical data.  

Based on the same example in Table 1, we further analyze how the level of the 

idiosyncratic risk affects the implied volatility smile by examining σe to be 0.2 and 

0.4. The corresponding implied volatility curves are shown in Table 2 and Figure 2. 

We find that the implied volatility smile is more pronounced for higher levels of the 

idiosyncratic risk, e.g., when β equals 1.5, the slopes of the implied volatilities curves 

are –0.00256 for σe = 0.2 and –0.00470 for σe = 0.4. To the best of our knowledge, we 

are the first to find that the level of the idiosyncratic risk could affect the slope of the 

implied volatility curve. 

Based on the results in Tables 1 and 2, we conclude that the volatility smile 

phenomenon is more significant for higher levels of β and the idiosyncratic risk σe. 

Note that instead of focusing on studying the direct relationship between the negative 

skewness and the negative slope of the implied volatility curve, such as the methods 

in Jackwerth (2000), Dennis and Mayhew (2002), and Bakshi, Kapadia, and Madan 

(2003), this paper develops an option pricing model that explicitly incorporates the β 

and the idiosyncratic risk component under the lognormal (or normal) distribution 

and concludes that the higher levels of the β and the idiosyncratic risk could generate 

implied volatility curves with more negative slopes. If the negative skewness is the 

only reason for the negative slope of the implied volatility curve, then our results 

suggest that option traders may already consider the systematic risk and the 

idiosyncratic risk of the underlying stock when estimating option values, and this 

behavior may be the reason for the negative skewness of the risk-neutral distribution 
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of the underlying stock price. 

It is well-known that the implied volatility curve changes with the time to 

maturity. Based on the same example in Table 1, we further examine the implied 

volatility curves for the different time to maturity T. The results of T = 0.25 and T = 2 

are presented in Table 3 and Figure 3, which suggest that the volatility grin effect 

decays with the increase of the time to maturity. Our results are reconciled with the 

results of many previous studies, such as Backus, Foresi, and Wu (2004) and Duque 

and Lopes (2003), which demonstrate empirically that the implied volatility skew 

dies out as the maturity becomes infinite. 

In summary, the results in Tables and Figures 1 to 3 suggest that the higher the 

levels of the β and the idiosyncratic risk, the more negatively sloping implied 

volatility curves can be generated though our option pricing model. Furthermore, the 

effects decrease with the increase of the time to maturity. Since these phenomena are 

consistent with many empirical studies, the analyses based on Tables and Figures 1 to 

3 demonstrate the ability of our option pricing model to capture some important 

aspects of individual stock options. 

IV. Empirical Studies 

This section presents the results of several empirical studies conducted in this paper. 

Based on our option pricing formula, it is possible to calibrate the levels of β and the 

idiosyncratic risk from prices of market index options and individual stock options. In 

this section, the data collected for the empirical studies is introduced first, followed 

by the introduction of our calibration procedures. Finally, we will show that the 

values of the β implied from option prices do provide a better performance on 

predicting the realized β in future periods of time. 
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IV.1 Data Description 

In this paper, we collect the option data of the Dow Jones Industrial Average index 

(DJIA) and its component stocks as the examined sample, covering January 1, 2008 

to December 31, 2008 for a total of 253 trading days. The Dow Jones Industrial 

Average index options (DJX) and the component individual stock options are traded 

on the Chicago Board of Trade (CME Group) and Chicago Board Options Exchange 

(CBOE), respectively. Daily data of the option prices are collected from the database 

of OptionMetrics. In addition, only call options are considered in our studies, and we 

use the average of the bid and ask quotes for each option contract as the option prices. 

We use the continuously-compounded zero-coupon interest rates with different 

days to maturity provided in the database of OptionMetrics. Furthermore, the spline 

interpolation method is employed to generate the interest rates whose corresponding 

maturities are matched to the time to maturities of examined options. 

However, since the component individual stock options traded on CBOE are 

American options, we need to convert these American option prices to their European 

counterparts. First, the binomial tree model is employed to find the implied dividend 

yield for each contract given its implied volatility provided in the database of 

OptionMetrics. Next, the Black-Scholes model is used with the input of the current 

stock price, matched risk free rate, implied dividend yield derived in the first step, 

implied volatility provided in OptionMetrics, and the strike price and time to maturity 

in the option contract to generate the corresponding European option price. 

In addition, the option data are screened based on three criteria: (1) we filter out 

average quotes that are less than $0.025 because these option prices cannot reflect 

true option values due to the minimum tick problem; (2) we eliminate the average 
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quotes if the implied volatility based on the Black-Scholes model does not exist4; (3) 

the minimum and maximum time to maturities are restricted to be 30 days and 180 

days to ensure that time values represent a significant part of option values and the 

liquidity of option contracts is acceptable. In Table 4, the number of quotes and the 

means and standard deviations of the Black-Scholes implied volatilities for options 

on the DJX and its component individual stocks are reported. In the database of 

OptionMetrics, we find option prices of only 28 component stocks of DJIA in 2008. 

The OptionMetrics database does not provide the historical option prices for General 

Motors (GM) and American International Group Inc. (AIG), which are removed from 

the portfolio of the DJIA in June of 2009 and September of 2008.5 

To construct the comparison benchmark for the implied beta generated from our 

model, we calculate the daily historical and realized betas based on the single-index 

model proposed by Jensen (1968). Since the total returns including the dividend yield 

should be employed in the single-index model, we collect the data of the total returns 

of the DJIA from the database of Dow Jones Company, and as to the individual stocks 

in the DJIA, the daily adjusted closing prices are obtained from the financial page at 

yahoo–finance.yahoo.com. For each date, we use the prior 90 daily returns to 

estimate the historical beta, and the next 90 daily returns following the examined date 

are employed to estimate the realized beta. 

IV.2 Calibration Procedures 

Since the option pricing formulae (16) to (18) for individual stock options are 

                                                 
4 Generally speaking, the option prices violating arbitrage conditions and deeply in or out of the 

money are excluded by this screening process. 
5 On September 22, 2008, Kraft Foods substituted the American International Group (AIG) in the 

DJIA. Although the option prices of Kraft Foods (KFT) are provided in OptionMetrics, the number 
of observations is too small to derive reliable results. Thus, we do not take KFT into consideration in 
this paper. 



 

 25

functions of ߪ௠, it is necessary to estimate σm from the prices of the DJX index 

options on each trading day first. Equipped with the value of ߪ௠ and the prices of the 

individual stock options, next we are able to calibrate the levels of β and ߪ௘ for each 

individual stock on that trading day. The details associated with the calibration 

process are stated as follows. 

IV.2.1 Calibration of σm 

Since it is commonly believed that the volatilities of financial assets are not a 

constant for different time to maturities, we derive the whole term structure σm(t,T) 

on each date t based on the prices of DJX index options.6 To achieve that, we need to 

estimate the term structure of the dividend yield qm(t,T) for different maturity date T 

in advance because we need this information in our pricing formula (19) for market 

index options. Suppose the implied volatility of each option contract provided in the 

OptionMetrics database is representative enough to reflect the market consensus of 

the volatility of the underlying asset. Based on that information, we can extract the 

least squares estimations of qm(t,T) from market index option contracts with different 

maturity date T through the following equation. 

min
௤೘ሺ௧,்ሻ

෍
OIሺ்ܭሻ

∑ OIሺ்ܭሻ௄೅

ቀ்ܯ,௄೅ െ
௄೅

,෡൫ܶܯ                ,்ܭ ܵ௠ሺݐሻ, ௙ܴሺݐ, ܶሻ, ,ො்,௄೅ߪ ,ݐ௠ሺݍ ܶሻ|ߚ ൌ 1, ௘ߪ ൌ 0൯ቁ
ଶ

,                 

where ்ܯ,௄೅  and ܯ෡ሺ·ሻ denote the market and theoretical prices for DJX index 

options, ܵ௠ሺݐሻ denotes the current level of DJIA, KT denotes the possible strike 

                                                 
6 On each trading day, if there are, for example, 7 maturity dates for market index options, we will 

derive 7 σm(t,T)’s for that trading day. 
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prices of DJX index options with the maturity date T, ௙ܴሺݐ, ܶሻ and ݍ௠ሺݐ, ܶሻ are the 

gross risk-free rate and estimated dividend yield from the current date t to the 

maturity date T, and ߪො்,௄೅ is the implied volatility for the DJX index option with the 

strike price ்ܭ on the maturity T in OptionMetrics. In addition, OIሺ்ܭሻ is the open 

interest of the DJX index option with the strike price ்ܭ, and OIሺ்ܭሻ/ ∑ OIሺ்ܭሻ௄೅  

is the weight for each option contract. This weighted scheme is adopted because we 

believe that the prices of option contracts with higher open interests are monitored by 

more investors in the market and thus more efficient. 

Next, for each date t in the examined period, we can estimate the term structure 

of σm(t,T) across different strike prices given a maturity date T. Here the least squares 

approach is employed and thus σm(t,T) can be calibrated from solving the following 

equation: 

min
ఙ೘ሺ௧,்ሻ

෍
OIሺ்ܭሻ

∑ OIሺ்ܭሻ௄೅

ቀ்ܯ,௄೅ െ
௄೅

,෡൫ܶܯ                       ,்ܭ ܵ௠ሺݐሻ, ௙ܴሺݐ, ܶሻ, ,ݐ௠ሺߪ ܶሻ, ,ݐ௠ሺݍ ܶሻ|ߚ ൌ 1, ௘ߪ ൌ 0൯ቁ
ଶ

,      ሺ20ሻ 

IV.2 Calibration of β and σe  

In the process to calibrate β(t) and σe(t) for each date t, we first calibrate β(t, T) and 

σe(t, T) for individual stock options with different maturity dates on each date t, and 

the estimations of β(t) and σe(t) for each date are derived through calculating the 

arithmetic average of the values of ߚሺݐ, ܶሻ and ߪ௘ሺݐ, ܶሻ across different maturity 

dates on that date. 

For each maturity date T of individual stock prices on date t, β(t, T) and σe(t, T) 
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can be calibrated from minimizing the squares of differences between market and 

theoretical prices of the individual options with different strike prices given ߪ௠ሺݐ, ܶሻ, 

i.e., 

 min
ఉሺ௧,்ሻ,ఙ೐ሺ௧,்ሻ,௤ሺ௧,்ሻ

෍
OIሺ்ܭሻ

∑ OIሺ்ܭሻ௄೅

ቀ்ܸ ,௄೅ െ
௄೅

෠ܸ൫ܶ, ,்ܭ ܵሺݐሻ, ௙ܴሺݐ, ܶሻ, ,ݐሺߚ ܶሻ, ,ݐ௘ሺߪ ܶሻ, ,ݐሺݍ ܶሻ|ߪ௠ሺݐ, ܶሻ൯ቁ
ଶ

, ሺ21ሻ 

where ்ܸ ,௄೅  and ෠ܸ ሺ·ሻ denote the market and theoretical call prices for individual 

stock options, S(t) denotes the current stock price for the underlying stocks on the 

current date t, ்ܭ represents the possible strike prices corresponding to maturity date 

T, ௙ܴሺݐ, ܶሻ is the matched risk free rate, and the open interests for different strike 

prices are employed to decide the weights for each pair of the market and theoretical 

call prices. There are some other details about this process, which are stated as 

follows. 

 First, since we try to provide a thoroughly forward-looking estimation of the β, it 

is not appropriate to use the historical data to estimate the dividend yield q. Thus, in 

Equation (21), we calibrate not only the values of β(t,T) and σe(t,T) but also the value 

of q(t,T) based on the prices of individual stock options simultaneously. Second, 

although we are equipped with the term structure of σm(t,T) for each day, the maturity 

date of σm(t,T) may not equal the maturity date of the individual stock option 

contracts. To deal with this problem, the spline interpolation method is employed to 

generate the σm(t,T) whose horizon exactly matches the time to maturity of examined 

individual stock option contracts. Third, to solve the least squares problem in 

Equation (21), we combine the grid search method and nonlinear least squares 

procedure provided in Matlab. More specifically, the grid search method with an 
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increment to be 0.01 in a proper range7 is adopted for β, and for each examined value 

of the β, the function of lsqnonlin in Matlab is employed to find the optimal values of 

σe(t,T) and q(t,T) to minimize the least-squares errors between the market and 

theoretical option prices. Finally, among all examined values of β, find the one that 

can generate the smallest least-squares errors. Based on the above process, we can 

obtain the optimal β(t,T), σe(t,T), and q(t,T) for different maturity date on each date. 

 IV.3 Empirical Results 

The results of yearly averages and standard deviations of the implied β(t) and σe(t) for 

different individual stocks are shown in Table 5. In addition, the historical and 

realized β are also reported for comparison. The historical and realized β  are 

computed based on the single-index model with prior and next 90-day returns, 

respectively. It can be observed first that the average values of implied β and eσ  for 

most stocks are significantly different from 0 by comparing the magnitudes of the 

average and the standard deviation. Second, the estimated results suggest that the 

option-implied β’s of the individual stocks are in reasonable ranges. The scatter 

diagram of realized β’s versus our implied β’s is shown in Figure 4. From the 

regression results, the slope coefficient is 0.8876, which is very close to 1, and the 

R-squared value is also as high as 0.79. Both evidence that the values of implied β’s 

are consistent with the general understanding of the distributions of β’s for the 

companies in DJIA. Third, by comparing the implied β from our model with the 

historical and realized β, it is obvious to find that the implied β from our model is not 

far from the realized β and sometimes is closer to the realized β than the historical β. 
                                                 

7 We derive the average value and standard deviation of the historical betas over prior 90 days to 
construct a proper range for the grid search method. The average value is adopted to be the central 
level of the range for β. The upper bound is the result of the average value plus six times the standard 
deviation, and the lower bound is the result of the average value minus six times the standard 
deviation. Moreover, if the range of six standard deviations is too narrow (< 0.7) or too wide (> 1.2), 
0.7 or 1.2 is used to replace the six standard deviations to generate a proper range for β. 



 

 29

However, simply comparing the unconditional averages of the implied and historical 

β with the unconditional average of the realized β cannot clearly distinguish the 

prediction power between these two estimates. Further studies on this issue are 

conducted in the following subsections. 

IV.3.1 Forecasting Performance of the Implied β 

To verify the superior forecasting power of the implied β over that of the historical β, 

for each firm i, we consider the following two regression equations: 

௜,௧ߚ
௥௘௔௟ ൌ ଵ,௜ߣ ൅ ௜,௧ߚଶ,௜ߣ

௜௠௣௟ ൅ ௜,௧ߝ
௜௠௣௟, ݐ ൌ 1,2, … ,253,   (22) 

௜,௧ߚ
௥௘௔௟ ൌ ଵ,௜ߜ ൅ ௜,௧ߚଶ,௜ߜ

௛௜௦௧ ൅ ௜,௧ߝ
௛௜௦௧, ݐ ൌ 1,2, … ,253,              (23) 

where ߚ௜,௧
௥௘௔௟, ߚ௜,௧

௛௜௦௧, and ߚ௜,௧
௜௠௣௟ denote the daily realized, historical, and implied β, 

respectively. The ߚ௜,௧
௜௠௣௟ is in essence another notation of the implied β(t) of each 

firm i on date t, and the ߚ௜,௧
௛௜௦௧ and ߚ௜,௧

௥௘௔௟  are computed based on the single-index 

model with the prior and next 90-day returns on date t. The ߝ௜,௧
௜௠௣௟ and ߝ௜,௧

௛௜௦௧ denote 

the residual error terms, which are independently and identically normally distributed. 

The regression results for each stock are reported in Table 6. For each firm i, 

theoretically speaking, if one estimate of β can provide a better prediction, the slope 

coefficient ߣଶ,௜ or ߜଶ,௜ should be more positive and closer to 1. In the meanwhile, 

the correlation between the estimates of β and the realized β, which is denoted as ρI,R,i 

(or ρH,R,i) for the implied β  (or the historical β), should approach 1 ideally. Table 6 

shows that there are 6 slope terms λ2,i significantly positive, and 5 slope terms δ2,i 

significantly positive. Additionally, there are 13 positive correlation coefficients for 

the ρI,R,i , and only 8 positive for the ρH,R,i. Moreover, among the 28 individual stocks, 

there are 19 with the result of ρI,R,i > ρH,R,i. These results confirm the superiority of the 

implied β in forecasting realized β in the future. 



 

 30

Finally, we conduct the panel data analysis based on the following regression 

equations: 

௜,௧ߚ                
௥௘௔௟ ൌ ଵݒ ൅ ௜,௧ߚଶݒ

௜௠௣௟ ൅ ௜,௧ߟ
௜௠௣௟, ሺ24ሻ 

௜,௧ߚ 
௥௘௔௟ ൌ ଵߠ ൅ ௜,௧ߚଶߠ

௛௜௦௧ ൅ ௜,௧ߟ
௛௜௦௧, (25)  

where i = 1, 2,…, 28 and t = 1, 2,…, 253, and the disturbances ߟ௜,௧
௜௠௣௟ and ߟ௜,௧

௛௜௦௧  are 

white-noise random variables. In Table 6, the corresponding statistic results are 

shown in the last row. The slope coefficients v2 = 0.03 and θ2 = –0.14 generated from 

the cross-section fixed-effect regression model confirm that the implied β has a better 

forecasting power. 

The poor performance of the historical β in this empirical study might be due to 

the time varying or even mean reverting feature of beta, which is recognized in many 

papers, such as Levy (1971), Blume (1975), Klembosky and Martin (1975), Fabozzi 

and Francis (1978), Bos and Newbold (1984), and Collins, Ledolter, and Rayburn 

(1987). The results of the poor performance of the historical β  in Table 6 again 

support the findings in the previous literature. 

IV.3.2 Competitive Regression between the Implied and Historical β 

Inspired by the work of Jorion (1995) and Chen, Kim, and Panda (2009), a 

competitive regression analysis is performed to compare and identify the information 

sets of the implied and historical beta to explain the future realized beta. The 

examined multivariate regression equation for each firm i is 

௜,௧ߚ                    
௥௘௔௟ ൌ ߱଴,௜ ൅ ߱ଵ,௜ߚ௜,௧

௜௠௣௟ ൅ ߱ଶ,௜ߚ௜,௧
௛௜௦௧ ൅ ݐ , ௜,௧ߝ ൌ 1,2, … ,253,       (26) 
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where ߚ௜,௧
௥௘௔௟, ߚ௜,௧

௜௠௣௟, and ߚ௜,௧
௛௜௦௧ denote the realized, implied, and historical β for 

each working day in 2008. Table 7 presents the results of this competitive regression 

between the implied and historical β. For each firm, we report the regression 

coefficients, the corresponding t-statistics, and the F-value of the above multivariate 

regression. Since the results of F-values suggests that almost all cases are significant, 

it can be inferred that combining these two types of betas is capable of explaining the 

dynamics of the future beta. By analyzing ߱ଵ,௜  and ߱ଶ,௜  separately, there are 

twenty-one significant cases for the implied β and twenty-three significant cases for 

the historical β among the examined 28 individual stocks, and furthermore, the 

significant cases for different types of betas are not exactly the same. These results 

demonstrate that the implied and historical β’s contain different information sets and 

each has its own explanation power in predicting future betas. In addition, there are 

19 cases in which both betas are significant, which suggest that the implied β could 

be complementary to the historical β for enhancing the prediction of the realized β in 

the future.  

Finally, the panel data regression based on i = 1, 2,…, 28 and t = 1, 2,…, 253 in 

following equation is considered. 

௜,௧ߚ                                              
௥௘௔௟ ൌ ଴ݑ ൅ ௜,௧ߚଵݑ

௜௠௣௟ ൅ ௜,௧ߚଶݑ
௛௜௦௧ ൅  . ௜,௧ߟ

The regression results for the coefficients of ݑଵ and ݑଶ are 0.06 and –0.19, both of 

which are significant. These results again support that implied and historical β’s 

contain different information sets, and the implied β is more positively correlated 

with the realized β. 

IV.3.3 Forecasting Performance of the Implied σe 
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Traditionally, the systematic risk is the only risk that investors concern. Some recent 

literature, however, suggests that idiosyncratic risk might be actually driving a 

risk-return relation by examining the cross-sectional relationship between equity 

returns and idiosyncratic risk. For example, Lehmann (1990), Merton (1987). 

Barberis and Huang (2001) develop asset pricing models and find that future 

expected returns are a positive function of idiosyncratic risk. In addition, both the 

autoregressive model in Chua, Goh, and Zhang (2006) and the EGARCH models in 

Fu (2009) and Spiegel and Wang (2005) find empirically that future expected returns 

are positively related to expected idiosyncratic volatilities. In contrast, some other 

empirical evidences show different conclusions, such as Ang, Hodrick, Xing, and 

Zhang (2006) find a negative cross-sectional relationship between returns and 

idiosyncratic risk. In addition, Bali and Cakici (2008) believe that there is no robustly 

significant relation between idiosyncratic volatilities and the cross-section of 

expected equity returns. 

To study this issue, for each firm i, we examine the following regression equation 

for realized risk-adjusted excess returns over the implied levels of the idiosyncratic 

risk ߪ௘,௜ሺݐሻ. 

തܴ௜,௧ െ ௜,௧ߚ
௥௘௔௟ തܴ௠,௧ ൌ ଴,௜ߙ ൅ ሻݐ௘,௜ሺߪଵ,௜ߙ ൅ ௜,௧ߝ

௘ , ݐ ൌ 1,2, … ,253,       (27) 

where തܴ௜,௧ denotes the future 90-day average excess return of the individual stock i, 

തܴ௠,௧ denotes the future 90-day average excess market return, ߚ௜,௧
௥௘௔௟ is the realized 

beta for the individual stock i , σe,i(t) is the idiosyncratic risk of the individual stocks, 

and ߝ௜,௧
௘  is the firm-specific residual. Table 8 shows the regression results of 

Equation (27) for each individual stock. The slope coefficients in bold represent the 

regression results that are positive and statistically significant. These cases support 

the hypothesis that the idiosyncratic risk is able to contribute to future excess return. 
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In contrast, we also find that some of the slope coefficients are negative and 

statistically significant. These mixed results are in accordance with that it is still 

under debate about whether the idiosyncratic risk can influence future stock returns. 

 Finally, the panel data regression for all individual stocks and all dates t is also 

conducted: തܴ௜,௧ െ ௜,௧ߚ
௥௘௔௟ തܴ௠,௧ ൌ ଴ߛ ൅ ሻݐ௘,௜ሺߪଵߛ ൅ ௜,௧ߟ

௘ , for i = 1, 2,…, 28, and t = 1, 

2, …, 253. The results of the estimated coefficients, t-statistics, and R-squared are 

shown in the last row of Table 8. The slope coefficient is very close to 0, which 

inclines to support Bali and Cakici (2008) that the relationship between the 

idiosyncratic risk and cross-section of the future excess returns is uncertain and 

ambiguous. 

V. Conclusion 

It is commonly believed that option prices can provide additional information on the 

underlying stock prices, particularly about the volatility of the underlying stock prices 

in the future. Although option prices are informative about future volatility, there is 

little research on using option prices to infer future values of β, which, by definition, 

should be determined according to the volatilities of the market index level and the 

individual stock prices. 

In this paper, a novel method is proposed to estimate the levels of β  and the 

idiosyncratic risk purely from the prices of market index and individual stock options. 

Building on Siegel (1995) and Husmann and Stephen (2007), we develop a 

semi-analytical pricing model for individual stock options involving the volatility of 

the market index level and the levels of the β  and the idiosyncratic risk of the 

underlying stock asset through combining the market model and the multivariate 

risk-neutral valuation relationship (RNVR) developed in Stapleton and 
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Subrahmanyam (1984) and Câmara (2003). Our analysis demonstrates the superior 

ability of this option pricing model to explain the price behavior of individual stock 

options found in previous literature, i.e., the higher the levels of the β  and the 

idiosyncratic risk, the more negatively-sloping implied volatility curves can be 

generated, and both these effects diminish with the increase of the time to maturity. 

Moreover, we conduct empirical studies to calibrate the β and the idiosyncratic 

risk from the prices of index options of DJIA and individual stock options of the 

DJIA components, and demonstrate that the values of the β  implied from our model 

not only provide reasonable estimations for the realized β of firms in DJIA, but also 

contain different information sets and provide a better performance versus the 

historical β in predicting the realized β for future periods of time. In addition, we also 

analyze the relationship between the level of the idiosyncratic risk implied from the 

option prices and the future underlying stock returns, and the results support that 

there is no robustly significant relation between idiosyncratic risk and the 

cross-section of future excess return in the underlying stock. 

The option pricing formula incorporating the market model in this paper enables 

derivation of forward-looking β of individual stock assets purely based on prices of 

stock index and individual stock options. Furthermore, our model has much potential. 

For instance, it is possible to apply our estimates of implied β  and ߪ௘ to test the 

validity of the CAPM, and it is possible to incorporate RNVR with more general 

option pricing models that take the effects of the skewness and the kurtosis into 

account. In addition, one might conduct the analyses for different periods of time and 

different markets to further understand the behavior of this forward-looking β 

estimation in detail. 
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Table 1  
Implied Volatility Curves Given Different β (for σe = 0.3) 

This table presents the implied volatility smile curves under different values of β.  The examined 

parameter values are as follows. The current stock price is $50, the risk-free rate r is 0.1, the dividend 

yield q is 0, the time to maturity T is 1 (one year), the volatility of the market index level σm is 0.15, 

the idiosyncratic risk σe is 0.3, and the examined strike prices are from $30 to $70. Based on the option 

values generated by our model, the values of the implied volatilities are derived according to the 

Black-Scholes model. It is evident that the implied volatility decreases as the strike price increases in 

our model, which demonstrates that our option pricing model could explain the phenomenon of 

volatility smiles properly. In addition, the values of slopes suggest that the volatility smile phenomena 

for higher β stocks are more pronounced. 

 

 
* The slope of the line in the last column is defined as (IVK=30 – IVK=70) / (30 – 70), where IV is the abbreviation of implied 
volatility. For example, the slope for β = 0.25 is (0.3682 – 0.2436) / (30 – 70) = –0.00311. 

30 35 40 45 50 55 60 65 70 slope*
beta = 0.25 0.3682 0.3430 0.3220 0.3043 0.2890 0.2756 0.2637 0.2531 0.2436 -0.00311
beta = 0.5 0.3779 0.3521 0.3307 0.3126 0.2970 0.2833 0.2712 0.2604 0.2507 -0.00318
beta = 0.75 0.3930 0.3665 0.3444 0.3258 0.3098 0.2957 0.2834 0.2723 0.2624 -0.00326
beta = 1 0.4129 0.3853 0.3625 0.3433 0.3267 0.3123 0.2996 0.2882 0.2781 -0.00337
beta = 1.25 0.4369 0.4082 0.3844 0.3644 0.3473 0.3323 0.3192 0.3075 0.2971 -0.00349
beta = 1.5 0.4646 0.4345 0.4097 0.3887 0.3708 0.3553 0.3417 0.3296 0.3188 -0.00364

Strike price (K )
implied vol.
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Table 2 
 Implied Volatility Curves Given Different β (for σe = 0.2 and σe = 0.4) 

Based on the numerical example in Table 1, this table reports the implied volatilities smile curves 

under different β for a lower and higher levels of the idiosyncratic risk  σe. The level of the 

idiosyncratic risk σe is 0.2 in Panel A and 0.4 in Panel B. After generating option prices via our model, 

the values of the implied volatilities are derived based on the Black-Scholes model. Comparing with 

Table 1, it is obvious that the implied volatility smile becomes more pronounced as σe increases in our 

model. In other words, the phenomenon of the volatility smile is more pronounced for stocks with 

higher idiosyncratic risk. 

 

 
* The slope of the line in the last column is defined as (IVK=30 – IVK=70) / (30 – 70), where IV means implied volatility. For 
example, the slope for β = 0.25 in Panel A is (0.2473 – 0.1642) / (30 – 70) = –0.00208. 

  

implied vol. 30 35 40 45 50 55 60 65 70

beta = 0.25 0.2473 0.2305 0.2165 0.2047 0.1945 0.1855 0.1776 0.1706 0.1642 -0.00208
beta = 0.5 0.2604 0.2430 0.2286 0.2164 0.2059 0.1968 0.1887 0.1815 0.1751 -0.00213
beta = 0.75 0.2800 0.2618 0.2469 0.2342 0.2234 0.2141 0.2059 0.1986 0.1922 -0.00220
beta = 1 0.3050 0.2859 0.2702 0.2570 0.2458 0.2361 0.2277 0.2203 0.2138 -0.00228
beta = 1.25 0.3345 0.3143 0.2976 0.2838 0.2720 0.2618 0.2530 0.2453 0.2385 -0.00240
beta = 1.5 0.3680 0.3462 0.3284 0.3136 0.3010 0.2902 0.2808 0.2726 0.2654 -0.00256

beta = 0.25 0.4911 0.4572 0.4291 0.4053 0.3847 0.3668 0.3509 0.3367 0.3240 -0.00418
beta = 0.5 0.4988 0.4644 0.4359 0.4117 0.3909 0.3727 0.3566 0.3423 0.3293 -0.00424
beta = 0.75 0.5110 0.4759 0.4468 0.4221 0.4009 0.3824 0.3660 0.3513 0.3382 -0.00432
beta = 1 0.5274 0.4913 0.4615 0.4362 0.4144 0.3955 0.3787 0.3637 0.3503 -0.00443
beta = 1.25 0.5476 0.5104 0.4796 0.4536 0.4312 0.4117 0.3945 0.3791 0.3654 -0.00456
beta = 1.5 0.5712 0.5326 0.5008 0.4739 0.4508 0.4307 0.4129 0.3972 0.3830 -0.00470

Strike price (K )

Panel B. Implied volatilities for      = 0.4

Panel A. Implied volatilities for      = 0.2
slope*

eσ

eσ
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Table 3  
Implied Volatility Curves Given Different β (for T = 0.25 and T = 2) 

This table studies the effect of different time to maturities on the implied volatilities. Under the same 

parameter values in Table 1, the volatilities smile become more significant as the time to maturity T 

changes from 1 to 0.25. In contrast, the volatilities smile diminishes as the time to maturity T changes 

from 1 to 2. Thus, it can be concluded that the volatility smile effect decays with the increase of the 

time to maturity, which is consistent with the results of many empirical studies in the literature. 
 

 
* The slope of the line in the last column is defined as (IVK=30 – IVK=70) / (30 – 70), where IV represents the implied volatility. For 
example, the slope for β = 0.25 is (0.3815 – 0.2516) / (30 – 70) = –0.00325 as the time to maturity T = 0.25. 

implied vol. 30 35 40 45 50 55 60 65 70
Panel A.  Implied volatilities for T  = 0.25

beta = 0.25 0.3815 0.3553 0.3335 0.3149 0.2990 0.2850 0.2726 0.2616 0.2516 -0.00325
beta = 0.5 0.3902 0.3635 0.3412 0.3224 0.3061 0.2919 0.2793 0.2681 0.2580 -0.00331
beta = 0.75 0.4039 0.3764 0.3537 0.3343 0.3177 0.3032 0.2903 0.2789 0.2686 -0.00338
beta = 1 0.4221 0.3937 0.3702 0.3503 0.3332 0.3183 0.3051 0.2934 0.2829 -0.00348
beta = 1.25 0.4441 0.4146 0.3903 0.3697 0.3521 0.3367 0.3232 0.3112 0.3005 -0.00359
beta = 1.5 0.4695 0.4388 0.4135 0.3922 0.3739 0.3580 0.3441 0.3317 0.3207 -0.00372

Panel B.  Implied volatilities for T  = 2

beta = 0.25 0.3506 0.3268 0.3071 0.2903 0.2759 0.2632 0.2521 0.2421 0.2330 -0.00294
beta = 0.5 0.3617 0.3373 0.3171 0.2999 0.2851 0.2722 0.2607 0.2505 0.2413 -0.00301
beta = 0.75 0.3789 0.3536 0.3326 0.3149 0.2996 0.2862 0.2745 0.2640 0.2546 -0.00311
beta = 1 0.4011 0.3747 0.3529 0.3344 0.3185 0.3047 0.2926 0.2818 0.2721 -0.00323
beta = 1.25 0.4279 0.4001 0.3772 0.3579 0.3413 0.3269 0.3143 0.3031 0.2931 -0.00337
beta = 1.5 0.4587 0.4293 0.4051 0.3848 0.3674 0.3523 0.3390 0.3273 0.3169 -0.00355

Strike price (K )

slope*



 

 38

Table 4 
Descriptive Statistics of Implied Volatilities of Options  

This table reports summary statistics for the implied volatilities of the call option contracts used in this 

paper. We collect index call options for DJIA as well as the call option contracts for its component 

firms in 2008. Option prices are collected from OptionMetrics, but only 28 component stocks are 

examined due to the availability problem of the option prices of General Motors (GM) and American 

International Group Inc. (AIG), which are removed from the portfolio of the DJIA in June of 2009 and 

September of 2008, respectively. In addition, the American option prices of individual stock options 

are converted to the counterpart European option prices in a proper procedure introduced in Subsection 

IV.1. Implied volatilities are calculated through the Black-Scholes model, and we report the number of 

quotations and the means and standard deviations of the implied volatilities for individual stock call 

options and market index call options. 

 

 

DJIA Components # of Qutoes Mean s.d.

Alcoa Incorporated 6144 0.54 0.18

American Express Company 8988 0.61 0.31

Boeing Company 7773 0.43 0.18

Bank of American 8866 0.68 0.35

Citigroup Incorporated 6426 0.71 0.33

Caterpillar Incorporated 8945 0.45 0.19

Chevron Corporation 8133 0.43 0.25

DuPont 5846 0.38 0.16

Walt Disney Company 5084 0.39 0.17

General Electric Company 9573 0.45 0.27

Home Depot Incorporated 5989 0.51 0.19

Hewlett-Packard Company 7832 0.41 0.16

International Business Machines 8715 0.37 0.16

Intel Corporation 6065 0.45 0.14

Johnson & Johnson 3873 0.28 0.14

J.P. Morgan Chase & Company 8874 0.63 0.30

Coca-Cola Company 7220 0.31 0.14

McDonald’s Corporation 7820 0.35 0.14

3M Company 6249 0.35 0.16

Merck & Company, Incorporated 6561 0.40 0.13

Microsoft Corporation 7645 0.39 0.15

Pfizer Incorporated 2978 0.40 0.18

Procter & Gamble Company 6497 0.30 0.16

AT&T Incorporated 6324 0.40 0.16

United Technologies Corporation 7020 0.40 0.18

Verizon Communications Inc. 4489 0.38 0.17

Wal-Mart Stores Incorporated 7710 0.37 0.18

Exxon Mobil Corporation 7336 0.43 0.31

DJX index option 102842 0.30 0.15
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Table 5 
Estimation Results for Implied β and σe 

For each component stock in DJIA, the average and standard deviation of implied β and σe as well as 

the average and standard deviation of the historical β and realized β in 2008 are reported in this table. 

The implied β  and σe are calculated based on the results of Equation (21), and the historical and 

realized β are estimated by the single-index model with the prior and next 90-day returns on each date. 

Comparing with the realized β’s,  the implied β’s  from our model can provide reasonable estimations 

for the future β. 

 

 

mean s.d. mean s.d. mean s.d. mean s.d.

Alcoa Incorporated 2.006 0.224 0.218 0.143 1.372 0.202 1.590 0.399

American Express Company 1.755 0.339 0.198 0.151 1.840 0.201 1.850 0.301

Boeing Company 0.834 0.457 0.244 0.105 0.902 0.164 1.006 0.140

Bank of America Corporation 1.597 0.641 0.208 0.160 2.053 0.553 2.460 0.644

Citigroup Incorporated 2.330 0.503 0.156 0.149 2.137 0.349 2.454 0.540

Caterpillar Incorporated 0.886 0.287 0.284 0.128 1.089 0.070 1.146 0.174

Chevron Corporation 0.858 0.449 0.206 0.149 0.904 0.311 0.984 0.358

DuPont 0.886 0.293 0.179 0.105 1.052 0.063 1.139 0.171

Walt Disney Company 0.943 0.339 0.175 0.145 0.951 0.127 1.099 0.176

General Electric Company 1.079 0.259 0.158 0.135 1.161 0.157 1.274 0.214

Home Depot Incorporated 1.183 0.422 0.250 0.097 1.284 0.184 1.207 0.200

Hewlett-Packard Company 0.728 0.312 0.260 0.136 0.971 0.148 0.910 0.090

International Business Machines 0.436 0.317 0.255 0.136 0.852 0.173 0.786 0.087

Intel Corporation 1.261 0.304 0.227 0.124 1.320 0.238 1.189 0.177

Johnson & Johnson 0.335 0.408 0.099 0.099 0.432 0.141 0.536 0.139

J.P. Morgan Chase & Company 1.580 0.377 0.167 0.145 1.846 0.311 1.970 0.450

Coca-Cola Company 0.318 0.484 0.192 0.117 0.520 0.115 0.555 0.138

McDonald’s Corporation 0.350 0.337 0.211 0.087 0.679 0.106 0.697 0.089

3M Company 0.779 0.288 0.148 0.102 0.866 0.086 0.852 0.083

Merck & Company, Incorporated 0.980 0.428 0.234 0.113 0.709 0.150 0.803 0.176

Microsoft Corporation 0.754 0.373 0.251 0.113 0.990 0.085 1.049 0.082

Pfizer Incorporated 1.169 0.270 0.084 0.102 0.836 0.071 0.840 0.071

Procter & Gamble Company 0.280 0.362 0.139 0.100 0.542 0.093 0.615 0.108

AT&T Incorporated  0.980 0.323 0.161 0.116 0.986 0.057 0.965 0.076

United Technologies Corporation 0.994 0.284 0.112 0.087 1.045 0.055 1.034 0.066

Verizon Communications Inc. 0.927 0.304 0.162 0.104 0.948 0.052 0.901 0.064

Wal-Mart Stores Incorporated 0.450 0.305 0.209 0.093 0.746 0.070 0.664 0.132

Exxon Mobil Corporation 0.764 0.417 0.199 0.126 0.947 0.222 0.954 0.241

DJIA Components
              Implied          Historical Realized β eσ β β
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 Table 6 
Forecasting Regression of Realized β on Implied β and Historical β 

This table displays the results from the regression of realized β on both the implied and historical β. 

The left-hand side reports the estimated parameters of ߚ௜,௧
௥௘௔௟ ൌ ଵ,௜ߣ ൅ ௜,௧ߚଶ,௜ߣ

௜௠௣௟ ൅ ௜,௧ߝ
௜௠௣௟ , and the 

right-hand side shows the regression results of ߚ௜,௧
௥௘௔௟ ൌ ଵ,௜ߜ ൅ ௜,௧ߚଶ,௜ߜ

௛௜௦௧ ൅ ௜,௧ߝ
௛௜௦௧. The ߚ௜,௧

௥௘௔௟, ߚ௜,௧
௛௜௦௧, and 

௜,௧ߚ
௜௠௣௟ denote the daily realized, historical, and implied β, and the definitions of them and ߝ௜,௧

௜௠௣௟ and 

௜,௧ߝ
௛௜௦௧ are mentioned in Subsection IV.3. For each firm, we report the regression coefficients, the 

related t-statistics, and the correlation and determination coefficients. The t-values in bold are 

significant at the 10% level or higher based on the two-tailed tests. The coefficient of correlation ρI,R,i 

denotes the correlation between on the implied beta and realized beta. Similarly, the coefficient of 

correlation ρH,R,i denotes the correlation between on the historical beta and realized beta. The results of 

λ2,i or δ2,i and ρI,R,i or ρH,R,i that is more positive and closer to 1 indicate better prediction performance 

for the realized β  in the future. The last row shows the estimated results for the cross-sectional fixed 

effect panel regression. All evidences suggest that the forward-looking β  implied from our model is 

more able to predict the realized β in the future. 

 

 
 

 

coeff t coeff t coeff t coeff t

AA 0.30 1.43 0.64 6.12 0.13 0.36 1.38 7.99 0.15 1.24 0.01 0.078 *

AXP 1.98 19.82 -0.08 -1.35 0.01 -0.08 3.63 27.32 -0.97 -13.49 0.42 -0.648 *

BA 1.01 54.73 0.00 -0.07 0.00 0.00 0.97 19.71 0.04 0.66 0.00 0.042

BAC 1.89 18.56 0.35 5.98 0.12 0.35 3.01 19.79 -0.27 -3.73 0.05 -0.229 *

C 2.26 14.02 0.08 1.24 0.01 0.08 4.28 24.26 -0.86 -10.50 0.31 -0.552 *

CAT 1.19 33.35 -0.04 -1.17 0.01 -0.07 1.82 10.95 -0.62 -4.06 0.06 -0.248 *

CVX 1.01 20.69 -0.03 -0.57 0.00 -0.04 1.36 20.94 -0.41 -6.10 0.13 -0.359 *

DD 1.03 30.47 0.13 3.50 0.05 0.22 1.53 8.49 -0.37 -2.17 0.02 -0.136 *

DIS 1.11 33.83 -0.01 -0.32 0.00 -0.02 0.15 2.59 1.00 16.37 0.52 0.719

GE 1.33 23.05 -0.05 -1.01 0.00 -0.06 2.31 30.13 -0.89 -13.63 0.43 -0.652 *

HD 1.53 50.20 -0.28 -11.36 0.34 -0.58 1.38 15.67 -0.14 -2.00 0.02 -0.125

HPQ 0.95 67.26 -0.06 -3.12 0.04 -0.19 1.02 27.54 -0.11 -2.97 0.03 -0.185

IBM 0.81 90.03 -0.06 -3.76 0.05 -0.23 0.94 36.94 -0.19 -6.32 0.14 -0.371 *

INTC 1.16 24.31 0.02 0.66 0.00 0.04 1.05 16.88 0.10 2.20 0.02 0.138

JNJ 0.53 46.75 0.01 0.39 0.00 0.02 0.45 16.11 0.20 3.35 0.04 0.208

JPM 2.08 17.07 -0.07 -0.95 0.00 -0.06 3.63 27.22 -0.90 -12.63 0.39 -0.623 *

KO 0.56 54.21 -0.02 -1.24 0.01 -0.08 0.80 21.59 -0.47 -6.79 0.16 -0.394 *

MCD 0.73 94.53 -0.08 -5.30 0.10 -0.32 0.93 27.80 -0.34 -7.06 0.17 -0.407 *

MMM 0.84 55.62 0.01 0.58 0.00 0.04 1.09 21.23 -0.28 -4.66 0.08 -0.282 *

MRK 0.78 28.22 0.02 0.74 0.00 0.05 0.84 15.54 -0.05 -0.66 0.00 -0.041 *

MSFT 1.04 89.33 0.01 0.89 0.00 0.06 1.30 22.11 -0.25 -4.25 0.07 -0.259 *

PFE 0.65 40.55 0.16 12.11 0.37 0.61 1.20 24.63 -0.44 -7.48 0.19 -0.431 *

PG 0.60 71.28 0.06 3.09 0.04 0.19 0.39 10.35 0.42 6.19 0.13 0.364

T 0.85 64.96 0.12 9.75 0.27 0.52 1.68 23.96 -0.72 -10.19 0.29 -0.541 *

UTX 1.06 69.87 -0.03 -1.73 0.01 -0.11 1.43 18.77 -0.38 -5.22 0.10 -0.313 *

VZ 0.90 68.92 0.00 0.34 0.00 0.02 0.74 10.13 0.17 2.27 0.02 0.142

WMT 0.72 50.18 -0.12 -4.39 0.07 -0.27 0.65 7.31 0.02 0.16 0.00 0.010

XOM 1.06 34.25 -0.14 -3.85 0.06 -0.24 1.53 27.85 -0.61 -10.80 0.32 -0.563 *

Number of positive and significant 6 5

Number of positive correlation 13 8 19

Panel 1.10 131.79 0.03 3.46 0.80 1.28 64.34 -0.14 -7.74 0.80

Ticker

Regression of Realized Beta on Implied beta Regression of Realized Beta on Historical beta

2R 2R ,H Rρ,I Rρ1λ 2λ 2δ1δ
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Table 7 
Competitive Regression between the Implied and Historical β 

The table presents the results of the competitive regression between the implied and historical β. The 

examined multivariate regression equation for each firm i in 2008 is ߚ௜,௧
௥௘௔௟ ൌ ߱଴,௜ ൅ ߱ଵ,௜ߚ௜,௧

௜௠௣௟ ൅

߱ଶ,௜ߚ௜,௧
௛௜௦௧ ൅ ௜,௧ߚ ௜,௧ , whereߝ

௜௠௣௟ is the implied beta based on option prices in our model, and ߚ௜,௧
௥௘௔௟ and 

௜,௧ߚ
௛௜௦௧ are the real and historical betas computed based on the next and the prior 90-day returns. For 

each firm, we report the regression coefficient, the corresponding t-statistic, and the F-value of the 

above multivariate regression. Since almost cases are with high enough F-values and thus significant, 

it can be inferred that combining these two types of betas is able to provide better description of the 

dynamics of the future beta. In addition, there are twenty-one significant cases for the implied beta and 

twenty-three significant cases for the historical beta among 28 examined component stocks, and 

furthermore, the significant cases for different types of betas are not exactly the same. These results 

demonstrate that the implied and historical betas contain different information set and each has its own 

explanation power in predicting future beta. Finally, there are 19 cases in which both betas are 

significant, which suggests that the implied beta could be with complementary information to the 

historical beta for predicting future betas.  

coeff t coeff t coeff t
Alcoa Incorporated 0.19 0.75 0.63 6.03 0.09 0.79 19.03
American Express Company 3.90 24.89 -0.13 -3.08 -0.99 -13.95 98.85
Boeing Company 0.98 18.90 0.00 -0.09 0.04 0.66 0.22
Bank of America Corporation 2.84 23.26 0.72 12.05 -0.74 -10.73 83.54
Citigroup Incorporated 3.87 21.62 0.35 6.08 -1.04 -12.66 81.43
Caterpillar Incorporated 1.98 11.00 -0.09 -2.25 -0.70 -4.51 10.89
Chevron Corporation 1.71 16.88 -0.23 -4.44 -0.58 -7.70 29.82
DuPont 1.34 7.19 0.12 3.23 -0.29 -1.71 7.65
Walt Disney Company 0.18 3.09 -0.05 -2.19 1.01 16.64 138.47
General Electric Company 2.25 29.28 0.15 3.68 -0.98 -14.38 104.31
Home Depot Incorporated 1.60 21.38 -0.27 -11.13 -0.05 -0.98 64.94
Hewlett-Packard Company 1.03 27.92 -0.05 -2.59 -0.09 -2.41 7.87
International Business Machines 0.96 37.73 -0.05 -3.41 -0.18 -6.09 26.63
Intel Corporation 1.04 14.21 0.01 0.37 0.10 2.13 2.49
Johnson & Johnson 0.42 13.18 0.03 1.53 0.24 3.67 6.81
J.P. Morgan Chase & Company 3.46 24.97 0.23 3.74 -1.00 -13.43 90.93
Coca-Cola Company 0.89 21.69 -0.08 -4.37 -0.59 -8.16 34.25
McDonald’s Corporation 0.94 29.33 -0.07 -5.00 -0.32 -6.81 39.79
3M Company 1.10 19.16 -0.01 -0.44 -0.28 -4.64 10.93
Merck & Company, Incorporated 0.81 11.50 0.02 0.55 -0.03 -0.44 0.37
Microsoft Corporation 1.29 20.69 0.00 0.12 -0.25 -4.14 9.01
Pfizer Incorporated 0.88 16.69 0.14 10.00 -0.24 -4.52 89.34
Procter & Gamble Company 0.39 10.48 0.04 2.38 0.40 5.82 22.33
AT&T Incorporated 1.40 18.71 0.09 7.02 -0.53 -7.54 86.51
United Technologies Corporation 1.46 18.88 -0.03 -1.89 -0.38 -5.27 15.54
Verizon Communications Inc. 0.73 9.90 0.00 0.36 0.17 2.27 2.63
Wal-Mart Stores Incorporated 0.69 8.00 -0.12 -4.39 0.03 0.30 9.64
Exxon Mobil Corporation 1.67 28.85 -0.15 -5.38 -0.63 -11.65 79.25
Panel 1.27 64.08 0.06 6.55 -0.19 -9.55 996.49

DJIA Components F-value1ω0ω 2ω
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Table 8 
Forecasts of Underlying Stock Return on implied σe  

This table displays the results from the 90 day-ahead predictive regressions of the risk-adjusted excess 

returns on the idiosyncratic risk. This table reports the results of the following regression:  
തܴ௜,௧ െ ௜,௧ߚ

௥௘௔௟ തܴ௠,௧ ൌ ଴ߙ ൅ ሻݐ௘,௜ሺߪଵߙ ൅ ௜,௧ߝ
௘ , ݐ ൌ 1,2, … ,253, ݅ ൌ 1,2, … 28. 

The average of future 90 daily excess returns of firm i on the date t is denoted as തܴ௜,௧, the average of 

future 90 daily excess market returns on the date t is represented by തܴ௠,௧, ߚ௜,௧
௥௘௔௟ denotes the realized 

beta for the individual stock i over the future 90 days on each date t, and ߝ௜,௧
௘  is the individual-specific 

residual. The t-statistics in bold type are significant at the 10% level or higher based on the two-tailed 

tests. The last column reports the adjusted R2 value. In addition, the last row shows the estimate results 

of pooled cross-sectional fixed effect panel regression for all DJIA component stocks. Generally 

speaking, the results of this table, especially the zero ߙଵ for the pooled cross-sectional regression, are 

inclined to support that the idiosyncratic risk has no robustly significant relationship with the future 

risk-adjust excess return. 

 

coeff t coeff t
Alcoa Incorporated 0.25 3.03 -3.72 -11.84 0.36
American Express Company -0.16 -3.60 -0.23 -1.25 0.01
Boeing Company -0.27 -7.54 -0.02 -0.18 0.00
Bank of America Corporation -1.09 -10.01 2.80 6.75 0.15
Citigroup Incorporated -1.04 -8.93 0.81 1.48 0.01
Caterpillar Incorporated -0.23 -3.24 -0.18 -0.76 0.00
Chevron Corporation 0.49 14.97 -0.63 -4.89 0.09
DuPont -0.21 -4.67 0.58 2.68 0.03
Walt Disney Company 0.19 10.73 -0.62 -7.87 0.20
General Electric Company -0.38 -13.48 -0.72 -5.33 0.10
Home Depot Incorporated 0.32 5.63 -0.14 -0.67 0.00
Hewlett-Packard Company 0.15 6.17 -0.05 -0.56 0.00
International Business Machines -0.23 -4.67 1.58 9.32 0.26
Intel Corporation -0.21 -4.66 1.30 7.65 0.19
Johnson & Johnson 0.25 14.30 -1.25 -10.13 0.29
J.P. Morgan Chase & Company 0.21 4.41 0.95 4.47 0.07
Coca-Cola Company -0.10 -5.39 0.38 4.76 0.08
McDonald’s Corporation 0.40 12.64 -0.45 -3.27 0.04
3M Company -0.04 -2.27 0.18 1.61 0.01
Merck & Company, Incorporated -0.11 -1.76 0.18 0.78 0.00
Microsoft Corporation -0.16 -4.82 0.62 5.03 0.09
Pfizer Incorporated 0.15 5.35 -1.31 -6.06 0.13
Procter & Gamble Company 0.25 7.26 -1.51 -7.47 0.18
AT&T Incorporated 0.18 6.13 -0.67 -4.60 0.08
United Technologies Corporation 0.01 1.03 0.08 0.84 0.00
Verizon Communications Inc. 0.17 5.40 0.10 0.58 0.00
Wal-Mart Stores Incorporated 0.54 16.39 -1.41 -9.90 0.28
Exxon Mobil Corporation 0.21 4.28 0.62 3.00 0.03
Panel 0.19 132.38 0.00 0.11 0.14

DJIA Components 2R
1α0α
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Figure 1. Implied Volatility Curves Given Different β (for σe = 0.3). This figure is based the result 
in Table 1. The x-axis represents the examined strike price, and y-axis presents the implied volatilities 
based on the Black-Scholes formula. The figure apparently shows that the higher β stocks smile more 
given the same σe. For example, for β  equal to 1.5, the implied volatility increases from 0.3188 to 
0.4646 when the examined strike price changes from 70 decreasing to 30. In contrast, for β equal to 
0.25, the implied volatility changes from 0.2436 to 0.3682 when the examined strike price is from 70 
decreasing to 30. 
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Figure 2. Implied Volatility Curves Given Different β  (for σe = 0.2 and σe = 0.4). This figure is 
based on the results in Table 2. The x-axis represents the examined strike price, and the implied 
volatility based on the Black-Shoes model is on the y-axis. This figure demonstrates that the volatility 
smile phenomenon for higher idiosyncratic risk stocks is more pronounced. For example, when β 
equals 1.5, the slope of the volatilities smile curve (defined as (IVK=30 – IVK=70) / (30 – 70) in Table 2), 
is –0.00256 for σe = 0.2 and –0.00470 for σe = 0.4. 
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Figure 3 Implied Volatility Curves Given Different β (for T = 0.25 and T = 2) The above diagrams 
report the relationship between volatility smile and the time to maturity. The left-side diagram presents 
the volatility smile as the time to maturity T = 0.25, and the right-side diagram presents the volatility 
smile as the time to maturity T = 2. Comparing these two figures, it is able to conclude that the 
volatilities smile phenomenon decays as the time to maturity T increases. 
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Appendix I 

Before deriving the option pricing formula based on the market model, we first 

demonstrate some results of the integrals based upon the normal distributions. The 

definition of the probability density function of a normal distributed random variable 

,௫ߤሺܰ~ݔ ௫ߪ
ଶሻ is  

       ߶ሺݔሻ ൌ ଵ
√ଶగఙೣ

· ݁
షሺೣషഋೣሻమ

మ഑మೣ ,                         (A.1) 

where μx and σx are the mean and the standard deviation of ݔ, respectively. The following 

three results of integrals are useful in the following derivation of the option price 

formulae. 

Result 1. The integral of  ߶ሺݔሻ: 

׬ ߶ሺݔሻ ݔ݀ ൌ ׬ ߶ሺݖሻ ݖ݀ ൌ
ೠషഋೣ

഑ೣ
೗షഋೣ

഑ೣ

௨
௟ ׬ ߶ሺݖሻ ݖ݀ െ

ೠషഋೣ
഑ೣ

ିஶ ׬ ߶ሺݖሻ ݖ݀
೗షഋೣ

഑ೣ
ିஶ ൌ ܰ ቀ௨ିఓೣ

ఙೣ
ቁ െ ܰ ቀ௟ିఓೣ

ఙೣ
ቁ, (A.2) 

where N(z*) is the cumulative distribution function for the standard normal distribution 

from –∞ to z*, that is, ܰሺכݖሻ ൌ ׬ ሺ2ߨሻషభ మ⁄ · ݁ି௭మ ଶ⁄௭כ

ିஶ  .ݖ݀

Result 2. The integral of the product of ݔ߶ሺݔሻ: 

׬ ݔ · ߶ሺݔሻ ݔ݀ ൌ௨
௟ ௫ߪ · ቂ݊ ቀ௟ିఓೣ

ఙೣ
ቁ െ ݊ ቀ௨ିఓೣ

ఙೣ
ቁቃ ൅ ௫ߤ · ቂܰ ቀ௨ିఓೣ

ఙೣ
ቁ െ ܰ ቀ௟ିఓೣ

ఙೣ
ቁቃ.        (A.3) 

The proof for Equation (A.3) is as follows. Define z = (x – μx) / σx, and we can obtain 

׬ ݔ · ߶ሺݔሻ ݔ݀ ൌ ׬ ௫ߪ · ݖ · ଵ
√ଶగ

݁ିభ
మ௭మ

ݖ݀ ൅ ௫ߤ ׬ ଵ
√ଶగ

݁ିభ
మ௭మ

ݖ݀
ೠషഋೣ

഑ೣ
೗షഋೣ

഑ೣ

ೠషഋೣ
഑ೣ

೗షഋೣ
഑ೣ

௨
௟   



 

 48

ൌ ௫ߪ ቌ ିଵ
√ଶగ

݁ିభ
మ௭మ

ቮ

௨ିఓೣ
ఙೣ

௟ିఓೣ
ఙೣ

ቍ ൅ ௫ߤ · ቂܰ ቀ௨ିఓೣ
ఙೣ

ቁ െ ܰ ቀ௟ିఓೣ
ఙೣ

ቁቃ  

ൌ ௫ߪ · ቂ݊ ቀ௟ିఓೣ
ఙೣ

ቁ െ ݊ ቀ௨ିఓೣ
ఙೣ

ቁቃ ൅ ௫ߤ · ቂܰ ቀ௨ିఓೣ
ఙೣ

ቁ െ ܰ ቀ௟ିఓೣ
ఙೣ

ቁቃ,  

where ݊ሺݖሻ ൌ ሺ2ߨሻ
షభ
మ · ݁

ష೥మ

మ , which is the probability density function of the standard 

normal distribution. 

Result 3. The integral of the product of ݁௫߶ሺݔሻ: 

׬             ݁௫߶ሺݔሻ ݔ݀ ൌ௨
௟ ݁ఓೣା഑మೣ

మ · ቂܰ ቀ௨ି൫ఓೣାఙೣ
మ൯

ఙೣ
ቁ െ ܰ ቀ௟ି൫ఓೣାఙೣ

మ൯
ఙೣ

ቁቃ.         (A.4) 

 
The proof for the above formula is as follows. 

׬ ݁௫ · ߶ሺݔሻ ݔ݀ ൌ௨
௟ ׬ ଵ

√ଶగఙೣ
· ݁

షሺೣషഋೣሻమ

మ഑మೣ ା௫
ݔ݀ ൌ௨

௟ ׬ ଵ
√ଶగఙೣ

· ݁
షభ

మ഑మೣൣሺ௫ିఓೣሻమିଶ௫ఙೣ
మ൧

௨ݔ݀
௟   

ൌ ׬ ଵ
√ଶగఙೣ

· ݁
షభ

మ഑మೣൣ௫మିଶ௫ఓೣାఓೣ
మିଶ௫ఙೣ

మ൧
ݔ݀ ൌ௨

௟ ׬ ଵ
√ଶగఙೣ

· ݁
షభ

మ഑మೣൣ௫మିଶ௫൫ఓೣାఙೣ
మ൯ାఓೣ

మ൧
௨ݔ݀

௟   

            ൌ ׬ ଵ
√ଶగఙೣ

· ݁
షభ

మ഑మೣቂ௫మିଶ௫൫ఓೣାఙೣ
మ൯ା൫ఓೣାఙೣ

మ൯మିଶఓೣఙೣ
మିఙೣ

రቃ
௨ݔ݀

௟  

            ൌ ݁ఓೣା഑మೣ

మ ቈ׬ ଵ
√ଶగఙೣ

· ݁
షభ

మ഑మೣൣ௫ି൫ఓೣାఙೣ
మ൯൧మ

௨ݔ݀
௟ ቉ 

ൌ ݁ఓೣା഑మೣ

మ ׬ ଵ
√ଶగ

݁ିభ
మ௭మ

 ݖ݀
ೠష൫ഋೣశ഑మೣ൯

഑ೣ
೗ష൫ഋೣశ഑మೣ൯

഑ೣ

 ሺby defining ݖ ൌ ሾݔ െ ሺߤ௫ ൅ ௫ߪ
ଶሻሿ ⁄௫ሻߪ  

ൌ ݁ఓೣା഑మೣ

మ · ቂܰ ቀ௨ି൫ఓೣାఙೣ
మ൯

ఙೣ
ቁ െ ܰ ቀ௟ି൫ఓೣାఙೣ

మ൯
ఙೣ

ቁቃ.   
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Appendix II 

According to Equation (14), the current option value can be expressed as 

ܸ ൌ ௙ܴ
ିଵ ׬ ׬ ܵ଴

ஶ
ିஶ

ஶ
ିஶ max ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ቁ ܴ௤

ିଵ െ ݇, 0ቃ ·  ,ሺܼ௘ሻܼ݀௠ܼ݀௘כ߶ሺܼ௠ሻכ߶

where ߶כሺܼ௠ሻ and  ሺܼ௘ሻ  are the risk-neutral standard normal probability densityכ߶  

functions for ܼ௠~ܰ ቀln ௙ܴ െ ଵ
ଶ

௠ߪ
ଶ ܶ, ௠ߪ

ଶ ܶቁ and  ܼ௘~ሺ0, ௘ߪ
ଶܶሻ, and ߶כሺܼ௠ሻ ൌ ଵ

√ଶగఙ೘√்
·

exp ൜െ ଵ
ଶఙ೘

మ ்
ቂܼ௠ െ ቀln ௙ܴ െ ଵ

ଶ
௠ߪ

ଶ ܶቁቃ
ଶ

ൠ   and     ߶כሺܼ௘ሻ ൌ ଵ
√ଶగఙ೐√்

· 

exp ቂെ ଵ
ଶఙ೐

మ்
ሺܼ௘ െ 0ሻଶቃ.  

Case 1. For β > 0, the option value in Equation (15) is as follows. 

ܸ ൌ ௙ܴ
ିଵܵ଴ ׬ ׬ ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ቁ ܴ௤

ିଵ െ ݇ቃஶ
ିஶ

ஶ
ோ೜௞ିሺଵିఉሻோ೑ 

ሺܼ௠ሻכ߶ ܼ݀௠ ሺܼ௘ሻכ߶ ܼ݀௘  

൅ ௙ܴ
ିଵܵ଴ ׬ ׬ ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ቁ ܴ௤

ିଵ െ ݇ቃஶ
୪୬ሺ௔ି௕௓೐ሻ

ோ೜௞ିሺଵିఉሻோ೑ 
ିஶ ሺܼ௠ሻכ߶ ܼ݀௠ ሺܼ௘ሻכ߶ ܼ݀௘, 

 
(A.5) 

where lnሺܽ െ ܾܼ௘ሻ ൌ ln ቀோ೜௞ିሺଵିఉሻோ೑ ି௓೐

ఉ
ቁ, which implies ܽ ൌ ோ೜௞ିሺଵିఉሻோ೑ 

ఉ
 and ܾ ൌ ଵ

ఉ
. 

For the first integral in Equation (A.5), 
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௙ܴ
ିଵܵ଴ ׬ ׬ ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ቁ ܴ௤

ିଵ െ ݇ቃ ·ஶ
ିஶ

ஶ
ோ೜௞ିሺଵିఉሻோ೑ 

ሺܼ௠ሻכ߶ ܼ݀௠ ሺܼ௘ሻכ߶ ܼ݀௘  

ൌ ௙ܴ
ିଵܵ଴ ׬ ൣ൫ ௙ܴ ൅ ܼ௘൯ܴ௤

ିଵ െ ݇൧ஶ
ோ೜௞ିሺଵିఉሻோ೑ 

ሺܼ௘ሻܼ݀௘כ߶
8 

ൌ ௙ܴ
ିଵܵ଴ ቄ׬ ൫ ௙ܴ ܴ௤

ିଵ െ ݇൯ · ሺܼ௘ሻஶכ߶
ோ೜௞ିሺଵିఉሻோ೑ 

ܼ݀௘ ൅ ׬ ܴ௤
ିଵܼ௘ · ሺܼ௘ሻܼ݀௘כ߶

ஶ
ோ೜௞ିሺଵିఉሻோ೑ 

ቅ  

                       
ൌ ܴ௙

ିଵܵ଴ ൤൫ ௙ܴ ܴ௤
ିଵ െ ݇൯ · ܰ ൬

ሺଵିఉሻோ೑ –ோ೜௞
ఙ೐√்

൰ ൅ ܴ௤
ିଵߪ௘√ܶ · ݊ ቀோ೜௞ିሺଵିఉሻோ೑ 

ఙ೐√்
ቁቃ  

ൌ ܵ଴݁ି௥்ൣ൫݁ሺ௥ି௤ሻ் െ ݇൯ · ܰሺܯଵሻ ൅ ݁ି௤்ߪ௘√ܶ ·݊ሺെܯଵሻሿ,                     (A.6) 

where ܯଵ ൌ ሺଵିఉሻ௘ೝ೅ି௘೜೅௞
ఙ೐√்

, and the last equation is derived based on the definitions of 

௙ܴ ؠ ݁௥் and ܴ௤ ؠ ݁௤். 

As to the second integral in Equation (A.5), 

௙ܴ
ିଵܵ଴ ׬ ׬ ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ቁ ܴ௤

ିଵ െ ݇ቃஶ
୪୬ሺ௔ି௕௓೐ሻ

ோ೜௞ିሺଵିఉሻோ೑ 
ିஶ · ሺܼ௠ሻכ߶ ܼ݀௠ ሺܼ௘ሻכ߶ ܼ݀௘  

ൌ ௙ܴ
ିଵܵ଴ ׬ ቄ׬ ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ܼ௘ቁ ܴ௤

ିଵ െ ݇ቃ ·ஶ
୪୬ሺ௔ି௕௓೐ሻ

ோ೜௞ିሺଵିఉሻோ೑ 
ିஶ ሺܼ௠ሻכ߶ ܼ݀௠  

                                             ൅ ׬ ஶߚ
୪୬ሺ௔ି௕௓೐ሻ ܴ௤

ିଵ݁௓೘ · ሺܼ௠ሻכ߶ ܼ݀௠ቅ ሺܼ௘ሻכ߶ ܼ݀௘ 

                      
ൌ ௙ܴ

ିଵܵ଴ ׬ ൝ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ܼ௘ቁ ܴ௤
ିଵ െ ݇ቃ ܰ ൭

ି ୪୬ሺ௔ି௕௓೐ሻା൬୪୬ ோ೑ –
഑೘మ ೅

మ ൰

ఙ೘√்
൱ோ೜௞ିሺଵିఉሻோ೑ 

ିஶ   

                                                 

8 Suppose the value of Ze is given. The result of the integral ׬ ሼሾሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ሿܴ௤
ିଵஶ

௖ െ 
݇ሽ߶כሺܼ݉ሻ ܼ݀݉ is ׬ ൛ൣሺ1 െ ሻߚ ௙ܴ ൅ ܼ௘൧ܴ௤

ିଵ െ ݇ൟ · ሺܼ݉ሻכ߶ ܼ݀݉ ൅ஶ
௖ ׬ ௤ܴߚ

ିଵ݁௓೘߶כሺܼ݉ሻ ܼ݀݉
ஶ

௖  
                      

ൌ ቂቀሺ1 െ ሻܴ݂ ൅ߚ ܼ݁ቁ ݍܴ
െ1 െ ݇ቃ · ܰ ቆ

െܿ൅ln ܴ݂ െ
2݉ߪ ܶ

2

ܶ√݉ߪ
ቇ ൅ ݍܴߚ

െ1ܴ݂ · ܰ ቆ
െܿ൅ln ܴ݂ ൅

2݉ߪ ܶ
2

ܶ√݉ߪ
ቇ . 

Therefore, when c ՜ ∞, the result for ׬ ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘ቁ ܴ௤
ିଵ െ ݇ቃஶ

௖ · ሺܼ݉ሻכ߶ ܼ݀݉ will 

converge to ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ܼ௘ቁ ܴ௤
ିଵ െ ݇ቃ · 1 ൅ ௤ܴߚ

ିଵ · 1 ൌ ൫ ௙ܴ ൅ ܼ௘൯ܴ௤
ିଵ െ ݇. 

by (A.2) & (A.3) 

by (A.2) & (A.4) 

by (A.2) & (A.4) 
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                                      ൅ܴߚ௤
ିଵ · ௙ܴ ·  ܰ ൮

െ lnሺܽ െ ܾܼ௘ሻ ൅ ൬ln ௙ܴ ൅ ௠ߪ
ଶ ܶ
2 ൰

ܶ√௠ߪ
൲ൢ ሺܼ௘ሻכ߶ ܼ݀௘ 

ൌ ܵ଴݁ି௥் ׬ ൛ൣ൫ሺ1 െ ሻ݁௥்ߚ ൅ ܼ௘൯݁ି௤் െ ݇൧ · ܰሺܦଶሻ௘೜೅௞ିሺଵିఉሻ௘ೝ೅

ିஶ   

                                                      ൅݁ߚሺ௥ି௤ሻ் · ܰሺܦଵሻሽ · ሺܼ௘ሻכ߶ ܼ݀௘,                     (A.7) 

where ܦଵ ൌ
ି ୪୬ሺ௔ି௕௓೐ሻା൬௥்ା഑೘మ ೅

మ ൰

ఙ೘√்
 and ܦଶ ൌ

ି ୪୬ሺ௔ି௕௓೐ሻା൬௥்ି഑೘మ ೅
మ ൰

ఙ೘√்
ൌ ଵܦ െ  ௠√ܶ. As aߪ

result, the sum of Equations (A.6) and (A.7) is the result for the integral in Equation (A.5). 

Case 2. For β = 0, the option value in Equation (17) is as follows. 

ܸ ൌ ௙ܴ
ିଵܵ଴ ׬ ൣ൫ ௙ܴ ൅ ܼ௘൯ܴ௤

ିଵ െ ݇൧ஶ
ோ೜௞ିோ೑

· ሺܼ௘ሻכ߶ ܼ݀௘  

ൌ ௙ܴ
ିଵܵ଴ ቂ׬ ൫ ௙ܴܴ௤

ିଵ െ ݇൯ · ሺܼ௘ሻכ߶ ܼ݀௘ ൅ ׬ ܴ௤
ିଵܼ௘ · ሺܼ௘ሻஶכ߶

ோ೜௞ିோ೑

ஶ
ோ೜௞ିோ೑

ܼ݀௘ቃ  

                      
ൌ ௙ܴ

ିଵܵ଴ ቂ൫ ௙ܴܴ௤
ିଵ െ ݇൯ · ܰ ቀோ೑ିோ೜௞

ఙ೐√்
ቁ ൅ ܴ௤

ିଵߪ௘√ܶ · ݊ ቀோ೜௞ିோ೑

ఙ೐√்
ቁቃ.  

     ൌ ܵ଴݁ି௥்ൣ൫݁ሺ௥ି௤ሻ் െ ݇൯ · ܰሺܯଶሻ ൅ ݁ି௤்ߪ௘√ܶ · ݊ሺെܯଶሻ൧,                   (A.8) 

where ܯଶ ൌ ௘ೝ೅ି௘೜೅௞
ఙ೐√்

. 

Case 3. For β < 0, the option price formula is as follows. 

ܸ ൌ ௙ܴ
ିଵܵ଴ න න ൛ൣሺ1 െ ሻߚ ௙ܴ ൅ ௓೘݁ߚ ൅ ܼ௘൧ܴ௤

ିଵ െ ݇ൟ
୪୬ሺ௔ି௕௓೐ሻ

ିஶ

ஶ

ோ೜௞ିሺଵିఉሻோ೑ 

ሺܼ௠ሻכ߶ ܼ݀௠ ሺܼ௘ሻכ߶ ܼ݀௘ 

ൌ ௙ܴ
ିଵܵ଴ න ቊන ൛ൣሺ1 െ ሻߚ ௙ܴ ൅ ܼ௘൧ܴ௤

ିଵ െ ݇ൟ ·
୪୬ሺ௔ି௕௓೐ሻ

ିஶ

ஶ

ோ೜௞ିሺଵିఉሻோ೑ 

ሺܼ௠ሻכ߶ ܼ݀௠ 

by (A.2) & (A.3) 
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൅ න ௤ܴߚ
ିଵ݁௓೘

୪୬ሺ௔ି௕௓೐ሻ

ିஶ
· ሺܼ௠ሻכ߶ ܼ݀௠ቋ · ሺܼ௘ሻכ߶ ܼ݀௘ 

                        
ൌ ௙ܴ

ିଵܵ଴ ׬ ൝ቂቀሺ1 െ ሻߚ ௙ܴ ൅ ܼ௘ቁ ܴ௤
ିଵ െ ݇ቃ ܰ ൭

୪୬ሺ௔ି௕௓೐ሻି൬୪୬ ோ೑ ି
഑೘మ ೅

మ ൰

ఙ೘√்
൱ஶ

ோ೜௞ିሺଵିఉሻோ೑ 
  

                        ൅ܴߚ௤
ିଵ

௙ܴ ·  ܰ ൭
୪୬ሺ௔ି௕௓೐ሻି൬୪୬ ோ೑ ା

഑೘మ ೅
మ ൰

ఙ೘√்
൱ൡ ሺܼ௘ሻכ߶ ܼ݀௘  

ൌ ܵ଴݁ି௥் ׬ ൛ൣ൫ሺ1 െ ሻ݁௥்ߚ ൅ ܼ௘൯݁ି௤் െ ݇൧ · ܰሺെܦଶሻஶ
௘೜೅௞ିሺଵିఉሻ௘ೝ೅   

                                      ൅݁ߚሺ௥ି௤ሻ் · ܰሺെܦଵሻൟ · ሺܼ௘ሻכ߶ ܼ݀௘ .                 (A.9) 

by (A.2) & (A.4) 
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Appendix III 

In Equation (7), if β = 1 and the normally distributed random variable re is fixed at zero, 

the payoff function becomes the one for a market index call option if S0 represents the 

market index level today. If σe  = 0, we can derive ݎ௘ ൌ ܼ௘ ൌ ௘ߤ
כ ൌ 0 in probability 1. 

Since Ze is fixed at zero, the integral over Ze can be dropped. Furthermore, due to the fact 

that ܴ௤݇ െ ሺ1 െ ሻߚ ௙ܴ ൌ ܴ௤݇ is larger than zero, we can obtain െ∞ ൏ ܼ௘ ൌ 0 ൏ ܴ௤݇ െ

ሺ1 െ ሻߚ ௙ܴ  and thus only the second term in Equation (15) needed to be considered. 

ܸ ൌ ௙ܴ
ିଵܵ଴ ׬ ൫ܴ௤

ିଵ݁௓೘ െ ݇൯ஶ
୪୬ሺ௔ି௕·଴ሻୀ୪୬ ோ೜௞ · ሺܼ௠ሻכ߶ ܼ݀௠  

    ൌ ௙ܴ
ିଵܵ଴ ׬ ܴ௤

ିଵ݁௓೘ஶ
୪୬ ோ೜௞ · ሺܼ௠ሻכ߶ ܼ݀௠ െ ௙ܴ

ିଵܵ଴ ׬ ݇ஶ
୪୬ ோ೜௞ · ሺܼ௠ሻכ߶ ܼ݀௠  

                     
ൌ ௙ܴ

ିଵ · ܵ଴ · ܴ௤
ିଵ · ௙ܴ · ܰ ቆ

ି ୪୬ ோ೜௞ା୪୬ ோ೑ା഑೘మ ೅
మ

ఙ೘√்
ቇ 

                                    െ ௙ܴ
ିଵ · ܵ଴ · ݇ · ܰ ቆ

ି ୪୬ ோ೜௞ା୪୬ ோ೑ି୪୬ ோ೜ି഑೘మ ೅
మ

ఙ೘√்
ቇ  

ൌ ܵ଴ · ܴ௤
ିଵ · ܰ ൭

୪୬ቀೄబ
಼ ቁା୪୬ ோ೑ି୪୬ ோ೜ା഑೘మ ೅

మ
ఙ೘√்

൱ െ ௙ܴ
ିଵ · ܭ · ܰ ൭

୪୬ቀೄబ
಼ ቁା୪୬ ோ೑ି୪୬ ோ೜ି഑೘మ ೅

మ
ఙ೘√்

൱.  

By substituting ௙ܴ and ܴ௤ with ݁௥்and ݁௤், the above equation can be rewritten 

to be identical to the Black-Scholes formula for the market index call options: 

ܸ ൌ ܵ଴݁ି௤் · ܰ ൭
୪୬ቀೄబ

಼ ቁାሺ௥ି௤ሻ்ା഑೘మ ೅
మ

ఙ೘√்
൱ െ ܭ · ݁ି௥೑் · ܰ ൭

୪୬ቀೄబ
಼ ቁାሺ௥ି௤ሻ்ି഑೘మ ೅

మ
ఙ೘√்

൱. 
 

by (A.2) & (A.4) 
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