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Abstract

This paper proposes multivariate Semi-Nonparametric distributions (SNP) based
on the General Moments Expansion (GME) to model portfolio returns distribution.
The multivariate GME is as �exible as other multivariate SNP distributions based on
Gram-Charlier series and thus is capable of capturing salient empirical regularities of
�nancial data but it present at least two important advantages: (i) it embodies a much
simpler polynomial structure which simpli�es the analytical tractability of the density,
specially when positive transformations are implemented; and (ii) it straightforwardly
admits the consideration of any non-Normal distribution used as basis with the only
requirement of having �nite moments up to the expansion order. We show that if the
expansion uses the Gaussian distribution as basis the two-step estimation procedure
introduced by Engle (2002) can also be formally implemented for the GME distribution,
thus overcoming the �curse of dimensionality�of multivariate volatility modeling. We
compare the performance of di¤erent multivariate SNP alternatives showing that the
GME-DCC model is very easy to implement and provides very accurate results for
capturing portfolio returns distribution.
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1 Introduction

The modeling of the multivariate volatility dependences in a mean-variance portfolio

allocation framework has been traditionally tackled by di¤erent parametric speci�cations

introduced to simplify the computation of the covariance matrix of returns and at the

same time to guarantee positive de�niteness. For these purposes there have been proposed

multivariate extensions of GARCH models (e.g. the diagonal vech model (Bollerslev, Engle

& Wooldridge, 1988) or the BEKK (Engle & Kroner, 1995)), Factor models (Engle, Ng &

Rothschild, 1990, and Sentana & Fiorentini, 2001) that decompose common and idiosyncratic

factors in portfolio dynamics or two-step estimation models (e.g. the Orthogonal GARCH

(Alexander & Chibumba, 1996, and Van der Weide, 2002), the Constant Conditional

Correlation (CCC) (Bollerslev, 1990), the Dynamic Conditional Correlation (DCC) (Engle,

2002, and Engle & Sheppard , 2001) or the Dynamic Equicorrelation (DECO) model (Engle

& Kelly, 2007)) (see Bauwens, Laurent & Rombouts (2005) for a comprehensive review on

multivariate volatility models).

On the other hand the evidence of leptokurtosis and skewness found in portfolio returns

suggests the consideration of other multivariate distributions than the Normal. In order to

incorporate such features copulas (Chen, Fan & Tsyrennikov, 2006) and di¤erent parametric

multivariate distributions (skewed Normal (Azzalini & Dalla Valle, 1996), Student�s t (Kotz

& Nadarajah, 2004), Weibull (Malevergne & Sornette, 2004) or Kotz-type (Olcay, 2005)) may

be used. The copula�s approach provides a straightforward generalization of any univariate

marginal distributions to a multivariate framework, but those models become analytically

intractable for di¤erent �nancial applications that require highly computationally demanding

numerical algorithms. Furthermore the existing heavy-tailed and skewed multivariate

distributions may not be �exible enough to capture some of the salient features of �nancial

returns. Alternatively the Semi-Nonparametric (SNP) approach seems to be a �exible an

easy to implement method that can solve all these shortcomings. Particularly, Del Brio,

Ñíguez & Perote (2009) have shown that multivariate densities based on Gram-Charlier

(GC hereafter) series accurately account for not only fat tails and skewness but also di¤erent

jumps on the probabilistic mass at the tails of density returns by means of a �exible and
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parsimonious representation. This potential advantage of the SNP distributions lies in

the fact that, and under regularity conditions, any frequency function may be represented

in terms of (in�nite) GC series. Moreover, Del Brio, Ñíguez & Perote (2010) provide a

generalization of the two-step DCC method to the SNP densities, which up to our knowledge

seem to be the �rst non-Normal distributions that formally admit this two-step procedure.

The two-step method overcomes the so-called "curse of dimensionality" by the Quasi-

Maximum Likelihood estimation (QMLE) of the conditional variances parameters under

univariate Normal distributions for every dimension and the rest of the density parameters by

Limited Information Maximum Likelihood (LIML) estimation under the SNP speci�cation

concentrated on the estimates of the �rst step. For these reasons the multivariate SNP

distributions seem to be a useful tool to �t and forecast portfolio risk.

Nevertheless the SNP approach also involves several shortcomings mainly due to the fact

that the GC expansions must be truncated in practice and thus positiveness needs to be

imposed by transformations of the Gallant & Nychka (1987) and Gallant & Tauchen (1989)

type. This solution is far from being innocuous since it a¤ects the statistical properties of the

distribution and, in particular, introduces non-linear restrictions among all the distribution

moments. This fact may complicate the implementation of these multivariate distributions

and make them less appealing from the practitioners viewpoint. In this paper we introduce a

new multivariate SNP family of distributions, which we name Multivariate General Moments

Expansion (MGME hereafter), that preserves the good properties of the multivariate GC

(MGC hereafter) distributions but presents a much simpler formulation and therefore are

more straightforward to implement for empirical purposes. The new multivariate family of

distributions generalizes the GME proposed in Ñíguez & Perote (2007) to the multivariate

framework and consequently inherits all the good properties of the GME: (i) generality: the

MGME only requires that the distribution used as basis has �nite moments up to the length

of the expansions and MGC distributions can be obtained by reformulations in terms of

the Hermite polynomials, (ii) positiveness: su¢ cient conditions or transformations to ensure

it can be straightforwardly proposed, (iii) empirical tractability: it presents an extremely

simple formulation and if the Gaussian distribution is used as basis then it admits the

decomposition proposed by Engle (2002), which eases the model implementation, and (iv)
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it yields a reasonable empirical performance for capturing the density of portfolio returns.

The remainder of the article is divided into the following three sections. In Section 2, we

de�ne the MGME distribution and discuss its theoretical properties, including the two-step

estimation of the Normal-GME distributed portfolio model. Section 3 provides an empirical

application to two bivariate portfolios composed of exchange rates (FX hereafter) returns,

to test the performance of the proposed model. Section 4 summarizes the main conclusions.

2 The multivariate GME distribution

The modeling of the multivariate distribution of �nancial variables faces serious obstacles

that are still not fully resolved. For instance, the generalization of univariate marginal

distributions to a multivariate framework has been successfully achieved by the use of copulas,

but those models present drawbacks related with the integration of the joint distribution

(e.g., to compute moments), which becomes analytically intractable and requires the

implementation of highly computationally demanding numerical algorithms (see Jondeau,

Poon & Rockinger, 2007, p. 196). On the other hand, the use of the existing heavy-tailed

and skewed multivariate distributions are interesting alternatives, but in most cases those

distributions cannot capture some of the salient features of �nancial returns due to the lack of

a su¢ ciently �exible parametric structure. Moreover, the multivariate time-varying models

can also be implemented for capturing conditional moments, but at the cost of a parameter

structure that might give place to very complicated speci�cations for large-dimensional

portfolios. That problem has been tackled with more parsimonious multivariate models and

through di¤erent estimation procedures such as the method of moments (Polanski & Stoja,

2010) or estimation in two stages as in the DCC model. Nevertheless, the implementation

of the latter process requires the separability of the log-likelihood function and this property

has shown to be formally possible only under normality or, very recently, under expansions

based on the Gaussian density (Del Brio et al., 2010).

In this paper we present a di¤erent approach to the joint distribution of �nancial asset

returns that solves some of the aforementioned shortcomings, and produces reasonably good

empirical results. Speci�cally, we propose a methodology to generalize the univariate SNP-
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type of distributions to a multivariate framework, which preserves the good performance of

the SNP distributions in terms of generality and �exibility, since the marginal distributions

of the proposed joint density are univariate SNP densities. The methodology may also

incorporate the Gallant & Nychka�s (1987) reformulations to ensure positivity, but the main

stress is put on achieving the separability of the log-likelihood to be able to implement the

two-stage estimation procedures.

2.1 The uncorrelated MGME

We start a our analysis by de�ning a naive case of the MGME distribution of uncorrelated

variables (De�nition 1) and afterwards we proceed to extend the de�nition to dependent

variables through a simple linear transformation (De�nition 2).

De�nition 1. The MGME pdf of a random vector xt = (x1t; x2t; : : : ; xnt)
0 2 Rn of

uncorrelated variables that uses a sequence of univariate pdfs, fgi(xit)gni=1, as basis, with

�nite non-central moments E [xrit] =
R
xritgi(xit)dxit = �ir <1 8i = 1; 2; : : : ; n and 8r � m,

is de�ned as,

Fk(xt;
) =
1

n

"
nY
i=1

gi (xit)

#"
nX
i=1

wik

 
1 +

mX
s=1


kis (x
s
it � �is)

k

!#
; 8k = 1; 2; (1)

where 
 is a matrix of parameters with general element f
sig, wik is the constant that make

the marginal density of the i� th dimension to integrate up to one, i.e. wi1 = 1 and

w�1i2 =

Z "
1 +

mX
s=1


2is (x
s
it � �is)

2

#
gi(xit)dxit = 1 +

mX
s=1


2is(�i;2s � �2is); 8i = 1; 2; :::; n: (2)

It is noteworthy that the de�nition above encompasses many di¤erent multivariate

distributions that can be obtained by assuming di¤erent distributions used as basis or

by considering slightly di¤erent positivity transformations. Particularly the SNP family of

distributions de�ned in Del Brio et al. (2010) are nested in the de�nition above by considering

the standard Normal density as basis, gi(xit) = �(xit) =
1p
2�
e�x

2
it=2 8i = 1; 2; :::; n. The

rationale behind this assessment lies in the fact that the Hermite polynomials (HP hereafter),

those His(xit) satisfying
ds�(xit)

dxsit
= (�1)s�(xit)Hs(xit); (3)
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also hold1

xsit � �+is =
s=2�1X
j=1

cjHs�2j(xit); (4)

�+is =
s!

2
s
2 (s=2)!

being the s�th order non-central moment of the standard Normal distribution

and fcjgsj=1 a particular parameter set. Hereafter we refer to the multivariate family of

distributions represented in terms of the HP (i.e. Gram-Charlier series) as MGC (equation

(5)).

MGCk(xt;�) =
1

n

"
nY
i=1

� (xit)

#"
nX
i=1

�ik

 
1 +

mX
s=1

�kisHis(xit)
k

!#
; 8k = 1; 2; (5)

where� is a matrix of parameters with general element f�sig and �ik is the scaling constant

such that

��1ik =

Z "
1 +

mX
s=1

�kisHis(xit)
k

#
� (xit) dxit =

8><>:
1;

1 +
mP
s=1

�2iss!;

if k = 1;

if k = 2; 8i = 1; 2; :::; n:
(6)

It is clear that when the standard Normal is used as basis and k = 1 the MGME renders

the same density than the MGC, i.e. F+1 (xt;
) = GC1(xt;�), but this property does not

hold for k = 2.2 This fact deserves further discussion since is the basis of the idea of de�ning

this new family of MGME distributions. On one hand the baseline case of k = 1 establishes

that the MGMEmay be reformulated in terms of the GC (Type A) series and thus inheritates

the good properties of such asymptotic expansion, particularly the capacity of approximating

any probability density function (under certain regularity conditions). Nevertheless the

representation in terms of the GME polynomials (
�
xsit � �+is

	m
s=1
) is much more simple and

easier to implement for empirical purposes, despite the fact that its polynomials do not

form an orthogonal basis, unlike the HP polynomials. These simple polynomial structures

1Note that, without loss of generality, equation (4) shows the linear relation among Hermite and GME

polynomials for s even. Analogously if s is odd xsit � �+is follows a linear with the odd Hermite polynomials.

Also note that these linear relations have no intercept. See Ñíguez & Perote (2007) for further details.
2Observe that the cross in F+k (xt;
) denotes that the Normal is used as basis of the MGME.
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also permit to straightforwardly extend these expansions to other multivariate distributions

beyond the Normal case.3

On the other hand the consideration of positivity restrictions (Jondeau & Rockinger,

2001) or positive transformations (Gallant & Nychka, 1987) is strictly required for obtaining

a well-de�ned pdf, since positivity is not guaranteed when the expansions are truncated at

the m � th term. This problem is inherent of both GC and GME �nite expansions but

the latter involves straightforward positivity conditions, e.g. 0 � 
is �
1

m�is
8s even,

and 
is = 0 8s odd (8i = 1; 2; :::; n), and more simple expressions when transformations,

as the one imposed for k = 2, are implemented. The positive transformation included in

equation (1), however, is not the unique transformation to achieve positivity but we used it

in de�nition 1 for the sake of simplicity.4

It is clear that the MGME distribution constitutes a well-de�ned pdf since is always

positive and integrates up to one (Proof 1 in Appendix). Furthermore the statistical

properties of the MGME distribution are easy to derive.

2.1.1 MGME properties

1. Marginal densities (Proof 2 in Appendix).

fki(xit) =

8>><>>:
gi(xit)

�
1 +

mP
s=1


is
n
(xsit � �is)

�
;

gi(xit)

�
n� 1
n

+
wi2
n

�
1 +

mP
s=1


2is (x
s
it � �is)

2

��
;

if k = 1;

if k = 2:
(7)

2. Non-central moments (Proof 3 in Appendix).

Ek [x
r
it] =

8><>:
�ir +

mP
s=1


is
n
(�i;r+s � �ir�is);�

n�1
n
+ wik

n

�
�ir +

wik
n

mP
s=1


2is
�
�i;2s+r + �is(�is�ir � 2�i;s+r)

�
,

if k = 1;

if k = 2; 8r 2 N:

(8)

3Note that it is also feasible to obtain expansions of other distributions based on the derivatives of the

distribution used as basis. Particularly for the Poisson, Gamma or Beta distributions they are the so-called

Gram-Charlier Type B, Laguerre and Jacobi expansions respectively. Nevertheless these approaches are less

tractable for empirical purposes than the one based on GME polynomials.
4León, Mencía & Sentana (2009) describe the parametric properties of univariate SNP distributions based

on other alternative positive transformation.
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3. Cumulative distribution function (Proof 4 in Appendix).

Pr[x1 � x1; � � � ; xn � xn]k =
1

n

nX
i=1

hik(xi)

24 nY
j=1; j 6=i

xjZ
�1

gj (xjt) dxjt

35 ; 8k = 1; 2: (9)

where hik(xi) stands for the cdf of the corresponding univariate GME distribution evaluated

at xi (see Ñíguez et al., 2007, for a closed formula of hik(xi) for the Gaussian case).

2.2 The MGME with correlated variables

So far we have analysed the case of the MGME distribution of uncorrelated variables

(De�nition 1), but dependences among its marginals are incorporated to the MGME density

in De�nition 2 by considering a linear transformation of the type

ut = �
1=2
t xt = DtR

1=2xt; (10)

where the (positive de�nite) variance and covariance matrix, �t = �
1=2
t �

1=2
t = DtRDt =

DtR
1=2R1=2Dt, has been decomposed in the diagonal matrix of conditional deviations,

Dt = diagf�1t; � � � ; �ntg, and the correlation matrix, R.

De�nition 2. The MGME pdf of a random vector ut = (u1t; u2t; : : : ; unt)0 2 Rn and using

the multivariate pdf G(ut; �t; �) (with mean 0, conditional variance and covariance matrix

�t, density parameters �, marginal densities gi(xit) and non-central moments denoted by �r,

8i = 1; 2; :::; n) as basis, is de�ned as,

Fk(ut;
;�t;�) =
1

n
G(ut;�t;�)

nX
i=1

wik

"
1 +

mX
s=1


kis (x
s
it � �is)

k

#
; 8k = 1; 2; (11)

where xit is the corresponding component of the inverse transformation in equation (10),

e.g. for the bivariate case and the symmetric eigenvalue decomposition of the variance and

covariance matrix

xit =
1

2

2X
j=1

�
1p
1 + �

+ (�1)i+j 1p
1� �

�
ujt
�jt
; 8i = 1; 2; (12)

8



where �jt captures the conditional deviation of ujt (8j = 1; 2) and j�j < 1 the correlation

between variables u1t and u2t.5

Special interest deserves the case where the multivariate density used as basis is elliptical

and thus may be expressed as

G(ut;�t;�) = j�tj�1=2 'n
�
u0t�

�1
t ut

�
; (13)

where 'n (z), z � 0, is some generating function such thatZ 1

0

zn=2�1'n (z) dz =
�(n

2
)

�n=2
: (14)

In particular for 'n (z) =
e�z=2

(2�)n=2
we obtained the MGME that expands the multivariate

Normal (MN hereafter) (equation (15)) and for 'n (z) =
�
1 + z

�

��(�+n)=2
; � being the degrees

of freedom, the expansion of the multivariate Student�s t (MST hereafter) (equation (16)).6

F+k (ut;
;�t) =
1

(2�)
n
2 n
j�tj�

1
2 exp

n
�u0t�

�1
t ut
2

o nX
i=1

wik

"
1 +

mX
s=1


kis
�
xsit � �+is

�k#
(15)

F �k (ut;
;�t; �) =

�
�
�+n
2

�
j�tj�

1
2

h
1 +

u0t�
�1
t ut

(��2)

i� �+n
2

nP
i=1

wik

�
1 +

mP
s=1


kis (x
s
it � ��is)

k

�
n(�(� � 2))n2�

�
�
2

� (16)

8k = 1; 2;

�+is and �
�
is = �

+
is

(��2)s=2�1
(��s)(��s�2)(��s�4)���(��4) 8s even (0 8s odd) being the s�th order non-central

moment of the standard Normal and standard Student�s t distribution, respectively. Note

that the MN and the MST are nested in (15) and (16), respectively, and that F �k (ut;
;�t; �)

tends to F+k (ut;
;�t) as � goes to in�nity.

The statistical properties of the "Non-standard" MGME family of distributions in

De�nition 2 are easily worked out by taking into account the properties of the density

5It must be noted that the decomposition of the variance and covariance matrix is not unique. Particularly,

the non-symmetric eigenvalue or the Cholesky decomposition may also be implemented. Even the trivial

transformation for uncorrelated variables (i.e. xit = uit
�it

8i = 1; 2; :::; n) might be used in the polynomial

structure, since correlations have been taken into account in the multivariante distribution used as basis,

G(ut;�t;�).
6There exist many other speci�cations for the multivariate Student�s t. We opt for the more standard

case (equation (1.1) in Kotz & Nadarajah, 2004).
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used as basis, the transformation (10) and the standard case in equations (7), (8) and (9).

For example, the MGME has not 0 mean unless 
si = 0 8s odd and 8i, the variance

and covariance matrix is proportional to �t, and all the moment and co-moment structure

(including skewness and kurtosis) depend on the matrix of parameters 
. More interestingly,

the MGME distributions that use the MN as basis preserve the "separability" property

introduced in Engle (2002) and Engle and Sheppard (2001), since the log-likelihood function

can be split in the log-likelihood of the volatility part, LV (ut;�) (equation (17)), and the log-

likelihood of the MGME in terms of the standardized variables ("t = D�1
t ut), LGMEk("t;�;�)

(equation (18)), where �, � and 
 stand for the matrices containing the parameters of

the conditional variances, correlations and expansion terms of the MGME distribution,

respectively (Proof 5 in Appendix).

LV (ut;�) = �1
2

nX
i=1

"
T log(2�) +

TX
t=1

�
ln(�2it) +

u2it
�2it

�#

= �1
2

nX
i=1

[T log(2�) + LVi(�i)] ; (17)

LGME+k
("t;�;�;
) = �1

2

TX
t=1

(
ln jRj+ "0tR�1"t � 2 ln

"
nX
i=1

wik

 
1 +

mX
s=1


kis
�
xsit � �+is

�k!#)
8k = 1; 2: (18)

The latter property allows to implement two-step estimation methods since the parameters

of the conditional variances can be consistently estimated by independent QML estimation

under Gaussian hypotheses (�rst step) and correlations can be estimated jointly with the

rest of the MGME parameters by LIML applied to the log-likelihood concentrated on the

estimates of the conditional variances, LGMEk("t; b�;�;
) where b� = argmax fLMV (ut;�)g

(second step).7 Such a procedure simpli�es by far the estimation compared to the jointly

estimation that is theoretically the only valid methodology if the assumed distribution is not

Normal (i.e. for �nancial data applications). Del Brio et al. (2010) extended this two-step

methodology to non-Gaussian distributions of the type displayed in equation (5). These

7Three-step estimation methods can be also implemented analogously, the �rst step estimating the

conditional mean parameters and conditioning on these estimates the second and third steps.
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authors argued that as the GC is a valid asymptotic expansion the second step must also be

necessarily consistent even when the true distribution is not MGC. The same result holds

for our MGME approach, since it encompasses the MGC distribution.

3 Application to exchange rates portfolio

3.1 The model

Let us consider a portfolio of n assets and let rt the vector containing the returns on these

assets at time t. We assume that the distribution of rt conditioned on the information set


t�1 belongs to the MGME family with conditional mean, E(rtj
t�1) = �t(�), and and

conditional variance and covariance matrix E(utu0tj
t�1) = �t(�;�) (equations (19), (20)

and (21)), where �, � and � and 
 are the matrices including conditional mean, variance,

correlation and MGME expansion parameters, respectively. We model conditional mean

and variance for every variable as AR(1)-GARCH(1,1) (equations (22) and (23), � being

the Hadamard product computed by element by element multiplication) and we assume the

CCC model (Bollerslev, 1990) for modeling correlations, which guarantees a positive de�nite

variance and covariance matrix.8

rt = �t(�) + ut; (19)

utj
t�1 � MGMEk(0;�t(�;�);
); (20)

�t(�;�) = Dt(�)R(�)Dt(�); (21)

�t(�) = �0 + �
0
1rt�1 (22)

D2
t = diagf�i0g+ diagf�i1g � ut�1u0t�1 + diagf�i2g �D2

t�1; (23)

We consider di¤erent SNP models that are nested in the MGME family of distributions. In

particular we consider four di¤erent expansions using the MN as basis: theMGCk (equation

(5)) and theMGME+k (equation (15)) 8k = 1; 2. We choose these speci�cations to show that
8We choose the more benchmarked model for �rst and second moments since we focus on showing the

advantages of the MGME distribution compared to other multivariate SNP alternatives. Of course our model

admits more complex multivarite volatilitiy structures, particularly the DCC model by Engle (2002).
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MGC1 is nested in the the MGME family since its density can be obtained as MGME+1

and that the "positive" MGME+2 may be a more simple and accurate formulation than

the MGC2. Furthermore, to show the potential advantages of the MGME when using other

densities as basis we also include a version of the MGME using the MST,MGME�1 (equation

(16)), which we compare with the MST as benchmark. We expand all these densities to the

eighth term although some of the parameters are constrained to zero, after testing their non-

signi�cance (e.g. the odd parameters). For the sake of simplicity in the empirical application

presented below we consider a bivariate portfolio, the applications of MGME densities using

the MN as basis to larger portfolios, however, are not computationally demanding since they

may be consistently estimated in two (or three) steps.

3.2 The Data

In this section we investigate the empirical performance of the six bivariate models discussed

above: MGC1, MGC2, MGME+1 , MGME
+
2 , MGME

�
1 and MST . The data used are

(daily) percent log returns computed as rit = 100 log (Pit=Pit�1) from a observed sample

fPitgTt=1 of (daily) FX of di¤erent currencies with respect to the British Pound. In

particular we analyse the bivariate distribution of the US Dolar/British Pound ($/£ ) and EU

Euro/British Pound (e/£ ) FX and the Chinese Yuan/British Pound (Y/£ ) and the Japanese

Yen/British Pound (y/£ ) FX. All series are sampled over the period June 20, 1995 to October

2, 2009 for a total of 3; 560 observations. The data were obtained from Datastream. Table

1 reports some descriptive statistics for the total samples. The unconditional distribution

of any of these series shows clearly non-Gaussian features, such as (mild) skewness, and a

remarked excess of kurtosis over the Normal distribution, Japanese y/£ FX being by far the

more leptokurtic and extreme valued series. Regarding the correlation coe¢ cients, the $/£

and the e/£ FX are higher correlated than the Asian currencies between them (Y/£ and

y/£ FX).

[Insert Table 1]
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3.3 Estimation and empirical analysis

The estimation of the MGME models that expands the MN is carried out in two stages by

(Q)MLE techniques. In the �rst stage, the parameters of the AR(1)-GARCH(1,1) model

are estimated (under normality) independently for each asset and, in the second stage, the

centered and standardized residuals from the previous step are used to estimate correlations

and the rest of the density parameters. The likelihood functions in each step are maximized

using the Berndt, Hall, Hall & Hausman (1974) algorithm. The �rst stage yields QMLE

which is consistent and asymptotically normal, although not e¢ cient. In cases of density

misspeci�cation the second stage MLE is not a priory consistent, since we use a truncated

SNP density, but it may be more e¢ cient than the second step QMLE (i.e. under the

MN distribution). However, we argue that the better our truncated SNP density can

approximate the �true� distribution, the more e¢ cient is our second stage MLE. Finally,

following Pagan (1996) a further Newton-Raphson iteration without line search for the joint

model is performed from the �rst and second stage (Q)MLE: the estimates do not change

but the information matrix is now block diagonal, thus obtaining estimators asymptotically

equivalent to joint QMLE. Robust standard errors were computed following Bollerslev &

Wooldridge (1992). The models that include the MST are jointly estimated by MLE

since two step procedures cannot be theoretically applied because the log-likelihood is not

separable. Nevertheless when multi-step procedures are "ad hoc" implemented to the MST

the estimation results do not di¤er signi�cantly from the one-step approach (Bauwens &

Laurent, 2005, and Jondeau & Rockinger, 2005). We observe that the estimation of the

MGME models is not computationally very demanding providing that starting values are

chosen properly. As it is known that MGME densities may present multiple local modes,

the optimization is monitored using di¤erent starting values to ensure that the obtained

(Q)MLE estimates are global optima.

Table 2 presents the estimation of the parameters of the aforementioned bivariate models,

which follow the same notation used in previous sections with the exception of the parameters

of the expansion terms of the MGC distribution that, for the sake of simplicity, have the

same notation than the parameters of MGME expansions. Particularly, �is (s = 0; 1) stand

13



for the AR(1) parameters of the conditional means, �is (s = 0; 1; 2) for the GARCH(1,1)

parameters of the conditional variances, � for the unconditional correlation parameter, 
is

(s = 2; 4; 6; 8) for the s � th order polynomial weighting parameter of the expansions and

� for the degrees of freedom (df hereafter) of the MST. T-ratios for robust standard errors

are in parenthesis next to the parameter estimates and an asterisk signals the insigni�cant

parameters (at 5 percent con�dence level).

Regarding the speci�cation of the MGC and MGME models we considered expansions

truncated at the eighth term, but systematically non-signi�cant parameters in all

distributions were removed. Speci�cally, the estimated densities for both portfolios are

unconditionally symmetric since the odd parameters, 
is s = 3; 5; 7 (i = 1; 2) are not

signi�cant at any reasonable signi�cance level. Analogously parameters 
i4 and 
i6 (i = 1; 2)

of the positive distributions (MGC2 and MGME+2 ) and parameters 
i6 and 
i8 (i = 1; 2) of

the expansion of the MST (MGME�1) are also omitted. The selection of the parametric

structure for these expansions was selected according to linear restriction (Wald) tests

but there exists a clear intuition behind these particular parametric structures, since the

parameters of the MGME expansions capture the weights assigned to the deviations of the

moments of the empirical distribution from the corresponding moments of the distribution

used as basis. Therefore it seems that deviations around the mean (
i2) and the deviations

for extreme values (
i8) have signi�cant role for the expansion of the MN but the most

relevant parameters are 
i2 and 
14 when the MST is used as basis, since df parameter (�)

may capture the thick tailed behavior (i.e., a larger expansion is not required).

The models are compared according to accuracy criteria and for this reason the log-

likelihood value (LnL) and the Schwarz Bayesian Information Criterion (BIC) are displayed

in the last two rows of Table 2.9 According to these criteria we observe the following evidence:

(1) The MGME models provide a notably better goodness-of-�t than the distributions used

as basis by themselves (Gaussian10 or Student�s t). (2) If positivity transformations are not

9We choose this statistic instead of the Akaike since the BIC, de�ned as BIC = �lnL + pln(T )=2 (p

being stands for the number of the parameters of the model), has optimal properties (Geweke & Meese 1981).
10The log-likelihood and BIC values of the benchmarked MN are not reported in Table 1. These values

are -2371.67 and 2400.25 for the joint distribution of $/£ and e/£ FX, and -4381.69 and 4410.27 for the

joint distribution of Y/£ and y/£ FX, respectively.
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implemented the MGC and GME yield the same density, although the latter speci�cation

seems to increase parameters signi�cance (it is the additional information of the empirical

moments from those of the density used as basis what signi�cantly explains the expansion

terms). (3) The densities that do not incorporate positivity transformations seem to be

more accurate since those transformations imply certain restrictions in the parametric space,

nevertheless such transformations may be strictly necessary in di¤erent applications which

require estimating recursively the density (e.g. density forecasting). (4) The comparison of

the accuracy obtained expanding MST instead of MN models is misleading because both

models are not nested, however it seems that the expansion of the MN requires additional

terms to capture fat tails compared to the MST that also has the df parameter for such

purposes (actually df parameter increases when the MST is expanded because the terms of

the expansion capture some part of the extreme values). On the other hand the expansion

of the MST (or other non-normal distribution) has not been proved to yield consistent

estimates if two-step procedures are implemented (which may be an important drawback for

large portfolios).

We also observe the usual small structure in the conditional mean, high persistence in

the conditional variance and the correlation parameters capture the fact that the $/£ and

the e/£ FX are higher correlated than the Y/£ and y/£ FX (although it must be noted

that parameter � does not accounts exactly for the correlation coe¢ cient since variances and

covariances depend also on the parameters of the expansion terms).

[Insert Table 2]

Finally, we include a picture of the bivariate GME distribution of the Y/£ and y/£ FX

in Figure 1. This plot illustrates the type of distributions obtained by using the type of

expansions proposed in this article and how they can capture the thick tails featured by

�nancial returns. We also represent in Figures 2A and 2B the the marginal �tted densities

of the y/£ FX distribution (the most leptokurtic of the analysed series) according to di¤erent

speci�cations compared to the empirical distribution (histogram). These plots reinforce the

evidence commented in points (1) and (3) above, since the GME densities clearly outperform

the Normal and the Student�s t (specially at the tails) and the "non-positive" GME (GME)
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presents a more accurate data �t than the "positive" GME (GME2).

[Insert Figures 1 and 2]

4 Concluding Remarks

The literature on the multivariate volatility modeling of portfolio returns has traditionally

focused on the time-varying �rst and second conditional moments of the asset returns

distribution. Nevertheless the abundant evidence of leptokurtosis in portfolio distribution

raises the need of modeling higher order moments by using more �exible speci�cations than

the traditional but unreliable Gaussian assumption. For this purpose there have being

proposed the use of several parametric distributions or copulas, but these alternatives are

either not �exible enough to incorporate salient empirical regularities of �nancial returns

(such as heavy tails, possible multimodality, skewness, etc.) or analytically intractable if

they incorporate those features. On the other hand the SNP approach based on MGC

expansions allows to straightforwardly address these topics since, not only because they

can �t any target density through their general an �exible parametric structure, but also

they present an analytical speci�cation that is tractable due to the orthogonal structure of

Hermite polynomials. In this paper we propose an alternative SNP family of distributions,

the MGME, that are much simpler (the polynomials of the expansion do not require

orthogonality) and thus easier to implement even when using as basis any distribution with

the only requirement of having as many �nite moments as the expansion length for every

dimension. Furthermore our approach generalizes the univariate GME proposed by Ñíguez

& Perote (2007) to a multivariate framework.

If Gaussian density is used as basis and positive transformations are not implemented

the MGME is just a respeci�cation of the MGC but if positivity is imposed the MGME

yields a more simple and accurate formulation. In these cases the MGME also admits the

decomposition of the likelihood function proposed in Engle (2002), which permits to estimate

independently the volatility processes of every asset and, in a second stage, the rest of the

density parameters (correlations and the parameters of the expansion terms), thus solving
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the "dimensionality curse�of multivariate volatility models .

We compare the empirical performance of di¤erent types of MGME for modeling the

distribution of FX portfolio returns ($/£ -e/£ and Y/£ -y/£ FX), in relation to the MN and

MST, taken as basis, and alternative MGC distributions. The results show that the MGME

speci�cations outperform not only the MN and MST but also might be superior than the

MGC distributions when positive transformations are implemented, and thus the MGME

may be an interesting an easy-to-implement SNP tool for modeling portfolio distributions.

Appendix

This appendix includes the proofs of the properties of the multivariate GME densities

presented in Section 2. Proof 1 shows that multivariate SNP densities integrate up to

one; Proof 2, Proof 3 and Proof 4 provide closed forms for marginal distributions, moments

and cdfs, respectively; Proof 5 shows the separability of the log-likelihood for the MGME.
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Furthermore, If k = 1 (i.e. wi1 = 1) then
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Tables and Figures

TABLE 1

Daily percent log returns descriptive statistics

Portfolio FX $/£ - FX e/£ Portfolio FX Y/£ - FX y/£

FX $/£ FX e/£ FX Y/£ FX y/£

Sample 20/06/1995 - 2/10/2009

Observations 3560

Mean -0.0024637 -0.0020004 -0.0082610 -0.000097564

Maximum 4.47445 2.70093 3.26910 8.27608

Minimum -3.91829 -3.14019 -3.95439 -6.23441

St. Dev. 0.53845 0.47118 0.54747 0.81205

Skewness -0.17983 -0.30995 -0.22340 -0.40868

Kurtosis 5.06471 3.37101 3.92932 10.56811

Correlation 0.31747 0.075097
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TABLE 2

Estimation results

Mean equation: rit = �i0 + �i1ri;t�1 + uit; uit = "it�it;

Variance equation: �2it = �i0 + �i1u
2
i;t�1 + �i2�

2
i;t�1; i = 1; 2:

MGC equation: Fk(ut;
;�t) =
1
2G(ut;�t)

�
2P
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�ik

�
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k

��
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MGME equation: Fk(ut;
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��
; k = 1; 2

MGC1 MGC2 MGME+1 MGME+2 MGME�1 MST

Panel 1: Portfolio FX $/£ - FX e/£

Stage 1

�10 -.002 (-0.25)* -.002 (-0.26)* -.002 (-0.24)*

�11 .070 (4.20) .070 (4.19) .007 (4.21)

�10 .001 (2.14) .001 (1.33)* .001 (1.28)*

�11 .034 (5.89) .029 (5.13) .009 (4.41)

�12 .962 (87.49) .973 (84.34) .983 (81.73)

�20 -.001 (-0.24)* -.002 (-0.25)* -.002 (-0.23)*

�21 .033 (2.02) .034 (2.00) .033 (2.10)

�20 .001 (1.67)* .001 (1.46)* .001 (1.41)*

�21 .023 (6.16) .033 (5.30) .024 (4.89)

�22 .971 (99.08) .962 (85.84) .974 (86.80)

Stage 2


12 -.017 (-0.62)* .091 (2.91) -.463 (3.83) -.121 (-5.28) .099 (1.40)*


14 .073 (4.60) .141 (3.38) .149 (7.17)


16 .009 (1.92)* -.017 (-1.84)*


18 .001 (3.39) .001 (3.81) .008 (1.93)* -.001 (-1.65)*


22 -.024 (-0.87)* .096 (3.46) -.776 (-6.18) .105 (4.25) .070 (0.91)*


24 .065 (4.19) .301 (4.86) .003 (2.65)


26 .007 (1.64)* -.039 (-3.78)


28 .001 (1.93)* -.001 (-2.91) .001 (3.40) .001 (2.10)

� 8.10 (11.20) 13.1 (11.29)

� .273 (17.72) .298 (18.57) .275 (17.72) .292 (18.13) .271 (15.74) .172 (12.94)

LnL -2292.60 -2330.14 -2292.60 -2312.56 -4240.58 -4228.87

BIC 2329.35 2350.56 2329.35 2332.97 4273.25 4277.87
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TABLE 2 (continued)

MGC1 MGC2 MGME+1 MGME+2 MGME�1 MST

Panel 2: Portfolio FX Y/£ - FX y/£

Stage 1

�10 -.008 (-0.90)* -.001 (-0.67)* -.008 (-0.92)*

�11 .009 (0.54)* .009 (0.55)* .009 (0.54)*

�10 .002 (1.67)* .000 (0.03)* .001 (0.29)*

�11 .028 (5.33) .012 (11.30) .005 (3.70)

�12 .977 (77.42) .987 (84.43) .994 (75.16)

�20 -.000 (-0.76)* -.001 (-0.77)* -.001 (-0.76)*

�21 .044 (2.63) .044 (2.75) .045 (2.06)

�20 .007 (4.02) .010 (3.66)* .004 (3.31)

�21 .066 (9.02) .077 (7.00) .033 (5.49)

�22 .930 (93.24) .911 (62.84) .908 (60.66)

Stage 2


12 -.022 (-0.78)* .116 (4.90) -1.08 (8.85) -.133 (-6.47) -.061 (-0.94)*


14 .108 (5.96) .435 (6.83) .191 (10.87)


16 .016 (3.14) -.059 (-5.70)


18 .002 (5.15) -.001 (-4.04) .002 (5.16) -.001 (-2.91)


22 -.035 (-1.06)* .115 (4.71) -1.06 (-8.67) .156 (8.75) .163 (2.94)


24 .162 (7.27) .362 (5.63) .047 (4.28)


26 .023 (3.92) -.049 (-4.72)


28 .002 (4.76) -.001 (-6.12) .002 (4.76) -.001 (3.03)

� 5.89 (14.39) 10.2 (17.01)

� .041 (2.55) .054 (2.76) .041 (2.55) .058 (3.08) .040 (2.13) .024 (2.29)

LnL -4142.84 -4268.56 -4142.84 -4202.82 -6078.37 -6041.16

BIC 4179.59 4288.98 4179.59 4223.24 6111.03 6090.16

Notes: This table presents (Q)ML estimates of the parameters of the MGME densities using MN
(MGME+k ) and MST (MGME�k) as basis, k = 2 indicates that positivity transformations are
implemented. The estimates of two versions of the MGC and the MST are also displayed, all
distributions for the bivariate case. �is (s = 0; 1) stand for the AR(1) parameters of the conditional
means and �is (s = 0; 1; 2) for the GARCH(1,1) parameters of the conditional variances. � denotes
the unconditional correlation parameter, 
is (s = 2; 4; 6; 8) the s� th order polynomial weighting
parameter of the expansions and � the degrees of freedom of the MST. The log likelihood value
(LnL) and the Schwarz Bayesian Information Criterion (BIC) are displayed in the last two rows.
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Figure 1. Bivariate GME density (yuan/pound-yen/pound)
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Figure 2A: Marginal densities (yen/pound)
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Figure 2B: Left talils of marginal densities (yen/pound)
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