
Optimal Option Portfolio Strategies∗
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Abstract

Options should play an important role in asset allocation. They allow for kernel

spanning and provide access to additional (priced) risk factors such as stochastic

volatility and negative jumps. Unfortunately, traditional methods of asset allocation

(e.g. mean-variance optimization) are not adequate for options because the distribu-

tion of returns is non-normal and the short sample of option returns available makes

it difficult to estimate the distribution. We propose a method to optimize option

portfolios that solves these limitations. An out-of-sample exercise is performed and

we show that, even when transaction costs are incorporated, our portfolio strategy

delivers an annualized Sharpe ratio of 0.59 between January 1996 and September

2008.
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thank Miguel Ferreira, José Correia Guedes, Pedro Matos, Christopher Jones, Joost Driessen, Ivan Shalias-
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1 Introduction

Although options are well known to help span states of nature [Ross (1976)] and

to provide exposure to (priced) risk factors like stochastic volatility and jumps,1 they are

seldom used in investment portfolios.2 Part of the problem is that existing portfolio opti-

mization methods, like the Markowitz mean-variance model, are ill suited to handle options.

There are three main problems in option portfolio optimization. First, the distribution of

option returns shows significant departures from normality and therefore cannot be de-

scribed by means and variances alone. Second, the short history of returns available to the

researcher severely limits the estimation of their complex distribution. For example, we

only have data for S&P 500 options since 1996 which is not enough to estimate the mo-

ments of their return distribution with sufficient precision. Third, substantial transactions

costs are prevalent in this market. For example, on average, at-the-money (ATM) options

have a 5% relative bid-ask spread while out-of-the-money (OTM) options present relative

bid-ask spreads of 10%.

We offer a simple portfolio optimization method that solves simultaneously these

problems. Instead of a mean-variance objective, we maximize an expected utility function,

such as power utility, which accounts for all the moments of the portfolio return distribu-

tion and, in particular, penalizes negative skewness and high kurtosis. We deal with the

small sample of option returns by relying on data for the underlying asset instead. In our

application, we use returns of the S&P 500 index since 1950 to simulate returns of the

underlying asset going forward3 and, from the definition of option payoffs, generate simu-

lated option returns. Plugging the simulated option returns into the utility function and

averaging across simulations gives us an approximation of the expected utility which can

1See Bates (1996), Bakshi, Cao, and Chen (1997), Andersen, Benzoni, and Lund (2002), and Liu and
Pan (2003), among others.

2Mutual funds use of derivatives is limited [Koski and Pontiff (1999), Deli and Varma (2002), Almazan,
Brown, Carlson, and Chapman (2004)]. Mutual funds generally face legal constraints in terms of short-
selling, borrowing and derivatives usage. This does not happen with hedge funds. Most hedge funds use
derivatives, but are just a small part of their holdings [Chen (2010), Aragon and Martin (2007)].

3We consider different alternatives for simulating the returns based on parametric distributions fitted
to the data or simple bootstrap methods. We can also model a time-varying distribution of returns by
simulating their distribution conditional on state variables such as realized volatility.
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be maximized to obtain optimal portfolio weights. Note that only current option prices are

needed in our procedure, since the payoff is determined by the simulations of the underlying

asset.

We apply our model to the portfolio allocation between a risk-free asset and four

options on the S&P 500 index with one month to maturity.4 We define each option by

choosing the most liquid contract in a predefined bucket around the specific moneyness.

We consider an ATM call, an ATM put, a 5% OTM call and a 5% OTM put option.5

These are liquid options and can be combined to generate a variety of final payoffs. To

incorporate transaction costs, we follow Eraker (2007) and Plyakha and Vilkov (2008). For

each option, we define two securities: a “long” option initiated at the ask quote and a

“short” option initiated at the bid quote. We form a constrained optimization problem for

these eight options and we enter “short” securities with a negative sign into the optimization

algorithm. By not allowing short-selling, only one of two “options” is ever bought.

We study the performance of our optimal option portfolio strategies, which we de-

note by OOPS, in an out-of-sample (OOS) exercise. We find the optimal option portfolios

one month before option maturity and examine the return that they would have had at

maturity. The resulting time series of returns could have been obtained by an investor

following our method in real time. We can then compute measures of performance such

as Sharpe ratios or alphas to assess the interest of the method. It should be stressed that

for the each OOS observation, only one month of option observations is needed. For the

entire period of 153 monthly observations, 99% of the sample is OOS. This per se is sig-

nificantly different from previous studies. OOPS have large Sharpe ratios in our sample

period between January 1996 and September 2008. The best strategy yields a Sharpe ratio

of 0.59. This compares well with the Sharpe ratio of the market in the same period of 0.20,

or even in the full sample since 1950 of 0.40. In addition, several strategies present positive

skewness and low excess kurtosis. We find that our strategies load significantly on all four

options, and that the optimal weights vary over time. Finally, our optimal strategies are

4The S&P 500 index options (ticker SPX) are the most liquid equity options. Open interest for SPX
was around 13 million in August 2009 and average daily volume of 708 thousand in 2008 (www.cboe.com).

5We do not include the S&P 500 in the asset universe since it is spanned by the options.
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almost delta-neutral albeit with significant elasticity.

There is a related literature that investigates the returns of simple option trading

strategies. Coval and Shumway (2001) show that short positions in crash-protected, delta-

neutral straddles present Sharpe ratios around one and Saretto and Santa-Clara (2009) find

similar values in an extended sample. Driessen and Maenhout (2006) confirm these results

for short-term options on US and UK markets. Coval and Shumway (2001) and Bondarenko

(2003) also find that selling naked puts offers high returns even after taking into account

their considerable risk. However, these papers do not discuss how to optimally combine

options into a portfolio. Interestingly, we find that our portfolios depart significantly from

exploiting these simple strategies. For instance, there are extended periods in which the

optimal portfolios are net long put options.

There are five papers closest that also address the optimal portfolio allocation with

options. Liu and Pan (2003) model stochastic volatility and jump processes and derive the

optimal portfolio policy for a CRRA investor between one stock, a 5% OTM put option, and

cash. Although they get an analytic solution for the optimal option allocation, they need

to specify a particular parametric model and estimate its parameters. They try different

parameter sets and obtain ambiguous conclusions in terms of put weights. Also, they only

require one option to complete the market since they either consider a pure jump risk or

pure volatility risk setting. In our case, we can use any model (parametric or not) for the

distribution of return of the underlying asset. Our paper is empirical in nature and no

restrictions are imposed on the number of options that could be used in the optimization

problem.

Eraker (2007) uses a standard mean-variance framework with a parametric model

of stochastic volatility and jumps to choose between three risky assets: ATM straddles,

OTM puts, and OTM calls. He provides a closed-form solution for weights and obtains

an OOS annualized Sharpe ratio around 1.6. As in Liu and Pan (2003), he requires a

long period to estimate the parametric model and the estimates are sensitive to the period

under consideration. Our approach is more flexible in term of the distribution of returns
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and the number of options in the portfolio. Driessen and Maenhout (2007) analyze the

importance of derivatives in portfolio allocation by using GMM to maximize the expected

utility of returns for a portfolio of a stock, an option strategy, and cash. They use either

an OTM put, an ATM straddle, or corresponding crash-neutral strategies. They conclude

that positive put holdings that would implement portfolio insurance are never optimal

given historical option prices. In contrast, we find that optimal weights are time-varying,

and change signs during our sample period. Jones (2006) studies optimal portfolios to

exploit the apparent put mispricing. He uses a general nonlinear latent factor model and

maximizes a constrained mean-variance objective. He circumvents the short history of data

by using option daily returns. The model is quite heavy with 57 parameters to estimate

even when only factor is considered. This limits the practical usefulness of his approach.

Constantinides, Jackwerth, and Savov (2009) study portfolios made up of either calls or puts

with a targeted moneyness and they leverage-adjust their returns using options’ elasticity.

Although they find high Sharpe ratios, mostly for put strategies, these strategies yield

negative skewness and high kurtosis.

The rest of this paper is organized as follows. Section 2 explains the methodology.

Section 3 describes the data used. Section 4 presents results and findings. Robustness

checks are performed in Section 5. Finally, we present some concluding remarks.

2 Portfolio Allocation

2.1 Methodology

We first define some terminology. Let time be represented by the subscript t and

simulations indexed by n. Our portfolio allocation is implemented for one risk-free asset

and a series of call and put options with one period to maturity. We assume that there

are C call options indexed by c where c = c1, ..., cC , and P put options indexed by p where

p = p1, ..., pP .6 At time t, the value of the underlying asset is denoted by St and each

option i has an exercise price of Kt,i. The risk-free interest rate from time t to t+1, known

6We include only options that are not redundant from put-call parity.
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at time t, is denoted by rft. For each date t, weights are obtained through the maximization

of the investor’s expected utility of the end-of-period wealth, which is a linear function of

simulated portfolio returns. The latter are derived from option returns which in turn depend

on the underlying asset returns. The following steps describe in detail the algorithm used.

Appendix A shows a simple illustration.

1. We simulate N underlying asset log-returns rnt+1 where n = 1, ..., N . Several different

possible simulation schemes can be used. Our simulation is performed under the

empirical density not risk adjusted measure. We explain the simulation scheme in

detail in Section 2.2.

2. The log-returns from step 1 are used to simulate next period’s underlying asset value,

given its current value
Snt+1|t = St exp(rnt+1) (1)

where n = 1, ..., N , and Snt+1|t denotes the simulated underlying asset value in period

t+ 1 conditional on information up to time t.

3. Based on known strike prices for call options Kt,c and put options Kt,p and one-period

simulated underlying asset values St+1|t in equation (1), we simulate option payoffs

at their maturity t+ 1

Cn
t+1|t,c = max(Snt+1|t −Kt,c, 0) and P n

t+1|t,p = max(Kt,p − Snt+1|t, 0) (2)

where n = 1, ..., N . Using these simulated payoffs in equation (2) and current option

prices, returns are then computed by

rnt+1|t,c =
Cn
t+1|t,c

Ct,c
− 1 and rnt+1|t,p =

P n
t+1|t,p

Pt,p
− 1 (3)

where n = 1, ..., N . To compute these returns, current options prices Ct,c, c = c1, ..., cC

and Pt,p, p = p1, ..., pP at month t are used. Notice that only one-period ahead payoffs

are simulated; the denominator of the return is the currently observed option price.

4. We construct simulated portfolio returns in the usual way

rpnt+1|t = rft +

cC∑
c=c1

ωt,c(r
n
t+1|t,c − rft) +

pP∑
p=p1

ωt,p(r
n
t+1|t,p − rft) (4)
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where n = 1, ..., N . Each simulated portfolio return is a weighted average of the asset

returns and only the risk-free rate is not simulated.

5. We choose weights by maximizing expected utility over simulated portfolio returns

MaxωE[U(Wt(1 + rpt+1|t))] ≈Maxω
1

N

N∑
n=1

U(Wt(1 + rpnt+1|t)). (5)

The output is given by ωt,c, c = 1, ..., C and ωt,p, p = 1, ..., P . We provide further

details in Section 2.3.

6. One-period OOS performance is evaluated with realized option returns.

First, we determine the option realized payoffs

Ct+1,c = max(St+1 −Kt,c, 0) and Pt+1,p = max(Kt,p − St+1, 0) (6)

Second, we find the corresponding returns

rt+1,c =
Ct+1,c

Ct,c
− 1 and rt+1,p =

Pt+1,p

Pt,p
− 1 (7)

Third, we determine the one-period OOS portfolio return

rpt+1 = rft +

cC∑
c=c1

ωt,c(rt+1,c − rft) +

pP∑
p=p1

ωt,p(rt+1,p − rft) (8)

using the weights determined in step 5 of this algorithm.

2.2 Return simulation

The first step of the algorithm is to simulate one-period log-returns of the underlying

asset. There are many possible approaches to do this. See Jackwerth (1999) for a survey

of the literature. Aı̈t-Sahalia and Lo (1998) and Jackwerth and Rubinstein (1996) present

two examples of potential routes that we could follow to recover a density function in

continuous or discrete time setting, respectively. We follow two approaches, unconditional

and conditional simulation. Either is implemented in two ways, historical bootstrap and

parametric simulation based on historical estimation of the parameters of the density. In
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all cases, in each month we use an information set corresponding to an expanding window

of data of the underlying asset up to time t so that the results are out of sample.

The unconditional approach goes as follows. In the first place, following Efron and

Tibshirani (1993), we bootstrap raw returns from the historical empirical distribution of

the underlying distribution up to date t. Hence, we resample directly from historically

observed returns. Implicitly, this corresponds to drawing returns from their empirical dis-

tribution (histogram). We denote this approach as empirical. Alternatively, we simulate

returns using a parametric distribution f estimated from past data. We use two types of

distribution. The first distribution, which is the most standard in the literature, is a Nor-

mal distribution with density f(r|µ̂t, σ̂t) where µ̂t is the sample mean and σ̂t is the sample

standard deviation. It is known that the normal distribution does not fit return data well,

in particular, it does not capture the frequency of extreme events.7 To extend our analysis

to other types of distributions, we consider a family of distributions which is commonly

designated by the Generalized Extreme Value distribution (GEV). The GEV distribution

is defined by the density f(r|λ̂t, σ̂t, µ̂t) with shape parameter λ̂t, scale parameter σ̂t, and

location parameter µ̂t.
8 It provides a flexible framework that generalize several distribu-

tions. Notice that all estimated parameters are time-varying, since we use an expanding

window up to time t to estimate them.9

So far, we have not taken into account that returns may be dependent. Both the

bootstrap and the parametric density approaches assume that returns are i.i.d. However,

it is well known that volatility clusters in time. To capture this issue, we use standardized

7Jackwerth and Rubinstein (1996) show that using a normal distribution to model returns, the proba-
bility of a stock market crash like the ones that we have witnessed in the past is 10−160.

8The GEV density function is defined in the following way:

f(r|λ, σ, µ) =

{
1
σ

(
1 + λ r−µσ

)−1−1/λ
exp

(
−
(
1 + λ r−µσ

)−1/λ
)

for λ 6= 0
1
σ exp(−

r−µ
σ )exp(−exp(− r−µσ )) for λ = 0

The distributions depend crucially on the sign of the parameter λ. A positive sign denotes the Fréchet
class which include well known fat-tailed distributions such as the Pareto, Cauchy, Student-t and mixture
distributions. The zero parameter denotes the Gumbel class and includes the normal, exponential, gamma
and lognormal distributions. A negative sign denotes the Weibull class which includes the uniform and
beta distributions.

9Parameters are estimated by maximum likelihood using the built-in functions of MATLAB normfit
and gevfit.
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log-returns, which we denote by x. We select realized volatility as an estimate of volatility

rvt =

√√√√ Dt∑
d=1

r2
t,d where Dt is the number of days in month t and rt,d are the daily returns

of day d in month t. Standardized log-returns are the ratio of log-return by the previous

month’s realized volatility xt =
rt

rvt−1

. This is close in spirit to the filtered historical simu-

lation of Barone-Adesi, Giannopolos, and Vosper (1999) in which volatility is estimated by

a parametric model such as a GARCH(1,1).10

Table 1 presents summary statistics for raw and standardized returns for the period

between 1950 and 2008 and two subperiods, before and after 1996. Both processes present

a smaller mean in the second subperiod. While standardizing returns also reduce volatility

in the second subperiod, the opposite happens to raw returns. Both processes present

negative values for skewness around −0.50, but lower, in absolute terms, for standardized

returns. Raw returns present an excess kurtosis in the first subperiod around 3 which

reduces drastically in the latter period. Standardization almost eliminates kurtosis. This is

due to less frequent extreme standardized returns, e.g., the Black Monday extreme negative

return is now much smaller. The standardized return is now only 0.36 standard deviation

units away from the mean while -6.13 standard deviation units away from the mean for raw

returns. For the period between 1950 and 1995, the one and twelve-month autoregressive

coefficients of raw and standardized returns are small and in the order of 0.03, whereas

the autoregressive coefficient of the squared processes is of the order of 0.10 in absolute

value. Performing Ljung-Box autocorrelation test for the residuals of raw and standardized

returns, the residuals do not present autocorrelation. Using an ARCH test for the previous

one and twelve months, the i.i.d. hypothesis is rejected for raw returns mainly in the period

between 1950 and 1995. The i.i.d. hypothesis is not rejected for the case of standardized

returns for any reasonable significance level.

The conditional approach uses standardized returns rather than raw returns and a

slight modification of the algorithm in Section 2.1 is needed. The adjustment occurs in the

10Properties of standardized returns are presented, for instance, in Andersen, Bollerslev, Diebold, and
Ebens (2001) for stock and Andersen, Bollerslev, Diebold, and Labys (2003) for exchange rates. They show
that standardized returns are close to i.i.d. normal.
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first and second steps of the algorithm.

1’. Simulate standardized returns

xnt+1 =
rnt+1

rvt
(9)

To obtain xnt+1 we consider the same two ways as in the unconditional simulation,

bootstrapping and parametric simulation.

2’. Bootstrapped standardized returns are now scaled by the current standardized

return

Snt+1|t = St exp(xnt+1.rvt) (10)

where xnt+1 are the simulated standardized returns from step 1’ and rvt is the realized

volatility of the time period between t− 1 and t, which is not simulated.

In either case, unconditional or conditional, current option prices are used in step 3.

This intrinsically takes into account the recurrent change in expectations of the underlying

asset conditional distribution (e.g., OTM put options become more expensive if investors

think that the probability of a crash increased). Our concept of conditional variable is the

scaling with lagged volatility.

2.3 Maximizing expected utility

In the fourth step, the investor maximizes the conditional expected utility of next

period’s wealth
max
ωi,t∈R

E[u(Wt+1)]

subject to the usual budget constraint Wt+1 = Wt (1 + rpt+1). Maximizing expected util-

ity takes into account different return distributions. If returns are normal, then rational

investors only care about the mean and variance of portfolio returns. In practice, this

is unlikely to hold, especially for option returns. Investors care about tail risk (extreme

events), so mean and variance do not provide enough information for adequately perform

asset allocation choice.

We use the power utility function (see Brandt (1999)). This utility function presents
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constant relative risk aversion (CRRA) and is given by

u(W ) =


1

1−γW
1−γ, if γ 6= 1

ln(W ), if γ = 1

where γ is the coefficient of relative risk aversion.11 This utility function is attractive for

two reasons. First, because of the homotheticity property, portfolio weights are indepen-

dent of the initial level of wealth. So maximizing E[u(Wt+1)] is the same as maximizing

E[u (1 + rpt)]. Second, investors care about all moments of the distribution, in particular,

skewness and kurtosis. Brandt, Goyal, Santa-Clara, and Stroud (2005) offer approxima-

tions to the optimal portfolio choice. We set the constant relative risk aversion parameter

γ equal to 10 in order to make a conservative asset allocation choice. To the extent that

the investor has lower risk aversion than this value, this works as a shrinkage mechanism

and smooth of a portfolio weights. Rosenberg and Engle (2002) estimate for S&P 500 index

option data over the sample period between 1991 and 1996 an empirical risk aversion of

7.36. Finally, notice that we could have used any other utility function in applying our

methodology.12

2.4 Transaction Costs

There is a large body of literature that documents that transaction costs in the

options market are quite large and are in part responsible for some pricing anomalies, such

as violations of the put-call parity relation.13 Hence, it is essential to include these frictions

in our optimization problem. We only discuss the impact of transaction costs measured by

the bid-ask spread. Other types of costs like brokerage fees and market price impact events

may be substantial but are ignored here.

Figure 1 shows that between 1996 and 2008 options present substantial bid-ask

11For arguments lower than 0.001, we use a first-order approximation of this utility function to avoid
extreme negative values, as is standard in the literature.

12Several more sophisticated models and implications for disappointment aversion are discussed by
Driessen and Maenhout (2007).

13See, for instance, Phillips and Smith (1980), Baesel, Shows, and Thorp (1983), and Saretto and Santa-
Clara (2009).
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spreads. From Table 2 the bid-ask spread is on average $1.20 for ATM options and $0.60

for OTM options. Dividing this by mid prices, we measure relative bid-ask spreads for

ATM option of around 5%, but for OTM options this increases to 10% on average. This

relative bid-ask spread changes over time and for OTM options can attain levels up to

30%.14

We propose to incorporate transaction costs by decomposing each option into two

“securities”: a “bid option” and an “ask option”. These mean that we initiate long positions

at the ask quote and short positions at the bid quote, and the latter enters the optimization

with a minus sign. This approach was applied by Eraker (2007) and Plyakha and Vilkov

(2008). Then we run the previous algorithm as a constrained optimization problem by

imposing no short selling. This means that in each month only one of the securities, either

the bid or ask option, is ever bought. Note that the larger the bid-ask spread, the less

likely will be an allocation to the security, since expected returns will be smaller.

3 Data

3.1 Securities

We analyze the optimal portfolio allocation from January 1996 to September 2008.

This period selection is due to our availability of option data. We also use data that goes

back to February 1950 for the simulation process. More specifically, we consider returns of

the S&P 500 index, which extends from February 1950 through September 2008. Figure 2

presents the monthly time-series of S&P 500 and VIX indices15 in the main period. This

period encompasses a variety of market conditions as can be seen from the cycles in the

index and from the evolution of volatility. Some of the events occurred in this period

were the 1997 Asian crisis, the 1998 Russian financial crisis, the 1998 collapse of LTCM,

14Dennis and Mayhew (2009) shows that the effective spread is about 2/3 of the quoted spread, which
is given in OptionMetrics. So quoted spread may overestimate the costs which seems like a conservative
assumption in terms of OOPS performance.

15VIX is calculated and disseminated by CBOE. The objective is to estimate the implied volatility of
short-term ATM options on the S&P 500 index over the next month. The formula uses a kernel-smoothed
estimator that takes as inputs the current market prices for several call and put options over a range of
moneyness ratio and maturities.
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the 2001 Nasdaq peak, the 9-11 attack, the 2002 business corruption scandals (Enron and

Worldcom), the Gulf War II, and the 2008 subprime mortgage crisis. The empirical analysis

relies on monthly holding-period returns since microstructure effects tend to distort higher-

frequency returns. For our empirical analysis, we use S&P 500 index closing prices extracted

from Bloomberg. Based on this, we construct a time-series of monthly log-returns.

We use data from the OptionMetrics Ivy DB database for European options on the

S&P 500 index.16 The underlying asset is the index level multiplied by 100. These options

are traded on the CBOE, and contracts expire on the third Friday of each month. The

options are settled in cash, which amounts to the difference between the settlement value

and the strike price of the option multiplied by 100, on the business day following expiration.

This dataset includes daily highest closing bid and the lowest ask prices, volume, and open

interest for the period between January 1996 and September 2008. In order to eliminate

unreliable data, we apply a series of filters. First, we eliminate all observations for which

the bid is less than $0.125 or greater than the ask price. Second, observations with no

volume are also eliminated to mitigate the impact of non-trading. Finally, we exclude all

observations that violate usual arbitrage bounds.

For the purpose of this study, we assume the risk-free interest rate to be represented

by the 1-month US LIBOR rate. This series is extracted from Bloomberg for the period

between January 1996 and September 2008.

3.2 Construction of option returns

Our asset allocation uses a risk-free asset and a set of risky “securities” . We define

four options with different levels of moneyness: an ATM call, an ATM put, a 5% OTM

call, and a 5% OTM put. This small number of securities keeps our model simple, but

nevertheless generates flexible payoffs as a function of underlying asset price. OTM options

are important for kernel spanning (Burachi and Jackwerth (2001) and Vanden (2004)) and

a deep OTM put option is much more sensitive to negative jump risks. We do not allow

16From the CBOE report, these options trade under the ticker SPX and the average daily volume in
2008 was 707,688 contracts.
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the investor to choose from all available contracts simultaneously, since our investor may

then exploit small in-sample differences between highly correlated option returns, leading

to extreme portfolio weights (see, e.g., Jorion (2000) for a discussion of this issue). These

are also amongst the most liquid options.17

We choose 1-month maturity options. As reported by Burachi and Jackwerth (2001),

most of the trading activity in S&P 500 index options is concentrated in the nearest con-

tracts of less than 30 days to expiration. By choosing 1-month maturity we also prevent

microstructure problems. This target maturity is also appealing since longer maturity op-

tion contracts may stop trading if the evolution of the underlying asset moves in such a

way that options become very deeply ITM or OTM. Yet another advantage is that holding

the options to maturity only incurs in transaction costs at the inception of the trade.

We then construct time-series of option returns. To that end, mid prices calculated

as the midpoint of bid and ask prices are initially considered. We first find all available

option contracts with exactly one-month to maturity.18 We then define buckets for op-

tion moneyness (OM), measured by the ratio of the underlying price by the strike price

subtracted by one, S/K−1. We set a range of moneyness between -2% and 2% for ATM op-

tions and a bound 1.5% away from 5% for OTM options. Basically, we fix target moneyness

buckets conditional on 1-month maturity options.

Following this, at each month and for each bucket we are still left with several

potential securities. However, we only want one option contract in each month. So we

choose the option with lowest relative bid-ask spread, defined as the ratio between the

bid-ask spread and the mid price. When more than one contract has the same ratio, we

choose the one with largest open interest.19 Finally, we construct the synthetic 1-month

17Using volume as a proxy for liquidity.
18There are other alternatives that we do not follow. In particular, Burachi and Jackwerth (2001), Coval

and Shumway (2001), and Driessen and Maenhout (2006) select the options at the first day of each month
and compute returns until the next month first day.

19We do not need further criteria, since this already defines a unique contract at each month for each
option type and bucket.
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hold-to-expiration option returns

rt,t+1 =
Payofft+1

Pricet
− 1

where Payofft+1 is the payoff of the option at maturity calculated with the close price of the

underlying asset at the day before settlement, and Pricet is the option price observed at the

beginning of the period. We obtain a time-series of 153 observations for each option. Figure

3 presents the kernel density estimates for each option security. This reveals that the option

return distribution departs significantly from the normal distribution, with considerable

negative tail risk for any of the options considered.

Summary statistics of option sample grouped by moneyness (OM) for each time-

series are presented in Table 2. ATM call and put options present an average moneyness

of 0.35% and −0.24%, respectively, whereas OTM call and put options present an average

moneyness of−4.03% and 4.45%, respectively. These numbers show how close each contract

is to the mean value of each bucket. The volume for each contract is around 4,000 and there

is an open interest close to 20,000. The mean implied volatility varies between 15% and

22% with moneyness, which confirms the known smile effect. Panel B of figure 1 presents

the evolution of implied volatility of each option between 1996 and 2008. Implied volatility

is low between 2003 and mid 2007’s. We can recognize five pronounced peaks in these

time-series corresponding to the year 1998 and the periods 2000-2002 and 2007-2008.

Table 3 reports summary statistics of returns of the various securities present in

this study. The S&P 500 index experiences an average monthly return of 0.3% over the

sample period corresponding to an annualized Sharpe ratio of 0.20.20 The main performance

measure in this study is the Sharpe ratio.21 We also compute the certainty equivalent of an

investor with risk aversion of 10 and, in addition, we also incorporate descriptive statistics

20This is not in line with usual stated Sharpe ratios for the US market in the order of 0.50. The main
reason for this low Sharpe ratio is the period in question which is not a very long sample period.

21The main problem of a Sharpe ratio is that it only takes into account the first two moments, mean
and standard deviation. Broadie, Chernov, and Johannes (2009) show that although Sharpe ratio is not
the best measure to evaluate performance in an option framework, other alternative measures as Leland’s
alpha or the Manipulation Proof Performance Metric face the same problems. See Bernardo and Ledoit
(2000) and Ingersoll, Spiegel, Goetzmann, and Welch (2007) for problems with Sharpe ratio.
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of the return distribution, in particular, skewness and excess kurtosis. The S&P 500 index

returns also present negative skewness and excess kurtosis. Options present large negative

average monthly returns which range from -3.1% to -51.6%. This suggests that writing

options may work out as a good strategy since annualized Sharpe ratios range from 0.10 to

1.02 for this period.22 However, this has negative tail risk which may be too onerous in some

months. The returns to writing options have a maximum of 100% but the minimum ranges

from -459% to -2,349% depending on the option. This leads to large negative skewness and

excess kurtosis between 4.82 and 35.70. The last row of this table shows a strategy that

allocates the same weight to each option. DeMiguel, Garlappi, and Uppal (2009) argue

that a naive 1/N uniform rule is generally good. Using this rule for our four risky assets,

we obtain smoother skewness and kurtosis, but the Sharpe ratio is close to zero.

The construction of “bid” and “ask” securities is straightforward. For the chosen

contract, we use the bid quote and the ask quote, respectively. The descriptive statistics

of these contracts are very similar to the ones using mid prices and are not presented for

space reasons.

4 Results

Table 4 presents summary statistics of OOS returns for the OOPS between January

1996 and September 2008. The first point is that all strategies display annualized Sharpe

ratios greater than the market. Based on the unconditional approach, the OOPS strategies

present negative skewness (close to -4) and substantial excess kurtosis (around 30). Notice

the extreme negative returns which may achieve -75% per month. The best strategy is the

one that uses a Normal distribution with an annualized Sharpe ratio of 0.27, although the

Sharpe ratios are not truly very different across simulation methods.23 Certainty equivalent

values are ridiculously negative, due to the extreme returns.

22Coval and Shumway (2001) and Eraker (2007) show that writing put options earns Sharpe ratios of
this magnitude.

23These strategies are i.i.d. as it can be shown using an ARCH test or a Ljung-Box test. Results not
reported for space reasons. Hence, there is no need to correct annualized Sharpe ratios for the potential
autocorrelation in strategy returns.
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On the other hand, conditional strategies present returns with positive skewness

(around 1) and smoother excess kurtosis (around 9). This intrinsically defines a narrower

distribution which limits the downside risk. Annualized Sharpe ratios are now of the order

of 0.50 and certainty equivalent of 5%. Another point to stress is the fact that conditional

strategies always present lower standard deviation than unconditional strategies. These

strategies present negative returns for only 40% of the months. We next analyze in more

detail the OOS returns of the conditional OOPS using the GEV distribution. The nega-

tive extreme returns, which are relatively small, happen in September 2007 (-8.7%) and

September 2001 (-6.9%), two periods in which two events were totally unexpected by the

options market and the stock market as well. On the other hand, positive extreme returns

happen in February 1996 (16.3%), July 1996 (11.6%), May 1997 (13.3%), November 1999

(13.1%) and October 2008 (14.1%).

Table 5 reports average weights of each option in each strategy (panel A) and the

proportion of months with positive weights (panel B). This latter measure allows us to

confirm if the security is, on average, “long” or “short” since the mean may be affected by

outlier values. We complement the analysis with a picture with the evolution of weights.

Figure 4 represents one example of what happens in terms of weights of the four risky

assets for the parametric simulation using a GEV distribution for conditional OOPS. The

main conclusion is that all these four assets have significant weights. Figure 4 shows that

these four option weights offset each other and in some periods of time this offsetting is not

always the same. For instance, in November 1998 we write -10.20% of OTM put option

and balance it with an ATM put option weight of 10.96%. In September 1999, call options

are more relevant. We write an ATM call with weight of -9.95% and hold a long position

of 5.04% in an OTM call. In September 2001, we write OTM options, -4.74% for call and

-18.16% for put, and we hold a long position of ATM options, 10.87% for call and 22.46%

for put. These weights are quite different over time. The OOPS is quite different from the

simple short put strategies described in the literature.

The first conclusion from Table 5 is that the sign of the position in each option is not
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really related to the way we choose to simulate returns. On average, we hold long positions

of ATM puts and OTM calls and short positions of OTM puts. The holdings of ATM call

options change more. The second point is that simulating the conditional distribution of

returns leads to an allocation with smaller weights. The mean of the maximum and the

minimum weights of all securities are smaller for conditional OOPS and the mean of the sum

of absolute value of weights of these eight securities is clearly lower than for unconditional

OOPS. This makes our portfolio less leveraged.

We can check that generically ATM options balance OTM options and this is even

more true when extreme weights are set. Correlation figures confirm these results. The

strongest correlated pairs are the ATM and OTM calls and the ATM and OTM puts

in the order of -0.70. For the other pairs the correlation is lower than 0.5 in absolute

value. Moreover, put options seem to play a more important role in the allocation than

call options. This can be checked in terms of individual assets and comparing the sum of

absolute weights of calls and puts. The latter is three times more for unconditional OOPS

and twice as much for conditional OOPS. Moreover, peaks are most pronounced in put

options weights. The most pronounced weight was due to 9/11. This seems quite intuitive

since this event was not expected by the market in any way. This was really something that

was not priced in the options market, and therefore the reason why this affected allocation

so much. Following this event, the period surrounding LTCM bailout is also very volatile

in terms of weights. September 2008 also holds larger weights but still not as much as the

previous two.

Our results are not in line with Liu and Pan (2003) since they tend to buy OTM put

options. Nevertheless, we point out that they do not have the choice between different levels

of moneyness and for conditional OOPS we also have a positive net position in put options

which agrees with their result. Our results confirm partially Driessen and Maenhout (2007)

since we short OTM put option, but we never write straddles.

The bottom right picture in Figure 4 presents the evolution of the risk-free security

weight. The mean weight is 98.2% and 81% of the months is less than 100%. Hence, no
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borrowing is the most standard case. The maximum weight is 107.1% in June 1996 and

the minimum is achieved in August 1998 and February 2007 around 92.6%.

To measure the sensitivity of this portfolio to potential changes in the underlying

asset we first analyze the delta. Delta is the Black-Scholes delta. Panel A of Table 6

presents summary statistics of the delta for each of the three strategies using unconditional

and conditional OOPS. The main conclusion is that the portfolio delta is very close to

zero, ranging from -0.06 to 0.02 with a mean around 0. Most months, the portfolio delta is

negative. Conditional OOPS present narrower delta magnitudes implying less risk. A better

measure of risk is the elasticity of the portfolio. The elasticity of an option is the product of

the delta by the ratio between underlying asset value by the option value. This measure has

the advantage that it takes into account the option leverage. Panel B of Table 6 presents

summary statistics for elasticity. The mean value is around -10, hence an increase of 1%

in the underlying asset, will impact the portfolio by -10%, on average. This means that

we typically hold a large net short position. However, our strategies are clearly targeted

to prevent extreme bad outcomes. A negative return for the OOPS strategies against a

positive return for the market only happens in 28% of the months and with an implied

monthly average return of only -1.54%. Notice that in only 50% of the months we have an

elasticity greater than 8 in absolute value. If we contrast individual option elasticity24 to the

elasticity of OOPS, we can conclude that the optimal portfolio have relatively much smaller

elasticity. The main difference of strategies simulated from unconditional and conditional

OOPS is that the latter present less extreme negative elasticity. The elasticity evolution

in the period between January 1996 and September 2008 is presented in Figure 5. These

series are quite volatile and there are three main periods below -20, such as the second

half of the years 1998, 1999 and 2007. In particular, in August and September this series

attains the lowest value around -45.

24Elasticity for individual options is presented in Table 2.
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5 Robustness Checks

In this section we perform some robustness diagnostics, but only for conditional

OOPS, since the previous section has shown how well these strategies behave. The first is

the impact of choosing fewer assets in each OOPS. Several authors use only a restricted

set of options to develop optimal strategies.25 Table 7 presents the most relevant statistics

for understanding their performance. Each row presents a different portfolio choice. Each

number represents a different option choice considered in the strategy. The digits 1, 2,

3, and 4 denote the ATM call, the ATM put, the 5% OTM call, and the 5% OTM put

options, respectively. When more than one digit defines the number, that strategy involves

the combination of options coded as before. The strategy with four option securities yields

across the different simulation methods simultaneously the best Sharpe ratio (around 0.50)

and certainty equivalent values (around 5%) with low kurtosis and positive skewness.

Now we analyze portfolios formed by only one option. There is only one strategy

that yields a positive Sharpe ratio (the OTM call option), but then presents a negative

annualized certainty equivalent due to the excess kurtosis. On the other hand, strate-

gies with positive annualized certainty equivalent, present negative Sharpe ratios although

holding lower excess kurtosis. A strategy with only a 5% OTM put option yields both

negative Sharpe ratio and certainty equivalent value. Next, we analyze portfolios formed

with two options. They all present positive Sharpe ratio, consistently around 0.40. There

is a strategy that combines a ATM call option with a 5% OTM put option that achieves

a Sharpe ratio of 0.52 for the empirical simulation, but then falls to 0.27 when using GEV

simulation. The same happens to the certainty equivalent.

Second, we analyze the effect of risk aversion on portfolio choice. Table 8 presents

the most relevant statistics for understanding strategies performance. Each row presents

a different risk aversion parameter, γ. There are two approaches that we follow. The first

25Liu and Pan (2003) use one stock, a 5% OTM put option, and cash, Eraker (2007) chooses between
three risky assets, ATM straddles, OTM puts, and OTM calls. Driessen and Maenhout (2007) analyze
the choice between stock, an option strategy and cash. They use either an OTM put, an ATM straddle
or corresponding crash-neutral strategies. Jones (2006) only uses put options. Constantinides, Jackwerth,
and Savov (2009) uses either call or put options.
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is to understand the effect of changing the risk aversion parameter, γ, from 10 to 5, 3, or

2. From Panel A of this table, as γ decreases, the skewness becomes even more positive,

but kurtosis also increases. This impacts negatively the overall performance as the Sharpe

ratio is lower. The certainty equivalent is only negative when γ is 2. These effects are due

to holding higher weights for the risky securities. Nonetheless, the overall results show the

outstanding behavior of OOPS. The second approach involves the use of a mean-variance

utility function U = µp − γ
2
σ2
p. Panel B of the same table shows the results. Although the

strategies involve positive skewness, they have substantial excess kurtosis and yield modest

annualized Sharpe ratios. The problem associated with the strategies is that their mean

delta is 0.20 and mean elasticity is 231. This is a high-leverage strategy with mean weights

of 82% on OTM call option and -14% on OTM put option. This yields a strategy 60%

of the months where all money is lost compensated by opportunistic high returns. This

strategy could hardly be implemented. This shows the importance of using an objective

function that penalizes skewness and kurtosis.

6 Conclusion

We offer a new method for portfolio optimization with options. Our approach

relies on simulating option payoffs from a given distribution of the underlying asset and

using those returns to maximize an expected utility function. This takes into account

the complex distribution of option returns and the investor’s preferences for high-order

moments. Another advantage of our approach is that it does not rely on a long time series

of option returns which in practice does not exist. Our approach also takes into account

transaction costs in a simple manner.

We apply the method out of sample in the period 1996 to 2008 with impressive

results. The method is straightforward to implement (it can be applied on a spreadsheet)

and requires virtually no computing resources. We obtain high Sharpe ratios and other good

performance measures that take into account the non-normality of the return distribution.
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Appendix A

We fix two time periods, t = 1 and t = 2. In the former, we run our optimization problem and
obtain the weights of each security for our asset allocation. In the latter, we perform our OOS
exercise. We set the underlying asset value at period 1 equal to 1.00, S1 = 1, and at period 2
equal to 0.98, S2 = 0.98, only known at period 2, and the one-period risk-free interest rate equal
to 10%, rf = 0.1, the same for both periods. We assume two call options (ATM, c1, and OTM, c2)
and two put options (ATM, p1, and OTM, p2). Their strike prices are given by K1,c1 = K1,p1 = 1,
K1,c2 = 1.05 and K1,p2 = 0.95. The prices of the options at date t = 1 are given by C1,c1 = 0.04,
C1,c2 = 0.0008, P1,p1 = 0.07, and P1,p2 = 0.02. We assume a power utility with γ = 10.

1. Simulate the underlying asset log-return
r12 = 0.0500 r22 = 0.0100 r32 = −0.0400 r42 = −0.1000

2. Find the next period underlying asset value
S1

2|1 = 1.0513 S2
2|1 = 1.0101 S3

2|1 = 0.9608 S4
2|1 = 0.9048

3.a. Determine simulated option payoffs at maturity
C1

2|1,c1 = 0.0513 C2
2|1,c1 = 0.0101 C3

2|1,c1 = 0.0000 C4
2|1,c1 = 0.0000

C1
2|1,c2 = 0.0013 C2

2|1,c2 = 0.0000 C3
2|1,c2 = 0.0000 C4

2|1,c2 = 0.0000
P 1

2|1,p1 = 0.0000 P 2
2|1,p1 = 0.0000 P 3

2|1,p1 = 0.0392 P 4
2|1,p1 = 0.0952

P 1
2|1,p2 = 0.0000 P 2

2|1,p2 = 0.0000 P 3
2|1,p2 = 0.0000 P 4

2|1,p2 = 0.0452
3.b. And corresponding returns for each option
r12|1,c1 = 0.2818 r22|1,c1 = −0.7487 r32|1,c1 = −1.0000 r42|1,c1 = −1.0000
r12|1,c2 = 0.5589 r22|1,c2 = −1.0000 r32|1,c2 = −1.0000 r42|1,c2 = −1.0000
r12|1,p1 = −1.0000 r22|1,p1 = −1.0000 r32|1,p1 = −0.4398 r42|1,p1 = 0.3595
r12|1,p2 = −1.0000 r22|1,p2 = −1.0000 r32|1,p2 = −1.0000 r42|1,p2 = 1.2581

4. Construct the simulated portfolio return
rp1

2|1 = 0.10+ rp2
2|1 = 0.10+ rp3

2|1 = 0.10+ rp4
2|1 = 0.10

+ω2,c1 × 0.2818+ +ω2,c1 × (−0.7487)+ +ω2,c1 × (−1.0000)+ +ω2,c1 × (−1.0000)
+ω2,c2 × 0.5589+ +ω2,c2 × (−1.0000)+ +ω2,c2 × (−1.0000)+ +ω2,c2 × (−1.0000)
+ω2,p1 × (−1.0000)+ +ω2,p1 × (−1.0000)+ +ω2,p1 × (−0.4398)+ +ω2,p1 × (0.3595)+
+ω2,p2 × (−1.0000) +ω2,p2 × (−1.0000) +ω2,p2 × (−1.0000) +ω2,p2 × 1.2581

5. Choose weights by maximizing expected utility over simulated returns 1
4

∑4
n=1

(1+rpn
2|1)−9

−9

ω2,c1 = 0.02, ω2,c2 = −0.03, ω2,p1 = −0.01, ω2,p2 = −0.12 and E(U) = −0.0369

6.a. Determine option actual payoffs... 6.b. and returns for each option
C2,c1 = 0.0000 r2,c1 = −1.0000
C2,c2 = 0.0000 r2,c2 = −1.0000
P2,p1 = 0.0200 r2,p1 = −0.7143
P2,p2 = 0.0000 r2,p2 = −1.0000

6.c. Determine one-period OOS portfolio return
rp2 = 0.2511

21



References

Aı̈t-Sahalia, Yacine, and Andrew W. Lo, 1998, Nonparametric estimation of state-price
densities implicit in financial asset prices, Journal of Finance 53, 499–547.

Almazan, Andres, Keith Brown, Murray Carlson, and David Chapman, 2004, Why con-
strain your mutual fund manager?, Journal of Financial Economics 73, 289–322.

Andersen, Torben G., Luca Benzoni, and Jesper Lund, 2002, An empirical investigation of
continuous time equity return models, Journal of Finance 57, 1239–1284.

Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Heiko Ebens, 2001, The
distribution of realized stock return volatility, Journal of Financial Economics 61, 43–
76.

Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys, 2003, Modeling
and forecasting realized volatility, Econometrica 71, 529–626.

Aragon, George O., and J. Spencer Martin, 2007, Informed trader usage of stock vs. option
markets: Evidence from hedge fund investment advisors, Working Paper.

Baesel, Jerome, George Shows, and Edward Thorp, 1983, The cost of liquidity services in
listed options, Journal of Finance 38, 989–995.

Bakshi, Gurdip, Charles Cao, and Zhiwu Chen, 1997, Empirical performance of alternative
option pricing models, Journal of Finance 52, 2003–2049.

Barone-Adesi, Giovanni, Kostas Giannopolos, and Les Vosper, 1999, VaR without correla-
tions for non-linear portfolios, Journal of Futures Markets 19, 583–602.

Bates, David, 1996, Jump and stochastic volatility: Exchange rate processes implicit in
deutsche mark options, Review of Financial Studies 9, 69–107.

Bernardo, Antonio E., and Olivier Ledoit, 2000, Gain, loss, and asset pricing, Journal of
Political Economy 108, 144–172.

Bondarenko, Oleg, 2003, Why are puts so expensive?, Unpublished working paper, Univer-
sity of Illinois, Chicago.

Brandt, Michael W., 1999, Estimating portfolio and consumption choice: a conditional
Euler approach, Journal of Finance 54, 1609–1645.

, Amit Goyal, Pedro Santa-Clara, and Jonathan Stroud, 2005, A simulation ap-
proach to dynamic portfolio choice with an application to learning about return pre-
dictability, Review of Financial Studies 18, 831–873.

Broadie, Mark, Mikhail Chernov, and Michael Johannes, 2009, Understanding index option
returns, Review of Financial Studies 22, 4493–4529.

Burachi, Andrea, and Jens Jackwerth, 2001, The price of a smile: Hedging and spanning
in option markets, Review of Financial Studies 14, 495–527.

22



Chen, Yong, 2010, Derivatives use and risk taking: evidence from the hedge fund industry,
Journal of Financial and Quantitative Analysis Forthcoming.

Constantinides, George M., Jens Carsten Jackwerth, and Alexi Z. Savov, 2009, The puzzle
of index option returns, Working Paper.

Coval, Joshua D., and Tyler Shumway, 2001, Expected option returns, Journal of Finance
56, 983–1009.

Deli, Daniel N., and Raj Varma, 2002, Contracting in the investment management industry:
Evidence from mutual funds, Journal of Financial Economics 63, 79–98.

DeMiguel, Victor, Lorenzo Garlappi, and Raman Uppal, 2009, Optimal versus naive diver-
sification: How inefficient is the 1/N portfolio strategy, Review of Financial Studies 22,
1915–1953.

Dennis, Patrick, and Stewart Mayhew, 2009, Microstructural biases in empirical tests of
option pricing models, Review of Derivatives Research 12, 169–191.

Driessen, Joost, and Pascal Maenhout, 2006, The world price of volatility and jump risk,
Working Paper.

, 2007, An empirical portfolio perspective on option pricing anomalies, Review of
Finance 11, 561–603.

Efron, Bradley, and Robert J. Tibshirani, 1993, An introduction to the bootstrap, Chapman
and Hall New York.

Eraker, Bjørn, 2007, The performance of model based option trading strategies, Working
Paper.

Ingersoll, Jonathan, Matthew Spiegel, William Goetzmann, and Ivo Welch, 2007, Portfo-
lio performance manipulation and manipulation-proof performance measures, Review of
Financial Studies 20, 1503–1546.

Jackwerth, Jens, 1999, Option-implied risk-neutral distributions and implied binomial trees:
A literature review, Journal of Derivatives 7, 66–82.

, and Mark Rubinstein, 1996, Recovering probability distributions from option
prices, Journal of Finance 51, 1611–1631.

Jones, Christopher, 2006, A nonlinear factor analysis of S&P 500 index option returns,
Journal of Finance 61, 2325–2363.

Jorion, Philippe, 2000, Risk-management lessons from long-term capital management, Eu-
ropean Financial Management 6, 277–300.

Koski, Jennifer Lynch, and Jeffrey Pontiff, 1999, How are derivatives used? Evidence from
the mutual fund industry, Journal of Finance 54, 791–816.

Liu, Jun, and Jun Pan, 2003, Dynamic derivative strategies, Journal of Financial Eco-
nomics 69, 401–430.

23



Phillips, Susan, and Clifford Smith, 1980, Trading costs for listed options: The implications
for market efficiency, Journal of Financial Economics 8, 179–201.

Plyakha, Yuliya, and Grigory Vilkov, 2008, Portfolio policies with stock options, Working
Paper.

Rosenberg, Joshua, and Robert Engle, 2002, Empirical pricing kernels, Journal of Financial
Economics 64, 341–372.

Ross, Stephen, 1976, Options and efficiency, Quarterly Journal of Economics 90, 75–89.

Saretto, Alessio, and Pedro Santa-Clara, 2009, Option strategies: Good deals and margin
calls, Journal of Financial Markets 12, 391–417.

Vanden, Joel, 2004, Options trading and the CAPM, Review of Financial Studies 17, 207–
238.

24



Figure 1
Bid-ask spread and implied volatility

This figure represents monthly observations of relative bid-ask spreads (the ratio of
absolute bid-ask spread and mid price) and implied volatility (using Black-Scholes model)
measures for the period between January 1996 and September 2008 for four options: an
ATM call, an ATM put, a 5% OTM call, and a 5% OTM put options. Each option security
was created as defined in Section 3.2. Results in percentage.
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Figure 2
S&P 500 Index and VIX

This figure represents monthly observations of S&P 500 Index and VIX Index in the period
between January 1996 and September 2008.
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Figure 3
Densities of monthly option returns

This figure represents the densities of monthly raw returns of a long position in ATM and
5% OTM options over the S&P 500 index estimated by normal kernel smoothing for the
period between January 1996 and September 2008.
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Figure 4
OOPS time-series weights

This figure represents the monthly weights of conditional OOPS constructed by simulation
from a GEV distribution. Top left panel presents weights for ATM call and 5% OTM call
options. Top right panel presents weights for ATM put and 5% OTM put options. Bottom
left panel presents weigths for the difference between ATM options and OTM options.
Bottom right panel presents the weight of the risk-free security. Period: January 1996 to
September 2008.
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Figure 5
OOPS elasticity

This figure presents conditional OOPS portfolio elasticity constructed by simulation from
a GEV distribution. Period: January 1996 to September 2008.
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Table 1
S&P 500 Index Returns – Summary Statistics

This table reports summary statistics (number of observations, mean, standard deviation, mini-

mum, 5% percentile, first quartile, median, third quartile, 95% percentile, maximum, skewness,

excess kurtosis, one and twelve month autocorrelation for the residuals and square residuals) and

tests (one and twelve month LjungBox and Arch tests; p-values of each test are presented in

squared brackets) for raw returns and standardized returns for S&P 500 index. Standardized re-

turns are raw returns divided by realized volatility of previous month. The results are presented

for three periods: February 1950-December 1995, January 1996-September 2008, and February

1950-September 2008.

Raw returns Standardized returns
1950-1995 1996-2008 1950-2008 1950-1995 1996-2008 1950-2008

Obs 551 153 704 551 153 704
Mean 0.7% 0.3% 0.6% 22% 11% 19%
Std Dev 4.0% 4.3% 4.1% 129% 95% 122%
Min -24.5% -16.0% -24.5% -488% -334% -488%
q0.05 -6.2% -8.1% -6.3% -206% -141% -191%
q0.25 -1.7% -2.0% -1.8% -59% -49% -56%
q0.50 0.9% 0.9% 0.9% 28% 21% 26%
q0.75 3.4% 3.5% 3.4% 101% 75% 97%
q0.95 6.7% 7.0% 6.8% 215% 149% 207%
Max 15.1% 8.9% 15.1% 354% 288% 354%
Skew -0.56 -0.67 -0.59 -0.33 -0.46 -0.33
Exc Kurt 2.97 0.86 2.41 0.54 0.58 0.69
ρ1(z) 0.03 0.01 0.02 0.03 0.01 0.03
ρ12(z) 0.03 0.08 0.04 -0.01 0.04 0.00
ρ1(z

2) 0.10 0.07 0.10 -0.11 -0.10 -0.09
ρ12(z

2) 0.02 0.07 0.03 0.02 0.04 0.05
Q1(z) 0.44 0.01 0.44 0.47 0.01 0.47

[0.51] [0.92] [0.51] [0.49] [0.92] [0.49]
Q12(z) 11.78 8.86 11.78 9.81 10.27 9.81

[0.46] [0.71] [0.46] [0.63] [0.59] [0.63]
Arch(1) 9.60 0.62 9.60 3.96 1.54 3.96

[0.00] [0.43] [0.00] [0.05] [0.21] [0.05]
Arch(12) 22.07 13.16 22.07 12.09 4.79 12.09

[0.04] [0.36] [0.04] [0.44] [0.96] [0.44]
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Table 2
Summary statistics of options

This table reports averages of option moneyness, bid-ask spread, relative bid-ask spread, volume,

open interest, implied volatility, delta and elasticity for four options: ATM call, ATM put, 5%

OTM call, and 5% OTM put options using mid prices. Option moneyness is defined as S/K-1.

Bid-ask spread is the difference between ask price and bid price. Relative bid-ask spread is the

ratio of the bid-ask spread by the mid price. Volume is the contract’s volume at the day when

there is one month to expiration. Open interest is the open interest prevalent at the day with

one month to expiration. Implied volatility is the annualized volatility of the option with one-

month to maturity using the Black-Scholes model. Delta is the Black-Scholes delta. Elasticity

is the product of delta by the ratio of underlying asset value and option price. Period: January

1996-September 2008.

ATM Call ATM Put OTM Call OTM Put
Option moneyness 0.35% -0.24% -4.03% 4.45%
Bid-ask spread 1.24 1.18 0.58 0.70
Relative bid-ask spread 4.43% 4.68% 10.22% 7.48%
Volume 3,494 3,955 4,130 4,376
Open interest 16,213 18,413 18,676 29,819
Implied volatility 17.49% 18.53% 15.54% 21.51%
Delta 0.57 -0.48 0.20 -0.21
Elasticity 26.83 -25.75 49.29 -30.93
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Table 3
Summary statistics of returns for individual securities

This table reports summary statistics (mean, standard deviation, minimum, maximum, skewness,

excess kurtosis, annualized Sharpe ratio) for a buy-and-hold strategy in several return assets:

S&P 500 index, 1-month US Libor, a ATM call option, a ATM put option, a 5% OTM call option

and a 5% OTM put option. Option returns are based on contracts with one-month to maturity

and each month a contract is selected such that it has the minimum bid-ask spread and, when

draws are available, the largest open interest. Statistics are presented for monthly returns and

computed over one-month period prior to the maturity date. The last row presents a strategy

that allocates a weight of 1/4 to each one of the options previously selected. The period under

consideration is between January 1996 and September 2008.

Mean Std Dev Min Max Skew
Exc Ann
Kurt SR

S&P 500 0.3% 4.3% -16.0% 8.9% -0.68 0.86 0.20
1m US Libor 0.3% 0.1% 0.1% 0.6% -0.49 1.74 -
ATM call -3.1% 120.3% -100% 459% 1.22 3.93 -0.10
ATM put -19.8% 131.1% -100% 595% 2.13 7.82 -0.53
OTM call -10.3% 279.6% -100% 2,349% 5.22 38.70 -0.13
OTM put -51.6% 177.1% -100% 1,139% 4.56 25.68 -1.02
1/N Rule -21.2% 105.5% -100% 625% 2.86 13.78 -0.01
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Table 4
OOPS returns – Summary Statistics

This table reports summary statistics (mean, standard deviation, minimum, maximum, skewness,
excess kurtosis, annualized Sharpe ratio, annualized Certainty Equivalent) for OOS one-month
OOPS returns based on three different strategies for the period from January 1996 to September
2008. This is performed for unconditional and conditional OOPS. The three strategies differ in
terms of simulation of the underlying asset returns, bootstrapping, simulation from a normal or
GEV distribution using historical moments. Statistics are presented for monthly returns and
computed over one-month period prior to the maturity date.

Panel A: Market returns

Mean Std Dev Min Max Skew
Exc Ann Ann

Kurt SR CE

S&P 500 0.3% 4.3% -16.0% 8.9% -0.68 0.86 0.20 -5.9%

Panel B: Unconditional OOPS returns

Mean Std Dev Min Max Skew
Exc Ann Ann

Kurt SR CE

Empirical 0.6% 9.1% -39.0% 87.9% 4.9 59.5 0.21 -52.3%

Normal 1.1% 10.0% -75.1% 21.1% -4.1 27.9 0.27 -100.0%

GEV 1.1% 10.6% -86.8% 21.6% -4.8 36.3 0.25 -100.0%

Panel C: Conditional OOPS returns

Mean Std Dev Min Max Skew
Exc Ann Ann

Kurt SR CE

Empirical 0.8% 3.0% -7.4% 14.9% 2.1 7.7 0.51 5.1%

Normal 0.9% 3.8% -18.8% 15.0% -0.1 6.3 0.48 0.5%

GEV 1.0% 3.7% -8.7% 16.3% 1.3 3.5 0.59 4.7%
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Table 5
OOPS weights

This table presents mean time-series weights for three strategies (empirical, normal and GEV)

as explained in Section 2 using unconditional and conditional OOPS in the period from January

1996 to September 2008. Sum Abs (Sum Abs Calls, Sum Abs Puts) denotes the sum of absolute

weights of the four options (call options, put options).

Unconditional OOPS Conditional OOPS
Empirical Normal GEV Empirical Normal GEV

Panel A: Time-series weights mean
ATM Call -1.3% -1.2% -0.6% -0.4% -0.5% -0.2%
Long 0.2% 0.2% 0.3% 0.1% 0.1% 0.3%
Short 1.5% 1.4% 0.9% 0.5% 0.7% 0.5%
ATM Put -1.2% 2.3% 3.8% 0.8% 2.4% 2.7%
Long 0.3% 2.3% 3.8% 0.8% 2.4% 2.7%
Short 1.5% 0.1% 0.0% 0.0% 0.0% 0.0%
OTM Call -0.1% 0.0% 0.2% 0.9% 1.1% 1.2%
Long 0.3% 0.4% 0.5% 0.9% 1.1% 1.2%
Short 0.4% 0.4% 0.4% 0.0% 0.0% 0.0%
OTM Put -0.2% -4.5% -5.3% -0.7% -1.9% -1.9%
Long 0.4% 0.2% 0.1% 0.0% 0.1% 0.0%
Short 0.5% 4.6% 5.4% 0.8% 1.9% 1.9%
Max 0.7% 2.5% 3.9% 1.3% 2.7% 2.9%
Min -2.1% -4.6% -5.4% -1.0% -2.2% -2.2%
Sum Abs 5.1% 9.6% 11.3% 3.2% 6.4% 6.6%
Sum Abs Calls 2.4% 2.4% 2.0% 1.6% 2.0% 2.0%
Sum Abs Puts 2.7% 7.2% 9.3% 1.6% 4.5% 4.6%

Panel B: Proportion of positive weights
ATM Call 20.9% 17.0% 22.9% 17.6% 19.6% 27.5%
Long 21.6% 17.0% 22.9% 17.6% 19.6% 27.5%
Short 61.4% 62.1% 50.3% 43.1% 49.0% 30.7%
ATM Put 30.1% 80.4% 96.1% 69.9% 94.1% 97.4%
Long 30.7% 79.7% 96.1% 69.9% 94.1% 97.4%
Short 58.2% 2.6% 0.7% 2.0% 0.7% 0.0%
OTM Call 41.2% 59.5% 67.3% 92.8% 95.4% 96.1%
Long 41.2% 59.5% 67.3% 92.8% 95.4% 96.1%
Short 37.3% 22.9% 19.6% 3.3% 2.0% 2.6%
OTM Put 4.6% 1.3% 1.3% 3.3% 1.3% 1.3%
Long 5.2% 1.3% 2.0% 3.3% 1.3% 1.3%
Short 77.1% 98.7% 100.0% 81.7% 92.8% 91.5%

34



Table 6
OOPS risk measures – Delta and Elasticity

This table presents summary statistics regarding delta and elasticity (time-series mean, standard

deviation, minimum, 5% percentile, median, 95% percentile, maximum) of three strategies (em-

pirical, normal and GEV) as explained in Section 2 using unconditional and conditional OOPS

in the period from January 1996 to September 2008. Panel A presents results for delta and Panel

B presents results for elasticity.

Panel A: Delta
Unconditional OOPS Conditional OOPS

Empirical Normal GEV Empirical Normal GEV
Mean 0.00 -0.01 -0.01 0.00 -0.01 -0.01
Std 0.01 0.01 0.01 0.01 0.01 0.01
Min -0.04 -0.04 -0.06 -0.03 -0.03 -0.03
q0.05 -0.01 -0.02 -0.02 -0.01 -0.02 -0.02
q0.50 0.00 -0.01 -0.01 0.00 -0.01 -0.01
q0.95 0.01 0.00 0.00 0.01 0.00 0.00
Max 0.02 0.01 0.01 0.01 0.01 0.01

Panel B: Elasticity
Unconditional OOPS Conditional OOPS

Empirical Normal GEV Empirical Normal GEV
Mean -2.08 -9.27 -11.45 -3.03 -10.03 -9.46
Std 8.99 9.21 10.57 7.10 8.33 8.32
Min -67.67 -51.92 -79.85 -36.71 -41.94 -44.69
q0.05 -17.32 -24.54 -27.91 -17.49 -26.54 -24.85
q0.50 -1.28 -7.55 -9.94 -2.42 -8.80 -7.93
q0.95 7.66 1.91 2.34 5.68 1.07 1.52
Max 22.68 6.14 9.50 12.70 8.24 7.56
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Table 7
Robustness checks - Different securities choice

This table presents OOS skewness, excess kurtosis, annualized Sharpe Ratio and annualized Cer-

tainty Equivalent for three strategies (empirical, normal and GEV) as explained in Section 2 using

conditional OOPS in the period from January 1996 to September 2008. Each row represents a

different option choice. 1 denotes ATM call option, 2 denotes ATM put option, 3 denotes 5%

OTM call option, 4 denotes 5% OTM put option, and the remaining strategies are just simultane-

ous choice of more than one option according to this codification, e.g., 13 denotes ATM call and

5% OTM call options. This means that “bid” and “ask” securities are considered in each strategy.

Conditional OOPS
Empirical Normal GEV

Asset
Skew

Exc Ann Ann
Skew

Exc Ann Ann
Skew

Exc Ann Ann
choice Kurt SR CE Kurt SR CE Kurt SR CE

1 1.75 4.95 -0.10 1.78% 1.76 4.87 -0.09 2.04% 1.67 4.17 -0.13 1.32%
2 2.91 11.36 -0.02 1.43% 2.98 12.12 -0.05 1.46% 2.63 8.75 -0.12 0.46%
3 6.45 52.78 0.07 -0.87% 6.31 50.60 0.07 -0.52% 6.32 51.35 0.04 -1.92%
4 3.77 15.80 -0.26 -2.65% 3.84 16.50 -0.28 -2.36% 3.64 13.89 -0.38 -4.29%
12 1.36 4.23 0.39 4.40% 1.53 5.06 0.41 4.33% 1.55 4.97 0.26 2.47%
13 4.23 28.95 0.07 -5.32% 4.93 37.13 0.08 -7.58% 5.20 39.46 0.03 -10.80%
14 1.67 6.13 0.52 4.84% 2.05 8.16 0.49 4.16% 1.99 7.40 0.27 0.40%
23 3.55 20.78 0.33 1.59% 4.42 32.16 0.30 0.41% 4.81 36.02 0.18 -2.71%
24 4.19 22.35 0.44 1.77% 4.02 20.49 0.43 0.34% 3.90 19.14 0.27 -5.10%
34 5.66 45.96 0.42 1.21% 5.60 45.42 0.42 0.32% 5.53 44.08 0.26 -5.26%
123 2.23 8.96 0.22 2.46% 1.29 5.94 0.13 -0.02% 2.05 7.15 0.11 0.23%
124 3.80 21.57 0.12 -2.15% 1.64 9.82 -0.09 -17.51% 2.85 12.48 -0.01 -9.63%
134 1.75 6.98 0.00 -4.74% 0.50 6.39 -0.18 -27.83% 2.60 11.73 -0.09 -10.41%
234 3.10 14.43 0.37 3.06% 2.84 14.22 0.34 0.78% 4.19 24.15 0.29 0.38%
1234 2.09 7.70 0.51 5.14% -0.07 6.28 0.48 0.54% 1.32 3.46 0.59 4.72%
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Table 8
Robustness checks - Different risk aversion levels

This table presents OOS skewness, kurtosis, annualized Sharpe Ratio and annualized Certainty

Equivalent for three strategies (empirical, normal and GEV) as explained in Section 2 for condi-

tional OOPS in the period from January 1996 to September 2008. Panel A uses CRRA utility

function whereas Panel B uses mean variance utility. Each row represents a different risk aversion

parameter.

Conditional OOPS - CRRA utility
Empirical Normal GEV

γ Skew
Exc Ann Ann

Skew
Exc Ann Ann

Skew
Exc Ann Ann

Kurt SR CE Kurt SR CE Kurt SR CE
2 2.86 13.28 0.35 -1.14% 1.98 8.38 0.43 -3.17% 2.20 8.75 0.38 -7.99%
3 2.44 10.45 0.40 3.13% 1.51 5.71 0.52 3.38% 1.76 5.98 0.47 0.44%
5 2.13 8.51 0.45 4.81% 1.21 4.22 0.61 5.96% 1.49 4.31 0.55 4.07%
10 2.09 7.70 0.51 5.14% -0.07 6.28 0.48 0.54% 1.32 3.46 0.59 4.72%

Conditional OOPS - Mean Variance utility
Empirical Normal GEV

γ Skew
Exc Ann Ann

Skew
Exc Ann Ann

Skew
Exc Ann Ann

Kurt SR CE Kurt SR CE Kurt SR CE
2 4.99 35.38 0.26 - 4.99 35.31 0.24 - 5.02 35.46 0.15 -
3 5.02 35.79 0.27 - 5.02 35.70 0.22 - 5.06 35.88 0.15 -
5 5.06 36.33 0.30 - 5.06 36.11 0.20 - 5.11 36.37 0.13 -
10 6.20 51.67 0.32 - 5.16 37.20 0.24 - 5.15 36.95 0.17 -
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