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leverage during the beta estimation window. Based on simulations of asset returns, 
we document that the size of the bias in equity returns is proportional to market-
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Abstract

This study shows that the size effect can be explained to a large

extent by a measurement error in beta. The measurement error results

from a change in financial leverage during the beta estimation window.

Based on simulations of asset returns, we document that the size of

the bias in equity returns is proportional to market-induced changes

in leverage, as suggested by Modigliani and Miller (1958). We propose

a point-in-time beta that incorporates the leverage at the end of the

beta estimation window rather than the average leverage during the

estimation window. Using the point-in-time beta to compute expected

returns for a sample of historical stock returns, we document that the

size effect sharply decreases. In contrast to previous explanations of

the size effect, our approach does not introduce market frictions or ad-

ditional risk factors. It is consistent with the risk-return considerations

in standard capital structure theory.

1 Introduction

The size e�ect, as originally reported in the empirical studies by Banz (1981)
and Reinganum (1981), has been covered extensively in the asset pricing lit-
erature. The observation that small stocks outperform large stocks poses
an �anomaly� of the Capital Asset Pricing Model (CAPM), apparently con-
tradicting the notion that expected excess returns are solely explained by
their covariance with the returns on the market portfolio. Fama and French
(1992) and Fama and French (1993) also emphasize that neglecting the size
e�ect, while relying on the CAPM's main prediction that di�erences in betas
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explain the cross-section of expected returns, may lead to substantial pricing
errors in asset pricing tests.

Given that the true underlying beta is unobservable, most empirical tests
of the CAPM rely on the estimation of single security betas or portfolios
betas over a period of three to �ve years. These tests implicitely assume that
the estimated beta is an unbiased predictor of the true beta. The previous
literature describes possible biases in the estimated beta, ranging from data
de�ciencies (e.g., thin or asynchronous trading and survivorship biases) to
stochastic e�ects. However, little research has focused on the bias that �-
nancial leverage introduces to beta estimation. The aim of this study is to
close this gap.

We document using simulated returns for size-sorted portfolios that the
estimated beta is a biased proxy for the point-in-time beta at the end of the
beta estimation window. This measurement error in betas leads to biases
in expected returns, and the bias is particularly pronounced for small �rms.
Accordingly, the size e�ect should not entirely be regarded a CAPM anomaly,
but it is at least partly an artifact of the estimation technique used in virtually
all empirical studies. The bias results from changes in �nancial leverage
during the beta estimation window. Speci�cally, changing leverage leads to
a downward bias in the estimated beta that is used to compute expected
returns.

In the case of risk-free debt, the impact of �nancial leverage on a �rm's
equity beta is described by Modigliani and Miller's (1958) famous proposition
II. Based on Hamada (1972), our analysis provides a correction for the bias in
beta estimation. Adjusting the beta for changes in �nancial leverage during
the beta estimation window, we are able to substantially reduce the size e�ect
for both simulated and market data. The abnormal returns of small �rms
(many of which are past losers) become statistically insigni�cant in both
cases. Overall, our study contributes to the literature in three ways. First,
we provide evidence that the commonly used methodology for estimating
beta creates a bias in expected returns for past losers. Second, we document
that the size e�ect is attributable to measurement errors in betas. Finally,
we suggest a simple correction for this bias and show that a point-in-time
beta is able to substantially reduce the size e�ect.

There are a few earlier studies that are related to our analysis. Bhandari
(1988) documents that leverage explains di�erences in cross-sectional returns
even after correcting for size. However, he does not provide a model for why
one should expect these di�erences and how big they should be. Moreover, he
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adds additional degrees of freedom to his regressions, which are not required
in our simulation framework. Bhandari (1988) concludes that �nancial lever-
age should be an additional explanatory variable. Somewhat di�erent, we do
not argue that the debt-to-equity ratio is a proxy for risk that is independent
from market risk. Instead, the change in leverage during the beta estimation
window produces a biased proxy for the point-in-time beta at the end of the
window. In other words, the �abnormal� returns are attributable to higher
beta risk, which is induced by higher �nancial risk.

Ferguson and Shockley (2003) also report a bias in the estimated beta
and a pricing error, which are a function of a �rm's leverage. However, their
argument is di�erent from ours. They suggest that the bias stems from using
an equity-only portfolio as a proxy for the true market portfolio. In our
analysis, we observe a size e�ect even if the true market portfolio (at least as
de�ned in our simulation setup) is used. Moreover, Ferguson and Shockley's
(2003) correction of the bias requires adding new explanatory factors. Hecht
(2002) investigates the size and book-to-market e�ects on asset returns and
equity returns. He documents that both e�ects are only signi�cant on the
equity level (and not the �rm level), and hence he concludes that they must
be induced by leverage. Charoenrook (2004) con�rms these �ndings using a
larger sample. He further notes that any time-variation in the beta will cause
an error-in-variables problem in the second pass of a Fama and MacBeth
(1973) regression, but he does not investigate the magnitude of this bias.

Our study addresses the time-variation in beta and provides evidence for
the e�ect of leverage on excepted returns. In contrast to Charoenrook (2004),
we assume risk-free debt, and hence we need not rely on an appropriate
speci�cation of Merton's (1974) capital structure model. The speci�cation
of a pricing model for debt represents a potential error source because it
requires to assume maturities and risk premiums. For example, Charoenrook
(2004) assumes that the maturity of a �rm's debt is the weighted average of
all bonds outstanding. This assumption implies that debt never falls due
(because average duration exceeds the maturity of the debt with the shortest
maturity), and hence it neglects the risk of default for equity holders.

In order to demonstrate that the size e�ect shows up independent from
any bias in the data sources, we choose a simulation approach. Our simu-
lation framework is based on two fundamental assumptions: (1) the CAPM
holds unconditionally for �rms' asset returns, and (2) debt is risk-free. The
�rst assumption allows isolating the e�ect of �nancial leverage on the time-
variation of the equity beta. With a constant asset beta, any variation in the
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equity beta must be induced by leverage. The second assumption avoids the
pricing of debt claims in a �rm's capital structure. Any mispricing in debt
would spill-over to equity returns, and hence any test becomes a joint-test of
the e�ect of leverage on equity returns and the validity of the pricing model
for debt.

Our results are complementary to Charoenrook's (2004) earlier �ndings.
Without specifying a pricing model for debt, we nevertheless observe an
e�ect of leverage on expected returns. Even more important, our simulation
excludes a variety of alternative explanations, such as investor irrationality,
thin or asynchronous trading, data quality, survivorship bias, choice of the
wrong market portfolio, missing risk factor, premia for liquidity or estimation
risk, higher moments or trading costs. Presumably, all these e�ects do a�ect
equity returns, but they are not necessary to generate a size e�ect.

The remainder of this paper is organized as follows. Section 2 provides the
necessary theoretical foundations. Section 3 describes our simulation frame-
work, and section 4 presents our testable hypotheses. Section 5 discusses the
simulation results, while section 6 applies our suggested correction for the
point-in-time beta on U.S. stock market data. Finally, section 7 concludes
and provides an outlook for future research.

2 Theoretical foundations

A variety of explanations have been suggested to explain the size e�ect. Fi-
nancial leverage is put forward as one potential explanation. Most important,
starting from Modigliani and Miller's (1958) proposition II, Hamada (1972)
derives a relationship between a �rm's leverage and its equity beta. Assum-
ing risk free-debt, the equity beta, denoted as 𝛽𝑒, is just the levered version
of the �rm's asset beta, labeled 𝛽𝐴:

𝛽𝑒 = 𝛽𝐴 ·
(︂

1 +
𝐷

𝐸

)︂
(1)

where 𝐷
𝐸
is the debt-to-equity ratio. However, the relationship in equa-

tion (1) alone cannot explain the size e�ect because �nancial leverage should
already be re�ected in the estimated equity beta. Galai and Masulis (1976)
develop an option pricing model that allows investigating the e�ects of the
capital structure on a stock's systematic risk. They argue that a stock's
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systematic risk is the product of the �rm's systematic risk and the price elas-
ticity of the equity value with respect to changes in the �rm's asset value.
Based on Merton's (1974) model, the equity beta is not only a positive func-
tion of leverage, but also a negative function of the risk-free interest rate, the
variance of the asset returns, and the time to maturity. Galai and Masulis
(1976) derive the following generalized version of equation (1), relaxing the
assumption of risk-free debt:

𝛽𝑒 = 𝛽𝐴 ·𝑁(𝑑1) ·
(︂

1 +
𝐷

𝐸

)︂
(2)

DeJong and Collins (1985) use the Galai and Masulis (1976) framework
to identify the sources of beta instability. In line with equation (2), they doc-
ument that �rms with higher leverage exhibit greater beta instability. They
attribute higher residuals for high leverage �rms in market model regressions
to capital structure factors. However, they do not investigate the unbiasdness
of the estimated beta. Using bond and equity data, Hecht (2002) analyses
the cross-section of �rms' asset returns. Compared to stock returns, he �nds
the patterns of book-to-market, reversal, and momentum e�ects to be less
pronounced or non-existent in asset returns. He concludes that capital struc-
ture plays a major role in producing these e�ects. In a theoretical analysis,
Charoenrook (2004) documents that Fama and MacBeth (1973) estimates
are systematically biased in the presence of leverage. This bias is caused
by the assumption that factor loadings are constant during the estimation
period, and it leads to a relationship between expected stock returns and the
book-to-market ratio and size, respectively.

Our paper adds to this strand of research by investigating the magnitude
of the bias in the beta estimation that is caused by market-induced changes
in leverage. We use a simulation approach with risk-free debt, as assumed in
Hamada (1972) and described in equation (1). Simulating risky debt requires
a pricing model for debt, and hence mispricing of debt would immediately
cause mispricing of equity. We rather choose a simulation approach to cre-
ate a clean-room sample that excludes many other explanations for the size
e�ect, especially those pointing towards data de�ciencies. For example, Roll
(1981) argues that thin-trading causes the size e�ect. Thin-trading is clearly
an observable e�ect in market data, but in our simulation setup no return
is subject to thin or asynchronous trading. We also exclude any survivor-
ship bias in our simulated returns (Kothari et al., 1995) and use the true
market portfolio in the beta estimation (Roll and Ross, 1994; Ferguson and
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Shockley, 2003) to avoid possible mean-variance ine�ciencies of the market
portfolio proxy. No other risk factor can in�uence our results. For example,
Amihud and Mendelson (1989) partly attribute the size e�ect to a liquidity
premium, and the �ndings in Chan et al. (1985) point to a distress factor.
Keim (1983) documents a relation of the size e�ect with the January e�ect.
Klein and Bawa (1977) analyze the problem which investors face when the
distribution of securities' returns has unknown parameters. In this case, esti-
mation risk occurs, and hence investors will hold a portfolio that di�ers from
the mean-variance optimum. Kraus and Litzenberger (1976) investigates in-
vestors' preference for higher moments of the return distribution. Finally,
Berk (1995) argues that any missing risk factor will be proxied by �rm size
due to discounting e�ects. All these factors are excluded from our simulation
framework, and hence they cannot drive our results. Our �ndings are also
una�ected by data snooping (Black, 1993).

We model equity returns in the presence of �nancial leverage starting from
asset returns based on a constant asset beta. In other words, we simulate
equity returns for partly debt �nanced �rms, assuming that the CAPM holds
unconditionally for �rms' asset returns. Even in this simplistic simulation
setup, we observe a size e�ect as described in the prior literature. Therefore,
we conclude that the size e�ect is caused endogenously within our simulation
and identify the changes in leverage during the beta estimation window as
the source of this bias. In a closely related paper, Choi (2009) uses market
data and comes to similar conclusions based on the price elasticity of equity
with respect to asset returns implied by equation (2). He also documents that
the size and book-to-market e�ects are partly caused by �nancial leverage.

Moreover, we propose a simple correction for the bias in the estimated
beta. The beta estimated over a 60 months time window, denoted as 𝛽60,
represents the average leverage, 𝐿60, during the estimation period rather than
the leverage at the end of the estimation window, 𝐿𝑡. Based on equation (1),
we derive the asset beta, denoted as 𝛽𝐴, from dividing 𝛽60 by 1+𝐿60 for each
decile portfolio. Assuming that the asset beta does not change during the
estimation period, we use the leverage at the end of the estimation period to
estimate a point-in-time equity beta, denoted as 𝛽𝑡:

𝛽𝑡 = 𝛽𝐴 · (1 + 𝐿𝑡) = 𝛽60 ·
(1 + 𝐿𝑡)

(1 + 𝐿60)
(3)

Correcting the estimated beta for leverage changes during the estimation
window removes the size e�ect in simulated data and reduces it substantially
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using market data. However, both equation (1) and equation (2) are correct
only in continuous time. Using these equations to compute point-in-time
betas and to forecast discrete period returns leads to biased results because
they implicitly assume that the equity beta is constant during the subsequent
return measurement period. However, return-induced changes in leverage
will similarly occur subsequent to the beta estimation window. Our �ndings
indicate that this inaccuracy does not lead to a substantial bias as long as the
return measurement period is short enough and the initial leverage is not too
high. Nevertheless, even if the time interval is short but leverage is already
very high, equation (3) will deliver excessively high point-in-time betas. In
theory, one could mitigate this e�ect by applying equation (3) at any point
in time a stock price is observable. However, too short intervals may lead to
other problems, e.g., as poor return estimates due to thin trading.

3 The simulation setup

In our empirical framework, we simulate the market value of assets, denoted
as 𝐴𝑖,𝑡, for all �rms 𝑖 (𝑖 = 1, ..., 𝑁) with a given amount of debt, denoted as
𝐷𝑖,𝑡. The market value of equity, labeled 𝐸𝑖,𝑡, is the residual:

𝐸𝑖,𝑡 = 𝐴𝑖,𝑡 −𝐷𝑖,𝑡. (4)

Given the simulated equity values, we are able to compute equity returns
and to examine whether a size e�ect shows up in the simulated data. The
proper choice of the processes for changes in 𝐴𝑖,𝑡 and 𝐷𝑖,𝑡 is essential. Speci�-
cally, the parameters must be chosen such that no size dependency is induced
and that the Capital Asset Pricing Model (CAPM) holds for asset returns.
As 𝐸𝑖,𝑡 and 𝐷𝑖,𝑡 are linearly dependent, any size dependency in the process
for the market value of debt will spill over to the simulated equity values. For
example, if debt returns increase with asset size, this leads to higher equity
returns for smaller �rms. However, this �size e�ect� is arti�cially caused by
the process for the return on debt.

The goal of our simulation analysis is to demonstrate that the size e�ect
is endogenous in the estimation of equity betas. In order to avoid any biases
that result from the pricing model for debt, we choose the simplest possible
setup: debt is assumed to be risk-free and of zero maturity. Accordingly, the
market value of debt is equal to its face value at any time. Risk-free debt
implies that a �rm can be liquidated at no cost. As soon as the �rm's asset
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value falls and becomes equal to the face value of debt, it will be liquidated
immediately and its debt will be fully repaid. As debt has zero maturity, its
value is also una�ected by changes in the risk-free interest rate. With debt
being risk-free and of zero maturity, the market value of debt equals its face
value at any point in time, and hence debt is always correctly priced.

Assuming risky debt or longer maturities requires an explicit model for
the valuation of debt, and hence any model error potentially causes arti�cial
e�ects in equity returns. Any empirical test becomes a joint hypothesis test
of the patterns in equity returns and the model for the valuation of debt. For
further simpli�cation we assume that the risk-free interest rate is constant
and zero.1

Asset returns follow a geometric Brownian motion with a continuously
compounded expected rate of return and a continuously compounded vari-
ance. Although asset values are not directly observable, many standard mod-
els are based on this assumption (Merton, 1974). Our analysis indicates that
�nancial leverage changes the moments of equity returns. The same is likely
to be the case for asset returns in the presence of operating leverage, but
our analysis is restricted to �nancial leverage. We assume that the CAPM
holds unconditionally for asset returns. Accordingly, there is an unobserved
market portfolio, and asset returns are proportional to their covariance with
the returns on this market portfolio. By construction, the covariance with
the market portfolio is the only source of expected returns. With a zero
risk-free interest rate, the expected asset return for zero-beta �rms is also
equal to zero. Assuming that there is idiosyncratic volatility in asset re-
turns, the correlation between the return on the market portfolio and asset
returns is imperfect. Therefore, the instantaneous continuously compounded
asset return for �rm i at time t, denoted as 𝑟𝑎,𝑡,𝑖, is given as:

𝑟𝐴,𝑡,𝑖 = 𝜎𝑎 · 𝜖𝑖,𝑡 − 0.5 · 𝜎2
𝑎⏟  ⏞  

Idiosyncratic return

+ 𝛾𝐴,𝑖 · (𝜇𝑀 + 𝜎𝑀 · 𝜖𝑀,𝑡)⏟  ⏞  
Systematic return

. (5)

The process in equation (5) consists of normally distributed �rm-speci�c
idiosyncratic returns, denoted as 𝜎𝑎 · 𝜖𝑖,𝑡, and normally distributed returns

1We run all simulations with time-varying risk-free interest rates using different stochas-
tic processes. The results remain virtually unchanged. Intuitively, equity returns are in-
creased by the amount of the risk-free rate, and in estimating beta we again subtract the
risk-free rate and work with excess returns. Therefore, the interest rate cancels out, and
its stochastic process has no influence on our main results.
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of the market portfolio, denoted as 𝜇𝑀 + 𝜎𝑀 · 𝜖𝑀,𝑡. 𝛾𝐴,𝑖 captures the linear
dependency of asset returns from market returns similar to an asset beta.
The term −0.5 · 𝜎2

𝑎 ensures that the expected discrete idiosyncratic return
equals to zero. Therefore, in line with the CAPM, covariance with the market
portfolio is the only source of expected asset returns.

We simulate instantaneous continuously compounded returns. Discrete
returns cannot be normally distributed as assumed by the CAPM because
the largest loss an investor can realize is �100%; however, the normal distri-
bution supports the entire real line. In contrast, 𝑟𝐴,𝑡,𝑖 is normally distributed
due to its linear dependency on 𝜖𝑖,𝑡 (which are �rm-speci�c independent stan-
dard normal random numbers) and on 𝜖𝑀,𝑡 (which are independent standard
normal random numbers that capture innovations of the market portfolio).
We set the parameter 𝛾𝐴,𝑖 equal to one for all �rms, ensuring that any dif-
ferences in the cross-section of equity returns are caused by di�erences in
leverage and not by di�erences in asset betas.

Asset values are simulated over a period of time. Therefore, we need
to de�ne a continuously compounded asset return, labeled 𝑟𝐴,[𝑡,𝑡+1],𝑖, which
translates 𝑟𝐴,𝑡,𝑖 into a return in �nite time:

𝑟𝐴,[𝑡,𝑡+1],𝑖 =

{︃
𝑟𝐴,𝑡+1,𝑖, if ∀ 𝑡 ∈ [𝑡, 𝑡 + 1] : 𝑟𝐴,𝑡,𝑖 > ln(𝐷)− ln(𝐴)

ln(𝐷)− ln(𝐴) otherwise.
(6)

According to equation (6), 𝑟𝐴,[𝑡,𝑡+1],𝑖 is equal to 𝑟𝐴,𝑡+1,𝑖 if the asset value
is greater than the value of debt during the entire time interval. However,
if at any point during this time interval the �rm's asset value drops to the
value of debt, hence if the asset return is ln(𝐷) − ln(𝐴), then 𝑟𝐴,[𝑡,𝑡+1],𝑖 will
also be equal to ln(𝐷) − ln(𝐴). Equation (6) ensures that the continuously
compounded asset return during an arbitrary time interval from 𝑡 to 𝑡 + 1,
𝑟𝐴,[𝑡,𝑡+1],𝑖, is in line with our assumption of risk-free debt. If the check for
liquidation was only made at the end of each period, asset values could
potentially fall below the face value of debt. However, this loss incurred by
lender contradicts our assumption that debt is risk-free.

In contrast to our simulation setup, with risky debt high equity returns
would be derived if shareholders play a risk-shifting game at the expense of
debtholder. While risk-shifting may potentially cause excessive equity re-
turns if the market value of debt drops below the face value and asset values
are being redistributed from debtholders to sharholders, our simulation re-
sults document that supposedly abnormal returns even occur in the absence
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of risk-shifting. Therefore, using the returns generated by equation (5) would
dramatically increase the e�ect observed in our simulation. Another impor-
tant property of our setup is that equation (6) does not add a trend to asset
returns. If 𝑟 has an expected value of zero, then 𝑟𝐴,[𝑡,𝑡+1],𝑖 also shows an
expected rate of return of zero independent of the choice of leverage.

Allowing for risky debt requires an explicit model to evaluate debt. The
market value of debt would no longer be equal to its face value, and hence
the return on debt would not be equal to the risk-free interest rate. Any
return anomaly for equity returns could potentially be caused by errors in
the model for the value of debt. Accordingly, our simulations would be a
joint test of the size e�ect and the model for the value of debt. By allowing
for immediate default (even within a given time interval), we ensure that
debt is always correctly priced, and hence no pricing error in the valuation
of debt can in�uence equity returns.

Our assumption of zero maturity debt is convenient from a mathematical
point of view, but it also seems to be realistic from a practical standpoint.
Most �rms use current accounts and liquidity lines for their cash manage-
ment.2 As soon as their asset value drops below the notional amount of total
debt, their current account and any other access to the money market will
dry up, and hence �rms will default on lack of liquidity. This may even be
the case in the presence of other tranches of debt with longer maturities. In
fact, the time of default is likely to be triggered by debt with the shortest
time to maturity, and in many instances this is daily revolving debt.

Unfortunately, our approach in equation (6) comes at a price. It implies
that the distribution of asset returns needs to account for path dependency,
as illustrated in �gure 1. In order to estimate the probability density of an
asset value at the end of the period, 𝐴𝑖,𝑡+1, we need to integrate of over all
possible paths leading to this point from the starting value, 𝐴𝑖,𝑡. We employ
the path integral laid out by Feynman (1948). Because no solution to the
path integral in equation (6) exists, we solve the problem numerically by
slicing each period into 1, 000 time slices and check for default at the end of
each time slice. The high number of slices ensures that the pricing kernel
is approximated with su�cient accuracy and that any remaining losses to
debtholders are negligible compared to the observed e�ects in equity returns.

We use the continuously compounded return from equation (6), 𝑟𝐴,[𝑡,𝑡+1],𝑖,

2According to Barclay and Smith (1995), firms with high leverage have a particularly
high proportion of current debt.
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Figure 1: In the absence of debt, the distribution of log asset values at 𝑡 = 1 would be described by the
blue normal distribution. However, for leveraged firms the distribution changes. The asset value cannot
fall below the value of debt as this will lead to immediate liquidation. The red distribution takes this path
dependency into account. There is a very high probability of a loss of −0.5, expressed as the total market
value of equity in units of standard deviation, because many simulation paths will fall below the debt level
at least temporarily. The lilac path is above the debt level at 𝑡 = 1, but it will never reach this level as
the firm will be liquidated at 𝑡 = 0.1, i.e., when it drops to the level of debt. For large positive returns
the differences to the normal distribution are small and the distributions are asymptotically identical.

to calculate the change of asset values from time 𝑡 to 𝑡 + 1 as follows:

𝐴𝑖,𝑡+1 = 𝐴𝑖,𝑡 · 𝑒𝑟𝐴,[𝑡,𝑡+1],𝑖 . (7)

Given that the expected asset return is positive, �rms will either be liqui-
dated if they reach the debt barrier, or they will grow large enough to render
the level of debt negligible, hence avoiding the risk of default. Therefore, we
need a rule to keep leverage in a plausible range and force the simulation to
converge to a distribution with realistic debt ratios. Speci�cally, we assume
that the simulated �rms will pay a dividend if their leverage, labelled 𝐿𝑖,𝑡

and measured as the �rm's debt-to-equity ratio, falls below 0.5.3 This cash

3This model is clearly simplistic, but it suffices for our purpose. In reality, additional
factors will influence the dividend payments, such as information asymmetry and agency
problems.
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dividend subsequent to an increase in equity values will be �nanced by the
issuance of new debt, and the amount to be issued and distributed is chosen
such that leverage is exactly 0.5 after the dividend has been paid. The trigger
level is set such that the resulting average leverage ratio for the largest size
decile will approximately match the empirical leverage ratio in the largest
size decile of US �rms (which is approximately 0.652 according to Compu-
stat Global Database). In order to increase the debt-to-equity ratio to the
target leverage of 0.5, the dividend, denoted as 𝑑𝑖,𝑡, must be as follows:

𝑑𝑖,𝑡 = max

(︂
0,

𝐴𝑖,𝑡

3
−𝐷𝑖,𝑡

)︂
(8)

The 𝑚𝑎𝑥(·) function ensures that dividends are only paid if leverage falls
below the target.4 The choice of the dividend payment does not strongly in-
�uence the results of our simulation because our primary interest is on high
leverage �rms (i.e., mainly small �rms with negative past returns). These
�rms do not reach the lower trigger for leverage, and hence they do not
distribute dividends. For debt-to-equity ratios above 0.5 all changes in lever-
age are induced by equity returns. The payment of dividends occurs at the
end of each period [𝑡, 𝑡 + 1] during which the trigger level has been reached.
Dividends are paid to shareholders and increase their total equity returns,
denoted as 𝑅𝑒,[𝑡,𝑡+1],𝑖. Because dividends are �nanced by debt, the level of
debt is increased by the same amount, and hence we have:

𝑅𝑒,[𝑡,𝑡+1],𝑖 = (𝐸𝑡+1,𝑖 + 𝑑𝑖,𝑡+1 − 𝐸𝑡,𝑖)/𝐸𝑡,𝑖, (9)

𝐷𝑖,𝑡+1 = 𝐷𝑖,𝑡 + 𝑑𝑖,𝑡+1, (10)

𝐿𝑖,𝑡 =
𝐷𝑖,𝑡

𝐸𝑖,𝑡

. (11)

The novel idea of our simulation analysis is to show that there is an
endogenous relationship between the market value of equity and the �rm's
leverage. In order to make sure that this size e�ect is really endogenous, we
choose the starting values for the simulation such that there is no relationship
between a �rm's market value of equity and its leverage at the beginning of

4To see that this simple rule implements the desired target leverage, assume that 𝐷 = 2,
𝐸 = 10, and hence 𝐴 = 12. According to equation (8), the dividend is 𝐴

3 −𝐷 = 4− 2 = 2.
After the dividend has been paid out, 𝐷 = 2 + 2 = 4, 𝐸 = 10− 2 = 8, and 𝐿 = 4

8 = 0.5.

12



the simulation. Therefore, we have:

𝐸𝑖,0 = 𝜈 · 10, (12)

𝐿𝑖,0 = 𝜈 · 2, (13)

𝐷𝑖,0 = 𝐸𝑖,0, ·𝐿𝑖,0, (14)

𝐴𝑖,0 = 𝐷𝑖 + 𝐸𝑖,0. (15)

In order to generate dispersion in leverage ratios, 𝜈 denotes equally dis-
tributed random numbers in the interval from zero to one. By drawing the
random variates for the starting values of equity, 𝐸𝑖,0, independently from
the starting values of leverage, 𝐿𝑖,0, we ensure that there is no correlation
between these two �rm characteristics at the start of the simulation, and
hence any size e�ect must be endogenous. By choosing the values for equity
and leverage, we also determine the starting values for debt, 𝐷𝑖,0, and total
assets, 𝐴𝑖,0.

Finally, we construct the return on the market portfolio, labelled 𝑅𝑚,𝑡,
as the cross-sectional value-weighted average of all simulated equity returns.
Ferguson and Shockley (2003) argue that using an equity-only proxy for
the market portfolio may cause a size bias in the estimated equity betas if
the �rms' equity returns covary with the omitted assets from the market
portfolio. However, this problem should not be important in our simulation
setup because equities are the only return-generating securities. The return
on the market portfolio is given as:

𝑅𝑚,𝑡 =

∑︀𝑁
𝑖=1 𝑅𝑒,𝑡,𝑖 · 𝐸𝑡−1,𝑖∑︀𝑁

𝑖=1 𝐸𝑡−1,𝑖

. (16)

Based on the framework described in this section, we are able to simulate
a set of �rms with speci�c asset returns, debt-to-equity ratios, and equity
returns. It allows us to examine whether the size e�ect shows up in this very
general distribution of equity returns and is inherent in the underlying return
structure.

4 Testable hypotheses

We use simulated equity values and equity returns to examine whether the
size e�ect shows up in our clean room sample. Following Reinganum (1981),
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in each month 𝑡 we sort �rms into size deciles according to their simulated
market value of equity, 𝐸𝑖,𝑡. Firms with an equity value of zero in period 𝑡
are marked as defaulted; they are not further considered in this and all later
periods. However, in period 𝑡 they are assigned a return 𝑅𝑒,𝑡,𝑖 = −100% to
avoid a survivorship bias. For each size decile we form an equally-weighted
portfolio. Using portfolio returns over the period from 𝑡−60 to 𝑡, we estimate
portfolio betas, denoted as 𝛽60, against the simulated market returns, 𝑅𝑚,𝑡.
We also record the subsequent portfolio returns over the period 𝑡 to 𝑡 + 1.

Portfolios are formed in each simulation month 𝑡, and the average return
and average beta are computed for each decile over time. As there is no size
speci�c factor in our simulations, we expect that each size portfolio has the
same average beta and exhibits the same average return. Accordingly, we
formulate the �rst two testable hypotheses:

Hypothesis H1: The average estimated betas of all size portfo-

lios are equal.

Hypothesis H2: The average estimated returns of all size port-

folios are equal.

In case hypotheses 1 and 2 do not hold, and given that the CAPM holds
for asset returns by construction, we expect that any cross-sectional variation
in returns can be explained by variation in betas. This leads to an alternative
testable hypothesis:

Hypothesis H2.a: There is a linear relationship between aver-

age estimated portfolio returns an average estimated betas.

Equation (13) ensures that leverage is independent of the market value
of equity across �rms at the start of our simulations. The market value of
equity changes, and hence leverage also changes along each simulation path.
Therefore, we test if the average leverage is still equal across all size deciles:

Hypothesis H3: The average leverage is equal across all size

deciles.

As Modigliani and Miller (1958) point out, we should expect higher equity
returns for �rms with higher leverage (�nancial leverage). If hypothesis 2.a
does not hold, we expect that leverage (at least partly) explains the deviation
from the linear relationship between average estimated returns and average
estimated betas.
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5 Simulation results

We run our simulations for 𝑁 = 20, 000 �rms, and each �rm's asset returns
are simulated for 𝑇 = 500 months. Firms are simulated using an idiosyncratic
monthly asset return volatility of 𝜎𝑎 = 0.045, a volatility of the market
portfolio of 𝜎𝑀 = 0.0085, and an expected return of the market portfolio of
𝜇𝑀 = 0.0034. The numbers are chosen to generate equity returns that are
comparable to those in the sample of U.S. �rms (see section 6). However, our
main simulation results are not limited to this particular set of parameters,
and the �ndings with di�erent sets of parameters are qualitatively similar.

Table 1 presents the �rst �ve moments of all simulated return series. The
continuously compounded asset returns are close to a normal distribution,
despite the asymmetry introduced by equation (6). The number of periods
with �rm liquidations is too small relative to the overall sample, and hence
the e�ect on the shape of the distribution is not strongly pronounced. Nev-
ertheless, the deviation in skewness (0.138) is caused by path dependency in
equation (6). They disappear if the simulation is performed without debt.

Moment 𝑟𝐴,𝑡,𝑖 𝑅𝑒,𝑡,𝑖 𝑟𝑒,𝑡,𝑖 𝑅𝑀,𝑡 𝑟𝑀,𝑡

1 0.004 0.008 0.003 0.007 0.006
2 1.000 1.000 1.000 1.000 1.000
3 0.138 0.454 −0.054 −0.172 −0.212
4 3.018 8.703 4.667 2.847 2.892
5 1.376 46.781 −1.012 −2.090 −2.492

Table 1: The table shows the first five moments of the simulated time series. The moments are presented
as averages across all firms. They are normalized such that the standard deviation is always equal to one,
which simplifies a comparison of the shape of the distributions. 𝑟𝐴,𝑡,𝑖 are the continuously compounded
asset returns, while 𝑅𝑒,𝑡,𝑖 and 𝑅𝑚,𝑡 are the discrete equity and market returns, respectively. 𝑟𝑒,𝑡,𝑖 and
𝑟𝑚,𝑡 are the continuously compounded equity and market returns, respectively, which are calculated as
𝑟 = 𝑙𝑜𝑔(1 + 𝑅). For the moment calculation all infinite equity returns are removed from the sample.

The e�ect is di�erent for continuously compounded equity returns. They
exhibit an increased kurtosis of 4.667 (instead of 3, which is implied by a
normal distribution). However, there is little asymmetry in the simulated
returns. Both skewness and the �fth moment are close to zero. The signs
of the uneven moments become negative, while they are positive for asset
returns in the presence of leverage. Equation (6) introduces a positive skew
to asset returns; they can grow unlimited but have a �oor at ln(𝐷)− ln(𝐴)
on the downside. In contrast, for continuously compounded equity returns
there is no �oor on the downside, as an asset return of ln(𝐷)− ln(𝐴) implies
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an equity return of −∞. While the probability of an ever increasing return
converges to zero, the probability of a return of −∞ is larger than zero
and �nite. Although we remove all in�nite returns from the sample for the
purpose of moment calculation, the remaining e�ect is strong enough to
reverse the positive skewness in asset returns. Without debt all returns are
normally distributed, and hence we conclude that the skewness in returns is a
function of a �rm's leverage. Transformed into discrete returns the skewness
(0.454) and the �fth moment (46.781) of equity returns are positive because
the loss is limited on the downside.

In order to test our hypotheses laid out in section 4, we sort �rms into ten
portfolios according to their size (as measured by the market value of equity)
into deciles portfolios in each month. For each decile portfolio and for each
month we estimate the beta, denoted as 𝛽60, using the market returns in the
60 months prior to the formation month. The resulting values are shown in
the Table 2 and visualized in Figure 2.

On average, each decile portfolio consists of about 1,580 �rms. The es-
timated beta, 𝛽60, ranges from 0.959 for the �rms with the highest market
value of equity (decile 10) to 1.384 for the �rms with the lowest market value
of equity (decile 1). This di�erence in betas is signi�cant (based on a 𝑡-test
for di�erences in means), and hence we have to reject hypothesis 1, suggest-
ing that the estimated betas are equal for all deciles. Although we exclude
any size dependency in our simulation setup, there is a clear relationship
between �rm size and estimated betas. Moreover, we also reject hypothesis 2
that returns are equal for all decile portfolios. The annualized returns range
from 0.629 for large cap stocks to 0.155 for small cap stocks. Again, this
di�erence is statistically signi�cant.

We compute expected excess returns, denoted as 𝐸(𝑅𝑒), by multiplying
estimated betas, 𝛽60, with the average excess return of the market portfo-
lio, 𝐸(𝑅𝑚). The simulation results in Table 2 reveal that the relationship
between the average realized (simulated) equity return, 𝑅𝑒, and the average
expected equity return, 𝐸(𝑅𝑒) = 𝛽60×𝐸(𝑅𝑚), is non-linear. The pricing er-
ror, labeled 𝑃𝐸(𝛽60) and de�ned as 𝑅𝑒 −𝐸(𝑅𝑒), is relatively small for large
cap stocks; it is less than 0.03% per month for each of the top eight decile
portfolios. However, the �rst two decile portfolios have a large pricing error
of 0.250% and 0.094% per month. Both these pricing errors are larger than
zero, with 𝑡-values indicating statistical signi�cance at the 1% level. Accord-
ingly, our simulation produces return patterns that are in line with real world
data. Most important, there is a clear relationship between size, beta, and
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Decile 𝑅𝑒 𝛽60 𝛽𝑡 𝛽𝐴 ∅𝐿𝐸𝑉60 ∅𝐿𝐸𝑉𝑡 ∅𝐸60 ∅𝐸𝑡 PE 𝛽60 PE 𝛽𝑡 ADR

1 1.155 1.384 1.812 0.582 1.376 2.111 1.13 0.83 0.250 −0.029 0.536
(0.06) (0.03) (0.05) (0.03) (0.14) (0.01) (4.28) (−0.50) (0.02)

2 0.925 1.271 1.365 0.577 1.204 1.367 3.14 2.64 0.094 0.033 0.034
(0.03) (0.02) (0.05) (0.01) (0.42) (0.05) (2.97) (1.03) (0.00)

3 0.808 1.196 1.221 0.577 1.074 1.117 5.15 4.69 0.026 0.010 0.004
(0.02) (0.02) (0.05) (0.01) (0.71) (0.09) (1.23) (0.46) (0.00)

4 0.751 1.142 1.138 0.578 0.976 0.970 7.35 7.07 0.004 0.006 0.001
(0.02) (0.02) (0.05) (0.01) (1.07) (0.13) (0.27) (0.41) (0.00)

5 0.709 1.095 1.078 0.576 0.902 0.872 9.94 9.94 −0.007 0.004 0.000
(0.01) (0.01) (0.04) (0.01) (1.53) (0.20) (−0.57) (0.34) (0.00)

6 0.720 1.059 1.034 0.575 0.840 0.797 13.15 13.57 0.028 0.044 0.000
(0.01) (0.01) (0.04) (0.00) (2.14) (0.28) (2.39) (3.77) (0.00)

7 0.671 1.035 1.006 0.579 0.787 0.738 17.27 18.38 −0.006 0.013 0.000
(0.01) (0.01) (0.03) (0.00) (2.97) (0.40) (−0.58) (1.35) (0.00)

8 0.646 1.021 0.990 0.586 0.743 0.690 23.14 25.37 −0.022 −0.001 0.000
(0.01) (0.01) (0.03) (0.00) (4.24) (0.58) (−2.40) (−0.15) (0.00)

9 0.628 0.989 0.957 0.582 0.698 0.643 33.17 37.66 −0.019 0.002 0.000
(0.01) (0.01) (0.03) (0.00) (6.67) (0.94) (−2.31) (0.26) (0.00)

10 0.629 0.959 0.930 0.586 0.637 0.587 69.69 85.08 0.002 0.021 0.000
(0.01) (0.01) (0.03) (0.00) (17.09) (2.59) (0.28) (2.80) (0.00)

Table 2: The table summarizes the simulation results for the ten size portfolios. Decile 1 contains the
firms with the smallest market value of equity, and decile 10 contains the firms with the largest market
value of equity. 𝑅𝑒 is the average discrete excess equity return over the risk-free interest rate. Returns are
multiplied by 100. 𝛽60 denotes the beta estimated using the returns from the prior 60 months. 𝛽𝑡 is the
average point-in-time beta estimated according to equation (3), and 𝛽𝐴 is the corresponding asset beta.
∅𝐿𝐸𝑉60 (∅𝐸60) is the average leverage (equity value) during the beta estimation period, and ∅𝐿𝐸𝑉𝑡 (∅𝐸𝑡)
is the average leverage (equity value) at the end of the beta estimation period. The columns labeled PE
contain the average pricing errors based on the different beta estimates. Pricing errors are multiplied by
100. ADR denotes the average “default” rate, hence the percentage of firms with an equity return of less
than −90%. For the pricing error columns the numbers in brackets are t-values for the hypothesis that
the error equals zero. All other numbers in brackets are standard errors.

stock returns. The returns of small cap stocks are too high to be explained
by the di�erences in betas, and hence we observe a CAPM �anomaly� in the
smallest size deciles. While excess returns are high for the smallest �rms, the
pricing error is only small for the larger �rms.

Table 2 further indicates that in the bottom half of the decile portfolios
containing small cap stocks the average market capitalization at the end of
the beta estimation period ,denoted as ∅𝐸𝑡, is smaller than the average �rm
capitalization within the beta estimation period, labeled ∅𝐸60. For the top
half of the decile portfolios containing large cap stocks the relationship is the
other way round; on average, the size at the end of the estimation period
is larger than within the period. This implies that sorting �rms by market
capitalization implicitly sorts �rms by past returns. Presumably, small �rms
have a higher probability of having su�ered from prior negative returns, and
large �rms have a higher probability of having experienced prior positive
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returns.
In our simulations �rms pay a dividend if leverage falls below 0.5. Firms

with positive returns and hence lower leverage can counterbalance the market-
induced changes in leverage by paying a higher dividend. In contrast, small
cap stocks cannot react to changes in market leverage. Consistent with the
empirical evidence for price run-ups prior to equity issuances (Baker and
Wurgler, 2002; Chang and Dasgupta, 2009), our simulation setup prevents
�rms from raising fresh equity to compensate past losses. This e�ect results
in increasing leverage for past losers and, violating hypothesis 3, in a corre-
lation between leverage and �rm size. Table 2 indicates higher leverages for
small cap stocks than for large cap stocks. Both the average leverage during
the estimation period, denoted as ∅𝐿𝐸𝑉60, and the average leverage at the
end of the estimation period, labeled ∅𝐿𝐸𝑉𝑡, are decreasing with increasing
size deciles. It is important to note that our setup does not impose any corre-
lation. By construction, at the start of our simulations the average leverage
is equal across all size deciles.

Our �ndings are in line with recent empirical results. Welch (2004) doc-
uments that changes of a �rm's market value are primarily responsible for
changes in market leverage. Accordingly, a �rm with negative past returns
tends to be smaller and exhibits, on average, higher leverage than �rms with
positive past returns. Welch (2004) points out that managers in his U.S.
sample seem to do little in the short-run to counterbalance these market-
induced changes in leverage. Bessler et al. (2008) report similar results for
European �rms. They also show that managers do little to rebalance lever-
age in the short-run and even tend to exacerbate market-induced changes by
issuing stocks after stock price increases, apparently in an attempt to time
the market.

Given that small cap stocks, on average, su�er from a negative perfor-
mance during the estimation period for 𝛽60, their market capitalization at
the end of the estimation period is smaller than the market capitalization at
the beginning of the estimation period and the period average market capi-
talization. Another implication is that leverage at the end of the estimation
period is higher than the period average leverage. Modigliani and Miller
(1958) establish a direct link between leverage, �nancial risk, and expected
returns. While 𝛽60 is estimated over all 60 time intervals and re�ects the risk
of the average leverage during the estimation window, the expected return in
the next period is proportional to the �rm's leverage at the end of the esti-
mation window. A problem does not occur as long the average leverage is a
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good proxy for the period-end leverage. However, Table 2 indicates that this
proxy becomes increasingly bad for the small decile portfolios. As a result,
the estmated beta becomes less accurate for these small capitalization port-
folios and su�ers from a downward bias. In fact, for the smallest decile the
average leverage in the estimation period is only about 65% of the leverage
at the end of the period, which is (at least partly) responsible for the size
e�ect.
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Figure 2: The figure visualizes the simulation results for size decile portfolios. Decile 1 contains the firms
with the smallest market value of equity, and decile 10 contains the firms with the largest market value
of equity. The blue circles depict the results based on 𝛽60, the green asterisks those using the leverage
correction, and the red crosses are the measured returns. For measured returns the error bars indicate
the confidence interval of plus and minus one standard error. The top left graph plots size deciles against
measured and expected returns, and the top right graph plots size deciles agains estimated betas. In the
bottom right graph measured returns are plotted against expected returns based on the estimated betas.
Finally, the bottom left graph depicts pricing errors across size deciles.

Neverthless, past market returns are not solely responsible for the cor-
relation between size and leverage. In fact, even within a given size decile
leverage impacts beta estimation and pricing errors. Speci�cally, we split the
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smallest size decile portfolio into ten subdecile portfolios according to their
market value of equity as shown in Table 3. Even within this subsample of
bad performing stocks the size e�ect is still observable, and equity returns
decrease with size. Again, the size e�ect is most pronounced in the smallest
two subdeciles. Both portfolios exhibit a high excess return of roughly 1.4%
per month, which is more than 0.4 percentage points higher than expected
based on the estimated 𝛽60. This observation is in line with the �ndings by
Fama and French (2007) that the size e�ect is caused by the migration of
extremely small �rms (microcaps) with extremely high returns. Knez and
Ready (1997) also document that the size e�ect is caused by a few extreme
observations.

Decile 𝑅𝑒 𝛽60 𝛽𝑡 𝛽𝐴 ∅𝐿𝐸𝑉60 ∅𝐿𝐸𝑉𝑡 ∅𝐸60 ∅𝐸𝑡 PE 𝛽60 PE 𝛽𝑡 ADR

1 1.400 1.462 2.727 0.583 1.509 3.679 0.16 0.08 0.444 −0.383 1.723
(0.15) (0.05) (0.07) (0.22) (0.02) (0.00) (2.95) (−2.54) (0.06)

2 1.383 1.409 2.056 0.573 1.462 2.590 0.42 0.24 0.462 0.040 1.090
(0.11) (0.05) (0.06) (0.03) (0.06) (0.00) (4.04) (0.35) (0.05)

3 1.314 1.414 1.906 0.583 1.423 2.266 0.63 0.40 0.390 0.068 0.723
(0.10) (0.05) (0.05) (0.03) (0.08) (0.01) (3.78) (0.66) (0.04)

4 1.075 1.411 1.823 0.592 1.385 2.081 0.84 0.56 0.153 −0.116 0.542
(0.10) (0.05) (0.06) (0.03) (0.10) (0.01) (1.58) (−1.19) (0.03)

5 1.061 1.387 1.720 0.586 1.368 1.937 1.04 0.73 0.155 −0.063 0.364
(0.08) (0.04) (0.05) (0.02) (0.12) (0.01) (1.86) (−0.75) (0.03)

6 1.044 1.365 1.649 0.579 1.357 1.846 1.23 0.89 0.151 −0.034 0.282
(0.07) (0.04) (0.06) (0.02) (0.15) (0.02) (2.04) (−0.46) (0.02)

7 0.974 1.358 1.613 0.579 1.346 1.787 1.45 1.07 0.087 −0.080 0.225
(0.07) (0.04) (0.06) (0.02) (0.18) (0.02) (1.17) (−1.09) (0.02)

8 1.046 1.353 1.577 0.583 1.322 1.706 1.65 1.25 0.162 0.015 0.168
(0.07) (0.04) (0.06) (0.02) (0.21) (0.02) (2.24) (0.21) (0.02)

9 1.019 1.346 1.540 0.583 1.307 1.641 1.86 1.42 0.139 0.012 0.147
(0.06) (0.04) (0.05) (0.02) (0.24) (0.02) (2.20) (0.19) (0.02)

10 1.006 1.333 1.501 0.583 1.285 1.573 2.05 1.61 0.135 0.025 0.095
(0.06) (0.04) (0.05) (0.02) (0.27) (0.03) (2.18) (0.40) (0.01)

Table 3: The table summarizes the simulation results when the smallest size decile (microcap firms) in
Table 2 is further split into ten subdeciles. Decile 1 contains the microcap firms with the smallest market
value of equity, and decile 10 contains the microcap firms with the largest market value of equity. 𝑅𝑒 is the
average discrete excess equity return over the risk-free interest rate. Returns are multiplied by 100. 𝛽60

denotes the beta estimated using the returns from the prior 60 months. 𝛽𝑡 is the average point-in-time
beta estimated according to equation (3), and 𝛽𝐴 is the corresponding asset beta. ∅𝐿𝐸𝑉60 (∅𝐸60) is
the average leverage (equity value) during the beta estimation period, and ∅𝐿𝐸𝑉𝑡 (∅𝐸𝑡) is the average
leverage (equity value) at the end of the beta estimation period. The columns labeled PE contain the
average pricing errors based on the different beta estimates. Pricing errors are multiplied by 100. ADR
denotes the average “default” rate, hence the percentage of firms with an equity return of less than −90%.
For the pricing error columns the numbers in brackets are t-values for the hypothesis that the error equals
zero. All other numbers in brackets are standard errors.

Looking at the smallest subdecile portfolios, the spread Table 3 between
the leverage at the end of the period and the average leverage within the
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period is even larger than in Table 2, which causes an even more pronounced
size e�ect. The estimated 𝛽60 is not able to explain the cross-section of returns
across subdeciles. As visualized in Figure 3, there is almost no relationship
between 𝛽60 and stock returns. While excess returns increase from 1.001%
to 1.400% per month, the betas increase only slighlty from 1.333 to 1.462.

0 2 4 6 8 10
0.008

0.01

0.012

0.014

0.016

0.018

0.02

size quantile

re
tu

rn

0 2 4 6 8 10
1

1.5

2

2.5

3

size quantile

β 60

0 2 4 6 8 10
−4

−2

0

2

4

6
x 10

−3

size quantile

R
e −

<
R

e>

0 0.005 0.01 0.015 0.02
0

0.005

0.01

0.015

0.02

<R
e
>

re
tu

rn

Figure 3: The figure visualizes the simulation results when the smallest size decile (microcap firms) in
Table 2 is further split into ten subdeciles. Decile 1 contains the microcap firms with the smallest market
value of equity, and decile 10 contains the microcap firms with the largest market value of equity. The
blue circles depict the results based on 𝛽60, the green asterisks those using the leverage correction, and
the red crosses are the measured returns. For measured returns the error bars indicate the confidence
interval of plus and minus one standard error. The four quadrants are organized as in Figure (3).

The spread between 𝐿𝐸𝑉60 and 𝐿𝐸𝑉𝑡 could be reduced by choosing a
shorter estimation period for betas. However, there is a trade-o�, as a shorter
estimation period will also lead to greater estimation errors in the market
model regressions. We propose a more convenient solution to reduce pric-
ing errors. By applying equation (3), we correct the estimated beta for the
spread between 𝐿𝐸𝑉60 and 𝐿𝐸𝑉𝑡, thereby enhancing estimation accuracy by
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accounting for the leverage at the end of the period. Table 2 and Figure
2 report the simulation results using our proposed correction of endogenous
leverage changes during the beta estimation window. While the estimated
betas are in line with the traditional betas for large �rms, there are consid-
erable deviations for small cap stocks. The estimated point-in-time betas,
denoted as 𝛽𝑡, lie well above the estimated coe�cients 𝛽60 for the two small-
est decile portfolios, implying that the traditional beta estimation method
causes a downward bias for these portfolios. In our simulation setup, this
downward bias fully explains the size anomaly. Using the point-in-time betas
corrects the bias, and the abnormal returns for the small decile porto�ios dis-
appear. In fact, the pricing error, labeled 𝑃𝐸(𝛽𝑡), becomes relatively small
even for the two smalles decile portfolios. If the size e�ect is attributable to
a misestimation of beta, the higher returns for small cap stocks come with
higher beta risk. This �nding also implies that an investment strategy based
on the size e�ect will not produce any risk-adjusted outperformance.

A caveat with our method for beta correction is the assumption that the
asset beta is constant during the estimation period. Moreover, many �rms
will also work with operating leverage for which, in principle, the same argu-
ments can be made.5 Firms with large �xed costs and small variable costs,
and hence high operating leverage, will su�er losses in adverse market con-
ditions. Lower sales will further increase the ratio between �xed costs and
variable costs, thereby increasing operating leverage. Again, one would ex-
pect that �rms with negative prior asset returns will have a higher asset beta
at the end of the estimation period than within the estimation period. Our
correction does not account for this e�ect, and hence we may still underesti-
mate the equity beta even after correcting for changes in �nancial leverage.
In our simulation framework we keep the asset beta constant over time.
Nevertheless, even for market data we suggest that correcting for changes
in �nancial leverage during beta estimation period will lead to more precise
beta estimates than without any such correction.

The e�ect of our correction is even more pronounced for the subdeciles
of the smallest portfolios, as shown in Figure 3. For these very small �rms
(microcaps) the standard beta has little explanatory power, while the point-
in-time beta still tracks the observed returns. An exception is the smallest
subdecile, where the expected return based on the point-in-time beta is higher

5See Lev (1974) for the relationship between operating leverage and risk. Mandelker
and Rhee (1984) report a correlation between financial and operating leverage.
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than the measured return. We do not have an explanation for this apparent
overestimation. However, one reason could be that both equation (1) and
equation (2) are correct only in continuous time. Using them to forecast
discrete period returns again leads to biased results because it implicitly
assumes that the equity beta in equation (2) remains constant during the
return measurment period subsequent to the beta estimation window. Our
simulation indicates that this inaccuracy does not lead to a signi�cant bias in
the case of risk-free debt as long the time period is short enough and the level
of leverage is not too high. For the already highly leveraged �rms, however,
the point-in-time beta will not be constant during the period for which we
estimate expected equity returns. If the �rm does not default, its equity
value sharply increases, the level of leverage decreases, and hence equation
(3) will deliver an overestimated point-in-time betas for the smallest �rms.

In the prior literature many explanations for the size e�ect have been
proposed. Our approcah is novel in that it does not introduce any frictions to
the CAPM such as trading costs, liquidity constraints, or irrational investors.
We also omit adding new risk factors, and hence covariance with the market
portfolio is the only source of return. Indeed, we did not add any new
�tting parameters to align ex-ante and ex-post returns. Accordingly, we
show that even in a frictionless mean-variance setup (in which the CAPM
holds by de�nition), one should expect to observe a size e�ect if the beta is
measured over a longer time window and hence does not re�ect the point-in-
time leverage of the �rm.

Based on our simulation results, we suggest that any beta estimation
needs to correct for leverage changes during the estimation window, and this
is especially necessary if the beta of small stocks is estimated. Nevertheless,
this e�ect need not to be, or even is unlikely to be, the only size-related
factor that e�ects returns. In reality, there are frictions such as liquidity
constraints, trading costs, information cost, estimation risk, and many other
factors that may a�ect the return the marginal investor requires to hold a
small �rm in diversi�ed porfolios. Our �ndings merely indicate that none of
these frictions are necessary for a size e�ect to show up given the standard
beta estimation method.

Our �ndings also have major implications for empirical corporate �nance
research. Any test of a �rm's risk adjusted long-run performance after some
�nancing event simultaneously tests the validity of the expected return model
(bad-model problem; Fama (1998)). Given that the average beta is a biased
estimate for the point-in-time beta, using this average beta will in itself pro-

23



duce biased results. However, even using the point-in-time beta would not
be accurate in long-run performance studies because the expected point-in-
time beta will change itself after the event due to return-induced changes in
leverage. For example, if an event study identi�es two subsamples of positive
and negative post-event returns, the average beta of the positive return sub-
sample will drop over time, whereas the average beta of the negative return
susample will increase over time. In standard event study methodology, the
benchmark fails to incorporate these changes, which in turn leads to biased
abnormal return estimates.

In addition, whenever a �rm actively changes its capital structure, ceteris
paribus, its point-in-time beta also changes. Analyzing capital structure
changes in an event-study framework, e.g., the e�ect of share repurchases
on subsequent stock returns, without adjusting the estimated betas appro-
priately will lead to biased results. For example, investigating the e�ect of
share repurchases without adjusting for the resulting leverage increase, one
would expect that the estimated betas are biased downwards. The bias will
be more pronounced for �rms that experience prior negative performance.
For example, Ikenberry et al. (1995) document high abnormal returns for
value stocks and neutral performance for growth stocks after the repurchase.
They attribute this e�ect to undervaluation prior to the event. While their
notion may be perfectly true, we argue that part of the e�ect they observe
is attributable to a leverage-induced mismeasurement in betas.

6 Empirical results

In order to test our proposed method for beta correction with market data,
our sample consists of all U.S. �rm that are covered in the Compustat Global
database within December 1988 to December 2007. Total return data and
market values are taken from Thomson Datastream, and hence we need to
exclude all �rms without stock market data in this database. We also exclude
�nancial and utility �rms because they di�er in leverage from other �rms.
In total, 2,932 �rms remain in our sample. Total liabilities from Compustat
Global are taken as our proxy for debt.

Our sample contains some �rms that su�er from thin trading. To address
this issue, we use monthly returns and also exclude all �rm months in which
the �rm has an equity return of zero or a market value of equity of less than
USD 1 million at the beginning of the period. Ince and Porter (2006) report
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data quality problems in the Thompson Datastream return data, and hence
we make all the corrections they suggest. This data cleaning step leads to a
removal of 363 �rm-months from our sample. Overall, the remaining sample
consists of 447,019 �rm-months.

Table 4 provides a data description. As in the simulated returns, the av-
erage moments of the discrete equity returns, 𝑅𝑒,𝑖,𝑡, are all positive. However,
the historical returns are more skewed. The odd moments become negative
for continuously compounded returns, and the e�ect is more pronounced for
historical returns. A potential explanation is that the empirical leverage is
somewhat higher than in our simulation framework.

Moment 𝑅𝑒,𝑡,𝑖 𝑟𝑒,𝑡,𝑖 𝑅𝑀,𝑡 𝑟𝑀,𝑡

1 0.024 −0.001 0.010 0.009
2 1.000 1.000 1.000 1.000
3 1.064 −0.216 −0.493 −0.641
4 10.321 6.869 3.572 3.851
5 60.335 −9.309 −5.064 −6.975

Table 4: The table shows the first five moments of our U.S. sample. The moments are presented as
averages across all firms. They are normalized such that the standard deviation is always equal to one,
which simplifies a comparison of the shape of the distributions. 𝑟𝐴,𝑡,𝑖 are the continuously compounded
asset returns, while 𝑅𝑒,𝑡,𝑖 and 𝑅𝑚,𝑡 are the discrete equity and market returns, respectively. 𝑟𝑒,𝑡,𝑖 and
𝑟𝑚,𝑡 are the continuously compounded equity and market returns, respectively, which are calculated as
𝑟 = 𝑙𝑜𝑔(1 + 𝑅). For the moment calculation all infinite equity returns are removed from the sample.

The moments of the market portfolios constructed from U.S. equity re-
turns di�ers from the moments of our simulated market portfolio. In our
simulation the returns of the market portfolio are close to a normal distri-
bution for both discrete and continuous time returns. For the U.S. sample
this is only true for the even moments, whereas the odd moments have neg-
ative loadings. In particular, a skewness of −0.493 represents a substantial
deviation from normality. Again, this might be induced by somewhat higher
leverage in the U.S. sample than in our simulated sample.

We again sort all �rms into size decile portfolios, and the results are
shown in Table 5 and in Figure 4. As in our simulations, for the smallest
(largest) �ve decile portfolios the equity value is smaller (larger) at the end
of the beta estimation window than during this window. Moreover, the
results reveal two e�ects that are related to leverage. First, there is a clear
negative correlation between size and leverage. Firms in the smallest decile
portfolio have an average debt-to-equity ratio of 5.709, while �rms in the
largest decile portfolio have an average debt-to-equity ratio of 0.780 during
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the beta estimation window. However, this correlation between size and
leverage is not enough by itself to conclude that there is a misestimation in
beta; any increase in covariance with market returns due to higher leverage
should already be re�ected in the estimated beta. Second, for �rms in the
smallest decile portfolios their leverage at the end of the estimation window
is, on average, higher than during the estimation window. In decile 1 the
di�erence is even more than a factor of two. Ceteris paribus, we expect that
this e�ect leads to an underestimation of the true point-in time beta if the
beta is determined based on the prior 60 months window.

Decile 𝑅𝑒 𝛽60 𝛽𝑡 𝛽𝐴 ∅𝐿𝐸𝑉60 ∅𝐿𝐸𝑉𝑡 ∅𝐸60 ∅𝐸𝑡 PE 𝛽60 PE 𝛽𝑡 ADR

1 2.783 1.077 2.360 0.160 5.709 13.706 60.28 18.32 2.050 1.177 0.038
(0.58) (0.22) (2.51) (1.03) (31.36) (0.61) (3.57) (2.05) (0.01)

2 1.575 1.219 1.499 0.399 2.059 2.761 127.24 64.53 0.745 0.555 0.017
(0.41) (0.18) (0.61) (0.14) (48.90) (2.35) (1.80) (1.34) (0.01)

3 1.467 1.302 1.323 0.526 1.478 1.517 198.02 132.24 0.581 0.567 0.010
(0.39) (0.16) (0.38) (0.05) (70.00) (5.01) (1.48) (1.45) (0.01)

4 1.159 1.216 1.146 0.555 1.190 1.065 264.01 224.87 0.332 0.379 0.003
(0.37) (0.12) (0.28) (0.03) (77.26) (8.38) (0.89) (1.02) (0.00)

5 0.903 1.177 1.045 0.540 1.181 0.937 371.23 350.92 0.102 0.192 0.003
(0.34) (0.12) (0.33) (0.02) (109.32) (12.85) (0.30) (0.57) (0.00)

6 0.615 1.191 1.106 0.601 0.983 0.842 519.45 533.71 −0.195 −0.138 0.003
(0.31) (0.09) (0.22) (0.02) (143.21) (19.07) (−0.63) (−0.44) (0.00)

7 0.437 1.157 1.119 0.626 0.847 0.786 751.13 837.83 −0.350 −0.324 0.000
(0.28) (0.07) (0.10) (0.01) (186.89) (28.61) (−1.23) (−1.14) (0.00)

8 0.198 1.143 1.090 0.618 0.849 0.763 1231.43 1427.93 −0.579 −0.543 0.000
(0.23) (0.07) (0.07) (0.01) (296.30) (45.81) (−2.48) (−2.32) (0.00)

9 0.334 1.127 1.058 0.626 0.800 0.691 2628.08 3128.26 −0.433 −0.386 0.003
(0.19) (0.06) (0.07) (0.01) (609.34) (93.78) (−2.32) (−2.07) (0.00)

10 0.456 1.006 0.934 0.565 0.780 0.652 20565.97 25737.31 −0.228 −0.179 0.000
(0.08) (0.07) (0.09) (0.01) (5331.43) (687.55) (−2.92) (−2.29) (0.00)

Table 5: The table summarizes the results for the ten size portfolios based on U.S. market data. Decile
1 contains the firms with the smallest market value of equity, and decile 10 contains the firms with the
largest market value of equity. 𝑅𝑒 is the average discrete excess equity return over the risk-free interest rate.
Returns are multiplied by 100. 𝛽60 denotes the beta estimated using the returns from the prior 60 months.
𝛽𝑡 is the average point-in-time beta estimated according to equation (3), and 𝛽𝐴 is the corresponding asset
beta. ∅𝐿𝐸𝑉60 (∅𝐸60) is the average leverage (equity value) during the beta estimation period, and ∅𝐿𝐸𝑉𝑡

(∅𝐸𝑡) is the average leverage (equity value) at the end of the beta estimation period. The values for 𝐸60

and 𝐸𝑡 are in USD millions. The columns labeled PE contain the average pricing errors based on the
different beta estimates. Pricing errors are multiplied by 100. ADR denotes the average “default” rate,
hence the percentage of firms with an equity return of less than −90%. For the pricing error columns
the numbers in brackets are t-values for the hypothesis that the error equals zero. All other numbers in
brackets are standard errors.

The debt-to-equity ratio in the smallest portfolio (in decile 1) of U.S.
�rms is 13.7, which is much higher than the debt-to-equity ratio of 2.4 of the
smallest portfolio in our simulation. Presumably, an explanation is our as-
sumption of risk-free debt. High leverage increases the liquidation risk in our
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simulation setup because instantaneous liquidation actually takes place. In
reality, creditors will face a loss even on current accounts if the �rm defaults,
and hence liquidation takes place at some later stage, which in turn produces
even higher levels of leverage. However, the debt-to-equity ratio shown in
Table 5 is not the real market leverage because we only use the accounting
value of total liabilities as a proxy for the market value of debt. For �rms that
have experienced prolonged negative asset returns, the true market value of
debt may be smaller due to default risk, and hence the leverage values that
are based on accounting debt will be biased upwards. Despite high leverage,
default rates are low if we de�ne a monthly equity return of −90% or less
as default. Even in the smallest decile the average default rate, denoted as
ADR, is only 0.038%, which potentially indicates a survivorship bias in our
sample which is an intersection of the Compustat Global and Datastream
Thomson databases.

Table 5 further indicates that the estimated average beta, 𝛽60, does not
vary as much across the size deciles as the leverage. The beta is higher for
small cap stocks, but the di�erence compared to large cap stocks is below
30% even in the best case and much much smaller than the di�erences in
leverage, which increases by a factor of seven. This could partly be caused
by a residual thin trading bias in the beta estimation. Although we use
monthly returns and exclude months with a return of zero, residual thin
trading is likely to persist. This will lead to a downward bias in the beta
estimates especially for the smallest decile portfolio. In fact, the estimated
betas in deciles one and two are even smaller than in decile 3 despite an
increasing leverage, indicating a downward bias in these extreme deciles.

The results also shows a relationship between size and return. The return
in the smallest portfolio (decile 1) is more than four times larger than in the
largest portfolio (decile 10). This number should be interpreted with care
because the sample probably su�ers from a survivorship bias. Our sample is
created as an intersection of the Compustat Global and Datastream Thomson
databases. Any missing data in either of the two sources will be missing in
our sample, implying a combined bias that is even greater than the bias
in each data source separately. Nevertheless, the size e�ect is much more
pronounced than in our simulation, which we attribute partly to the higher
debt-to-equity ratios in the U.S. sample.

Table 4 also shows the results when we apply our proposed beta correc-
tion. The average asset betas estimated using equation (1) are very similar
in the narrow range between 0.526 and 0.626 for the largest 80% of �rms.
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Figure 4: The figure visualizes the simulation results for historical U.S. size decile portfolios. Decile
1 contains the firms with the smallest market value of equity, and decile 10 contains the firms with the
largest market value of equity. The blue circles are the results based on 𝛽60, the green asterisk are the
results using the leverage correction, and the red crosses are the measured returns. For measured returns
the error bars indicate the confidence interval of plus and minus one standard error. The top left graph
plots size deciles against measured and expected returns, and the top right graph plots size deciles agains
estimated betas. In the bottom right graph ex-post returns are plotted against expected returns based on
the estimated betas. Finally, the bottom left graph depicts pricing errors across size deciles.

However, the asset betas are substantially lower for the smallest two decile
portfolios with only 0.399 and 0.160, respectively. This potentially indicates
that the betas of small �rms are estimated too low, e.g., due to a thin-trading
bias. Releveraging asset betas using equation (3) delivers substantially higher
point-in-time betas, 𝛽𝑡, for small cap stocks compared to the corresponding
𝛽60 estimates. Similar to our simulation results, 𝛽60 exhibits a downward
bias as a proxy for the true beta at the end of the estimation window. Cor-
recting for this bias reduces the risk-adjusted �size e�ect�. While the pricing
error for small cap stocks is 2.05% per month if 𝛽60 is used to calculate the
expected return, it reduces to 1.18% after the correction. The corresponding
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𝑡-value drops from 3.57 to 2.05, implying a lower signi�cance level of only
95% compared to 99.9%. Overall, our empirical �ndings indicate that the size
premium is substantially lower when beta is corrected for the market-induced
changes in leverage. This implies that the high returns of small stocks are at
least partly the result from higher �nancial risk that investors take over.

7 Conclusions

Using simulation analyses, we document that even in a frictionless world a
size e�ect exists for portfolios of �rms grouped by the market value of equity.
This e�ect is caused by market-induced changes in leverage during the beta
estimation window, which makes the estimated beta a biased proxy for the
true point-in-time beta at the end of the estimation window. Firms that
have su�ered from low equity returns during the beta estimation window
exhibit, on average, higher leverage at the end of the estimation window
than within. Accordingly, a measurement error occurs because this higher
leverage is not re�ected in the estimated beta; in particular, the estimated
beta is biased downwards for small �rms. Using this beta to estimate risk-
adjusted returns will in turn lead to seemingly unexplained excess returns
and pricing errors. We suggest a simple correction for this beta measurement
error, which eliminates the size e�ect in simulated returns and greatly reduces
it in historical returns for a sample of U.S. �rms.

Our setup is very general, and our correction for the bias in estimated
betas potentially explains many other CAPM anomalies. Another attrac-
tive feature of our approach is that we do not need to introduce frictions or
additional risk drivers to the CAPM, and hence it requires fewer assump-
tions than previous explanations for CAPM anomalies. Finally, our �ndings
have implications for long-term events studies, as they are especially prone
to measurement errors in expected returns. This is even more the case if the
event triggers a change in capital structure. For example, not correcting for
the increase in leverage induced by a share repurchase will underestimate ex-
pected returns, and hence it leads to the possibly wrong conclusion that �rms
that buy back shares subsequently experience higher risk-adjusted returns.
As another example, consider an investor who wants to pay a fund manager
only for his value-added rather than for the risk he takes. The investor needs
to make sure that the risk measure re�ects the point-in-time systematic risk
rather the risk experienced in the past. Fund managers could try to exploit
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this e�ect and invest in �rms that have experienced an increase in leverage
during the contractually agreed beta estimation window.
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