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Abstract

The aim of this paper is to empirically test the effectiveness of the Merton [1974] model in measuring

the sensitivity of corporate bond returns to changes in equity value. Compared to the standard framework

the assumption of normally distributed rates of return is relaxed in order to improve the measurement of

the hedge ratios and to allow the use of firm specific elasticities. Despite this, results show that at most

only 6.17% of the bonds have a hedge ratio ranging between [-10%; +10%] from the model predicted

value.
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1 Introduction

The effectiveness of structural models, pioneered by Black and Scholes [1973] and Merton [1974], in mod-

elling the credit risk of a company is still under debate. Despite the existence of a huge theoretical literature

on risky corporate debt pricing, little attention has been paid to the empirical reliability of these models.

Among such few attempts, Eom et al. [2004] test five different structural models. The main result of their
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work reveals a poor job of structural models in predicting credit spreads. In particular their modified Mer-

ton model underestimates credit spreads while on average the other structural models overestimate spreads

especially for high risk companies.

Summarizing the discussion we highlight two main motivations of the structural models’ failure in pre-

dicting bond spreads:

1. failure in measuring the credit exposure;

2. influence of non credit related variables.

In order to investigate how much of the spread is related to credit risk, Huang and Huang [2003] test 8

different structural models. Calibrating each model to match historical default loss experience data (default

frequency and loss rates given default) they conclude that, for investment grade bonds, credit risk accounts

only for a small fraction of the observed corporate-treasury yield spreads. For high yield bonds this fraction

becomes larger. In their work they do not test the Merton’s model due to difficulties in adapting it to coupons

(see Huang and Huang [2003], footnote 6). The small size of the default component is moreover exhibited

in numerous other papers as Philip et al. [1984], Elton et al. [2001], Collin-Dufresne et al. [2001] and Chen

et al. [2007] among others. On the other hand, using a different calibration procedure, Longstaff et al. [2005]

arrive at a different conclusion and they find that the default component accounts for the majority of the

corporate spreads across all rating classes.

Without focussing on the size of the debt spreads, Leland [2004] tests the ability of the structural models

developed by Longstaff and Schwartz [1995] and Leland and Toft [1996] in predicting the probability of

default. Leland’s results show that structural models could predict the general shape of the default prob-

ability for A, Baa and B quite well for time horizons over 5 years. For shorter maturity there are some

underestimation problems probably due to the diffusive nature of the stochastic processes (see Zhou [2001]

and Duffie and Lando [2001] for possible solutions of this problem). Leland [2004] results are very sensitive

to maturity, asset volatility and default costs.

With a different approach and concentrating on hedge ratios, Schaefer and Strebulaev [2008] test the sen-

sitivity of corporate bond returns to changes in equity value using monthly hedge ratios calculated following

the Merton [1974] model. With a sample of US corporate bonds over the period December 1996 - December

2003 their main conclusion is that that the simple Merton model is able to capture the credit exposure of

bond returns except for the AAA rating class.
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The work of Schaefer and Strebulaev [2008] arises many interesting questions regarding the conditions

under which the Merton [1974] model actually produces good estimates of the market observed hedge ratios.

First of all, due to the presence of high noise in the firm specific hedge ratios, the authors use monthly

averages of the hedge ratios (elasticities) in each rating class. The use of monthly averages, though it reduces

the noise, it diminishes the capability to identify the motivations underlying the failures of the model. At

the same time it is interesting to analyse the dispersion of the results across bonds.

A second question regards the identification of the main characteristics shared by those bonds for which

the model produces adequate estimates of the hedge ratios. This last point is particularly of interest both

from a theoretical and a practical point of view. From a pure theoretical standpoint, we may be interested

in identifying those variables that help in validating the model. From a practical point of view instead, we

may want to identify the conditions under which the model guarantees hedging strategies.

A third important question relates the validity of the model towards different periods of time. Indeed

the Merton [1974] model implies a positive elasticity of the debt value with respect to equity, i.e. the hedge

ratio is always greater than 0. While it is notorious that bonds and equity returns exhibit a modest positive

correlation over the long term, there is a substantial variation over a short term, including periods of negative

correlation (Fleming et al. [1998], Hartmann et al. [2001], Chordia et al. [2005] and Connolly et al. [2005]).

In period of negative correlation between equity and bonds rates of return, the model would fail in predicting

the right quantity for hedging.

In this paper we follow the approach proposed by Schaefer and Strebulaev [2008] and focusing on hedge

ratios we extend their work in the following main directions: we test the validity of the Merton’s model using

firm specific hedge ratios. This task is made possible once relaxed the assumption of normally distributed

rates of return. In particular following the results of Madan et al. [1998], Madan and Seneta [1990] and Carr

et al. [2003] among others, two alternative asymmetric and fat tailed distributions are used: the Variance

Gamma (VG) and the Normal Inverse Gaussian (NIG); given the variation over time of the bond-equity

correlation, the model is also tested through a time varying window from December 31th 2006 to December

31th 2010. Different proxies of leverage and asset value dynamics are used as a robustness check; finally we

analyse the conditions under which the Merton [1974] model guarantees a hedging position. In particular

we relate the absolute distance between the estimated and the theoretical coefficients to various explanatory
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variables such as liquidity, time to maturity, leverage, analyst coverage and judgements and the volatility of

bonds and equities rates of return.

The sample used in this work is built from domestic non-financial US corporate bonds collected in the Merrill

Lynch Corporate Index and in the Merrill Lynch High Yield Master II index from January 1997 to January

20111. The final sample includes monthly closing prices from December 31th, 1996 to December 31th, 2010

of 2,449 bonds issued by 568 companies.

The main findings of the work are:

1. the model in its original form fails in providing firm specific hedge ratios for AAA, AA and B rated

bonds. Once relaxed the normality assumption, though the Merton [1974] model cannot be rejected

for most of the bonds in each rating class, at most only the 6.17% of the bonds have empirical hedge

ratios that fall between [−10%; +10%] from the theoretical predicted value. Restricting the analysis

only to the active bonds in the market, we observe an increase in the portion of correctly estimated

hedge ratios from December 2006 to December 2010. The number of those bonds still remain a small

fraction of the total sample;

2. the estimated coefficients fluctuate over time with protracted period of over and under estimation. In

general the Merton [1974] model overestimates the hedge ratios for investment grade bonds while it

underestimates the sensitivity of high yield bonds. An abrupt change in the coefficients is observed

during November-December 2008 when the 2007 financial crisis unfolded. For the AAA rated bonds

we observe an extended period of negative estimated hedge coefficients from December 2008 to March

2010;

3. the bonds for which the model works better are more liquid and have fundamentals concentrated around

their averages. The variables that seem to play a key role in validating the model are the liquidity of

bonds and equities, the leverage of the company, the quantity and quality of the information available

for a company and the volatility of equity and bonds rates of return.

In line with previous works, results indicate that collectively the credit part explains a low portion of the

bond spread changes with an explanatory power that increases as we move towards lower rated bonds. There

is a high cross correlation in the residuals and not surprisingly we observe a spatial relationship between

bonds of adjacent rating classes. Like Collin-Dufresne et al. [2001] we find that almost the 90% of the vari-

ability is explained by a first common component.

1The total sample is obtained by merging the lists of quoted bonds downloaded every December from 1997 to 2010.
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The paper is organised as follows: Section 2 details the hedge ratios in the Merton [1974] framework.

Section 3 describes the sample and shows the empirical results along with some robustness tests. Section

4 is dedicated to the analysis of the historical performance of the model. In section 5 the conditions under

which the simple Merton model performs better are studied. Finally, Section 6 provides some concluding

remarks and suggestions for further extensions.

2 Structural Models of Credit Risk

The idea behind the work of Schaefer and Strebulaev [2008] is to disentangle the debt price as the sum of a

credit DC and non credit DNC part:

D = DC +DNC (1)

where DC is the component of the debt price reflecting the credit exposure and DNC is the component of

debt price driven by non credit related variables. Despite pricing errors, assuming the non credit component

DNC being unrelated to corporate value and equity returns, bond prices sensitivity to changes in credit risk

should be adequately considered in structural models.

Under the assumption that the non credit related component of the debt price is uncorrelated to firm

specific variables, its derivative with respect to equity should be zero, i.e. ∂DNC/∂E = 0. In other words

if a structural model correctly appraises the credit exposure of the company, it should predict a debt price

sensitivity ∂DC/∂E very close to the one observed in the market.

Given the non-linearity of debt and equity prices in what follows we slightly modify the approach of Schaefer

and Strebulaev [2008] and we approximate the variation of debt value with respect to equity using a second

order Taylor expansion:

∆D =
∂ D

∂ E
∆E +

1

2

∂2 D

∂ E2
(∆E)2,

that after a bit of manipulation can be rewritten as:

rD = hE rE + kE rE2
. (2)

where rD and rE are the rates of return of debt and equity respectively and where:

hE :=

(

1

∆E
− 1

)(

V

D
− 1

)

, (3)

kE =
1

γE

(

V

D
− 1

)

,
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rE2
=

(∆E)
2

E
.

with ∆E = ∂E/∂V . The variable γE is the second derivative of equity with respect to V (gamma).

Using the results of Bakshi and Madan [2000] we rewrite the hedging coefficient in (3) as:

hE =

(

1

Π1
− 1

)(

V

D
− 1

)

, (4)

where

Π1 =
1

2
+

1

π

∫ ∞

0

Re

(

exp(−iu log(B))φ(u− i)

iuφ(−i)

)

du. (5)

with i =
√
−1, Re(x) indicates the real part of x and φ(u) indicates the characteristic function of the distri-

bution considered for the dynamics of the corporate value (see Appendices C and D)2 .

The ratio V/D in Equation (4) represents the market leverage obtained using the market value of the

firm and debt. Given the importance of this variable in the sequel of the paper we will test the model using

three alternatives leverage measures: i) Total Liabilities/(Market Capitalization+Total Liabilities) (LIAB);

ii) Total Debt/Enterprise Value (EV); iii) Total Debt/(Book Value Equity + Total Debt) (BV).

3 Sample Description and Numerical Results

The sample used includes domestic US corporate bonds of the non financial industry collected in the Merrill

Lynch Corporate Index and in the Merrill Lynch High Yield Master II index from January 1997 to January

2011. We consider monthly closing prices from December 31th, 1996 to December 31th, 2010. All the data,

with the exception of the 3-months treasury yield and the over 10 years US government index, are downloaded

from Bloomberg. The time series of the 3-month treasury yield is obtained from the Federal Reserve web

site. From a total of 11,909 bonds only those with a time to maturity of 4 years and a minimum of 20

consecutive observations for the bond and 56 for the equity of the corresponding company are considered

in the analysis. After controlling for the erroneous match of the bond and the issuer and for the minimum

number of observations above we end up with a sample of 4,967 bonds issued by 766 companies. From the

sample we moreover delete bonds with leverage of the issuing company, using the three indicated different

measures, greater than 1 or equal to zero. We moreover delete bonds with a monthly return exceeding 1,000%

2The integral in equation 5 is approximated numerically using the Simpson’s rule. The truncation value of the integral is
determined by an iterative algorithm that stops as the value of the integral stabiliezes.
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and with a percentage of zero month-returns higher than 10% and 20% for equity and bonds respectively3.

The final sample used in the analysis contains 2,449 bonds issued by 568 different companies. The rate of

return for each bond is calculated as:

ri, t =
Pi, t +AIi, t + Ci/Ni 1i, t

Pi, t−1 +AIi, t−1
− 1

where Pi, t is the clean price of bond i at month t; AIi, t is the accrued interest maturated from the last

coupon payment for bond i up to the month t; if the coupon payment falls between time t − 1 and t then

the coupon divided for the periodicity Ci/Ni is added. 1 is the indicator function taking the value of 1 if

the coupon is paid between t− 1 and t and zero otherwise. The high rejection rates of the normality and the

presence of excess kurtosis and non zero skewness provide further motivations to justify the use of alternative

probability distributions. Table 1 contains the basic statistics.

For each bond j we test the following equation:

r̄Dj,t
= α0 + βhE

hEj,t
r̄Ej,t

+ βkE
r̄E2

j,t
+ βrf r̄f10y,t + ǫj,t quadt = 1, 2, ...T (6)

where T is the last available observation of bond j and where:

1. r̄Dj,t
is the excess return of the corporate bond over the monthly yield of the 3-months US constant

maturity treasury security (RIFLGFCM03 N.B4);

2. r̄Ej,t
is the excess return of the equity over the monthly yield of the 3-months US constant maturity

treasury security;

3. r̄E2
j,t

=
(∆Ej,t)

2

Ej,t
− rft is a squared excess return of equity over the monthly yield of the 3-months US

constant maturity treasury security;

4. r̄f10y,t is the excess return of the over 10 years US government index (TUSGVG55) over the monthly

yield of the 3-months US treasury security;

3To make an example if for bond j I have 100 monthly observations, than this bond is dropped from the sample if 20 of
the 100 observations are lower in absolute value than 10−5. This should guarantee that the sample does not contains very low
liquid bonds.

4Downloaded from the Federal Reserve web site.
5Downloaded from Datastream.

7



5. hEj,t
is the hedge ratio in (4).

The inclusion of the second order term in Equation (6), should capture the non linearity of the ratio between

the deltas of the bond and the share price.

The estimation of VG and NIG distribution parameters is performed through GMM6 (see Seneta [2004],

Tjetjep and Seneta [2006] and Finlay and Seneta [2008]). Details of the parameters estimation are contained

in Appendix A.

In line with Schaefer and Strebulaev [2008] and Collin-Dufresne et al. [2001] Equation (6) is estimated

separately for each bond in the sample by OLS. Tables 2 and 3 contain the estimated coefficients using

firm specific and monthly average hedge ratios when the market leverage of the company is (LIAB). The

coefficients contained in the Tables are averages of the bond specific OLS coefficients in each rating class.

Like Schaefer and Strebulaev [2008] the standard errors of the coefficients are estimated by taking into con-

sideration for the cross-variances of the estimations (see Appendix B) and the R2 is obtained by averaging

the coefficients of determination of the regressions in each rating class. The idea is that if the simple Merton

model is able to capture bond returns sensitivity, the estimated coefficient β̂hE
should be statistically not

different from one.

The results in Table 2 indicate that on average we have to reject the null hypothesis of β̂hE
= 1 for AAA,

AA and B rated bonds. Apparently using NIG distribution the model is able to measure the sensitivity

of the AAA rated bonds. Anyway the high standard error for this class of rating, does not allow to drive

any robust conclusion since, as it can be seen, the estimated coefficient is neither statistically different from

0. Unlike Schaefer and Strebulaev [2008] this problem is not extended to the AA rated bonds, indeed the

results in Table 2 indicate that all but the AAA rated bonds have an estimated hedging coefficient statisti-

cally different from 0. Due to collinearity problems, coefficients with firm specific hedge ratios and assuming

normally distributed rates of return are not displayed. Indeed for bonds in the investment grade class the

standard model of Merton [1974], generates hedge ratios that approximate to zero and as a consequence we

have multicollinearity problems (see Figure 1).

6Given the high number of estimations 149,042 and the not completely closed form nature of the VG and NIG densities, the
use of the ML would have required a much higher computational effort.
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Table 3 contains the OLS estimated coefficients of equation (6) using monthly averages instead of firm

specific hedge ratios. All but the AAA bonds have an estimated coefficient statistically different from zero,

but as it can be seen from the Table, the Merton model is rejected only for the AA and B rated bond.

Again the high standard error of the AAA bonds does not allow to achieve any robust conclusion about the

real effectiveness of the model for this class of rating. On average the results are comparable with Schaefer

and Strebulaev [2008] although the coefficients of determination are strongly below their benchmarks7. In

conclusion results indicate that the Merton [1974] is generally rejected for those bonds at both extremes of

the rating classification.

An interesting analysis is to look at the cross dispersion of the estimated coefficients β̂hE
in order to

highlight the heterogeneity among bonds (see Figure 1). As it can be noted the estimated coefficients, using

firm specific hedge ratios and assuming normally distributed rates of return, are extremely dispersed. At

the same time it can be noticed that great part of the estimated coefficient are negative. Negative estimated

coefficients would induce a speculative rather than a hedging strategy, with potentially high gains and loss.

For those bonds the Merton [1974] model fails in designing the hedge strategy. Using firm specific hedge

ratios produces on average higher standard errors (see Figure 1).

To understand how the results are affected by the initial rating classification, the model in Equation (6)

is moreover estimated by updating the rating classification of the bonds every year. The historical rating

classification is downloaded from Datastream every year from January 1997 to January 2011. We implicitly

assume that a bond classified in a particular rating class at the end of a year, has remained in the same class

from the end of the previous year up to that date. Given the impossibility to guarantee a sufficient minimum

number of observations, the estimation is conducted by a pooled regression. The results, contained in Table

4, are in line with those obtained with the system of regressions although, the lower standard errors, lead

to an almost complete rejection of the effectiveness of the model. Like in the previous analysis we observe a

worse performance of the Merton model for bonds with rating at both extremes.

The relative numbers of bonds in each rating class and for each year are depicted in Figure 2. Looking

at this picture we observe a relative deterioration in the quality of the bonds included in the sample as we

move from December 1997 to December 2010. Indeed the percentage of investment grade bonds displays

a negative trend over the whole period, while the for high yield bonds we observe the reverse. Given the

information content of the rating, these particular trends may actually affect the validity of the model. This

7As it can be noted from Table 7, the explanatory power of the regression is strongly affected by the period analysed.
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point is addressed in Section 4 where we analyse the historical performance of the model.

To test the robustness of the results, we calculate the hedge ratios using the following different leverage

measures:

(a) TD
EV = Total Debt

Enterprise Value

(b) TD
TD+BE = Total Debt

Total Debt + Book Value of Equity

The enterprise value is obtained from Bloomberg and is given by adding the market capitalization of

equity and the market values of the traded debt. Tables 8, 9, 10 and 11 contain the results of the estimation

performed considering the above alternative leverage measures. The results are very similar to the first

leverage definition though, we observe a slight reduction of the rejection of the model using the book value

of equity.

As a further robustness check we consider a different proxy of the unlevered corporate value. Given that

bond prices are quoted with a normalised unit measure, at a first step we approximate the market value of

debt by multiplying the monthly bond prices divided for 100 for the amount in dollars issued of every bond.

After this operation, we calculate the overall company exposure by adding the market values of the bonds

belonging to a particular company. We then calculate the total rate of return by averaging the return of

equity and the return of the total debt:

rVt
= rEt

(1− Lt) + rDt
Lt (7)

where:

Lt =
Total Liabilitiest

Total Liabilitiest + Market Value Equityt

rEt
is the month t rate of return of equity and rDt

is the month t rate of return of the total bond exposure

of a particular company. Since the size of the time series included are different, a value of zero when one of

the specific month observation is missing is placed8. The approach followed above differs from Schaefer and

Strebulaev [2008] and in principle could be more affected by the low liquidity of the bond market. In our

case this problem is mitigated given that we have controlled for the low liquidity of the bonds eliminating

8To make an example if for month t the rate of return of all the the bonds of a company were missing, because for example
not yet issued, then I consider RDt

= 0. As a consequence the value RVt
is only composed by the rate of return of share. The

same applies for the leverage.
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the time series for which we observe a number of non trading months above 20%. Compared to the results

contained in Tables 2 and 3, the use of the new set of distribution parameters produces on average higher

coefficients of the hedge ratio. Overall the new set of parameters only produces better estimates for the

AAA and AA rated bonds but worsen the others.

11



Summary Statistics of the Sample

Total Sample AAA AA A BBB BB B

N◦ Issuers 568 9 32 156 220 129 160
N◦ Bonds 2,449 52 198 815 845 287 252
Time to Maturity (months) 118.42 206.92 112.27 129.04 123.55 90.73 85.01
Bond Returns
Mean 0.0020 0.0014 0.0010 0.0019 0.0024 0.0014 0.0027
Standard Deviation 0.0348 0.0246 0.0207 0.0301 0.0393 0.0372 0.0456
Skewness 0.1138 0.1155 0.1846 0.2161 0.1210 -0.0996 -0.0546
Kurtosis 7.7209 5.1482 5.7224 6.7127 8.3909 8.3706 10.0960
Equity Returns
Mean 0.0147 0.0100 0.0131 0.0105 0.0124 0.0160 0.01928
Standard Deviation 0.1261 0.0731 0.0817 0.0995 0.1135 0.1322 0.1619
Skewness 0.3325 0.0548 0.0153 0.1485 0.2296 0.2142 0.5895
Kurtosis 5.7646 3.5725 4.42783 5.3255 5.8721 4.9161 6.0803
Leverage i) (LIAB)
Mean 0.4609 0.2664 0.2910 0.3800 0.4611 0.4997 0.5589
Standard Deviation 0.0763 0.0450 0.0553 0.0635 0.0720 0.0816 0.0908
Leverage ii) (EV)
Mean 0.3421 0.1614 0.1520 0.2419 0.3271 0.3909 0.4710
Standard Deviation 0.0825 0.03888 0.0402 0.0647 0.0779 0.0931 0.1056
Leverage iii) (BV)
Mean 0.3496 0.2188 0.2633 0.2841 0.3311 0.3733 0.4493
Standard Deviation 0.0476 0.0404 0.0390 0.0430 0.0423 0.0459 0.0584
Jarque-Bera Test
Bond Returns 0.7938 0.6346 0.7121 0.7325 0.8438 0.8049 0.9087
Equity Returns 0.4912 0.2222 0.3750 0.4679 0.5136 0.4031 0.5438

Table 1: Summary statistics. This table reports summary of the monthly statistics of the sample over the period December 31th, 1997 - December 31th, 2010. The statistics
are calculated considering all bonds belonging to the indicated rating class. The time to maturity is an average (considering all bonds belonging to each rating class) time to ma-
turity and is expressed in average months remaining until maturity. The measures of leverage are calculated as: i) Total Liabilities/(Market Value of Equity + Total Liabilities)
(LIAB); ii) Total Debt/(Enterprise Value) (EV); iii) Total Debt/(Book Value Equity + Total Debt) (BV). The Jarque-Bera test indicates the rejection rate of the normality
test with a critical value of 5% for the bonds and shares included in each class of rating. In particular for each series the test assigns the value 1 if the normality is rejected and
0 if it cannot be rejected and I then calculate the average of this index inside each rating class.

1
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OLS Estimates of r̄Dj,t
= α0 + βhE

hEj,t
r̄Ej,t

+ βkE
r̄
E2

j,t
+ βrf r̄f10y,t + ǫj,t

Leverage=Total Liabilities/(Total Liabilities + Market Capitalization)
Firm Specific Hedge Ratios

Variance Gamma
All AAA AA A BBB BB B

α̂0 (×100) 0.111 -0.031 -0.102 0.117 0.150 0.174 0.089
(2.10E-3) (1.18E-3) (8.91E-4) (1.78E-3) (2.56E-3) (2.56E-3) (3.02E-3)

β̂hE
1.138 −0.047∗∗ 0.669 0.903 1.387 1.188 1.618∗∗

(2.30E-1) (4.64E-1) (2.24E-1) (2.43E-1) (3.00E-1) (2.19E-1) (2.44E-1)

β̂kE
(×100) -0.312 3.01E-4 0.433∗∗ −0.531∗ -0.337 −0.895∗∗ 0.493

(3.18E-3) (4.26E-3) (1.82E-3) (3.12E-3) (4.52E-3) (3.72E-3) (4.42E-3)

β̂rf 0.172∗∗∗ 0.438∗∗∗ 0.327∗∗∗ 0.310∗∗∗ 0.142∗∗ -0.035 -0.116
(5.15E-2) (2.82E-2) (2.29E-2) (4.27E-2) (6.19E-2) (6.32E-2) (7.88E-2)

R2 0.276 0.391 0.347 0.313 0.253 0.213 0.224

Normal Inverse Gaussian
All AAA AA A BBB BB B

α̂0 (×100) 0.109 -0.028 -0.103 0.113 0.150 0.166 0.087
(2.10E-3) (1.20E-3) (8.95E-4) (1.77E-3) (2.57E-3) (2.55E-3) (2.98E-3)

β̂hE
1.074 0.538 0.596∗ 0.796 1.312 1.156 1.569∗∗

(2.47E-1) (4.38E-1) (2.22E-1) (2.08E-1) (3.64E-1) (2.09E-1) (2.39E-1)

β̂kE
(×100) -0.322 -1.60E-1 0.405∗∗ −0.521∗ -0.352 −0.861∗∗ 0.432

(3.19E-3) (4.27E-3) (1.86E-3) (3.09E-3) (4.56E-3) (3.72E-3) (4.40E-3)

β̂rf 0.173∗∗∗ 0.437∗∗∗ 0.328∗∗∗ 0.311∗∗∗ 0.145∗∗ -0.035 -0.113
(5.15E-2) (2.87E-2) (2.30E-2) (4.26E-2) (6.21E-2) (6.28E-2) (7.81E-2)

R2 0.278 0.387 0.348 0.313 0.255 0.216 0.229

n̄ 59.00 73.77 72.62 60.50 57.33 53.13 52.71
N 2,449 52 198 815 845 287 252

Table 2: OLS estimates with firm specific hedge ratios. This table reports the results of the system of regressions
r̄Dj,t

= α0 +βhE
hEj,t

r̄Ej,t
+βkE

r̄E2
j,t

+βrf r̄f10y,t + ǫj,t with firm specific hedge ratios for the two distributions VG and NIG.

With n̄ we denote the average number of observations per bond. The reported coefficients are averages of the bond specific
OLS estimated coefficients in each rating class. The standard errors are reported in parenthesis and are calculated as indicated
in Appendix B. The p-values for the β̂hE

are calculated with respect to the theoretical value of 1, the others as usual are
calculated with respect to zero. The R2 is an average of the coefficients of determination of every regression in each rating class.
The variable r̄Dj,t

is the excess return of bond j in month t; the variable hEj,t
r̄Ej,t

is the product of the excess return of share

j in month t and the theoretically predicted hedge ratio with leverage defined as Total Liabilities/(Total Liabilities+Market
Capitalization); the variable r̄E2

j,t
is the square of the excess return of share j in month t; finally the variable r̄f10y,t is the

excess return of the 10 years treasury bond. The indexes ∗ ∗ ∗, ∗∗ and ∗ indicate the statistical significance at 1%, 5% and 10%
respectively.
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OLS Estimates of r̄Dj,t
= α0 + βhE

hEj,t
r̄Ej,t

+ βkE
r̄
E2

j,t
+ βrf r̄f10y,t + ǫj,t

Leverage=Total Liabilities/(Total Liabilities + Market Capitalization)
Monthly Average Hedge Ratios

Variance Gamma
All AAA AA A BBB BB B

α̂0 (×100) 0.113 -0.026 -0.108 0.116 0.166 0.172 0.097
(2.06E-3) (1.19E-3) (8.95E-4) (1.75E-3) (2.52E-3) (2.53E-3) (2.96E-3)

β̂hE
0.996 0.638 0.460∗∗∗ 0.826 1.227 1.038 1.153

(1.80E-1) (4.46E-1) (2.04E-1) (1.92E-1) (2.23E-1) (1.53E-1) (1.51E-1)

β̂kE
(×100) -0.522 -8.95E-2 0.428∗∗ −0.557∗ -0.635 −1.002∗∗∗ -0.046

(3.28E-3) (4.33E-3) (1.88E-3) (3.07E-3) (4.65E-3) (3.75E-3) (4.87E-3)

β̂rf 0.173∗∗∗ 0.435∗∗∗ 0.329∗∗∗ 0.311∗∗∗ 0.148∗∗ -0.033 -0.119
(5.06E-2) (2.84E-2) (2.30E-2) (4.22E-2) (6.07E-2) (6.22E-2) (7.73E-2)

R2 0.280 0.385 0.349 0.315 0.260 0.224 0.234

Normal Inverse Gaussian
All AAA AA A BBB BB B

α̂0 (×100) 0.121 -0.022 -0.107 0.115 0.166 0.171 0.131
(2.06E-3) (1.20E-3) (8.97E-4) (1.76E-3) (2.53E-3) (2.52E-3) (2.88E-3)

β̂hE
0.999 0.540 0.453∗∗∗ 0.779 1.161 0.980 1.276∗

(1.73E-1) (3.64E-1) (1.91E-1) (1.82E-1) (2.17E-1) (1.45E-1) (1.54E-1)

β̂kE
(×100) −0.542∗ -1.69E-1 0.422∗∗ −0.555∗ -0.636 −0.992∗∗∗ -0.313

(3.28E-3) (4.35E-3) (1.88E-3) (3.07E-3) (4.67E-3) (3.74E-3) (4.81E-3)

β̂rf 0.177∗∗∗ 0.435∗∗∗ 0.329∗∗∗ 0.311∗∗∗ 0.148∗∗ -0.033 -0.103
(5.06E-2) (2.87E-2) (2.30E-2) (4.22E-2) (6.10E-2) (6.20E-2) (7.55E-2)

R2 0.283 0.385 0.349 0.315 0.260 0.225 0.246

Normal
All AAA AA A BBB BB B

α̂0 (×100) 0.121 -0.021 -0.107 0.116 0.166 0.171 0.131
(2.06E-3) (1.20E-3) (8.97E-4) (1.76E-3) (2.53E-3) (2.52E-3) (2.87E-3)

β̂hE
1.017 0.728 0.458∗∗ 0.789 1.167 0.994 1.290∗

(1.75E-1) (8.49E-1) (2.15E-1) (1.84E-1) (2.19E-1) (1.47E-1) (1.55E-1)

β̂kE
(×100) −0.542∗ -1.98E-1 0.422∗∗ −0.556∗ -0.637 −0.988∗∗∗ -0.308

(3.28E-3) (4.33E-3) (1.89E-3) (3.07E-3) (4.67E-3) (3.73E-3) (4.80E-3)

β̂rf 0.177∗∗∗ 0.436∗∗∗ 0.329∗∗∗ 0.311∗∗∗ 0.148∗∗ -0.033 -0.103
(5.06E-2) (2.86E-2) (2.30E-2) (4.22E-2) (6.10E-2) (6.20E-2) (7.54E-2)

R2 0.283 0.384 0.348 0.315 0.260 0.226 0.246

n̄ 59.00 73.77 72.62 60.50 57.33 53.13 52.71
N 2,449 52 198 815 845 287 252

Table 3: OLS estimates with firm monthly average hedge ratios. This table reports the results of the system of
regressions r̄Dj,t

= α0+βhE
hEj,t

r̄Ej,t
+βkE

r̄E2
j,t

+βrf r̄f10y,t +ǫj,t with monthly average hedge ratios for the two distributions

VG and NIG. With n̄ we denote the average number of observations per bond. The reported coefficients are averages of the
bond specific OLS estimated coefficients in each rating class. The standard errors are reported in parenthesis and are calculated
as indicated in Appendix B. The p-values for the β̂hE

are calculated with respect to the theoretical value of 1, the others
as usual are calculated with respect to zero. The R2 is an average of the coefficients of determination of every regression in
each rating class. The variable r̄Dj,t

is the excess return of bond j in month t; the variable hEj,t
r̄Ej,t

is the product of the

excess return of share j in month t and the theoretically predicted hedge ratio with leverage defined as Total Liabilities/(Total
Liabilities+Market Capitalization); the variable r̄E2

j,t
is the square of the excess return of share j in month t; finally the variable

r̄f10y,t is the excess return of the 10 years treasury bond. The indexes ∗ ∗ ∗, ∗∗ and ∗ indicate the statistical significance at 1%,

5% and 10% respectively.
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Figure 1: This picture displays the absolute frequencies of the estimated β̂hE
of equation r̄Dj,t

= α0 + βhE
hEj,t

r̄Ej,t
+ βkE

r̄E2
j,t

+ βrf r̄f10y,t + ǫj,t for the Variance Gamma,

Normal Inverse Gaussian and Normal probability distributions. The three histograms in the upper part of the figure are the frequencies of the estimated β̂hE
using firm specific

hedge ratios. The histograms in the lower part refer to the estimations with monthly average hedge ratios. The leverage used to calculate the theoretical hedge ratios is equal
to Total Liabilities/(Total Liabilities + Market Capitalization).
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Panel Estimates of r̄Dj,t
= α0 + βhE

hEj,t
r̄Ej,t

+ βkE
r̄
E2

j,t
+ βrf r̄f10y,t + ǫj,t

Leverage=Total Liabilities/(Total Liabilities + Market Capitalization)
Firm Specific Hedge Ratios

Variance Gamma
All AAA AA A BBB BB B

α̂0 (×100) −0.081∗∗∗ -0.062 −0.065∗∗∗ −0.065∗∗∗ −0.072∗∗∗ −0.092∗∗ -0.068
(1.01E-4) (5.58E-4) (2.23E-4) (1.27E-4) (1.70E-4) (3.60E-4) (4.64E-4)

β̂hE
0.823∗∗∗ 0.402∗∗∗ 0.150∗∗∗ 0.601∗∗∗ 0.981 1.102∗∗∗ 0.655∗∗∗

(1.09E-2) (1.78E-1) (3.76E-2) (1.97E-2) (2.05E-2) (3.17E-2) (2.85E-2)

β̂kE
(×100) −0.001∗∗∗ -2.97E-1 -0.033 3.34E − 4∗∗ −0.012∗∗∗ −0.043∗∗∗ −0.074∗∗∗

(1.80E-6) (2.22E-3) (3.56E-4) (1.32E-6) (1.19E-5) (5.14E-5) (9.74E-5)

β̂rf 0.182∗∗∗ 0.501∗∗∗ 0.371∗∗∗ 0.362∗∗∗ 0.188∗∗∗ −0.099∗∗∗ −0.227∗∗∗

(3.06E-3) (1.60E-2) (6.92E-3) (3.85E-3) (5.05E-3) (1.07E-2) (1.45E-2)
R2 0.058 0.351 0.230 0.172 0.062 0.073 0.063

Normal Inverse Gaussian
All AAA AA A BBB BB B

α̂0 (×100) −0.092∗∗∗ -0.063 −0.072∗∗∗ −0.066∗∗∗ −0.077∗∗∗ −0.091∗∗ −0.130∗∗∗

(1.01E-4) (5.57E-4) (2.22E-4) (1.27E-4) (1.70E-4) (3.60E-4) (4.54E-4)

β̂hE
0.979∗ 0.600∗∗ 0.447∗∗∗ 0.544∗∗∗ 0.956∗∗ 1.084∗∗∗ 1.252∗∗∗

(1.16E-2) (1.92E-1) (5.54E-2) (1.86E-2) (2.01E-2) (3.06E-2) (3.67E-2)

β̂kE
(×100) −0.001∗∗∗ -3.03E-1 -0.033 4.78E − 4∗∗∗ −0.003∗∗ −0.044∗∗∗ −0.044∗∗∗

(1.80E-6) (2.21E-3) (3.46E-4) (1.32E-6) (1.17E-5) (5.13E-5) (9.17E-5)

β̂rf 0.188∗∗∗ 0.502∗∗∗ 0.371∗∗∗ 0.363∗∗∗ 0.190∗∗∗ −0.097∗∗∗ −0.200∗∗∗

(3.05E-3) (1.60E-2) (6.90E-3) (3.85E-3) (5.06E-3) (1.07E-2) (1.42E-2)
R2 0.067 0.352 0.234 0.171 0.061 0.075 0.106

Normal
All AAA AA A BBB BB B

α̂0 (×100) −0.094∗∗∗ -0.065 −0.064∗∗∗ −0.069∗∗∗ −0.077∗∗∗ −0.100∗∗∗ −0.131∗∗∗

(1.01E-4) (5.56E-4) (2.23E-4) (1.27E-4) (1.70E-4) (3.60E-4) (4.54E-4)

β̂hE
1.018 1.041 0.363∗∗∗ 0.597∗∗∗ 0.966∗ 1.108∗∗∗ 1.305∗∗∗

(1.19E-2) (2.56E-1) (5.09E-2) (1.95E-2) (2.03E-2) (3.11E-2) (3.78E-2)

β̂kE
(×100) 1.71E-4 -2.27E-1 −0.065∗ 1.95E-5 −0.003∗∗∗ −0.023∗∗∗ −0.039∗∗∗

(1.79E-6) (2.22E-3) (3.57E-4) (1.31E-6) (1.17E-5) (5.05E-5) (9.14E-5)

β̂rf 0.189∗∗∗ 0.504∗∗∗ 0.370∗∗∗ 0.364∗∗∗ 0.190∗∗∗ −0.097∗∗∗ −0.198∗∗∗

(3.05E-3) (1.60E-2) (6.91E-3) (3.85E-3) (5.06E-3) (1.07E-2) (1.42E-2)
R2 0.068 0.355 0.233 0.172 0.061 0.076 0.108

N 138,057 1,830 9,627 45,677 50,142 18,000 12,781

Table 4: Panel estimates with firm specific hedge ratios. This table reports the results of the system of regressions
r̄Dj,t

= α0 +βhE
hEj,t

r̄Ej,t
+βkE

r̄E2
j,t

+βrf r̄f10y,t + ǫj,t with firm specific hedge ratios for the two distributions VG and NIG.

The p-values for the β̂hE
are calculated with respect to the theoretical value of 1, the others as usual are calculated with respect

to zero. The variable r̄Dj,t
is the excess return of bond j in month t; the variable hEj,t

r̄Ej,t
is the product of the excess return

of share j in month t and the theoretically predicted hedge ratio with leverage defined as Total Liabilities/(Total Liabilities +
Market Capitalization); the variable r̄E2

j,t
is the square of the excess return of share j in month t; finally the variable r̄f10y,t is

the excess return of the 10 years treasury bond. The indexes ∗ ∗ ∗, ∗∗ and ∗ indicate the statistical significance at 1%, 5% and
10% respectively.

4 Historical Performances

In this section we test the implication of the Merton [1974] model using a moving window from December

31th, 2006 to December 31th, 2010. In particular, starting from the whole sample (December 31th, 1996 -

December 31th, 2010), the last month observations of each bond are deleted and the model is re-estimated9.

Given that we are interested in the ability of the model to generate market observed hedge ratios, we restrict

9Similar results are obtained using a moving window with a fixed number of observations though in this case, we end up
with a smaller sample given the need to guarantee at least 20 monthly observations for each bond.
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Figure 2: This picture contains the relative number of bonds classified in each rating class from December 1997 to December
2010.

the analysis only to bonds that are active at the date considered. To make an example the results at August

2008 are only restricted to bonds that are active in that month.

Figure 3 shows the results considering this particular time varying window with firm specific hedge ratios.

The number of bonds for each month under the analysis along with the coefficient of determination are

contained in Table 7. From the mentioned Figure we observe that we cannot reject the model for most of the

period and both VG-NIG distributions with the exclusion of the BBB and B rating classes. Similar results

still apply using monthly average hedge ratios. For the AAA bonds we observe a general overestimation of

the sensitivity measure10, indicating that the Merton model overestimate the sensitivity of the debt value

with respect to equity. This is in line with the results of Huang and Huang [2003] that found a low impact of

the credit exposure for high grades bonds. We moreover observe a general underestimation of the sensitivity

measures for the non investment grade bonds. Indeed for the bonds included in these classes of rating we

could expect that the simplified assumption underlying the Merton model are to binding. For all the rating

classes we observe an abrupt increase followed by a strong reduction of the estimated coefficients in the

period August-February 2008. This particular behaviour may be given by the known effect of the market

uncertainty in the relation between stock and bond returns (see Connolly et al. [2005]).

The correlation between bonds and equities rates of return is indeed positive if we consider the whole

10When the estimated coefficient is above (below) 1 it indicates that the theoretical hedge ratios are lower (higher) than those
observed in the market.
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Figure 3: Historical dynamics of β̂hE
. These plots display the estimated β̂hE

coefficients of the equation: r̄Dj,t
=

α0 + βhE
hEj,t

r̄Ej,t
+ βkE

r̄E2
j,t

+ βrf r̄f10y,t + ǫj,t assuming a NIG (continuous line) and VG (dashed line) distributions using

a time moving window from December 31th, 2006 to December 31th, 2010. The estimations that are statistically different from
the theoretical value of 1 at 5% confidence level are marked with a circle. The theoretical hedge ratios are calculated with a
leverage given by Total Liabilities/(Total Liabilities + Market Capitalization).
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sample period, but presents a high variation through time. In particular in November 2008 we experience

an abrupt increase in the correlation between equities and bonds returns for all but AAA rated bonds. This

abrupt phenomenon, that is not captured by the built hedge ratios, translates in the extreme movements of

the estimated coefficients. The negative value of the coefficients for the AAA rated bond after December

2008 is mainly driven by the inclusion of the 10 years treasury government index rates of return. This latter

effect could be caused by the high pressure on safer bond due to the flight-to-quality phenomenon along

with the crashes in the stock markets due to the 2007 financial crisis. Indeed while the correlation between

bond and share rates of return for the AAA rated bonds, has slightly increased but still remained close to

zero, after the crisis, the correlation between the equity and government bond rates of return has jumped to

positive values leading to the negative sign of the estimated coefficient for this class of rating.

We moreover find that the correlation between equity and bonds rates of return for the AA and A rated

bonds were negative from December 2006 to approximately August 2008. In the same period we observe a

higher distance from 1 of the estimated hedge coefficients for these classes of rating. Not surprisingly the

highest correlations between bonds and equities is found for the B rated bonds with a maximum value of

0.45. For the AAA and AA rated bonds it remains below 0.1. In line with works of Fleming et al. [1998],

Hartmann et al. [2001], Chordia et al. [2005] and Connolly et al. [2005] the results highlight a substantial

time variations of the correlations between equity/bond/treasury rates of return including sustained periods

of negative correlations that produce a high time variation of the estimated hedging coefficients.

5 Key Determinants of the Model

The results of the previous sections raise two important considerations, one theoretical and the other es-

sentially practical. From a theoretical point of view, we have seen that the Merton [1974] model in general

cannot be rejected for bonds that belong to the middle classes of rating. This conclusion is anyway strongly

affected by the period analysed and by the methodology employed to calculate the standard errors of the

parameters. Indeed from the results of Table 4 we observe that the model is rejected for almost all the classes

of rating.

From a pure practical standpoint, a perfect hedging position would require a coefficient perfectly equal

to 1. Indeed, if we only restrict the analysis to the relation between bond and equity rates of return, an
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error in the estimation of the hedge ratio would produce a gain/loss of the following magnitude:

rD − hErE = (β̂hE
− 1)hErE

where hE ∈ [0, ∞]. For high values of hE , a β̂hE
6= 1 could generate high losses/gains. For this reason we

believe that the analysis of the size of the hedging error and of the underlying determinants is of a primary

importance.

In this spirit, this section aims to study the main characteristics shared by bonds for which the Merton

model guarantees a hedging position. The analysis is conducted by grouping the estimated hedge ratio

coefficients of equation (6), depending on their absolute distance from 1 and then looking at the following

characteristics: 1) average excess return of share (rE)
11; 2) standard deviation of the excess return of share

(std(rE)); 3) average excess return of bonds (rD); 4) standard deviation of the excess return of bonds

(std(rD)); 5) log of the average time to maturity (T 2M); 6) average number of analysts following a company

(N.An.); 7) standard deviation of the number of analysts following a company (std(N.An.)); 8) average

rating on the consensus of the analysts (R.An.); 9) standard deviation of the rating on the consensus of the

analysts (std(R.An.)); 10) average zero month-returns of share (Ill. Eq.); 11) average zero month-returns of

bonds (Ill.D.). 12) average leverage (Lev.) calculated as (Market Value of Equity + Total Liabilities)/Total

Liabilities ; 13) standard deviation of the leverage std(Lev.). The following cross-sectional equation is tested:

ABS(β̂hE
-1) = α0 + β X + ǫ (8)

Where ABS(β̂hE
− 1) is a N × 1 column vector of the absolute value of the distances between the estimated

coefficient and 1; α0 is a N × 1 vector of 1; β is a 1× 13 column vector of coefficients; X is a 13×N matrix

of the above mentioned covariates; and ǫ is a N × 1 vector of spherical noises.

The results of the regression are contained in Table 5. As it can be observed, the market observed and

theoretical hedge ratios are closer for those bonds with higher volatility of the equity but less volatile bond

prices. An increase of the information available for a company, as proxied by the number of analysts and the

variation of their judgements, reduces the hedging errors. For what concerns the leverage, we can observe

that an increase of the leverage and a reduction of its volatility, increase the distance between the market

and the theoretical ratios. The first effect can be explained by the simple assumptions relative the default

11The average excess return of share and and bond has been multiplied for 100. The standard deviation is calculated on this
unit of measure.
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dynamics in the Merton [1974] model. The second effect is related to the quality of the available information.

A higher standard error of the quasi market leverage could indeed indicate a higher market activity, that

reflects better information quality for those companies.

Among the bonds with lower hedging error, those with ABS(·) < 0.5, particular importance is played

by the liquidity of both stock and bond markets, the time to maturity and the variation of the analyst

judgements. The existence of a significant constant term, for this group of bonds, may indicate the presence

of a systematic error or missing variables that are group specific. On the other hand, the hedging errors of

the bonds for which the model perform worse, those with ABS(·) ≥ 0.5, are strongly affected by the leverage,

the volatility of equities and bonds rates of return and the quantity/quality of the information available.

Among 2,449 bonds only 151 and 138, using respectively VG and NIG distributions, are between 0.9 and

1.1. Together with the results of Tables 2 and 3 this indicates that while the rejection of the Merton model

may be uncommon, depending on the rating class, the empirically estimated hedge ratios are really close

to the theoretical value only for a small fraction of the bonds analysed. Similar results are obtained using

monthly average hedge ratios.

A cluster analysis, indicates that the bonds for which the model better appraises the hedge ratios are

those with main underlying variables concentrated around the average values. This last finding is mainly

related to the non-linear shape of the hedge ratios. Indeed, even if the average values of the time to ma-

turity, volatility, zero trading months are similar among bonds with correctly and not correctly predicted

hedge ratios, the volatility of the main fundamentals variables are different between groups (see Figure 4).

As it can be seen bonds with a higher distance of the estimated coefficients from 1, are those with fatter tails.

Finally, Figure 5 displays the historical dynamics of the ratio of the bonds for which the model guarantees

a hedging position. As it can be seen, the group of bonds for which the model perform better are the high

yield bonds. This result, apparently in contrast with the analysis of Sections 3 and 4, is given by the disparity

of performances in the high-yield class. Indeed the relative number of bonds for which the model perform

better is higher, but when the coefficients are averaged with the remaining bonds we obtain a worse result.

Though we observe an increase in the percentage of correctly estimated hedge ratios from December 2006 to

December 2010, the portion of correctly appraised sensitivities still remain low and at most 0.21 if we con-

sider an absolute error of 0.3. These results emphasise a systematic error in the estimation of the hedge ratios.

Summarizing in line with Bao and Pan [2010] it seems that there is a large portion of bonds with dynamics
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disconnected from the equity values at least in the Merton framework. Like in Huang and Huang [2003] the

analysis of the determinants of the bonds spread changes, shows that credit risk accounts more for low grade

than for high grade bonds. The inclusion of well known pricing factors (SMB, HML, MARKET, VIX) are

able to explain a higher portion of the bond spread changes in all the rating class though the highest R2

does not exceed 0.45. The principal component analysis applied to the correlation matrices of the residuals

of each rating class, indicates that one common factor drives almost the 90% of the variation. This result is

analogous to what has been found by Collin-Dufresne et al. [2001] and indicates the existence of one common

variable, not captured by the used proxies, that drives almost 50% of the variations of the bond rates of

return.
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Figure 4: Gaussian kernel density estimation of the ratio of the number of non trading days of equities, bonds, the rates of return of equities and the volatility of the rates of
return of bonds. Given the presence of a high number of zeros in the series related the non trading days, the density is calculated only with positive values of non trading days
ratios.
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6 Conclusions

The results of the paper support partly Schaefer and Strebulaev [2008] finding that the simple Merton [1974]

model can predict bond returns sensitivity with respect to changes in equity returns (hedge ratios). My

findings suggest that the ability of Merton’s framework in capturing bond returns sensitivity is strongly

affected by the period analysed. Overall only a small fraction of the bonds analysed have estimated hedge

ratios close to the theoretically predicted. Possible explanations of the results could be related to the

difficulties in estimating the underlying variables such as volatility, corporate value, market value of debt

etc... (see Huang and Huang [2003]), liquidity and tax asymmetries and to the framework describing default

and loss given default (Black and Cox [1976], Leland [1994] and Leland and Toft [1996] among others).

Liquidity, leverage, quality and quantity of company information and the volatility of bond and equity rates

of return, seem to be the variables that most affect the empirical validity of the model. In particular we have

found that the bonds for which the model perform better are those with higher liquidity, lower leverage,

more available information and less dispersed volatilities of equities and bonds rates of return.

The single credit risk accounts only for a small fraction of the variability of credit spreads. The explanatory

power increases with high yields bonds.

Overall the results indicate that the theoretical implications of the Merton [1974] can not be generally

rejected, but warn about its capability in building hedging positions.
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Cross-Sectional Regression of the Key Determinants
ABS(β̂hE

-1) = α0 + β X + ǫ

Variance Gamma Normal Inverse Gaussian

Total ABS(·) < 0.5 ABS (·) ≥ 0.5 Total ABS(·) < 0.5 ABS (·) ≥ 0.5
α0 0.1052 0.2993∗∗∗ -0.4680 0.8280 0.4148∗∗∗ 0.3763

(1.09E+0) (6.81E-2) (1.41E+0) (7.13E-1) (7.40E-2) (8.91E-1)
rE 0.0622 0.0031 -0.0040 0.0416 0.0025 -0.0179

(4.37E-2) (4.92E-3) (5.97E-2) (3.95E-2) (4.90E-3) (5.59E-2)
std(rE) -0.0299∗∗∗ 0.0004 -0.0223∗∗ -0.0231∗∗∗ -0.0016 -0.0162∗∗

(8.75E-3) (8.98E-4) (1.04E-2) (7.19E-3) (1.23E-3) (7.77E-3)
rD 0.1599 0.0240 0.2166 0.4249 0.0089 0.4976

(3.81E-1) (2.13E-2) (4.11E-1) (3.00E-1) (2.44E-2) (3.20E-1)
std(rD) 0.3348∗∗∗ -0.0012 0.3312∗∗∗ 0.3041∗∗∗ 0.0018 0.3021∗∗∗

(8.42E-2) (4.74E-3) (9.22E-2) (7.19E-2) (4.93E-3) (7.98E-2)
T2M 0.1220 -0.0130 0.3112 -0.0659 -0.0278∗∗∗ 0.0692

(2.21E-1) (9.82E-3) (2.85E-1) (1.71E-1) (1.03E-2) (2.17E-1)
N.An. -0.0283∗∗∗ -5.69E-5 -0.0327∗∗ -0.0275∗∗∗ 3.11E-5 -0.0314∗∗

(1.02E-2) (9.51E-4) (1.39E-2) (9.41E-3) (8.99E-4) (1.30E-2)
std(N.An.) 0.0219 0.0035 -0.0093 0.0597∗ 0.0019 0.0452

(3.67E-2) (4.23E-3) (4.62E-2) (3.27E-2) (3.72E-3) (4.01E-2)
R.An. 0.0540 0.0008 0.1551 0.0400 -0.0034 0.1432

(1.16E-1) (1.29E-2) (1.43E-1) (8.05E-2) (1.28E-2) (1.06E-1)
std(R.An.) -1.5780∗∗∗ -0.0545∗ -1.7080∗∗∗ -1.3385∗∗∗ -0.0533 -1.3744∗∗∗

(3.53E-1) (3.30E-2) (4.81E-1) (2.85E-1) (3.32E-2) (3.80E-1)
Ill. Eq. 0.3719∗ 0.0227∗ 0.3708 0.4072∗∗ 0.0259∗∗ 0.4519∗∗

(2.02E-1) (1.23E-2) (2.35E-1) (1.89E-1) (1.07E-2) (2.30E-1)
Ill.D. 0.0179 0.0021∗ 0.0115 0.0111 0.0023∗∗ 0.0056

(1.69E-2) (1.18E-3) (2.16E-2) (1.10E-2) (1.16E-3) (1.42E-2)
Lev. 0.2262∗∗∗ -0.0011 0.2321∗∗ 0.1690∗∗∗ -0.0063 0.1677∗∗

(7.76E-2) (4.72E-3) (1.01E-1) (5.59E-2) (6.55E-3) (7.57E-2)
std(Lev.) -0.3881∗∗∗ -0.0005 -0.4442∗∗ -0.3101∗∗∗ -0.0005 -0.3563∗∗

(1.28E-1) (4.57E-3) (2.10E-1) (1.07E-1) (6.29E-3) (1.78E-1)

R2 0.0967 0.0187 0.1051 0.1368 0.0321 0.1504
N 2,449 733 1,716 2,449 759 1,690

Table 5: This table contains the results of the regression of the absolute value of the distance between the estimated hedge
coefficients and 1 with a series of explanatory variables (equation (8)). The column Total contains the results relative to the
whole sample while the columns ABS(·) R 0.5 contain the results of two different groups with distance lower and higher to 0.5.
The variable used are: 1) average excess return of share (rE); 2) standard deviation of the excess return of share (std(rE)); 3)
average excess return of bonds (rD); 4) standard deviation of the excess return of bonds (std(rD)); 5) log of the average time to
maturity (T2M); 6) average number of analysts following a company (N.An.); 7) standard deviation of the number of analysts
following a company (std(N.An.)); 8) average rating on the consensus of the analysts (R.An.); 9) standard deviation of the
rating on the consensus of the analysts (std(R. An.)); 10) average of zero -month-returns of share (Ill. Eq.); 11) average zero
month-returns of bonds (Ill.D..). 12) average leverage (Lev.) calculated as (Market Value of Equity + Total Liabilities)/Total
Liabilities; 13) standard deviation of the leverage std(Lev.). The indexes ∗ ∗ ∗, ∗∗ and ∗ indicate the statistical significance at
1%, 5% and 10% respectively.
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Figure 5: Ratios of bonds with ABS
(

β̂hE
− 1

)

< x. These pictures display the relative number of bonds, over the total

number, for which we observe a distance between the estimated and the theoretical hedge coefficients lower than x = 0.3 (non
marked upper lines of the first plot and second plot) and x = 0.1 (marked lower lines of the first plot and third plot). The
regressed equation is r̄Dj,t

= α0+βhE
hEj,t

r̄Ej,t
+βkE

r̄E2
j,t

+βrf r̄f10y,t +ǫj,t. The theoretical hedge coefficients are calculated

with leverage equal to Total Liabilities/(Total Liabilities + Market Capitalization).
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A Parameters Estimation

The set of parameters for the Variance Gamma and Normal Inverse Gaussian distributions has been estimated

by GMM. The orthogonality conditions are calculated by matching the theoretical and empirical first fourth

moments. The theoretical moments are obtained from the characteristic functions of the two distributions

that are detailed in Appendices C and D. In particular the characteristic function φ of a random variable X

is the Fourier-Stieltjes transform of the distribution function F (X) = P (X ≤ x):

φX(u) = E[exp(iuX)] =

∫ +∞

−∞

exp(iux)dF (x)

where i2 = −1. From the characteristic function we can easily obtain the k-th moment under the condition

that E[|X |k] < ∞:

E[Xk] = i−k dφ(u)

duk

∣

∣

∣

∣

u=0

Alternatively we can recover the moment generating function simply by evaluating ν(u) = φ(−iu) and then

calculate every moments by:

E[Xk] =
dν(u)

duk

∣

∣

∣

∣

u=0

Given that the third and fourth central moments can be rewritten as:

E[(x − E[x])3] = E[x3]− 3E[x]E[x2] + 2E[x]3

E[(x− E[x])4] = E[x4] + 6E[x]2E[x2]− 4E[x]E[x3]− 3E[x]4

The parameters are then estimated by solving:

θ̂ = arg min
θ

(g(θ)′ W g(θ))

where g(θ) is a K × 1 column vector that contains the K orthogonality conditions. In order to speed up the

calculation and given the better quality of the estimation we use an alternative optimal weighting matrix

that is given by W = diag (inv(W ∗)) where

W ∗ =

T
∑

i=1

(

g(θ̂)i g(θ̂)
′
i

)

The matrix B = diag(A) is a matrix with diagonal elements Bi,i = Ai,i and Bi,j 6=i = 0. The matrix of

weights for the first iteration is set equal to the identity matrix. The estimation of the parameters has
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been performed for an initial sample of 1,216 different shares and a total of 149,042 monthly observations12.

Figure 6 depicts the frequencies of the J statistic of Hansen [1982] under which:

T × g(θ̂)
′

W ∗g(θ̂) ∼ χ2
K−L

where T is the number of observations, K is the number of orthogonality conditions imposed and L is

the number of the parameters. In our case the K=4 and L=3, the critical value at 95% confidence level is

χ2
1; 95% = 3.8415 and χ2

1; 97.5% = 5.0239. We report in Table 6 the average correlations between the estimated

and empirical moments. The standard errors of the parameters are available from the Author upon request.

Dist. M1 M2 M3 M4 Kur. Skew.
VG 0.98 0.99 0.64 0.99 0.81 0.65
NIG 0.98 0.99 0.54 0.98 0.81 0.55

Table 6: This table contains the average correlation coefficients between the estimated and empirical moments. Mi, i = 1 : 4
are the first fourth central moments. Kur and Skew are the Kurtosys and Skewness respectively.

B Variance and Covariance of the Parameters

For every class of rating let r̄Dj
be the Tj × 1 vector of monthly excess returns for the jth bond, Xj =

[1; hEj
r̄Ej

; r̄E2
j
; r̄f10y,t ] be the Tj×4 matrix of covariates for the jth bond, where 1 is a Tj×1 column vector

of ones.

For every equation the coefficients are estimated through OLS:

β̂j =
(

X
′

j Xj

)−1

X
′

j r̄Dj

where β̂ is the K × 1 vector of the estimated parameters from equation (6). The variance and covariance

matrix of the coefficients of the N bonds in the sample is then obtained by:

Est. Cov. =

∑N
i=1

∑N
j=1

N2
σ̂2
is, jsAis A

′

js (9)

where:

Ais =
(

X
′

is Xis

)−1

X
′

is

12The number of shares included here is higher that the number of shares effectively included in the analysis since we do
not take into consideration for the minimum number of bond observations and errors in the data regarding the leverage and
maturity.
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Figure 6: This figure contains the plots of the frequency of the J statistics for the over-identification restrictions for the
estimation of the parameters of the distributions. The critical χ2 values are χ2

1; 95%
= 3.8415 and χ2

1; 97.5%
= 5.0239.
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is and js indicates that for a couple of bonds the length of the time series is homogeneous. In other words

suppose that for bond i we have the observations from ti to Ti and for bond j we have the observations

from tj to Tj , where ti > tj and Ti < Tj , then in order to calculate the value in (9) for bond i and j we

first calculate tis = tjs = max(ti, tj) and Tis = Tjs = min(Ti, Tj). In order to calculate the covariance

between two series we require a minimum of 21 month observations, in other words covariances for which

Tis − tis < 21 are not calculated.

Finally:

σ̂i, j =
e
′

is
ejs

M − tis + 1−K

where eis is the Tis × 1 vector of the residuals from the OLS estimation.

C Variance Gamma Distribution

The Variance Gamma (VG) process can be seen as a Gamma time changed Brownian Motion with constant

drift rate (Schoutens [2003]). In particular let G = Gt, t ≥ 0 be a Gamma process, that is a process starting

at zero and having stationary and independent Gamma distributed increments, with

fG(x; t/ν, 1/ν) =
(1/ν)(t/ν)

Γ(t/ν)
x(t/ν−1)exp(−x/ν), x > 0, (10)

and let W = Wt, t ≥ 0 be a standard Brownian motion. Assuming σ > 0 and θ ∈ ℜ, then Xt

Xt = θ Gt + σWGt
(11)

follows a Variance Gamma process V G(σ, ν, θ). Suppose that I model the continuously compounded rate of

return of shares as:

log
(Vt

V0

)

= µt+Xt (12)

where Xt is a Variance Gamma process with characteristic function

ΦP
X(ω) =

1
(

1− iθνω + 1
2σ

2νω2
)

t
ν

. (13)

The continuously compounded firm’s value rate of return has the following characteristic function:

ΦP
R(ω) =

eiωµ t

(

1− iθνω + 1
2σ

2νω2
)

t
ν

(14)
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In order to obtain the risk neutral measure I consider the mean correction procedure proposed by Schoutens

[2003] leading to the following characteristic function:

ΦQlog VT
log V0

(ω) = ΦP
log VT
logV0

(ω)eiω m, (15)

where m is the correction for the mean necessary to obtain an expected firm’s value rate of return equal to

the risk free rate r. In particular I have:

m = r t− µ t+
t

ν
log

(

1− θν − 1

2
σ2ν

)

(16)

Substituting (16) into (15) and rearranging terms, the risk neutral characteristic function of firm’s value rate

of return becomes:

ΦQlog Vt
(ω) =

eiω(log V0+rt)eiω
t
ν
log

(

1−θν− 1
2
σ2ν

)

(

1− iωθν − 1
2σ

2νω2
)

t
ν

. (17)

Equity value thus becomes:

ET = max
(

0, VT −K
)

(18)

E0 = V0Π1 −Ke−rTΠ2 (19)

Πj =
1

2
+

1

π

∫ ∞

0

Re

[

e−iω logKfj(ω)

iω

]

dω, j = 1, 2 (20)

f1 =
f2

(

1− iωθν − 1
2σ

2νω2
)

t
ν

(

1− θν(1 + iω) + 1
2σ

2ν(ω2 − 1− 2ω i)
)

t
ν

(21)

f2 = ΦQlog Vt
(ω) (22)

Under the assumption of VG distributed rates of return, hedge ratios are obtained by substituting (20)-(22)

into (4):

hE =

(

1

Π1
− 1

)(

V

D
− 1

)

.

D Normal Inverse Gaussian Distribution

The Normal Inverse Gaussian (NIG) process is an Inverse Gaussian (IG) time changed Brownian motion.

Let W = Wt, t ≥ 0 be a standard Brownian motion and let I = It, t ≥ 0 be an Inverse Gaussian (IG) process
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starting at zero and having independent and stationary Inverse Gaussian distributed increments with:

fIG(x; t, b) =
t√
2π

exp(tb)x−3/2exp
(

− 1

2
(t2x−1 + b2x)

)

, x > 0, (23)

and b = δ
√

α2 − β2. Assuming α > 0, −α < β < α and δ > 0 the process:

Xt = βδ2 It + δWIt (24)

follows a NIG(α, β, δ) distribution.

The characteristic function of a NIG random variable is:

ΦNIG(ω) = exp
(

− tδ
(

√

α2 − (β + iω)2 −
√

α2 − β2
))

. (25)

As a consequence, the characteristic function of share’s return becomes:

ΦP
R(ω) = exp

(

iωµ− tδ
(
√

α2 − (β + iω)2 −
√

α2 − β2
)

)

. (26)

In order to obtain the risk neutral measure I follow the same scheme shown in Appenix A. The mean

correcting term is:

m = rt− µ t+ tδ
(

√

α2 − (β + 1)2 −
√

α2 − β2
)

, (27)

allowing to write equity value as:

ET = max
(

0, VT −K
)

(28)

E0 = V0Π1 −Ke−rTΠ2 (29)

Πj =
1

2
+

1

π

∫ ∞

0

Re

[

e−iω logKfj(ω)

iω

]

dω, j = 1, 2 (30)

f1 = f2 exp
[

tδ
(
√

α2 − (β + iω)2 −
√

α2 − β2
)

+

+tδ
(
√

α2 − (β + 1)2 −
√

α2 − β2
)

+

−tδ
(
√

α2 − (β + i(ω − i))2 −
√

α2 − β2
)

]

(31)

f2 = exp
[

iω
(

rt+ logV0

)

− tδ
(
√

α2 − (β + iω)2 −
√

α2 − β2
)

+

+iω tδ
(
√

α2 − (β + 1)2 −
√

α2 − β2
)

]

(32)
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Under NIG distributed stock price return, I can obtain the hedge ratios by substituting (30)-(32) into (4):

hE =

(

1

Π1
− 1

)(

V

D
− 1

)

.
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Number of Bonds

Dec. 2006 Apr. 2007 Aug. 2007 Dec. 2008 Apr. 2008 Aug. 2008 Dec. 2008 Apr. 2009 Aug. 2009 Dec. 2009 Apr. 2010 Aug. 2010 Dec. 2010

ALL 1106 1104 1129 1143 1168 1231 1246 1277 1346 1427 1497 1509 1573

AAA 29 21 21 21 20 20 19 17 20 19 22 22 25

AA 97 96 96 96 95 95 96 92 97 96 100 98 112

A 361 364 384 376 381 391 397 396 418 462 491 517 568

BBB 428 420 412 415 421 446 449 483 517 553 584 591 613

BB 107 111 117 126 128 141 144 147 148 153 160 148 144

B 84 92 99 109 123 138 141 142 146 144 140 133 111

R2
for the VG distribution

Dec. 2006 Apr. 2007 Aug. 2007 Dec. 2008 Apr. 2008 Aug. 2008 Dec. 2008 Apr. 2009 Aug. 2009 Dec. 2009 Apr. 2010 Aug. 2010 Dec. 2010

ALL 0.42 0.41 0.39 0.37 0.35 0.32 0.40 0.30 0.29 0.28 0.28 0.27 0.26

AAA 0.55 0.55 0.53 0.51 0.51 0.47 0.49 0.38 0.39 0.38 0.39 0.38 0.37

AA 0.57 0.56 0.55 0.53 0.51 0.49 0.48 0.36 0.35 0.34 0.33 0.32 0.33

A 0.49 0.48 0.46 0.44 0.41 0.38 0.44 0.32 0.30 0.30 0.30 0.29 0.28

BBB 0.42 0.40 0.39 0.36 0.33 0.29 0.38 0.28 0.26 0.25 0.25 0.24 0.23

BB 0.26 0.26 0.25 0.23 0.21 0.20 0.36 0.28 0.28 0.27 0.27 0.26 0.24

B 0.17 0.18 0.17 0.17 0.18 0.18 0.35 0.29 0.29 0.28 0.28 0.27 0.26

R2
for the NIG distribution

Dec. 2006 Apr. 2007 Aug. 2007 Dec. 2008 Apr. 2008 Aug. 2008 Dec. 2008 Apr. 2009 Aug. 2009 Dec. 2009 Apr. 2010 Aug. 2010 Dec. 2010

ALL 0.42 0.41 0.40 0.37 0.35 0.32 0.41 0.30 0.29 0.28 0.28 0.27 0.26

AAA 0.55 0.55 0.53 0.51 0.51 0.47 0.49 0.37 0.39 0.38 0.38 0.38 0.36

AA 0.57 0.56 0.55 0.53 0.51 0.49 0.48 0.36 0.35 0.34 0.33 0.32 0.33

A 0.49 0.48 0.46 0.44 0.42 0.39 0.44 0.32 0.30 0.30 0.30 0.29 0.28

BBB 0.42 0.40 0.39 0.36 0.33 0.29 0.38 0.28 0.26 0.25 0.25 0.24 0.23

BB 0.26 0.27 0.25 0.23 0.21 0.20 0.37 0.28 0.28 0.28 0.27 0.26 0.24

B 0.17 0.18 0.17 0.17 0.18 0.19 0.36 0.29 0.29 0.29 0.29 0.28 0.27

Table 7: Number of active bonds and coefficients of determination from December 2006 to December 2010. The dynamics of the estimated coefficients for the hedge ratios are
displayed in Figure 3.
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OLS Estimates of r̄Dj,t
= α0 + βhE

hEj,t
r̄Ej,t

+ βkE
r̄
E2

j,t
+ βrf r̄f10y,t + ǫj,t

Leverage=Total Debt/Enterprise Value
Firm Specific Hedge Ratios

Variance Gamma
All AAA AA A BBB BB B

α̂0 (×100) 0.118 -0.020 -0.100 0.123 0.157 0.181 0.097
(2.10E-3) (1.18E-3) (9.11E-4) (1.78E-3) (2.57E-3) (2.54E-3) (3.03E-3)

β̂hE
1.049 0.832 0.522∗∗ 0.696 1.314 1.257 1.531∗∗

(2.40E-1) (3.57E-1) (2.00E-1) (2.78E-1) (2.94E-1) (2.08E-1) (2.31E-1)

β̂kE
(×100) -0.349 -1.70E-1 0.450∗∗ −0.554∗ -0.390 −0.933∗∗ 0.451

(3.18E-3) (4.20E-3) (1.87E-3) (3.11E-3) (4.52E-3) (3.72E-3) (4.40E-3)

β̂rf 0.170∗∗∗ 0.437∗∗∗ 0.327∗∗∗ 0.307∗∗∗ 0.141∗∗ -0.036 -0.117
(5.16E-2) (2.84E-2) (2.33E-2) (4.28E-2) (6.18E-2) (6.27E-2) (7.90E-2)

R2 0.276 0.385 0.346 0.310 0.255 0.218 0.226

Normal Inverse Gaussian
All AAA AA A BBB BB B

α̂0 (×100) 0.118 -0.019 -0.101 0.121 0.159 0.176 0.101
(2.10E-3) (1.19E-3) (9.10E-4) (1.78E-3) (2.56E-3) (2.54E-3) (3.02E-3)

β̂hE
1.054 0.628 0.405∗∗∗ 0.825 1.299 1.187 1.418∗∗

(2.42E-1) (3.79E-1) (1.94E-1) (2.59E-1) (3.17E-1) (2.06E-1) (2.09E-1)

β̂kE
(×100) -0.349 -3.07E-1 0.430∗∗ -0.545∗ -0.394 −0.896∗∗ 0.437

(3.19E-3) (4.16E-3) (1.88E-3) (3.10E-3) (4.52E-3) (3.73E-3) (4.39E-3)

β̂rf 0.172∗∗∗ 0.436∗∗∗ 0.327∗∗∗ 0.308∗∗∗ 0.144∗∗ -0.038 -0.115
(5.14E-2) (2.86E-2) (2.33E-2) (4.28E-2) (6.17E-2) (6.25E-2) (7.87E-2)

R2 0.278 0.384 0.343 0.312 0.257 0.220 0.229

n̄ 59.00 73.77 72.62 60.50 57.33 53.13 52.71
N 2,449 52 198 815 845 287 252

Table 8: OLS estimates with firm specific hedge ratios. This table reports the results of the system of regressions
r̄Dj,t

= α0 + βhE
hEj,t

r̄Ej,t
+ βkE

r̄E2
j,t

+ βrf r̄f10y,t + ǫj,t with monthly average hedge ratios for the two distributions VG

and NIG. With n̄ we denote the average number of observations per bond. The reported coefficients are averages of the bond
specific OLS estimated coefficients in each rating class. The standard errors are reported in parenthesis and are calculated as
indicated in Appendix B. The p-values for the β̂hE

are calculated with respect to the theoretical value of 1, the others as usual
are calculated with respect to zero. The R2 is an average of the coefficients of determination of every regression in each rating
class. The variable r̄Dj,t

is the excess return of bond j in month t; the variable hEj,t
r̄Ej,t

is the product of the excess return

of share j in month t and the theoretically predicted hedge ratio with leverage defined as Total Debt/Enterprise Value; the
variable r̄E2

j,t
is the square of the excess return of share j in month t; finally the variable r̄f10y,t is the excess return of the 10

years treasury bond. The indexes ∗ ∗ ∗, ∗∗ and ∗ indicate the statistical significance at 1%, 5% and 10% respectively.

Acknowledgements

I am grateful for the comments and suggestions of Carlo Bianchi, Stephen Schaefer, Ilya Strebulaev, the par-

ticipants of the C.R.E.D.I.T. 2009 conference in Venice and of the International Risk Management Conference

2010 in Florence. All errors are of my responsibility.

35



OLS Estimates of r̄Dj,t
= α0 + βhE

hEj,t
r̄Ej,t

+ βkE
r̄
E2

j,t
+ βrf r̄f10y,t + ǫj,t

Leverage=Total Debt/Enterprise Value
Monthly Average Hedge Ratios

Variance Gamma
All AAA AA A BBB BB B

α̂0 (×100) 0.122 -0.025 -0.108 0.118 0.167 0.171 0.129
(2.05E-3) (1.19E-3) (8.98E-4) (1.76E-3) (2.52E-3) (2.53E-3) (2.85E-3)

β̂hE
1.169 0.480 0.478∗∗ 0.981 1.364 1.042 1.249

(2.00E-1) (3.96E-1) (2.29E-1) (2.29E-1) (2.48E-1) (1.52E-1) (1.62E-1)

β̂kE
(×100) −0.561∗ -5.62E-2 0.430∗∗ −0.576∗ -0.674 −0.999∗∗∗ -0.273

(3.28E-3) (4.24E-3) (1.87E-3) (3.07E-3) (4.66E-3) (3.74E-3) (4.78E-3)

β̂rf 0.177∗∗∗ 0.435∗∗∗ 0.329∗∗∗ 0.311∗∗∗ 0.147∗∗ -0.033 -0.100
(5.03E-2) (2.86E-2) (2.30E-2) (4.22E-2) (6.07E-2) (6.21E-2) (7.54E-2)

R2 0.284 0.384 0.348 0.315 0.262 0.227 0.240

Normal Inverse Gaussian
All AAA AA A BBB BB B

α̂0 (×100) 0.123 -0.029 -0.107 0.119 0.169 0.171 0.131
(2.06E-3) (1.19E-3) (9.01E-4) (1.76E-3) (2.53E-3) (2.52E-3) (2.90E-3)

β̂hE
1.115 0.754 0.462∗∗ 0.932 1.309 0.989 1.253∗

(1.93E-1) (3.54E-1) (2.30E-1) (2.19E-1) (2.42E-1) (1.45E-1) (1.52E-1)

β̂kE
(×100) −0.565∗ -3.18E-1 0.426∗∗ −0.577∗ -0.680 −0.996∗∗∗ -0.276

(3.29E-3) (4.06E-3) (1.89E-3) (3.08E-3) (4.68E-3) (3.74E-3) (4.83E-3)

β̂rf 0.177∗∗∗ 0.435∗∗∗ 0.329∗∗∗ 0.312∗∗∗ 0.148∗∗ -0.033 -0.102
(5.06E-2) (2.86E-2) (2.31E-2) (4.23E-2) (6.09E-2) (6.20E-2) (7.60E-2)

R2 0.283 0.386 0.347 0.315 0.261 0.228 0.246

Normal
All AAA AA A BBB BB B

α̂0 (×100) 0.122 -0.020 -0.106 0.118 0.168 0.171 0.131
(2.06E-3) (1.19E-3) (9.00E-4) (1.76E-3) (2.53E-3) (2.52E-3) (2.90E-3)

β̂hE
1.190 1.415 0.695 1.005 1.349 1.011 1.267∗

(2.01E-1) (2.09E+0) (3.84E-1) (2.32E-1) (2.49E-1) (1.48E-1) (1.53E-1)

β̂kE
(×100) −0.569∗ -2.61E-1 0.415∗∗ −0.583∗ -0.686 −0.993∗∗∗ -0.269

(3.29E-3) (4.32E-3) (1.90E-3) (3.07E-3) (4.68E-3) (3.73E-3) (4.82E-3)

β̂rf 0.176∗∗∗ 0.435∗∗∗ 0.330∗∗∗ 0.311∗∗∗ 0.148∗∗ -0.032 -0.102
(5.05E-2) (2.84E-2) (2.31E-2) (4.22E-2) (6.08E-2) (6.19E-2) (7.59E-2)

R2 0.284 0.384 0.347 0.316 0.261 0.228 0.246

n̄ 59.00 73.77 72.62 60.50 57.33 53.13 52.71
N 2,449 52 198 815 845 287 252

Table 9: OLS estimates with monthly average hedge ratios. This table reports the results of the system of regressions
r̄Dj,t

= α0 + βhE
hEj,t

r̄Ej,t
+ βkE

r̄E2
j,t

+ βrf r̄f10y,t + ǫj,t with monthly average hedge ratios for the two distributions VG

and NIG. With n̄ we denote the average number of observations per bond. The reported coefficients are averages of the bond
specific OLS estimated coefficients in each rating class. The standard errors are reported in parenthesis and are calculated as
indicated in Appendix B. The p-values for the β̂hE

are calculated with respect to the theoretical value of 1, the others as usual
are calculated with respect to zero. The R2 is an average of the coefficients of determination of every regression in each rating
class. The variable r̄Dj,t

is the excess return of bond j in month t; the variable hEj,t
r̄Ej,t

is the product of the excess return

of share j in month t and the theoretically predicted hedge ratio with leverage defined as Total Debt/Enterprise Value; the
variable r̄E2

j,t
is the square of the excess return of share j in month t; finally the variable r̄f10y,t is the excess return of the 10

years treasury bond. The indexes ∗ ∗ ∗, ∗∗ and ∗ indicate the statistical significance at 1%, 5% and 10% respectively.
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OLS Estimates of r̄Dj,t
= α0 + βhE

hEj,t
r̄Ej,t

+ βkE
r̄
E2

j,t
+ βrf r̄f10y,t + ǫj,t

Leverage=Total Debt/(Total Debt + Book Value Equity)
Firm Specific Hedge Ratios

Variance Gamma
All AAA AA A BBB BB B

α̂0 (×100) 0.128 -0.027 -0.104 0.125 0.169 0.187 0.142
(2.07E-3) (1.18E-3) (8.97E-4) (1.77E-3) (2.53E-3) (2.54E-3) (2.91E-3)

β̂hE
1.104 0.610 0.402∗∗ 0.985 1.405 1.052 1.194

(2.33E-1) (3.89E-1) (2.35E-1) (2.80E-1) (2.82E-1) (1.83E-1) (1.71E-1)

β̂kE
(×100) -0.482 -6.30E-2 0.493∗∗∗ −0.580∗ -0.542 −1.050∗∗∗ -0.172

(3.22E-3) (4.25E-3) (1.86E-3) (3.06E-3) (4.56E-3) (3.78E-3) (4.71E-3)

β̂rf 0.172∗∗∗ 0.436∗∗∗ 0.327∗∗∗ 0.308∗∗∗ 0.143∗∗ -0.036 -0.112
(5.09E-2) (2.83E-2) (2.30E-2) (4.25E-2) (6.11E-2) (6.24E-2) (7.63E-2)

R2 0.280 0.387 0.348 0.312 0.259 0.222 0.238

Normal Inverse Gaussian
All AAA AA A BBB BB B

α̂0 (×100) 0.126 -0.019 -0.107 0.121 0.171 0.176 0.145
(2.07E-3) (1.18E-3) (8.99E-4) (1.76E-3) (2.54E-3) (2.52E-3) (2.89E-3)

β̂hE
1.065 0.700 0.568∗ 0.841 1.356 1.103 1.237

(2.35E-1) (4.02E-1) (2.25E-1) (2.54E-1) (3.11E-1) (1.78E-1) (1.58E-1)

β̂kE
(×100) -0.487 -2.30E-1 0.460∗∗ −0.565∗ -0.546 −1.004∗∗∗ -0.247

(3.22E-3) (4.21E-3) (1.89E-3) (3.05E-3) (4.58E-3) (3.76E-3) (4.72E-3)

β̂rf 0.173∗∗∗ 0.437∗∗∗ 0.327∗∗∗ 0.308∗∗∗ 0.146∗∗ -0.037 -0.106
(5.08E-2) (2.84E-2) (2.30E-2) (4.24E-2) (6.12E-2) (6.21E-2) (7.56E-2)

R2 0.282 0.386 0.347 0.314 0.260 0.225 0.245

n̄ 59.00 73.77 72.62 60.50 57.33 53.13 52.71
N 2,449 52 198 815 845 287 252

Table 10: OLS estimates with firm specific hedge ratios. This table reports the results of the system of regressions
r̄Dj,t

= α0 + βhE
hEj,t

r̄Ej,t
+ βkE

r̄E2
j,t

+ βrf r̄f10y,t + ǫj,t with monthly average hedge ratios for the two distributions VG

and NIG. With n̄ we denote the average number of observations per bond. The reported coefficients are averages of the bond
specific OLS estimated coefficients in each rating class. The standard errors are reported in parenthesis and are calculated as
indicated in Appendix B. The p-values for the β̂hE

are calculated with respect to the theoretical value of 1, the others as usual
are calculated with respect to zero. The R2 is an average of the coefficients of determination of every regression in each rating
class. The variable r̄Dj,t

is the excess return of bond j in month t; the variable hEj,t
r̄Ej,t

is the product of the excess return of

share j in month t and the theoretically predicted hedge ratio with leverage defined as Total Debt/(Total Debt + Book Value
Equity); the variable r̄E2

j,t
is the square of the excess return of share j in month t; finally the variable r̄f10y,t is the excess return

of the 10 years treasury bond. The indexes ∗ ∗ ∗, ∗∗ and ∗ indicate the statistical significance at 1%, 5% and 10% respectively.
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OLS Estimates of r̄Dj,t
= α0 + βhE

hEj,t
r̄Ej,t

+ βkE
r̄
E2

j,t
+ βrf r̄f10y,t + ǫj,t

Leverage=Total Debt/(Total Debt + Book Value Equity)
Monthly Average Hedge Ratios

Variance Gamma
All AAA AA A BBB BB B

α̂0 (×100) 0.117 -0.021 -0.108 0.118 0.167 0.174 0.132
(2.06E-3) (1.19E-3) (8.94E-4) (1.76E-3) (2.51E-3) (2.52E-3) (2.88E-3)

β̂hE
1.065 0.699 0.483∗∗ 0.941 1.365 1.003 1.074

(1.91E-1) (4.10E-1) (2.13E-1) (2.19E-1) (2.45E-1) (1.48E-1) (1.37E-1)

β̂kE
(×100) −0.551∗ -1.91E-1 0.426∗∗ −0.568∗ -0.659 −1.034∗∗∗ -0.374

(3.28E-3) (4.20E-3) (1.88E-3) (3.07E-3) (4.65E-3) (3.76E-3) (4.99E-3)

β̂rf 0.173∗∗∗ 0.435∗∗∗ 0.329∗∗∗ 0.311∗∗∗ 0.147∗∗ -0.033 -0.108
(5.05E-2) (2.84E-2) (2.29E-2) (4.22E-2) (6.06E-2) (6.20E-2) (7.56E-2)

R2 0.282 0.385 0.349 0.315 0.261 0.228 0.242

Normal Inverse Gaussian
All AAA AA A BBB BB B

α̂0 (×100) 0.124 -0.024 -0.108 0.117 0.168 0.174 0.144
(2.06E-3) (1.19E-3) (8.98E-4) (1.76E-3) (2.53E-3) (2.52E-3) (2.86E-3)

β̂hE
1.069 0.646 0.457∗∗∗ 0.892 1.297 0.953 1.132

(1.84E-1) (3.97E-1) (2.05E-1) (2.08E-1) (2.39E-1) (1.40E-1) (1.33E-1)

β̂kE
(×100) −0.564∗ -2.04E-1 0.426∗∗ −0.565∗ -0.663 −1.025∗∗∗ -0.481

(3.29E-3) (4.30E-3) (1.89E-3) (3.07E-3) (4.67E-3) (3.75E-3) (4.98E-3)

β̂rf 0.177∗∗∗ 0.436∗∗∗ 0.329∗∗∗ 0.311∗∗∗ 0.148∗∗ -0.033 -0.100
(5.05E-2) (2.86E-2) (2.30E-2) (4.22E-2) (6.09E-2) (6.18E-2) (7.51E-2)

R2 0.284 0.385 0.348 0.315 0.261 0.229 0.250

Normal
All AAA AA A BBB BB B

α̂0 (×100) 0.124 -0.020 -0.107 0.117 0.169 0.174 0.144
(2.06E-3) (1.20E-3) (8.98E-4) (1.76E-3) (2.52E-3) (2.52E-3) (2.86E-3)

β̂hE
1.107 0.791 0.487∗∗ 0.926 1.333 0.967 1.141

(1.89E-1) (5.28E-1) (2.25E-1) (2.16E-1) (2.45E-1) (1.43E-1) (1.34E-1)

β̂kE
(×100) −0.566∗ -2.32E-1 0.419∗∗ −0.566∗ -0.671 −1.023∗∗∗ -0.470

(3.29E-3) (4.35E-3) (1.89E-3) (3.07E-3) (4.67E-3) (3.75E-3) (4.97E-3)

β̂rf 0.177∗∗∗ 0.435∗∗∗ 0.329∗∗∗ 0.311∗∗∗ 0.148∗∗ -0.033 -0.101
(5.05E-2) (2.85E-2) (2.31E-2) (4.22E-2) (6.08E-2) (6.19E-2) (7.51E-2)

R2 0.284 0.385 0.348 0.315 0.261 0.229 0.250

n̄ 59.00 73.77 72.62 60.50 57.33 53.13 52.71
N 2,449 52 198 815 845 287 252

Table 11: OLS estimates with monthly average hedge ratios. This table reports the results of the system of regressions
r̄Dj,t

= α0 + βhE
hEj,t

r̄Ej,t
+ βkE

r̄E2
j,t

+ βrf r̄f10y,t + ǫj,t with monthly average hedge ratios for the two distributions VG

and NIG. With n̄ we denote the average number of observations per bond. The reported coefficients are averages of the bond
specific OLS estimated coefficients in each rating class. The standard errors are reported in parenthesis and are calculated as
indicated in Appendix B. The p-values for the β̂hE

are calculated with respect to the theoretical value of 1, the others as usual
are calculated with respect to zero. The R2 is an average of the coefficients of determination of every regression in each rating
class. The variable r̄Dj,t

is the excess return of bond j in month t; the variable hEj,t
r̄Ej,t

is the product of the excess return of

share j in month t and the theoretically predicted hedge ratio with leverage defined as Total Debt/(Total Debt + Book Value
Equity); the variable r̄E2

j,t
is the square of the excess return of share j in month t; finally the variable r̄f10y,t is the excess return

of the 10 years treasury bond. The indexes ∗ ∗ ∗, ∗∗ and ∗ indicate the statistical significance at 1%, 5% and 10% respectively.
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