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Abstract

In the present paper, we investigate the accuracy of the tick test from an
analytical perspective by providing a closed formula for the performance of the
prediction algorithm. This formula takes as inputs the spread of the traded
asset, the volatility of the innovations, and the probability of news, among other
parameters, and it outputs the percentage of times that the tick test will make
correct predictions regarding the sign of a trade. Further analysis shows that
by imposing restrictions on the underlying microstructure model, the formula for
the tick test performance is related to simple statistics from a vector of trade
price differences. This means that, without the need for quote data (or the real
sign of the trades), the formula can assess the percentage of cases for which the
tick test will make correct predictions. Using tick data for fifteen heavily traded
stocks in the Brazilian equity market, we are able to compare the values from the
analytical formula against the empirical performance of the tick test, showing that
the formula is quite realistic in assessing the accuracy of the prediction algorithm.
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1 Introduction

In the financial literature, the sign of a trade is important since it provides in-
formation on who in the trading process is the aggressor – that is, which side
initiated the trade, the buyer or the seller. In other words, it gives information
on who is the party demanding liquidity and who is the party offering it. Since
liquidity is not free, the aggressor of a trade will pay for it in the form of a portion
of the spread. The instant demand for liquidity has implications for microstruc-
ture theories. For instance, the proportion of buy and sells has an impact on
the construction of a measure of the probability of informed trading (PIN)1 and
signed volume, which is typically used in the estimation of price impact models.2

The tick test is a simple algorithm which can be used to infer the sign of a
trade when no quote data are available. While the origins of this method are still
not clear, it was made popular in the work of Lee and Ready [1991]. According to
the authors, its simple implementation and the fact that quote data are sometimes
hard to obtain attracted the academic community, market regulators and traders
to use it for inferring the trade direction from a sample of traded prices.

The research in the present paper is directly related to the predictive power of
the tick test. Many previous studies have investigated the empirical performance
of the algorithm, but none have understood it as a simple stochastic problem.
In this paper, we take an analytical approach in this matter. Based on a mi-
crostructure model, a closed form solution for the performance of the algorithm
is derived.

The paper makes several contributions to the literature. First, it is the only
study to analyse the tick test as a stochastic problem and to show that its per-
formance (number of correct predictions) can be represented as a simple mathe-
matical formula. As far as we are aware, we are also the first to provide a formal
argument on the use of the tick test by showing that it is bound to perform bet-
ter than chance (50% correct predictions). Second, we show that, in the absence
of quote data, the formula derived can still be used by assuming a particular
reduction on the underlying microstructure model. This means that based only
on data for trades, the researcher can still access the implied bias in the use of
the tick test. This contributes to the literature (see Boehmer et al. [2006] and
Tanggaard [2003]) which poins out the consequences of the missclassification of
trade signs with respect to the construction of variables commonly used in mi-
crostructure research. The formula derived in the paper can be directly applied
for the analysis of the resulting bias in the case of the tick test.

The remainder of the paper is organised as follows. First, we present a brief
literature review on the subject of the tick test. In the second part of the paper,
we develop the theory and show the formula derived for the performance of the
algorithm. This is followed by an empirical examination of the accuracy of the
analytical formula for trading data in the Brazilian equity market. The paper
finishes with the usual concluding remarks.

1See Frank and Rindi [2009] for details.
2See Hasbrouck [1991] and Hasbrouck [2007].
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2 Related Literature

The use of the tick test and other types of trade inference algorithms is popular
in the academic literature. Just to cite a few, Lee [1993], Chordia et al. [2008],
Chordia et al. [2005], and Chakravarty [2001], among many others, have used
these methods to assess the sign of trades in their research.

The performance of the tick test algorithm (hereafter referred to as TT)
has been extensively tested using empirical data, generally with good results.
Lee and Ready [1991] conclude that the price-based algorithm presented “remark-
ably accurate” performance when classifying a sample of trades from the NYSE
market. They also highlight an issue with the time stamps from the quotes and
introduce an alternative methodology for predicting the sign of a trade, which is
commonly known as the Lee and Ready algorithm (hereafter referenced as LR).
This paper marked an important point in the literature as it was the first to
formally study the inference of trade direction based on incomplete data.

A subsequent paper on the topic is by Aitken and Frino [1996]. Using data
for the Australian stock Market, the authors find that the tick test produces ap-
proximately 74% correct predictions for the sign of a trade. The study also points
out that periods with high volatility have a tendency to reduce the performance
of the prediction algorithm. Following this study, we have the work of Theissen
[2000]. Using data on the Frankfurt Stock Exchange, he finds that the accuracy
of both algorithms (LR and TT) is comparable. The LR method produces 72.8%
correct classifications while the tick test achieves 72.2% correct. He also shows
the impact of the mis-classification of trades with respect to the estimation of the
effective spread and and the PIN.3

Another empirical study on the tick test is due to Ellis et al. [2000]. The au-
thors study the performance of distinct trade classification algorithms, including
the quote rule, the LR rules and the tick test, for the NASDAQ market. This
study also reports a positive performance of the trade inference algorithms for the
sample data, which corroborates the results of Theissen [2000]. Further analysis
undertaken in this paper also suggests that the performance of the classification
rules decreases for large trades and also for periods of rapid trading (a small
interval between previous trades and also for previous quote changes).

A more detailed analysis on the performance of the different trade sign fore-
casting methods is provided in Finucane [2000]. This study shows that trade size,
spread and frequency of trades and quotes all affect the accuracy of prediction
algorithms such as the LR and the tick test. The authors also report that, on
average, the tick rule and the LR approach give very similar performance. Note
that the work of Finucane [2000] already shows some of the findings presented
in this paper, specifically that the spread will contribute in a positive way to the
performance of the tick test (i.e., the higher the spread, the higher the accuracy
of this particular method of prediction of the sign of a trade). However, we take
the analysis a stage further and consider a wider range of variables.

In the same vein of the empirical analysis of trade inference algorithms, we
have the work of Asquith et al. [2008]. This paper argues that the Lee and Ready

3The calculation of the PIN measure was introduced by Easley et al. [1996].
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algorithm is most likely to fail when short sales are classified. The authors point
out that short sales constitute a significant portion of the trading data for the
US market, meaning that the estimates calculated based on the LR algorithm are
very likely to have a significant bias.4

While many studies have investigated the empirical performance of the dif-
ferent trade inference algorithms, another interesting focus of research in this
particular area of market microstruture theory is the bias resulting from the use
of forecasted trade signs for the construction of different variables. This bias is a
natural consequence of the fact that the forecasted trade signs have a degree of
uncertainty, meaning that the predicted signs of trades are subject to errors (e.g.,
a buy misclassified as a sell). One of the studies on this topic is Boehmer et al.
[2006], which shows that estimates of the PIN variable are downward biased in
the presence of inaccurate classifications of trade signals. We also have the study
of Tanggaard [2003]. In this paper, the author investigates the bias that trade
classification errors can spur in the regression-type models typically used in mar-
ket microstructure research. The author argues that this bias is probably even
worse than the literature suggests, posing the question as to whether previous
empirical results based on trade sign inference should be taken seriously.

The present paper extends some of this previous research by providing a simple
way to assess the performance of the tick test. For example, Boehmer et al. [2006]
and Tanggaard [2003] present a formal analysis on the bias from using trade
inference methods in the construction of variables by using a measure for the
probability of an incorrect inference for a trading sign. While the authors assume
in their analysis that such a probability is given, the present paper can provide
an easy way to estimate it from empirical data, at least for the case of the tick
test.

Some of the empirical results already in the literature corroborate the findings
in this study. As we will show later, two parameters that define the performance
of the tick test are the spread and the volatility of price innovations. In the work
of Aitken and Frino [1996], it is found that an increase in market volatility will
reduce the performance of the trade inference algorithms. This is similar to the
findings of Ellis et al. [2000], but the authors explicitly test for a relationship
between trading frequency (which is related to incoming of news and volatility)
and the performance of the tick test.

Our contribution to the literature lies in looking into the tick test algorithm
from an analytical point of view. As we show, its performance has a simple
closed formula, which, under certain restrictions, can be used even in the absence
of quote data. With the use of the formula we derive, a researcher will be able
to assess the implied performance of the tick test based only on the variance and
autocovariance of trade price differences. In the next section, we present formal
derivations of the results presented in this research.

4See also Odders-White [2000] and Peterson and Sirri [2003].
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3 The Performance of the Tick Test

Consider a microstructure model comprising of the following set of equations:

mt = mt−1 + Γtϵt (1)

Pt = mt + bt
S

2
(2)

ϵt ∼ N(0, σ2) (3)

bt =

{
1 if STt = 1

−1 if STt = 2
(4)

Γt =

{
1 with probability pNews
0 with probability (1− pNews)

(5)

STt will follow a Markov chain, with transition probabilities given by the
following matrix:

P =

[
p 1− p

1− p p

]
(6)

The specification in equations (1) to (4) represents a detailed microstructure
model for the evolution of traded prices. The main innovations are due to the
addition of uncertainty regarding the role of news and also to the representation
of trades as a Markov chain process. Equation (1) defines mt, which is the true
(efficient) price of the asset and follows a random walk. It is straightforward to
show that changes in mt are not predictable by realising that mt −mt−1 = Γϵt,
which is a censored Gaussian noise process with zero expectation. The financial
intuition behind equation (1) is that the true price of the tradable asset is driven
by the incoming of news with respect to the future cash flows of the financial
instrument (stocks, bonds, etc). The shock of news on mt is directly represented
by ϵt. Given the symmetry of the Gaussian distribution, the probability of good
news (ϵt > 0) is equal to the probability of bad news (ϵt < 0).

In our particular microstructure model, we can also see that the incoming of
news is not guaranteed. There are moments in which there is news regarding the
asset (Γt = 1), while there are other moments in which no news is available to
the market (Γt = 0), implying that in these cases there will be a continuation in
the efficient price, that is mt = mt−1. The incoming (or not) of news is defined
by a probability pNews. As we will explain later in the paper, parameter pNews
plays a significant role in the performance of the tick test as it induces trade price
changes equal to zero (∆Pt = 0), one of the triggers of a particular part of the
tick test algorithm.

Equation (2) represents the traded price (Pt), which is a function of the effi-
cient price plus a term for half the spread (S/2). The parameter bt is the sign of
the trade, taking the value 1 for a buy order and −1 for a sell. This parameter
also has random behaviour where the occurrence of a buyer (seller) initiated order
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relates to a Markov chain, with transition probabilities given by (6). Representing
trades as a Markov chain adds a time dependency to the process, meaning that
the chance that a buy (sell) order occurs at any point in time is related to the
sign of the previous trade. This autoregressive property is standard in empirical
trading data, where the sign of the trades presents a positive and significant first
order autocorrelation. The usual explanation is that traders split a big trading
order in smaller ones, therefore causing a positive time dependency of the trade
signs. So, the justification for using a Markov chain as the process for the trades
is that it can mimic the time dependency usually found in empirical data.

Notice that the transition probabilities of state 1 (STt = 1,bt = 1) and state
2 (STt = 2, bt = −1) are equal (see (6)). This arises as a result of a simple
assumption that the unconditional probability of a buy order is equal to the un-
conditional probability of a sell order.5 The equality of the transition probabilities
in (6) is a direct consequence of this assumption, which is strongly corroborated
by the empirical data. The use of this simplification of the trade process reduces
the number of parameters in the model without loss of information, therefore
facilitating the derivations.

Examining the trade equation, we can see that when a buy order arrives at
the market, the traded price will be given by Pt = mt +

S
2 and when a sell order

arrives at the market, the price of the trade will be Pt = mt − S
2 . Notice that

the aggressor side of the trade will always pay half the spread. This is the price
for demanding liquidity. The system of equations given above represent a market
with a constant spread S and no market maker (or a market maker with no
sensitivity to inventory or asymmetric information).

Using the same notation as above, we now formalise the tick test in a simple
set of rules. Consider Pt a trade price, ∆Pt its first difference, and b̂t the predicted
trade direction for time t. The rules from the tick test say:

• if ∆Pt > 0 set b̂t = 1

• if ∆Pt < 0 set b̂t = −1

• if ∆Pt = 0 set b̂t = b̂t−1

As one can see, the intuition behind the first two rules of the algorithm is
that a buy at time t is likely to increase the traded price from the previous trade.
So, by inverting the logic, one can say that a buy (sell) order is most likely when
the current trade price is higher (lower) than the previous one. For the cases
where the change in the trade price is equal to zero, the intuition is to use a price
continuation, meaning that the current forecast (b̂t) is set equal to the previous
forecast (b̂t−1). Notice that this creates a recursive dynamic and, as long as the
first element of the price difference vector is non-zero, the algorithm will always
be able to build trade sign forecasts based on the historical data. For the cases
of consecutive zero price movements (∆Pt = 0, ∆Pt−1 = 0, ... , ∆Pt−k = 0), the

5By following a generic transition matrix, we can show that the unconditional probability of state
1 is given by Pr(STt = 1) = 1

1− 1−p1
p2−1

. Therefore, by equating Pr(STt = 1) = Pr(STt = 2) = 0.5, we

get the result that p1 = p2.
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forecast of the trade sign will be defined using the forecast from a distant time
period.

Now, with the help of a simple example, we will show the intuition which drives
the analytical examination of the tick test. Consider a scenario where the interest
is in forecasting, within a particular time period, the days with rain. Variable yt
will take the value 1 if there is rain on day t and zero otherwise. The researcher
is testing the hypothesis that yt is a function of a second variable, humidity (xt).
For some reason, he/she believes that a certain level of humidity on the previous
day has forecasting power for the likelihood of rain the next day. Assume that
both variables are easily measurable. The rules of this setup are: if humidity on
the previous day is higher than a particular known threshold value, xt−1 > X,
then it is predicted that it will rain the next day (ŷt = 1). The performance of
this rule will then be the percentage of days for which it correctly predicts the
next day’s weather. This will be given by looking into the percentage of cases
where the condition xt−1 > X and yt = 1 is met by the data for t = 1, ..., T . Call
this percentage P .

In the example given, P is a statistical measure and can be formulated in an
alternative way as:

P = Pr(yt = 1|xt−1 > X)Pr(xt−1 > X) (7)

The first part of the right hand side of (7) is the conditional probability of
observing rain for day t given that there was a humidity higher than X on the
previous day. In a practical sense, this will be given by first looking into the cases
where the condition xt−1 > X is true (call this value M), and then counting,
within the M cases, the number of times in which there was rain the next day,
yt = 1 (call this value6 R). Now, by calculating the fraction R

M , we have the
value of Pr(yt = 1|xt−1 > X). But, notice that R

M outputs the performance of
the method for a restricted sample of yt. What we really want is the percentage of
correct predictions for all the T forecasted values in the data. So, if we know that
the method correctly predicted R out of M cases, we can use this value to infer
how well it performed for the whole sample. This is accomplished by multiplying
Pr(yt = 1|xt−1 > X) by the percentage of cases where the condition xt−1 > X
is true. For illustration, consider the following numerical example: T = 100,
M = 65, R = 45. These values imply that Pr(yt = 1|xt−1 > X) = R

M = 69%,
Pr(xt−1 > X) = 65% and P = 69%× 65% = 45%, meaning that the forecasting
rules correctly predicted 45% of the days.

Notice from the previous numerical example that a much easier way to calcu-
late the performance of the forecasting method would be to simply divide R by
T , which will also give the percentage of correct predictions (45%). It should be
clear that either way we reach the same result. The difference from calculating P
using equation (7) is that it represents a tractable stochastic problem, meaning
that the full probability of correctly predicting yt is a function of two other prob-
abilities. Just as in the simple example of forecasting rain based on humidity,
the tick test is a method to predict the sign of a trade (bt) based on trade price

6Notice that by definition M ≥ R.
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changes (∆Pt). Its performance is also the interaction of different conditional and
unconditional probabilities, as we will show later in the paper.

In order to start the derivation, we first formalise some notation. The perfor-
mance of the tick test in percentage terms is simply the number of times it got it
right – that is, a correct classification of a buy (or sell), divided by the number
of attempts it has made from the data. It can be represented as:

TTAC =
nCorrectB&S

nPredictionsB&S
(8)

For equation (8) the term TTAC is the accuracy of the tick test. The term
nCorrectB&S is simply the number of correct buy and sell classifications and
nPredictionsB&S is the number of predictions made by the algorithm (normally
equal to the number of observations).

An equivalent way of defining equation (8) is:

TTAC = %CorrectB%Buys+%CorrectS%Sells (9)

From a statistical point of view, we can break down the performance of the
algorithm into different parts, where each will be related to a different rule of
the tick test. For example, consider the first rule of the tick test – that is, if
∆Pt > 0 then b̂t = 1. For illustrative purposes, let us suppose that we observe
N trades and of these there are Z cases where we observe that the difference in
trade prices for adjacent time intervals is positive. The performance of the first
rule of the TT algorithm would then be, out of these Z cases, the percentage of
times where there was a buy trade. If we multiplied this percentage by Z, we
would get the number (and not percentage) of correct predictions for the first
rule of the algorithm. We can follow the same intuition for all the other parts of
TT algorithm. Notice that this is analogous to the analysis given in the example
of forecasting rain.

Using this approach, we can break down the performance of the algorithm as:

%CorrectB = Pr(bt = 1 | ∆Pt > 0)Pr(∆Pt > 0) +

Pr(bt = 1 | ∆Pt = 0,∆Pt−1 > 0)Pr(∆Pt = 0,∆Pt−1 > 0) +
∞∑
i=1

Pr(bt = 1 | ∆Pt = 0, ..,∆Pt−i = 0,∆Pt−i−1 > 0)×

Pr(∆Pt = 0, ..,∆Pt−i = 0,∆Pt−i−1 > 0) (10)

and:

%CorrectS = Pr(bt = −1 | ∆Pt < 0)Pr(∆Pt < 0) +

Pr(bt = −1 | ∆Pt = 0,∆Pt−1 < 0)Pr(∆Pt = 0,∆Pt−1 < 0) +
∞∑
i=1

Pr(bt = −1 | ∆Pt = 0, ..,∆Pt−i = 0,∆Pt−i−1 < 0)×

Pr(∆Pt = 0, ..,∆Pt−i = 0,∆Pt−i−1 < 0) (11)
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For equations (10) and (11), the first term on the right hand side is the
probability of correctly predicting a buy or sell trade using the first part of the
tick rule (cases with ∆Pt > 0 and ∆Pt < 0 ). The second term on the right
hand side of (10) and (11) is related to the cases where ∆Pt = 0 and ∆Pt−1 > 0.
The third term in both formulas is the performance for the cases where there are
continuations of zero price movements, in which the TT algorithm will seek for
the last forecast made in the data. Each element of this sum will present the
TT performance for each of the ith zero price continuations found in the data.
In general, the previous equations for the tick test performance will hold for any
microstructure model and could clearly be used for extending the results in the
current paper.

By following the microstructure model presented in equations (1)-(4), we can
show7 that the accuracy of the TT algorithm is a function of the spread (S), the
volatility of the innovations (σ2), the transition probabilities of trades (p) and
the probability of news (pNews):

TTAC = 1 +
pNews

(
0.5
(
1 + erf

(
S

σ
√
2

)
(1− p)

)
− 1
)

1− p(1− pNews)
(12)

Equation (12) explicitly defines the performance of the tick rule in percentage
terms and has been confirmed by a Monte Carlo simulation. This is accomplished
by defining the parameters pNews, p, σ2, S and simulating T values for ϵt and
bt. These are used to build the process given in equations (1) to (4), which will
output T artificial traded prices. The vector of price differences is set as the
input for the tick test algorithm. Since the real signs of the trades are all known
(see equation (4)), it is easy to compare the predicted signs of the trades from
the tick test against the real ones. Needless to say, the percentage of correct
predictions in this simulation exercise match the values given by equation (12)
for any combination of the parameters.

In a formal analysis of equation (12), notice that the value of TTAC has a
lower bound of 1

2 since the fraction in the right hand side of (12) is bounded by

[-0.5,0]. In order to establish this result, notice that erf
(

S
σ
√
2

)
takes a minimum

at 0, and that the value of p that minimises TTAC given that erf
(

S
σ
√
2

)
= 0 is

p = 1. By plugging these values into equation (12), we can see that it takes a
minimum of 0.5. This result shows that, without access to the quote data, the
researcher will always do better than chance (50% of correct predictions) by using
the tick test. This is an interesting result as it provides a formal argument for
the use of TT algorithm in identifying the signs of trades when no quote data are
available. To the best of our knowledge, this paper is the first to show such result.
Notice also that the values of TTAC can range from 50% to 100%, meaning that
under ideal conditions, the tick test will be able to correctly predict the signs
of all the trades. But it should be clear that this flawless performance will only
happen in unrealistic cases (e.g. pNews = 0 or pNews = 1 and p = 0).

7See Appendix 1 for derivations.
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In order to illustrate the domain of equation (12), in Figure 1 we present the
shape that function TTAC will take for different values of p, and S, with a fixed
value of σ = 1 and pNews = 1.

Figure 1: A 3D surface of the performance of the tick test for different values of the
spread (S) and the transition probability of buy/sell (p).

The values in Figure 1 corroborate the previous analysis regarding the lower
bound of the function in equation (12). As one can see, the function will reach
its minimum at 0.5 and its maximum at 1. Notice also that as the spread (S)
gets higher, the ratio S/

√
2σ2

ϵt increases (σ is fixed at 1), resulting in a better
performance of the algorithm as TTAC increases. This means that the tick test
will work better for assets with wide spreads and low volatility. But the effect of
S and σ has a limit. Notice that after S = 2, the effect of this variable over TTAC

decreases. It should also be clear from Figure 1 that parameter p has a negative
(and strong) effect on the performance of the tick test – that is, the lower the
value of p, the higher the value of TTAC .

3.1 An Empirical Estimation of the Performance of
the Tick Test

While the microstructure model defined in (12) can capture the usual features
found in tick by tick data, one of the problems on the empirical side is that the
parameters from the theoretical model cannot easily be estimated from the data
without further information. In this section, we outline a situation where the
researcher only has access to trade data and wants to apply the equation for
the tick test performance. In order to do that, we will simplify the underlying
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formulas with the restrictions pNews = 1 and p = 0.5. With these restrictions,
the model set in (12) becomes the simplest case of a microstruture model (see
Roll [1984]):

mt = mt−1 + ϵt (13)

Pt = mt + bt
S

2
(14)

ϵt ∼ N(0, σ2) (15)

bt =

{
1 with 50% probability

−1 with 50% probability
(16)

Now, assuming the last microstructure model is true, the solution for the tick
test performance takes the following formula:

TTAC =
1

2
+

1

4
erf

(
S

σ
√
2

)
(17)

and empirical estimates of S and σ2 are available using only trade data. They
are defined as:8

S = 2
√
−γ1 (18)

σ2 = σ2
∆Pt

+ 2γ1 (19)

where the parameter γ1 is the first order autocovariance and σ2
∆Pt

is the variance
of the difference of trade prices. Both measures can be easily calculated from
empirical data. With the last two results, we can directly substitute the values
of S and σ2into equation (17), which results in:

TTAC =
1

2
+

1

4

[
erf

(
2

√
−γ1

2σ2
∆Pt

+ 4γ1

)]
(20)

The robustness of such a closed formula in predicting the performance of the
tick test is assessed subsequently in Section 5 of the paper.

4 The Data

The data of this study were kindly provided by the Brazilian stock exchange
(Instituto Educacional BM&F Bovespa). The main database is composed of
trade prices for all stocks traded on the Brazilian market from 2005 to 2011. In
total, tick data for approximately 3500 assets with varying degrees of liquidity
are available.

8See Hasbrouck [2007] and Frank and Rindi [2009] for derivations.
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In the Brazilian equity market, the stocks are traded on Mega Bolsa9 , an
electronic system through which brokerage firms may execute customers’ orders
directly from their offices. The trading process is performed in a limit order book
structure, with the usual characteristics such as price and time priority. The
equity market is continuously open from 10:00 to 17:00 Brazilian time.10 There
is a break of trading between 17:00 and 17:45, and then trading re-opens for the
after market period until 19:00.

For this study, we use the fifteen most liquids stock for the period 01/01/2009
– 01/01/2010. The degree of liquidity is measured by the number of trades.
Therefore, the fifteen stocks chosen for this study are those with the highest
number of trades in the selected period of time. The original data are organised
in text files covering different periods (usually one month), and the following
information is available in a tabular structure:

• Session Date (e.g., 2009-02-01)

• Instrument ID (ticker symbol, e.g., PETR4)

• Trade Number (e.g., 4)

• Trade Price (e.g., 24.31)

• Traded Quantity (e.g., 100)

• Trade Time (e.g., 11:30:01)

• Trade Indicator (e.g., “A”, “X”)

• Order Buy Date (e.g., 2005-01-02)

• Sequential Order Buy Number (e.g., 12)

• Order Sell Date (e.g., 2005-01-02)

• Sequential Order Sell Number (e.g., 14)

Most of the items in the text files are self-explanatory, with the exceptions
of the trade indicator, order buy/sell date and sequential buy/sell number. The
trade indicator is used only for the cases where there was a cancellation of a
trade. If such a cancellation happens for different reasons (e.g., a market freeze),
the trade is labelled as ”A”, and ”X” is used for the cases where the trade is
a complement of a cancellation (e.g., a cancelled buy order that generates two
trades in the order book). Looking into the data, these cases are very rare.

The order buy/sell date is the date on which the trading order is gener-
ated. The Brazilian equity market has an order book structure, meaning that
every trade has a corresponding buy and sell order, which was inserted by a
trader/broker into the Mega Bolsa system. The date on which each buy (sell)
arrived in the market is given in the item order buy (sell) date. The sequential
order buy/sell number is a index that enumerates all orders each day according

9Recently (August 2011), the Mega Bolsa system was replaced by a new system named ”Puma,”
which integrated all trading platforms into a single one, also increasing order processing power and
decreasing trading latency.

10This is equivalent to UTC minus 3 (2) hours for normal (summer) time.
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to the time that they occur. For example, the first order of the day (buy or sell)
will always have a sequential order number of 1. This number is unique for each
day, and therefore, for all types of orders, there is only one sequential number for
each date. Each day, the indexing is restarted.

Note that the time of the buy and sell orders leave no doubt regarding which
side is the aggressor of each trade. For example, if a buy order happens at a
clock time before the sell order, then the trade is clearly a sell since it matches
previously defined buy order. Therefore, the identification of buy and sell trades
is done by simply observing, based on the order buy/sell date and sequential
number, the order that came last. With this procedure, we can identify without
any margin of error the identity of the aggressor (buyer/seller) for all trades in
the data.

Dealing with high frequency data usually requires some adjustments before
the statistical analysis can be pursued. This is also the case here. For the data
used in the paper, all the trades which are recorded as having zero duration (no
time interval between two trades) are disregarded. These zero duration trades
happen when a trader buys (or sells) a large volume of the stock, consuming a
relevant portion of the order book. This generates different records of trades, but
the time interval between them is zero. Since this operation is relative to just one
order, it should be treated as such, which justifies its deletion. We also delete the
first trade of each day, since it presents a very high value of the overnight duration.
Any trade with an indicator X or A, which means that they are cancelled orders,
is also discarded. Table 1 presents some simple statistics regarding this adjusted
sample of high frequency data.

From Table 1, we can see that the volume of data is quite high. In total there
are approximately thirteen million data points. It is also possible to see that the
assets are ranked according to the descending number of observations. Those
with the highest number of trades are at the top of the table. This ordering
is not exactly perfect given the deletion of the trades with zero duration in the
treatment of the data, but it is still very clear. An almost identical ordering can
also be seen for the average duration of the trades (the fourth column of Table 1).
Those assets with more trades show lower values of average duration, measured
as the time difference between adjacent trades.

The third column of Table 1 shows that the percentage of buyer initiated
trades is around fifty percent, and so therefore is the proportion of sell trades.
This sets some empirical motivation for the assumption used earlier in the theo-
retical part of the paper where the unconditional probability of a buy order was
set equal to the unconditional probability of a sell order. The fifth column of
Table 1 shows the autocorrelation coefficients for the trade signals, which are
positive and statistically significant. This means that a buy (sell) trade is likely
to be followed by another buy (sell) trade. This result can be explained by two
different hypotheses. First, traders can split a big trading order with the objec-
tive of minimising the trade impact on the market. This action would result in
a succession of trades in the same direction. The second explanation is the exis-
tence of traders with a trend-following strategy. When such traders see a large
buy order executed for example, they trade in the same direction in the hope
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Table 1: Descriptive statistics for the equity data used in the study

Asset
Number of
Trades

Percentage
of Buys
Trades

Average
Duration
(Seconds)

Auto-
correlation
of Trade
Signals

Auto-
correlation
Diff Prices

VALE5 2,007,351 48.97% 3.85 0.24 -0.28
BVMF3 1,183,625 52.88% 6.54 0.32 -0.30
GGBR4 1,053,278 50.43% 7.33 0.28 -0.22
BBDC4 942,848 51.54% 8.19 0.32 -0.23
ITSA4 927,613 52.39% 8.34 0.35 -0.32
USIM5 842,469 50.57% 9.17 0.32 -0.22
VALE3 752,938 51.42% 10.24 0.31 -0.19
ITUB4 678,629 50.38% 7.11 0.32 -0.22
PETR3 727,967 53.55% 10.53 0.32 -0.20
CSNA3 723,607 52.66% 10.68 0.37 -0.20
BBAS3 688,975 51.29% 11.22 0.30 -0.22
CYRE3 681,919 51.71% 11.33 0.32 -0.21
RDCD3 623,009 50.44% 12.34 0.33 -0.22
CMIG4 576,595 53.53% 13.33 0.34 -0.17
ALLL11 578,924 50.68% 13.35 0.32 -0.24

Notes: the first column is the asset’s ticker symbol (the number stands for the type of stock and its class

(e.g. ordinary, preferred and other specific classes). The second column (Number of trades) gives the

number of observations in the sample. The third column gives the proportion of buyer initiated trades.

The fourth column shows the average trade duration (seconds between each trade, excluding the first

duration of the day). The fifth column shows the autocorrelation of the first lag of the observed/real

sign of the trades. The sixth column shows the autocorrelation of the trade price differences.

that prices will continue in the same trend. It would be possible to distinguish
between these explanations from the data if the unique identities of the traders
were available, but this is not the case.

Another observation from Table 1 is that the autocorrelation of the price dif-
ferences is negative. This result is also expected. The statistical explanation is
that the traded prices implicitly contain the values of the spread (see equation
(2)). This spread causes the vector of price differences to present negative auto-
correlation. Formal proofs of this property can be found in the literature, e.g.,
Hasbrouck [2007] and Frank and Rindi [2009].

5 The Results

Next, we compare and discuss the performance of the tick test for the equity data
and the performance predicted by the analytical formula given before. Table 2
shows these results.
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Table 2: Empirical performance of the tick test and the performance from the analytical
solution.

Asset σ∆Pt γ1

% Correct
predictions
(analytical)

% Correct
predictions
(empirical)

Absolute
difference

(empirical vs.
analytical)

VALE5 0.0130 -0.00004688 72.08% 72.70% 0.61%
BVMF3 0.0073 -0.00001631 73.06% 79.07% 6.01%
GGBR4 0.0123 -0.00003329 69.79% 73.00% 3.20%
BBDC4 0.0155 -0.00005535 70.17% 71.22% 1.05%
ITSA4 0.0074 -0.00001747 73.60% 79.64% 6.04%
USIM5 0.0256 -0.00014052 69.52% 72.17% 2.65%
VALE3 0.0243 -0.00011055 68.13% 66.01% 2.12%
ITUB4 0.0172 -0.00006611 69.95% 68.81% 1.13%
PETR3 0.0247 -0.00012104 68.72% 64.54% 4.18%
CSNA3 0.0307 -0.00018470 68.57% 71.59% 3.02%
BBAS3 0.0152 -0.00005003 69.58% 74.40% 4.82%
CYRE3 0.0161 -0.00005401 69.21% 74.41% 5.20%
RDCD3 0.0257 -0.00014607 69.80% 72.67% 2.88%
CMIG4 0.0234 -0.00009508 67.43% 70.82% 3.39%
ALLL11 0.0117 -0.00003291 70.65% 77.35% 6.70%

Notes: the second column shows the standard deviation for the difference of traded prices (∆Pt).

The third column is the value of the first order autocovariance. The fourth column is the predicted

performance of the TT algorithm calculated with the analytical formula in (20). The fifth column

gives the empirical performance of the tick test. The final column shows the absolute difference of

performance between the empirical test and the analytical formula.

The first feature to notice in Table 2 is that the second and third columns are
the inputs used in the analytical formula of the paper – that is, σ∆Pt and γ1 (see
equation (20)). The empirical percentage of correct predictions by the tick test is
calculated by checking all the cases where it produced a correct forecast of a buy
or a sell. Remember that the true directions of the trades are easily calculated
from the data by comparing the times that the buy and sell orders arrived in
the market. So, by following the TT algorithm, the values in Table 2 show the
percentage of times that it correctly predicted the sign of the trade for each of the
stocks in the sample. In general, we can say that the empirical performance of the
algorithm is positive. On average, the tick test correctly predicted approximately
72% of the trading signals.

When comparing the empirical values with those from the analytical formula,
one can see that the formula presents a respectable performance. The last column
of Table 2 shows the absolute difference between the analytical formula against
the performance from the empirical data. The minimum value is 0.61% and the
maximum is 6.7%, with an average of 3.53%. Clearly these are relatively small
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forecasting errors. When calculating the linear correlation of the two vectors,
we get the value 0.73, which shows a very strong linear dependency between the
vectors.

In order to formally assess the performance of the predictions from the an-
alytical formula, we conduct a encompassing test. This simple methodology is
based on a regression of the forecasted values against the real ones. The formula
is:

yt = α+ βŷt + ϵt (21)

where yt is the real value of the forecasted variable, in this case the empirical
performance of the tick test, and ŷt the respective forecasts. By using the values
provided in Table 2, we use two versions of the encompassing test, one with the
intercept and one without. The results are shown next:

Table 3: Results from encompassing test for the tick test performance predictions

Model α t-stat β t-stat
Wald Test
Stat. (α =
0,β = 1)

p-value

Model 1 -0.526 -1.630 1.787 3.882 6.912 0.009
Model 2 - - 1.037 89.156 9.984 0.007

Notes: this table shows the results from the encompassing test for the forecasting performance of the

empirical analytical formula presented in the paper. Model 1 is given by yt = α + βŷt + ϵt, while

model 2 can be represented as yt = βŷt + ϵt. For both models, the dependent variable yt is the

empirical performance of the tick test (see the fifth column of Table 2 and the explanatory variable

is the forecasted performance of the algorithm (see the fourth column of Table 2). The Wald test is

testing the null hypothesis that α is equal to zero and β is equal to one.

, From Table 3, we can see the results from the encompassing test, which is
measuring the ability of the analytical formula to predict the empirical perfor-
mance of the tick test. First,the strong correlation between the forecasts and
the empirical values is clearly evident. As one can see, the t-statistic of the β
parameter is very high. This indicates a strong linear relationship between the
forecasting model and the real measure, which, in this case, is the empirical per-
formance of the tick test. Also, we can see that the intercept (parameter α) in
model 1 is not statistically different to zero at the 10% level, meaning that the
forecasting model does not possess an unconditional bias.

When looking at the results for the Wald test in Table 3, we can also see that
we reject the null hypothesis in the parameter’s restrictions (β = 1 and α = 0)
for both cases. If the forecasting model is unbiased, these restrictions in the
parameters should hold in a statistical sense, which is not the case here. We can
see from Table 3 that the values of β are higher than 1. This means that the
analytical formula presented in the paper tends to underestimate the performance
of the tick test. But this bias is small. The value of β in the second model is just
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0.037 higher than the value of one. The small standard error of the parameter is
what is driving the rejection of the null hypothesis that β = 1 in the Wald test.

While the forecasting model did not pass a formal statistical test, it should
still be pointed out that the analytical formula presented relatively small values of
absolute errors when compared to the real performance (see Table 2) and that it
presented a very strong linear correlation with the measure of interest (see Table
3). Given our objective to forecast the performance of the tick test algorithm
without any access to the real trade signs, we believe that the performance of the
method in the research is still quite impressive, although statistically it incurred
a small forecasting bias.

6 Conclusions

In this paper we set out to investigate the performance of the tick test from an
analytical point of view. Based on a general microstructure model, we derived an-
alytical formulae for the performance of the algorithm and we also made available
a simpler formula that can be easily applied to empirical data, even in the absence
of quote prices. The main formula derived indicates the existence of boundaries
on the performance of the tick test, and specifically, it is shown that it will always
perform better than chance (50% correct predictions). The accuracy of a reduced
version of the analytical formula was tested using fifteen highly liquid stocks from
the Brazilian equity market, which demonstrated that the derived equation well
represents the empirical performance one would get when using the tick test.

The implications of this research are clear. Studies including those of Boehmer et al.
[2006], and Tanggaard [2003] have showed that by using trade inference algorithms
in the construction of microstructure variables such as the PIN, there will be an
implied bias. The extent of this bias is a direct function of the ability of the trade
sign prediction algorithm to make correct forecasts. Our paper provides a way of
assessing such performance based on a simple formula.

A further advance of the present research would be devise a way to estimate
the parameters of the full microstructure model based on incomplete data, which
would allow for the empirical application of the original, full model for examina-
tion of the tick test performance.
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Appendix 1 - Analytical Derivation of the Performance of the Tick
Test

The accuracy of the algorithm, in percentage terms, is given by:

TTAC = %CorrectB%Buys+%CorrectS%Sells (22)

where:

%CorrectB = AB +BB + CB (23)

AB = Pr(bt = 1 | ∆Pt > 0)Pr(∆Pt > 0) (24)

BB = Pr(bt = 1 | ∆Pt = 0,∆Pt−1 > 0)Pr(∆Pt = 0,∆Pt−1 > 0) (25)

CB =

∞∑
i=1

Pr(bt = 1 | ∆Pt = 0, ..,∆Pt−i = 0,∆Pt−i−1 > 0)×

Pr(∆Pt = 0, ..,∆Pt−i = 0,∆Pt−i−1 > 0) (26)

and:

%CorrectS = AS +BS + CS (27)

AS = Pr(bt = −1 | ∆Pt < 0)Pr(∆Pt < 0) (28)

BS = Pr(bt = −1 | ∆Pt = 0,∆Pt−1 < 0)Pr(∆Pt = 0,∆Pt−1 < 0) (29)

CS =

∞∑
i=1

Pr(bt = −1 | ∆Pt = 0, ..,∆Pt−i = 0,∆Pt−i−1 < 0)×

Pr(∆Pt = 0, ..,∆Pt−i = 0,∆Pt−i−1 < 0) (30)

For equation (22), the value of %Buys is simply the unconditional probability
of a buy order:

%Buys = Pr(bt = 1) = Pr(STt = 1) =
1

1− 1−pBuy

pSell−1

(31)

By equating the unconditional probability of a buy order to the unconditional
probability of a sell order (Pr(bt = 1) = Pr(bt = −1) = 0.5), we get the re-
sult that the transition probabilities of a buy order is equal to the transition
probability of a sell order, that is pBuy = pSell = p.

Now, starting the derivations of the first conditional probability in (23) we can
show using Bayes rule that in the formula for AB the first term of the equation
will take the following shape:

Pr(bt = 1 | ∆Pt > 0) =
Pr(∆Pt > 0 | bt = 1)Pr(bt = 1)

Pr(∆P > 0)
(32)
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This modification simplifies the derivations as working by conditioning on
the event bt = 1 is easier than working by conditioning on the event ∆Pt > 0.
Expanding the conditional probability given before by following the underlying
microstructure model we can show that:

Pr(bt = 1 | ∆Pt > 0) = pNews (0.5p+ (1− p)(1− Φ(−S))) +

(1− pNews)(1− p) (33)

where Φ(x) is the Normal cumulative distribution with variance σ2 evaluated
at x. Following last equation and remembering that Prob(bt = 1) = 0.5, we have
the first part of equation (23) worked out. For the second term in (23), BB, we
can show by using Bayes formula that:

Pr(bt = 1 | ∆Pt = 0,∆Pt−1 > 0) =
Pr(∆Pt = 0,∆Pt−1 > 0 | bt = 1)Pr(bt = 1)

Pr(∆Pt = 0,∆Pt−1 > 0)
(34)

By deriving the conditional probability with respect to the underlying mi-
crostructure model, we have the following result:

Pr(∆Pt = 0,∆Pt−1 > 0 | bt = 1) = [pNews (0.5p+ (1− p)(1− Φ(−S)))+

(1− pNews)(1− p)] (1− pNews)(p) (35)

Now, notice that equation (35) is equivalent to equation (33), except for the
multiplying term (1− pNews)(p). This is the effect of the extra condition on the
conditional probabilities of a buy order. This property also holds when working
with the other conditions in the third element on the right hand side of equation
(23). By working out the elements of the sum in CB, a pattern becomes clear.
Formalising such a pattern gives:

Pr(∆Pt = 0, ..,∆Pt−i = 0,∆Pt−i−1 > 0 | bt = 1) = AB [(1− pNews)(p)]
i

(36)

It is clear from equation (36) that the performance of the second rule of the
tick test is related to the performance of the first rule (a value of Z). The value
of AB is adjusted by the parameter i.

It should also be pointed out that one property used in the paper is that:

∞∑
i=0

[(1− pNews)(p)]i =
1

1− (1− pNews)(p)
(37)

which greatly simplifies the analysis by removing the sum part in the deriva-
tions. The derivations for the other part of the tick test algorithm, that is,
equation (23) are very similar to the derivation of the elements of equation (22)
and are therefore not given here.
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By placing all the previous results back in the original formula and simplifying,
we have the final equation for the tick test performance:

TTAC = 1 +
pNews

(
0.5
(
1 + erf

(
S

σ
√
2

)
(1− p)

)
− 1
)

1− p(1− pNews)
(38)

20



References

M. Aitken and A. Frino. The accuracy of the tick test: Evidence from the aus-
tralian stock exchange. Journal of Banking & Finance, 20(10):1715–1729, 1996.

P. Asquith, R. Oman, and C. Safaya. Short Sales and Trade Classification Algo-
rithms. SSRN eLibrary, 2008.

E. Boehmer, J. Grammig, and E. Theissen. Estimating the Probability of In-
formed Trading - Does Trade Misclassification Matter? SSRN eLibrary, 2006.

S. Chakravarty. Stealth-trading: Which traders’ trades move stock prices? Jour-
nal of Financial Economics, 61(2):289–307, 2001.

T. Chordia, R. Roll, and A. Subrahmanyam. Evidence on the speed of convergence
to market efficiency. Journal of Financial Economics, 76(2):271–292, 2005.

T. Chordia, R. Roll, and A. Subrahmanyam. Liquidity and market efficiency.
Journal of Financial Economics, 87(2):249 – 268, 2008.

D. Easley, N. M. Kiefer, M. O’Hara, and J. B. Paperman. Liquidity, information,
and infrequently traded stocks. The Journal of Finance, 51(4):1405–1436, 1996.

K. Ellis, R. Michaely, and M. O’Hara. The accuracy of trade classification rules:
Evidence from the nasdaq. The Journal of Financial and Quantitative Analysis,
35(4):529–551, 2000.

T. J. Finucane. A direct test of methods for inferring trade direction from intra-
day data. Journal of Financial and Quantitative Analysis, 35(04):553–576,
December 2000.

D. J. Frank and B. Rindi. The Microstructure of Financial Markets. Cambridge
University Press, Cambridge, UK, 2009.

J. Hasbrouck. Measuring the information content of stock trades. Journal of
Finance, 46(1):179–207, 1991.

J. Hasbrouck. Empirical Market Microstructure. Oxford University Press. New
York, 2007.

C. M. C. Lee. Market integration and price execution for nyse-listed securities.
Journal of Finance, 48(3):1009–38, 1993.

C. M. C. Lee and M. J. Ready. Inferring trade direction from intraday data.
Journal of Finance, 46(2):733–46, 1991.

E. Odders-White. On the occurrence and consequences of inaccurate trade clas-
sification. Journal of Financial Markets, 3:259–286, 2000.

M. Peterson and E. Sirri. Evaluation of the biases in execution cost estimation
using trade and quote data. Journal of Financial Markets, 6:259–280, 2003.

21



R. Roll. A simple implicit measure of the effective bid-ask spread in an efficient
market. Journal of Finance, 39(4):1127–39, 1984.

C. Tanggaard. Errors in trade classification: Consequences and remedies. Fi-
nance Working Papers 03-6, University of Aarhus, Aarhus School of Business,
Department of Business Studies, 2003.

E. Theissen. A test of the accuracy of the lee/ready trade classification algorithm.
Journal of International Financial Markets, Institutions and Money, 11:1416–
5, 2000.

22


