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Abstract

Investors have different preferences for portfolio skewness and kurtosis, i.e. return

asymmetry and tails’fatness. We build up a new model to describe this documented

empirical fact and study how this type of preferences can impact equilibrium asset

return and their optimal allocation. In our economy there are three types of in-

vestors whose preferences can be characterized by "MV ", "MVS" and "MVSK". (M :

Mean V : Variance S : Skewness K : Kurtosis) and they are named as ("Traditional",

"Lotto" and "Kurtosis Aversion" investor), correspondingly. We also investigate how

the change of investor fraction on the market influences the equilibrium properties.

Furthermore, by using the weekly world stock market indices (MSCI) ranging from

January 1988 till January 2010, we are able to recover the investor properties, such

as investor preferences and investor fraction in both bullish and bearish markets. We

find that during crashes, there are more Traditional and Lotto investors than Kurto-

sis Aversion investors existing on the market; during dot-com boom, Traditionaland

Kurtosis Aversion investor are the majority; in Housing boom period, most of the in-

vestors are the Lotto investors. To our best knowledge, we are the first to investigate

this problem in a partial equilibrium setting and the model prediction is supported

by the empirical evidence.



1 Introduction

It has been long documented that financial returns are not well described by a normal

distribution because they tend to exhibit asymmetry and leptokurticity, i.e. higher

peak and fatter tails than they are expected from normal distribution. Taking this

empirical fact into consideration, many researchers have shown that a representa-

tive agent with a quadratic utility function is naturally sensitive to the first four

moments of his expected wealth distribution (Rubinstein, 1973; Kraus and Litzen-

berger, 1976; Levy and Sarnat, 1984; Harvey and Siddique, 2000; Jurczenko and

Maillet, 2001, 2006). However, in the financial market, investors may have different

preferences for higher order moments, e.g., Kumar (2008) shows that socioeconomic

and psychological factors can influence investor preferences: "poor, young men who

live in urban, Republican dominated regions, prefer individual stock’s skewness. Also

poor people exhibit a stronger aversion to kurtosis". Therefore, this current work

aims to propose a new model of which investors are assumed to have heterogeneous

preferences for higher moments (hereafter HM).

The paper that is closest to our modeling method is Mitton and Vorkink (2007

RFS). However, our model differs from theirs in several aspects: first, They explain

the positive relation between asset’s individual skewness and its equilibrium return

based on a simple model where investors have heterogeneous preferences for skew-

ness. Except skewness we also study investor preference for kurtosis; second, in the

theoretical part, investors’fraction and risk aversions are varied for the comparative

analysis, which shows that how the heterogeneous HM preferences impact on equilib-

rium return and investors’optimal investment allocation; third, based on real data we

directly apply our model to forecast asset returns and investigate investor properties,

such as the investor’s risk aversion parameter, the distribution of each investor group

in the financial market and their optimal portfolio holdings. To our best knowledge,

we are the first to address these issues. The motivations and main contributions from

this current work are detailed below.
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Theoretical Aspect

1. Heterogeneous preferences for HM affect the optimal allocation and explains the

underdiversification problem, which is new to the existing literature. We study both

skewness and kurtosis effects on investment decisions. Skewness represents the prob-

ability to gain or lose a lot of money in your portfolio; and absolute prudence implies

kurtosis aversion (Hass, 2007; Madan and Yen, 2004). Previous studies show that in-

dividual investors require higher expected return to hold the asset with higher kurtosis

or lower skewness1. Furthermore, our work explains an empirical fact that investors

are holding underdiversified portfolios (see, e.g., Polkovnichenko, 2005; Goetzmann

and Kumar, 2007; Kumar, 20082). From a mean-variance optimizer’s point of view,

underdiversified portfolio holding is a irrational/suboptimal investment decision. In

their portfolio, there are too few securities to eliminate idiosyncratic risk which can be

done through full diversification, i.e. holding the market portfolio. However investors

with a skewness preference tend to trade the mean-variance effi ciency for a higher

skewness. They will hold an underdiversified portfolio which is a mean-vairance-

skewness effi cient investment (Simkowitz and Beedles, 1978; Conine and Tamarkin,

1981; Barberis and Huang, 2005). Our model not only generates the same result for

skewness preference, but also extends the analysis to the kurtosis aversion’s impact on

optimal portfolio construction. We motivate this investigation through figure 1 which

summarizes the HM values for portfolios with varying asset weights. Each portfolio

is made up of two assets. The portfolio moments are calculated from weekly Morgan

Stanley Capital International (MSCI) data sets of North-American, European and

1Harvey et al. (2002) propose a method to handle higher moments and estimation error using a

Bayesian decision framework. Guidolin and Timmermann (2003) investigate the optimal asset allo-

cation while assuming the returns are driven by a regime switching model. Jondeau and Rockinger

(2006) evaluate how non-normality affects the optimal asset allocation and measured the advantages

of using a strategy based on higher-order moments.
2Kumar carries out a further investigation of the relation between underdiversification and in-

vestor properties, such as age, education level and preference for skewness, etc. This work also

presents empirical evidence on how underdiversification affects the expected return.
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Asian stock markets. The blue-circle line represents linear combinations of individ-

ual assets’moments; the red-dot line denotes portfolio moments. The diversification

benefit can be viewed as higher portfolio mean and skewness or lower variance and

kurtosis than the asset-moment linear combinations. The sample period changes from

pre-subprime (before subprime crisis in Sep. 2007) to the whole time period (from

Jan. 1988 to Jan. 2010). We can see that the portfolio skewness is not guaranteed

to be larger or smaller than the linear combination. But the portfolio variance and

kurtosis are always lower than the linear combinations, i.e. diversification can reduce

these two risks. So it’s reasonable to predict that kurtosis aversion investors will

prefer to hold more diversified portfolios. On the other hand, the aversion to the

kurtosis will result in less investment into assets with high kurtosis values, i.e. it

may generate an underdiversified investment. Therefore, it make sense to study the

interaction effects on investment from HM preferences.

Previous studies about the HM preference simply assume one representative agent

(see, e.g. Telmer, 1993; Chan and Kogan, 2002; Basak, 2005). However, heterogene-

ity in HM preference should be a determinant factor for underdiversified portfolio

because identical HM preference among investors still leads to fully diversified port-

folios (Rubinstein, 1981; Mitton and Vorkink, 2007). Therefore, our model relies on

the assumption of heterogeneous preferences for skewness and kurtosis. The investors’

preference structure is derived from the Taylor series expansion for CARA utility and

they care about different orders of moments for the asset return distribution. To do

so the truncation order for the Taylor series expansion is selected differently among

investors. In our economy there exist in total three types of agents whose utilities are

characterized by "MV ", "MVS" and "MVSK". (M : Mean V : Variance S : Skewness

K : Kurtosis). They are named as "Traditional", "Lotto" and "Kurtosis Aversion"

investor3.
3Characterizing investors’utility by the preference (aversion) for moments does not suggest in-

vestors actively examine the moments of return distributions and making investment solely based

on these moments. Rather, this is an common approach used by many researchers (Jondeau and
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Pre-subprime Whole-data set

Figure 1: This figure contains plots of portfolio mean, variance, skewness and kurtosis

and makes them compared with the linear combination of the asset returns’moments.

The three plots on the right uses three pairs of MSCI returns: North-America, Europe

and Asia, based on the whole data set ranging from January 1st, 1988 till January

26th, 2010. The three plots on the left are based on pre-crisis returns from January

1st, 1988 till December 29th, 2006. The blue circle-dash line represents the linear

combination of the four moments. The portfolio mean, variance, skewness and kur-

tosis are represented by the red dot-dash line.
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2. We propose a new method to forecast asset return based on an equilibrium set-

ting with heterogeneous investors. To be more specific, we first assume that investors

are able to estimate assets’moment values, such as variance, skewness and kurtosis,

in the current period from historical data; then the heterogeneity in HM preference

determines their optimal investment decisions. At equilibrium when market clears,

the future expected returns arise from this mechanism. The results from simulation

show that positive (negative) relation between expected asset return and kurtosis

(skewness) arises from investors’preference for HM, and, suggest that heterogeneity

in moment preference can predict subsequent equilibrium returns. This idea is not far

from a strand of literature focusing on the equilibrium implied return 4. These follow

the path-breaking technique developed by Black and Litterman (1990). They created

a framework in which every investor is a mean-variance optimizer, the equilibrium

return forecast is obtained through combining all the equilibrium investors’ views

(the prior distribution for "implied return") and their active investment through a

Bayesian approach (Meucci, 2006, 2008, 2009). However, they do not study how het-

erogeneity in investors’HM preferences affects the equilibrium return, which is one

of the main focuses in our work.

3. Changing investors’risk aversion level and their fractions can also affect the

equilibrium, i.e. higher risk aversion implies more significant equilibrium effect on

returns and allocation. Fractions of heterogeneous investors can be varied which is

consistent with previous studies such as papers related to market microstructure and

evolutionary finance5. Our finding that investors with HM preferences can signifi-

Rockinger, 2006; Mitton and Vorkink, 2007) in order to abstract away from a large number of be-

havioral mechanisms which are likely to generate a preference for higher order moments. —According

to Kumar (2008, P4)
4The equilibrium return arising fromMitton and Vorkink’s setting can also be referred as "Implied

Return", which is a concept based on market equilibrium. The "equilibrium" means the market price

is such that supply of assets equals their demand.
5For the market microstructure issue, see the survey "Heterogeneity, Market Mechanisms, and

Asset Price Dynamics" from Chiarella, Dieci and He (2009); the issue in evolutionary finance can

5



cantly impact on the equilibrium is new to the literature.

Empirical Aspect

Our empirical analysis focuses on two distinct issues. First, we examine whether

investor’s heterogeneous preferences for HM determine the (ranking of) future ex-

pected returns. The result arising from our model is consistent with other previous

empirical studies which find individual security’s skewness and kurtosis are strongly

related to subsequent returns(see e.g. Mitton and Vorkink, 2007; Barberis and Huang,

2005; Kumar, 2008; Conrad et al. 2009). The empirical result also supports the pred-

ication that HM preferences can affect investors’portfolio decisions.

Second, the significant impact from risk aversion level and investor fraction on the

subsequent return (evidence shown in the simulation part) motivates us to rotate the

point of view from investigating investor fraction effects on equilibrium to recover-

ing the investor fraction on the market using the real posterior return. At the same

time, we assume risk aversion level on the market is exogenously fixed6. More specifi-

cally, we apply our model using weekly MSCI data which covers three major financial

markets: North America, Europe and Asia7. After conditioning on the bullish and

bearish market, our model shows how HM preferences affect the equilibrium asset re-

turn through investors’asset allocation decision and how do they impact the investor

structure in the international stock market. We find that Kurtosis Aversion investors

are the majority in the Dot-com booming market; there are more Lotto investors exist

during Housing boom and Dot-com crash period. The results imply that heteroge-

neous preferences’impact on equilibrium varies across different economic scenarios.

This empirical test, to our best knowledge, is the first attempt to recover the investor

be referred to the survey by Hommes (2005). In behavior finance, Easley and O’Hara (2009) have

proposed a model about ambiguity aversion investors with different fractions in the market.
6Many previous studies have successfully obtain measures of the risk aversion through the implied

distribution based on option prices (Jackwerth, 2000; Kang and Kim, 2006; Bliss and Panigiert-

zoglow, 2003).
7We assume there are three types of investors with heterogeneous preference for higher moments

in the international stock market.
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structure in the market from a behavioral model.

The rest of this paper is organized as follows. Section two presents the theoretical

model and shows how to obtain the equilibrium return and optimal allocation. Section

three documents the numerical results from our equilibrium model using simulated

data. Section four records the model’s practical implementation based on actual data.

Section five offers some concluding remarks. Section six is the technical appendix.

2 The Model

2.1 Notations and assumptions

First we assume investors can only purchase N risky assets (with N = 3) and

no short-sell is allowed. The return vector for N risky assets is denoted by R =

[R1, ..., Ri, ...RN ]. The expected return, covariance, skewness and kurtosis structure

of the risky securities are, respectively, denoted as µ, V , S and K, which are fully

defined in Appendix A.

In this economy, Q investors are assumed having CARA utility functions which can

be written as U(W ) = − exp(−λqW ), where q = [1, ..., Q] and λq is the risk aversion

parameter for each agent q. They have the same preference for mean and variance,

but they may have different preferences for HM. In particular, three types of investors

exist in our economy. The first and second type, which we denote as "Traditional

Investor" and "Lotto Investor" (same as in Mitton and Vorkink’s paper); the third

type is called "Kurtosis Aversion Investor" with preference for skewness and aversion

to kurtosis. Investors are assumed to be fully informed, in the sense that they know

the structure of the market: investor preference, investor fraction and asset returns’

distribution; therefore, they are able to correctly anticipate the equilibrium outcome

and optimize their investment accordingly.
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Their CARA utility functions are approximated through Taylor series8:

Traditional Investor:

U(W ) = − exp(−λqµp)
[

1 +
λ2q
2
Vp

]
Lotto Investor:

U(W ) = − exp(−λqµp)
[

1 +
λ2q
2
Vp −

λ3q
3!
Sp

]

Kurtosis Aversion Investor:

U(W ) = − exp(−λqµp)
[

1 +
λ2q
2
Vp −

λ3q
3!
Sp +

λ4q
4!
Kp

]

For each investor q, the dollar amount invested in each of the N risky assets is

denoted by an N × 1 vector αq = [αq,1, αq,2,...αq,i,...αq,N ] .

2.2 Optimal portfolio allocation

Proposition 1 (Equilibrium allocation) Investor q belonging to type
−
m = T , L or

K, maximizes her utility function U(W−
m,q

), subject to her own budget constraint.

Traditional Investor:

arg max
α
′
T,q

U(WT,q) = − exp(−λqµp,T,q)
[
1 + δ2qα

′

T,qV αT,q

]
Lotto Investor:

arg max
α
′
L,q

U(WL,q) = − exp(−λqµp,L,q)
[
1 + δ2qα

′

L,qV αT,q − δ3qα
′

L,qS (αL,q ⊗ αL,q)
]

8Taylor expansion for the expected utility up to fourth order can be written as:

E [U(W )] = U(W ) + U (1)(W )E[W −W ] + 1
2
U (2)(W )E[(W −W )2]

+
1

3
U (3)(W )E[(W −W )3] + 1

4
U (4)(W )E[(W −W )4] + Taylor remainder

where W is the expected end-of-period wealth. (See Jondeau and Rockinger, 2007 European Finan-

cial management P34)
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Kurtosis Aversion Investor:

arg max
α
′
K,q

U(WK,q) = − exp(−λqµp,K,q)

 1 + δ2qα
′
K,qV αK,q − δ3qα

′
K,qS (αK,q ⊗ αK,q)

+δ4qα
′
K,qK (αK,q ⊗ αK,q ⊗ αK,q)


where δiq ≡

λiq
i!
, i = 2, 3 or 4. The final wealth budget constraint is

Wq = W0,q

[
α
′

qR
]

where W0,q is investor q’s initial wealth.

Each type of investors’portfolio weights can be denoted by a N × 1 vector: α−
m,q

.

The Traditional investor’s demand function is the same as the mean-variance demand

function leading to the traditional Sharpe-Lintner-Mossin CAPM model.

µ =
2δ2qV αT,q

1 + δ2qα
′
T,qV αT,q

(1)

Lotto investor’s demand function is

µ =
2δ2qV αL,q − 3δ3qS (αL,q ⊗ αL,q)

1 + δ2qα
′
L,qV αL,q − δ3qα

′
L,qS (αL,q ⊗ αL,q)

The demand function for Kurtosis Aversion investor is

µ =
2δ2qV αK,q − 3δ3qS (αK,q ⊗ αK,q) + 4δ4qK (αK,q ⊗ αK,q ⊗ αK,q)

1 + δ2qα
′
K,qV αK,q − δ3qα

′
K,qS (αK,q ⊗ αK,q) + δ4qα

′
K,qK (αK,q ⊗ αK,q ⊗ αK,q)

(2)

Proof. See appendix B.

2.3 Market Clearing Condition

In this heterogeneous market, each agent makes the portfolio choice according to her

own preference for moments. At equilibrium, the composition of the market portfolio

will equal to the composition of the optimal portfolio Π (risky fund). In particular,

Π is calculated by summing up the demand function for risky assets over all the
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investors. Therefore, to make sure that the market clearing condition is satisfied,

demand for each asset i should equal to its supply9.

Since there are in total Q agents in the market, we let φ−
m,q

be the fraction of

agents who have the risk aversion parameter λq and belongs to type
−
m, where

−
m

∈ m = [T, L,K]. By normalization,
∑

=
m∈m Im

Q∑
q=1

φ−
m,q

= 1,
=
m ∈ m = [T, L,K] and

Im is the indicator function Im = 1 when
−
m =

=
m.

Summing up the optimal asset allocation α−
m,q

for each agent q in group
−
m, we

can get each group’s demand for asset i:

Di(
−
m) =

Q∑
q=1

α−
m,q,i
· I

where indicator function I = 1 when agent q belongs to group
−
m and zero otherwise.

Thus the total demand for asset i is

Di =
∑

−
m ∈ m=[T,L,K]

Q · φ−
m,q
·Di(

−
m)

= Q
∑

−
m ∈ m=[T,L,K]

φ−
m,q
·Di(

−
m)

= Q
∑

−
m ∈ m=[T,L,K]

φ−
m,q

Q∑
q=1

α−
m,q,i
· I (3)

where Q is the total number of investors. Finally the total demand for all the assets

9To show the relationship between the composition of market portfolio and the composition of

the optimal portfolio, we borrowed the proof from Malevergne and Sornette (2002 Appendix C.2)

and followed the way they construct the equilibrium asset demand and supply. They derive the

generalized effi cient frontiers based on a new set of consistent measures of risk both in the case of

homogeneous and heterogeneous markets. This method enables us to build up the market constraint

and solve the equilibrium.
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and for all agents

D =
∑
i

Di

= Q
∑
i

∑
−
m∈m

φ−
m,q
·

Q∑
q=1

α−
m,q,i
· I

= Q
∑
−
m∈m

φ−
m,q
·

Q∑
q=1

α−
m,q
· I (4)

since
∑
i

Q∑
q=1

α−
m,q,i
· I =

Q∑
q=1

α−
m,q
· I for any agent q . We also define, for each group −m,

the weight of asset i in the risky fund is

˜
ω−
n,i

=

Q∑
q=1

α−
m,q,i
· I

∑
−
m∈m

φ−
m,q
·
Q∑
q=1

α−
m,q
· I

We also set wCi as asset i’s market capitalization ratio

wCi =
Supplyi∑
i

Supplyi

At equilibrium when demand equals supply, we can get

wCi =
Supplyi∑
i

Supplyi
=
Di

D
=
∑
−
m∈m

φ−
m,q

˜
ω−
m,i

where Di
D
is derived based on equation (4) and (5).

And we could see that the market portfolio is the weighted sum of optimal port-

folios constructed by all the heterogeneous agents.

2.4 Equilibrium asset return

Proposition 2 (Equilibrium return) Since the demand function implies that the in-

vestor’s optimal allocation is a function of the equilibrium return, given market clear-

ing condition, we can have:
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φT · αT,i(µi) + φL · αL,i(µi) + φK · αK,i(µi) = wCi

Proof. At equilibrium, given that the market clearing condition is satisfied, the per

capita demand for asset i must equal to its per capita supply. To simplify, we first

assume all the agents have the same risk aversion parameter, no matter how different

their preference towards moments is. So we can drop the notation q and denote the

fractions of the Traditional, Lotto and Kurtosis Aversion investors by φT ,φL, and φK ,

where φT + φL + φK = 1.

The above relation implies that the larger the weight of one investor type on the

market, the greater its impact on the equilibrium prices.

3 Simulation Analysis

Due to the nonlinear portion of the first order conditions10, it’s not possible to ob-

tain the analytical solution for demand function. However, thanks to the advanced

programming algorithm, we can numerically solve the model. The equilibrium effects

from the skewness and kurtosis are investigated separately. Comparative analysis

shows how investor fraction and risk aversion impact on equilibrium.

In the first part, we give a brief description for the optimization procedure used

to generate the numerical results.

In the second part, we investigate the equilibrium effect from the third and fourth

moment separately while assuming different fractions for different investors. In par-

ticular, for the skewness analysis, under similar model specification as Mitton and

Vorkink’s we study investor fractions’effect on equilibrium. The analysis on the (co-)

kurtosis impact on equilibrium is carried out based on simulation.

10Such as
{
α
′

L,qSi

[((
α
′

L,qei

)
⊗ Inn

)
+ α

′

L,qe
′

i

]
+ e

′

iαL,qα
′

L,qSi

}
in the equation from Appendix

B.
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Figure 2: Optimization Procedure

3.1 Optimization procedure

At equilibrium, investors make their investment decisions in order to maximize their

objective functions. They fully anticipate the asset’s distribution and the equilibrium

return since they know the investor structure, i.e. risk aversion and fraction of hetero-

geneous investors. Therefore, equilibrium return is a function of optimal allocations

and meanwhile the market clearing condition needs to be satisfied. This intuition

helps to complete the optimization procedure which is summarized in figure 2. The

inputs for the optimization are V , S, K which have already been defined in Appen-

dix A, and can be estimated through real data or based on simulation; WC
i , φ−m,q, λq

defined in section 2 are assigned by fixed numbers. Each agent’s portfolio weights

α−
m,q
and asset equilibrium return µ are given by some values at the initial step; then,

after the objective functions for investors’utility and market clearing condition are

satisfied, we can obtain the α∗−
m,q

and µ∗ as outputs from the optimization procedure.

13



Parameter Variable Value

Investor fraction φT , φL and φK φT = [.1 .2. 3 1
3
.4 .5 .6 .7]

φL = φK = (1− φT )/2

Market capitalization ratio cap1 (2,3) cap1 =cap2 =cap3 = 1
3

Risk-aversion coeffi cient λq [6 16]

Variance of risky asset returns σ2n, n = 1, 2 or 3 0.54×10−3

Correlation ρ12=ρ13=ρ23 0

Idiosyncratic skewness for asset 2 S2 (S1 or 3 = 0) (-0.7– -0.7) ;K1,2,3 = 3

or

Idiosyncratic kurtosis for asset 3 K3 (K1 or 2 = 3)

Kurtosis structures are simulated according to Jondeau (2008, Sec. 8.1)

Assuming S1,2,3 = 0

Table 1: Model Parameters for Skewness Analysis

3.2 Higher moments & investor fraction analysis

We directly specify the model parameters of which some are based on the real data

set11. Here we assume three risky assets with the same variance. The changing

idiosyncratic skewness (kurtosis) value for asset two (three) is exogenously given.

Table 1 gives a general description. One thing needs to emphasize is that, the value

for skewness and kurtosis value are specified for reader’s convenience, however, in the

analysis, investors preferences are about the returns’moments which will have a much

smaller scale than those specified values. For example, when asset 2’s idiosyncratic

skewness increases from -0.7 to 0.7, its third moment will change from -1.49×10−4 to

1.49×10−4. Even though the empirical results on expected return and allocation are

still significant given such a small change in the moment values.

11We use the weekly MSCI data for the covariance structure calculation. Here we only use the

variance value of the North-America index to represent three risky assets’variance.
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3.2.1 Skewness preference

Because the main focus in this step is to investigate the equilibrium influences from

idiosyncratic skewness and the investor fraction, we assume: 1. the coskewness is

zero. 2. the cokurtosis value remains the same while the idiosyncratic skewness

changes. Therefore, the (co-) kurtosis structure for asset three is calculated based

on zero correlation between assets as specified in table 1. In the following part, we

analyze how the changes in asset two’s skewness, S2, investor fraction and risk aversion

influence the equilibrium properties. The numerical results show that heterogeneous

preferences for skewness and investor fraction significantly affect equilibrium return

and asset allocation. The increase in risk-aversion parameter from 6 to 16, measuring

the weight put on the HM preference, makes the changes in the equilibrium return

and allocation similar but more dramatic. Furthermore, this also implies that our

model is robust under different risk aversion levels. To save the space, we only report

the case with λq = 16.

risk aversion=16

Equilibrium return

The plots in the second row of figure 3 shows: when the majority of investors on

the market are Lotto and Kurtosis Aversion types (in total 90%) who have preference

for positive skewness, asset two’s expected return decreases from 0.03 to 0.001, of

which the difference 2.9% is greater than the adjustment in return, 1%, from the case

where the majority is Traditional investor (70%). So the more Lotto and Kurtosis

Aversion investors exist on the market, the more significantly the expected return

changes; also for the same S2, the more these two types of investors on the market

the smaller the asset two’s return is. When asset two’s return decreases, the other

two risky assets become less attractive on the market and their expected returns go

up.

Equilibrium allocation

The last two plots in the second row of figure 4 show that, when 30% investors

15



Equilibrium Return

Investor fraction: φT = [.1 .2. 3 1
3
.4 .5 .6 .7], φL = φK = (1− φT )/2

Risk aversion λq = 16, S2 = (−0.7 – 0.7), M3 =(-1.49×10−4 – 1.49×10−4), K3 = 3.

Traditional Investor MV Lotto Investor MVS Kurtosis Aversion MVSK

Figure 3: Expected return for asset 2 increases when its skewness decreases. When

asset 2’s is smaller than zero and the fraction of Lotto and Kurtosis Aversion investors

increases, asset 2’s expected return increases dramatically. This suggests that the

fraction of Lotto and Kurtosis Aversion investors who also has preference for skewness

plays an important role in the equilibrium return determination.
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are Lotto and Kurtosis Aversion types, their investment in asset two increase from

1/3 to 34.9% and 34.5% when its skewness increases.

When Lotto and Kurtosis Aversion investors’ total fraction reaches 90%, their

investments in asset two are only increased by 0.5% and 0.4% of which the changes

are less dramatic than in the previous case when their fraction is 30%. Because

when there are more skewness preference investors in the market and S2 increases,

the competition to buy asset two becomes higher and drives up its price12.

12This result is consistent with the one documented by Jondeau and Rockinger (2008, P19) who

empirically showed that kurtosis aversion results in relatively more diversified portfolios.
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Investor Allocation

Investor fraction: φT = [.1 .2. 3 1
3
.4 .5 .6 .7], φL = φK = (1− φT )/2

Risk aversion λq = 16, S2 = (−0.7 – 0.7),M3 =(-1.49×10−4 – 1.49×10−4), K3 = 3.

Traditional Investor MV Lotto Investor MVS Kurtosis Aversion MVSK

Figure 4: Individual investor allocation varies differently across the three types of

investors. Lotto investor tends to hold less asset 2 when its skewness decreases. The

underdiversification is more severe for the Lotto investor than the Kurtosis Aversion

investor since she prefers to hold more diversified portfolio in order to decrease the

portfolio kurtosis.
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3.2.2 Analysis for (co-) kurtosis

Simulation Data Three risky assets’return series, 106 observations for each, are

simulated following the procedure:

1. Simulate two standard-normal return series: r1 , r2.

2. Simulate asset three’s return, r3, which follows a student-t distribution with

degree of freedom parameter v. The relationship v = 4K3−6
K3−3 enables us to

simulate student-t series and construct a set of r3s, i.e. r3 = [r13, r
2
3, r

3
3, ....r

j
3],

where j is the number of different values for v (K3 ∈ {3, 3.5, 4, 5, 5.5, 6.5}).

3. Set covariance matrix as
∑

=


0.2 0.0212 0.0335

0.021 0.35 0.0296

.0335 0.0296 0.25

 ( covariance matrix

from Mitton and Vorkink (2007)) and get its Cholesky decomposition
∑ 1

2 .

4. For each r3 selected from set r3 and the two standard normal returns, using∑ 1
2 , we obtain one new set of return-series R = [

˜
r1

˜
r2

˜
r3] and the empirical

moment structure M2–M4 which will change according to different v (K3)

specifications.

For simplicity, table C1 and C2 in appendix C report statistics on two selected

simulations with lowest and highest kurtosis value for asset three. WhenK3 increases,

in most cases, cokurtosis K3ijk, at least one from i, j and k assets also increases. In

order to focus on the kurtosis effect, we assume all the elements in the skewness

structure are zero.

Numerical results Same investor fraction

Figure 5 summarizes the fourth-moment effect on equilibrium properties and we

assume same fractions for all types of investors and the risk aversion level is 2.513.

13In the unreported result we also investigate the case with higher risk aversion level, λq = 4. The

result is consistent but with a more significant (co-) kurtosis effect on equilibrium.
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The starting point is artificially made by assuming no effect from skewness and kur-

tosis14. From this special case in the figure denoted when M4=0, we can see that

expected return difference purely arises from different variance value. And heteroge-

neous investors hold the equal-weighted portfolios, i.e. the market portfolio. Then

the idiosyncratic kurtosis value, K3 increases from 3 to 6.5, so asset three’s excess

fourth moment will increase from 0 to 1.023. Accordingly, the co-kurtosis can also

be calculated as documented in table C1 and C2. Asset three’s expected return will

climb up from 23.7% to 30.36%. Kurtosis Aversion investor who dislike the increased

kurtosis risk, reduces her investment in asset three from 31.8% to 28.7%.

Figure 6 shows the case when we assume zero co-kurtosis between different assets.

The expected return is only slightly higher in the previous case due to the non-zero

co-kurtosis effect. And the allocations in the two cases are quite close. So we can

conclude that the effect on equilibrium from co-kurtosis is very small when there are

small number of assets in the portfolio.

14We assume all the elements in skewness and kurtosis structure are equal to zero.
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Figure 5: Non zero-4th-moment effect and changing idio-kurtosis K3
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Figure 6: Zero fourth-co-moment and changing idio-kurtosis K3
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Different investor fractions

Equilibrium return

Figure 7 shows that increase in K3 can significantly raises asset three’s expected

return. For example, figure 7: plot 3 shows that when there are 1/3 investors are

Kurtosis Aversion and K3 rises, asset three expected return climbs up to 36.52%.

Additionally, under the same K3 level, when Kurtosis Aversion investor’s fraction

increases from 5% to 1/3, asset three’s expected return also increases which shows

that the larger the weight of Kurtosis Aversion on the market, the greater their

impact on the equilibrium. Meanwhile, the other two risky assets become much

more attractive and their expected returns are negatively related to K3. Asset one’s

expected return even becomes negative because of its lowest variance and smallest

kurtosis values among the three risky assets.

Equilibrium allocation

Figure 8 summarizes the optimal asset holdings of the three investor types. Figure

8: plot 3 tells that when K3 increases, Kurtosis Aversion investor’s investment in

asset three declines and she starts to invest more in the other assets. Meanwhile,

asset three’s price drops due to the increased future expected return which attracts

more Traditional and Lotto investors to hold this asset, because these two types don’t

have any particular preferences for kurtosis.
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Investor fraction and (co-kurtosis) effect

Investor fraction: φT = [1
3
.4 .6 .8 .9], φL = φK = (1− φT )/2

Risk aversion λq = 2.5, K3 = [4 5 5.5 6].

Figure 7: Asset 3’s expected return increases when its idiosyncratic kurtosis becomes

larger. Meanwhile, when the fraction of Kurtosis Aversion investors increases, asset

3’s expected return increases dramatically. This suggests that the fraction of Kurtosis

Aversion investor also plays a critical role in the equilibrium return determination.
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Investor Allocation

Investor fraction: φT = [1
3
.4 .6 .8 .9], φL = φK = (1− φT )/2

Risk aversion λq = 2.5, K3 = [4 5 5.5 6].

Traditional Investor MV Lotto Investor MVS Kurtosis Aversion MVSK

Figure 8: Investor allocation differs dramatically across three types of agents when the

asset 3’s idiosyncratic kurtosis changes. When asset 3’s kurtosis increases, Kurtosis

Aversion investor tends to hold less asset 3 than the other two types.
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4 Empirical analysis

Section 4.1 and 4.2 focused on the equilibrium analysis based on real data the weekly

Morgan Stanley Capital International (MSCI) indices. We investigate the equilibrium

effect from HM preferences in the bullish and bearish markets. The previous simula-

tion results imply a mapping among the fraction for each investor type, average level

of risk aversion and HM preferences. This motivates the practical implementation

of our model using real data in order to recover the investor property at equilibrium

such as risk aversion and investor fraction which is done in section 4.2.3. Different

from the previous analysis which studies skewness and kurtosis effects separately, this

empirical part exams the equilibrium effects from all the heterogeneous preferences

for HMs together.

4.1 Subprime crisis effect analysis

4.1.1 Data

We calculate weekly return on Morgan Stanley Capital International (MSCI) dollar-

denominated indices of North America, Europe and Asia from January 1st, 1988 till

January 26th, 2010. There are in total 1151 return observations. In order to analyze

the subprime crisis effect on the market equilibrium structure, we extract a sub-sample

ranging from January 1988 till December 2006 before the crisis happened (sample size:

992). North American, European and Asian markets, in total, represent almost 97% of

the total market capitalization in the world MSCI index. Here we assume the market

caps for North American, European and Asian markets are: 50%, 30% and 20%

respectively15. We also assume there are three types of investors with heterogeneous

preferences for HM investing into the three regional stock market indices.

Table 2 summarizes the ranking for the three risky assets’higher-moment values.

15"At the end of 1999, the North American, European, and Asian markets represented 47.2%,

30.3%, and 19.4% of total market capitalisation in the world MSCI index."-Jondeau and Rockinger,

European Financial Management, Vol. 12, No. 1, 2006, 29—55
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Data-set Idio-Skewness Idio-Kurtosis

pre-subprime S3 > S2 > S1 K3 > K2 > K1

whole period (including subprime) S3 > S1 > S2 K2 > K3 > K1

Table 2: Ranking of assets’ higher moments for pre-subprime and whole data sets.

Asset 1, 2 and 3 represent stocks from North-American, European and Asian markets.

To save space, a full description about the data can be found in table C3 and C4 in

appendix C.

4.1.2 Empirical Result: Equilibrium Return and Allocation

Using the data sets covering the whole-time and the pre-subprime period, the fraction

of different investors on the market can be recovered while fixing different levels of

risk aversion parameter. Because all the investors have same the preference for the

first two moments, different investment decisions are solely caused by heterogeneous

preferences for HM.

Based on the pre-subprime data set, the case satisfying the market clearing con-

dition is the one where Lotto type investors are the majority on the market. The

average level of risk aversion is 15. The real mean return in the subsequent period

for the three risky assets are: North America: -0.000968086, Europe: -0.001821788,

Asia: -0.000851901 (µAS>µEU>µNA). Figure 9: plot 1 shows that, at equilibrium,

our model generates the same ranking for the future predicted returns.

As shown in figure 9: plot 2, the optimal allocations differ among investors: Lotto

investor invests the smallest amount (about 1.5% less than Traditional investor) in North

America due to its lowest skewness value; on the other hand, she holds the largest

amount in Asian and European stocks because of their relatively higher skewness

values. Kurtosis Aversion investor who has preference for (positive) skewness and

aversion to (positive) kurtosis invests in Asian market by 0.1% less than the Lotto

investor. Her aversion to the highest kurtosis value of Asian stock decreases her
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demand rising from the preference for its highest skewness value, i.e. the aversion

to kurtosis increases portfolio diversification. Meanwhile, Kurtosis Aversion investor

invests almost 10% more than the Lotto investor in North American market due to

its lowest kurtosis value.

Figure 10 shows the results based on the whole data set which includes the sub-

prime crisis period. The risk aversion level rises up to 20 and Lotto investors are the

minority on the international market. The predicted return for the after-crisis period

follows such order: µEU>µNA>µAS. Figure 10: plot 2 shows when considering the

crisis effect on allocation, Kurtosis Aversion investor holds the minimum amount of

European stock due to its highest kurtosis and lowest skewness. During crisis the

asset distribution exhibits much fatter tail than the normal case which leads to this

extreme asset holdings of Kurtosis Aversion investor. During crisis, Lotto investor

tends to hold relatively more diversified portfolio than in the pre-subprime period at

equilibrium.
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pre-subprime data set λ = 15

Investor fraction: φL = [ .4 .6 .9], φT = φK = (1− φT )/2 Lotto Majority

Figure 9: Return prediction and equilibrium allocation using pre-subprime data set.
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Wholedata set (including Sub-prime crisis) λ = 20

Investor fraction: φL = [.1 .25 .3 ], φT = φK = (1− φT )/2 Lotto Minority

Figure 10: Return prediction and equilibrium allocation using Whole-data set.
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Data-set Idio-Skewness Idio-Kurtosis

(3rd central moment) (4th central moment)

dot-com boom S3 > S2 > S1 K3 > K2 > K1

dot-com crash S3 > S2 > S1 K1 > K2 > K3

Housing boom S1 > S2 > S3 K3 > K2 > K1

subprime crash S3 > S1 > S2 K2 > K1 > K3

Table 3: Real higher-moment ranking under booms and crashes. Asset 1, 2 and 3

represent stocks from North-American, European and Asian markets.

4.2 Booms and Crashes

4.2.1 Data

To analyze how the heterogeneous HM preferences impact equilibrium allocation and

return prediction under different economic scenarios, we select four samples repre-

senting major booms and crashes from the weekly MSCI data set. Then, we calculate

each period’s subsequent one year return in order to compare with the ranking for

the model predicted future returns. The four subperiods are listed as following:

1. dot-com boom (6-March-1998 to 1-March-2000)

2. dot-com crash (17-March-2000 to 1-March-2002)

3. housing boom (3-May-2002 to 29-December-2006)

4. subprime crash (6-April-2007 to 10-April-2009)

To save space, table 3 only reports the rankings for the higher moments of the

risky assets under different scenarios.

4.2.2 Empirical Result: Equilibrium Return and Allocation

Dot-com boom Figure 11 shows that, during the dot-com boom period, the case

satisfying the market clearing condition is the one with Lotto and Kurtosis Aversion
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investors as the majority on the market (ranging from 2/3 to 90% in total). The

average risk aversion level is 25 which induces the significant difference of portfolio

holdings among investors (8% at most): Lotto investor holds the smallest amount in

North American stock due to its lowest skewness value. However, Kurtosis Aversion

investor invests the most in this market because of its lowest kurtosis value. And she

also prefers Asian than European stocks because of her preference for higher positive

skewness. Under such market structure where Lotto and Kurtosis Aversion investors

constitutes the majority in the market, preference for kurtosis plays an important

role which is implied by the dominant asset holdings of Kurtosis Aversion investor.

Dot-com crash There are much less Lotto and Kurtosis Aversion investors on the

market during this crash (at most 40% in total) and the risk aversion level is 5 on

average. Figure 12 reports that the aversion to negative skewness value from the Lotto

and Kurtosis investors causes their under-investment in the North America market.

Kurtosis Aversion investors prefer Asian stock because of its lowest kurtosis value.

Since North-American stock market performs the worst due to its highest kurtosis

and lowest skewness value, Lotto and Kurtosis investors both underinvest into this

market during dot-com crisis.

32



Dot-com boom λ = 25

Investor fraction: φT = [.1 .2 1
3
], φL = φK = (1− φT )/2 Traditional investor Minority

Figure 11: Return prediction and equilibrium allocation using "Dot-com boom data

set"
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Dot-com crash λ = 5

Investor fraction: φT = [0.6 0.7 0.8], φL = φK = (1− φT )/2 Traditional investor Majority

Figure 12: Return prediction and equilibrium allocation using "Dot-com crash data

set"
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Housing boom Figure 13 tells that during the housing boom period, the major

investors are Lotto and Kurtosis Aversion types with preference for the positive skew-

ness (10% or 30% Traditional investors on the market). Lotto investor invests the

most in North American market because of its highest skewness value. This dramatic

increased demand for the North American stock from Lotto investors drives up the

equilibrium asset price in this market and causes the low demand from Traditional

and Kurtosis Aversion investors. The holding from Lotto investors plays a dominant

role at equilibrium in the sense that their high demand for North-American stock

drives up its price and lead to the pricing decrease in the other two markets. There-

fore, Kurtosis aversion investors tend to hold more in European and Asian stocks,

even the latter’s distribution exhibits lowest skewness and highest kurtosis.

Subprime crash Subprime crisis period is characterized by significant non-normal

assets in the international finance market. Given an average risk aversion level as

5 and majority investors are Traditional type on the market, the market clearing

condition can be satisfied. Figure 13: plot 2 shows that heterogeneous investors

hold significant different portfolios (around 15% at most): Kurtosis Aversion investor

invests most in the Asian stock market because of its lowest kurtosis and highest

skewness. Lotto investor holds the smallest amount of European stock in her portfolio

due to its lowest skewness value.
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Housing boom λ = 25

Investor fraction: φT = [0.1 0.3], φL = φK = (1− φT )/2 Traditional-investor Minority

Figure 13: Return prediction and equilibrium allocation using " Housing boom data

set"
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Subprime crash λ = 5

Investor fraction: φT = [0.5 0.65 0.9], φL = φK = (1− φT )/2 Traditional Investor Majority

Figure 14: Return prediction and equilibrium allocation using "Subprime crash data

set"
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Data-set midst (NA EU AS) one year posterior(NA EU AS)

(same order) model predicted return real future return

dot-com boom µNA > µEU > µAS

0.00228 0.00073 0.00065 -0.0046 -0.0061 -0.0077

dot-com crash µNA > µEU > µAS

0.0012 0.00095 -0.00033 -0.00461 -0.00588 -0.00818

Housing boom µEU > µNA > µAS

0.000119 0.000986 -0.00015 0.000167 0.00101 -3.50796E-05

subprime crash µEU > µNA > µAS

0.00245 0.0045 0.00071 0.0047 0.0051 0.0037

Table 4: Compare model predicted return and real return during booms and crashes

The empirical results documented in table 4 imply that our model can make the

correction prediction for the ranking of the future returns.

From figure 11 to 14 we can see that during financial booms, the more Traditional

investors on the market, the smaller the expected returns will be. However, during

crashes we get the opposite. The results can be interpreted in this way: during

booms, Traditional investors who are lack of preference for skewness and kurtosis will

be optimistic for the financial situation and require a lower risk compensation, i.e.

expected return, for their investment. But during crisis, the financial stress makes

the Lotto and Kurtosis aversion investors start to leave the market and their aversion

to the current economic situation (low skewness and high kurtosis) drives up the

expected return. The phase transition from a bull market phase to a bear market

phase is considered as a stock market crash. The consistency between the predicted

returns’ranking and the real posterior one implies that booms and crashes have their

origin in the investment behavior of many heterogeneous investors16.

16Some literature related to behavior finance have studied the mapping between micro level of

individual investor behavior and the macro level of aggregate market phenomena. For example,
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4.2.3 Empirical Result: recover investor fraction

After fixing risk aversion at a reasonable range, we are able to recover the investor

fraction for different economic situations, i.e. boom and crash. Figure 15: plot 1

and 3, show that when Dot-com bubble bursts, Kurtosis Aversion investors start

to leave the market, and the Lotto investors begin to invest. This result implies

that during dot-com boom, most of investors are aware of the high probability of

gain (high skewness) and they are also concerned about the fat-tail risk due to their

limited knowledge about the high-tech stocks. When the bubble bursts, they are so

disappointed by the high kurtosis value (realized fat-tail risk) that they retreat their

investment. Meanwhile, Lotto investors, who care only about the high potential to

gain and compensated by the high expected return in the future, begin to invest more

in the market.

Housing boom which is viewed as an economic bubble, has been claimed to be

driven by several economic reasons such as Housing tax policy, lowered Mortgage

interest rates etc. So it’s not surprising for the majority of investors to choose ignoring

the fat-tail risk in the return distribution. They start to invest into stock market

pursuing a high skewness value in their portfolios. Therefore, figure 15: plot 2 shows

that Lotto investors are the major player during this period. However, when their

risk aversion increases, they might start to leave or turn into Traditional investor

type, due to the aversion to the variance risk. This result is different from the case

in section 4.2.2 where the risk aversion is much higher: 25.

Kaizoji (2000) proposed an interacting-agent model of speculative activity in order to explain bubbles

and crashes in stock markets.
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λ =[2 3 4 5 6 7 8 9]

λ =[3 4 6 9 10 11 12]

λ =[1~5.8]

Figure 15: Estimated investor fraction during dot-com boom, housing boom and dot-

com crash.
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5 Conclusion

In this study, we address two main issues: first, we investigate how skewness and

(co-) kurtosis preferences influence equilibrium properties: equilibrium asset return

and asset allocation under different economic scenarios. We implement different or-

der truncation for Taylor series approximation in order to represent heterogeneous

investors on the market. To our knowledge, we are the first to introduce different

investor fractions into this equilibrium model. In addition, we analyze several factors

that can also have equilibrium impact, such as investor fraction and risk aversion.

Second, through our model’s practical implementation using world MSCI index,

we are able to recover the investor structure, i.e. investor fraction and risk aversion,

on the market and generate the future equilibrium (expected) returns with the same

ranking as the real ones’. Asset holdings predicted by our model are also consistent

with the results from simulation. This empirical practise implies that this model can

be used to forecast equilibrium asset return and, under certain specifications, the

investor structure on the market can be also recovered.

There are several possible extensions can be made in the future. First, it will be

interesting to build up a multi-period equilibrium model and consider the conditional

asset allocation problem in a dynamic setting. Second, short-selling constraint for

risky assets can be changed in order to investigate its effect on equilibrium. Third, in

order to address the issue about regulation of financial institutions, it’s also interest-

ing to introduce institutional investors with Value-at-Risk (VaR) constraint into our

model.
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6 Appendix

6.1 Appendix A

Define:

Covariance Structure:

V =



σ11 σ12 σ13 ... σ1N

σ21 σ22 σ23 ... σ2N

.

.

.

.

.

.
... ...

σN1 σN2 σN3 ... σNN


Skewness structure:

Element sijk is a triplet product moment of any asset ‘i’,‘j’and ‘k’, and can be

used to construct the skewness structure Si for asset i, where i = [1, ...., N ] (similar

as Jondeau & Rockinger 2006). µ denotes the expected return.

sijk = E[(Ri − µi)(Rj − µj)(Rk − µk)]

for each asset i, the corresponding skewness matrix Si can be written
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Si =



si11 si12 ... si1N

si21 si22 ... si2N

.

.

.

.

.

.

.

.

.

.

.

.

siN1 siN2 ... siNN


...

SN

Let S represent theN security portfolio’s co-skewness matrix, it containsN assets’

skewness matrix Si(N×N) . So S is a matrix of order N ×N2. (Here subscript shows

matrix dimension.)

S = [S1 S2 ...Si...SN ]

Kurtosis Structure:

Define each element in the kurtosis structure as following:

kijkl = E[(Ri − µi)(Rj − µj)(Rk − µk)(Rl − µl)]

For each asset i we can write its corresponding kurtosis structure: Kiikl(N×N),

Kijkl(N×N), Kikkl(N×N), Kilkl(N×N),
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Kiikl =



kii11 ki12 ... kii1N

kii21 kii22 ... kii2N

.

.

.

.

.

.

.

.

.

.

.

.

kiiN1 kiiN2 ... kiiNN


..

Kjjkl =



kij11 kij12 ... kij1N

kij21 kij22 ... kij2N

.

.

.

.

.

.

.

.

.

.

.

.

kijN1 kijN2 ... kijNN


..

KNNkl

For the 4 assets case, where K11kl(4×4)k,l=1,2,3,4, we can write an N ×N3 kurtosis

matrix K for all the N risk assets.

K = [K11kl K12kl K13kl K14kl |K21kl K22kl K23kl K24kl|K31kl K32kl K33kl K34kl |K41kl K42kl K43kl K44kl|]

6.2 Appendix B

In order to show the derivation in a more refined way, some notation simplification

has been made: for each type of investor, the notations L, T and K are dropped.

The optimal allocation is denoted by the N × 1 vector α.

Lotto Investor optimization problem
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arg max
α
′
L,q

U(WL,q) = − exp(−λqµp,L,q)
[
1 + δ2qα

′

L,qV αT,q − δ3qα
′

L,qS (αL,q ⊗ αL,q)
]

s.t. WL,q = W0,Lq

(
1 + α

′

L,qR
)

⊗ denotes the Kronecker product.

The FOCs for all the moment structure of the optimal portfolio return are

∂µp
∂α′

= µ,

∂Vp
∂α′

= 2V α,

∂Sp
∂α′

= 3S (α⊗ α) ,

Consequently the Lotto demand function can be written as

µ =
2δ2qV α− 3δ3qS (α⊗ α)

1 + δ2qα
′V α− δ3qα′S (α⊗ α)

A more detailed way to make the first differentiation for skewness used by Mitton

and Vorkink is presented below. In order to obtain demand function in formula 2, the

skewness can be expressed in the following formula (using the notation simplification):

Sp =
N∑
i=1

e
′

iαα
′
Siα,

where ei is a n× 1 vector of zeros with a one in the ith element .

∂Sp
∂α′

=

∂
N∑
i=1

e
′
iαα

′
Siα

∂α′
=

∂
N∑
i=1

f(α)
′
Sig(α)

∂α′
,

define f(α) = αα
′
ei and g(α) = α. According to the chain rule,

∂Sp
∂α′

=

N∑
i=1

∂f(α)
′
Sig(α)

∂α′
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using the chain rule for the matrix quadratic forms (Mangus and Neudecker 1999),

∂f(α)
′
Sig(α)

∂α′
= g(α)

′
S
′

i

∂f(α)

∂α′
+ f(α)

′
Si
∂g(α)

∂α′

where ∂g(α)

∂α′
= INN , an identity matrix of order N ×N which can also help us to

get the following result:

∂f(α)

∂α′
=
∂αα

′
ei

∂α′
=
(
α
′
ei

)
⊗ INN + αe

′

i

Therefore, we could get

∂e
′
iαα

′
Siα

∂α′
= α

′

L,qSi

[((
α
′

L,qei

)
⊗ INN

)
+ α

′

L,qe
′

i

]
+ e

′

iαL,qα
′

L,qSi

and we could finally get equation (2).

Kurtosis Aversion Investor optimization problem

The optimization problem for Kurtosis Aversion investors is

arg max
α
′
K,q

U(WK,q) = − exp(−λqµp,K,q)

 1 + δ2qα
′
K,qV αK,q − δ3qα

′
K,qS (αK,q ⊗ αK,q)

+δ4qα
′
K,qK (αK,q ⊗ αK,q ⊗ αK,q)


s.t. Wk,q = W0,kq(1 + α

′

k,qR)

the FOCs for all the moment structure of the optimal portfolio return are

∂µp
∂α′

= µ,

∂Vp
∂α′

= 2V α,

∂Sp
∂α′

= 3S (α⊗ α) ,

∂Kp

∂α′
= 4K (α⊗ α⊗ α) ,

Consequently the Lotto demand function can be written as

µ =
2δ2qV α− 3δ3qS (α⊗ α) + 4δ4qK (α⊗ α⊗ α)

1 + δ2qα
′V α− δ3qα′S (α⊗ α) + δ4qα

′K (α⊗ α⊗ α)
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To write the optimal solution in a more detailed way, we additionally use the chain

rule’s application for the Kronecker product (Mangus and Neudecker 1999).

The kurtosis for the end-of-period wealth can be written as below (simplified

notation as defined before):

Kp =

N∑
i=1

e
′

iαα
′
Ki(α⊗ α),

where

K1 = [K11kl K12kl K13kl K14kl...K1Nkl] ,

K2 = [K21kl K22kl K23kl K24kl...K2Nkl] ,

.

Ki = [Ki1kl Ki2kl Ki3kl Ki4kl...KiNkl] ,

.

KN = [KN1kl KN2kl KN3kl KN4kl...KNNkl] , k, l ∈ [1, ..N ]

Ki is a N ×N2 matrix which can be used to calculate Kp.

∂Kp

∂α′
=

N∑
i=1

e
′

iαα
′
Ki(α⊗α) =

N∑
i=1

(α⊗ α)
′
K
′

i

[(
α
′
ei

)
⊗ INN + αe

′

i

]
+e
′

iαα
′
Ki [IN2N2(INN ⊗ α)]

Define f(α) = αα
′
ei and h(α) = (α⊗α), and according to the chain rule, we can

write

∂Kp

∂α′
=

N∑
i=1

∂f(α)
′
Kih(α)

∂α′
=

∂
N∑
i=1

e
′
iαα

′
Ki(α⊗ α)

∂α′
=

∂
N∑
i=1

f(α)
′
Sih(α)

∂α′
,

Then using the chain rule for the matrix quadratic forms (Mangus and Neudecker

1999),
∂f(α)

′
Kih(α)

∂α′
= h(α)

′
K
′

i

∂f(α)

∂α′
+ f(α)

′
Ki
∂h(α)

∂α′

given
∂f(α)

∂α′
=
∂αα

′
ei

∂α′
=
(
α
′
ei

)
⊗ INN + αe

′

i
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which has order of N ×N . Then make differentiation for h(α)

∂h(α)

∂α′
=
∂(α⊗ α)

∂α′
= (INN ⊗ INN) (INN ⊗ α) = IN2N2(INN ⊗ α)

Then we could write

∂f(α)
′
Kih(α)

∂α′
= (α⊗ α)

′
K
′

i

[(
α
′
ei

)
⊗ INN + αe

′

i

]
+ e

′

iαα
′
Ki [IN2N2(INN ⊗ α)]

and get

∂Kp

∂α′
=

N∑
i=1

∂f(α)
′
Kih(α)

∂α′
=

N∑
i=1

(α⊗ α)
′
K
′

i

[(
α
′
ei

)
⊗ INN + αe

′

i

]
+e
′

iαα
′
Ki [IN2N2(INN ⊗ α)]

which can be used to generate the demand function for the Kurtosis Aversion investor

shown in formula 3. Since these FOCs from "Kurtosis Aversion" have order of 1×N , in

order to integrate them into the final optimization condition, a simple transformation

can be made as below. After specifying the notation for Kurtosis Aversion investor

we could obtain her demand function.[
∂Kp

∂α′

]′
=

N∑
i=1

{
(α⊗ α)

′
K
′

i

[(
α
′
ei

)
⊗ INN + αe

′

i

]
+ e

′

iαα
′
Ki [IN2N2(INN ⊗ α)]

}′
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6.3 Appendix C

Detailed information about simulated series

r1 r2 r3

Panel A: Univariate statistics

Moments

Mean 7.8920×10−4 -9.0796×10−4 -1.0888×10−3

Variance 0.20004 0.34925 0.24957

3rd-moments (assumed) 0 0 0

4th-moments 0.12019 0.36580 0.18663

Panel B: Multivariate statistics

Correlation stat. stat. stat. stat.

x1 x2 x3

x1 1 0.080515 0.14945

x2 0.080515 1 0.10033

x3 0.14945 0.10033 1

Co-3rd moments (assumed) x21 x22 x23

x1(x1, x2) 0 0 0

Co-4th moments

x31 x32 x33

x1 0.12019 0.022046 0.024876

x2 0.012953 0.36580 0.021909

x3 0.020096 0.030996 0.18663

x1x
2
2 x1x

2
3 x2x

2
3 x21x2

x1 0.070861 0.052071

x2 0.0072306 0.088842

x3 0.012738 0.0073208

Table C1: Statistics on the 1st simulation
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r1 r2 r3

Panel A: Univariate statistics

Moments

Mean 7.8920×10−4 -9.0796×10−4 -5.9131×10−4

Variance 0.20004 0.34925 0.38064

3rd-moments (assumed) 0 0 0

4th-moments 0.12019 0.36580 1.0227

Panel B: Multivariate statistics

Correlation stat. stat. stat. stat.

x1 x2 x3

x1 1 0.080515 0.12025

x2 0.080515 1 0.82673

x3 0.12025 0.82673 1

Co-3rd moments (assumed) x21 x22 x23 x1x2

x1(x1, x2) 0 0 0

Co-4th moments

x31 x32 x33

x1 0.12019 0.022046 0.024876

x2 0.012953 0.36580 0.021909

x3 0.019780 0.031476 1.0227

x1x
2
2 x1x

2
3 x2x

2
3 x21x2

x1 0.070861 0.078799

x2 0.010237 0.13438

x3 0.012889 0.0074985

Table C2: Statistics on the last simulation
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Detailed information about real data series

T=992 North-America Europe Asia

Panel A: Univariate statistics

Moments

Mean 0.0017528 0.0016640 2.3917×10−4

Std* (annual) 0.14681 0.15176 0.20348

Skewness -0.45093 -0.16671 -0.12094

Kurtosis 5.9414 5.2438 4.2106

Panel B: Multivariate statistics

Correlation stat. stat. stat. stat.

x1 x2 x3

x1 1 0.61457 0.30336

x2 0.61457 1 0.48902

x3 0.30336 0.48902 1

Co-skewness x21 x22 x23 x1x2

x1 -0.45093 -0.11409 -0.066927

x2 -0.23906 -0.16671 -0.050247

x3 -0.072422 -0.1257 -0.12094 -0.087478

Co-kurtosis

x31 x32 x33

x1 5.9414 3.4153 0.90725

x2 3.6890 5.2438 1.8281

x3 1.4311 2.1131 4.2106

x1x
2
2 x1x

2
3 x2x

2
3 x21x2

x1 3.2901 1.3423

x2 1.0039 1.8345

x3 1.2526 1.2553

Table C3 Statistics on weekly MSCI returns —pre-subprime data set: Jan. 1988-Dec. 2006
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T=1151 North-America Europe Asia

Panel A: Univariate statistics

Moments

Mean 0.0013164 0.0011725 6.7990×10−5

Std* (annual) 0.1685 0.1859 0.20871

Skewness -0.82876 -1.2209 -0.094939

Kurtosis 10.965 15.889 4.9265

Panel B: Multivariate statistics

Correlation stat. stat. stat. stat.

x1 x2 x3

x1 1 0.71454 0.40055

x2 0.71454 1 0.55557

x3 0.40055 0.55557 1

Co-skewness x21 x22 x23 x1x2

x1 -0.82876 -0.97686 -0.34921

x2 -0.85543 -1.2209 -0.39295

x3 -0.49875 -0.73011 -0.094939 -0.60732

Co-kurtosis

x31 x32 x33

x1 10.965 12.912 2.7650

x2 10.484 15.889 3.7075

x3 5.6406 8.5490 4.9265

x1x
2
2 x1x

2
3 x2x

2
3 x21x2

x1 11.363 3.9816

x2 4.1619 5.2932

x3 6.9123 6.0965

Table C4: Statistics on weekly MSCI returns —whole data set
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