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Abstract
This paper constructs a closed-form generalizabibthe Black-Scholes model for the
case where the short-term interest rate followsahastic Gaussian process. Capturing
this additional source of uncertainty appears teeha considerable effect on option
prices. We show that the value of the stock optrmmeases with the volatility of the
interest rate and with time to maturity. Our engail tests support the theoretical model
and demonstrate a significant pricing improvemetdtive to the Black-Scholes model.
The magnitude of the improvement is a positive fimmcof the option's time to maturity,

the largest improvement being obtained for arounedrhoney options.
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1. Introduction

In their breakthrough paper Black and Scholes [B%,3] derived a closed-form
solution for pricing European options assuming ttnat price of the underlying asset
follows a geometric Brownian motion with constamiftdand constant volatility, while
the interest rate remains constant during theesoption life. We relax the assumption
that the price of the underlying asset is the @dyrce of uncertainty by allowing the
interest rate to be stochastic, and examine thealigt and empirically how this
additional source of uncertainty affects call and pption prices. Pricing accuracy is
highly important, since options are widely usednasivestment strategies, and any small
pricing error can results in significant losses.

This paper contributes to the existing literatyeintroducing a new closed-form
option pricing formula that demonstrates a sigaifiic decreasing in pricing errors of
European stock options. First, the theoreticahfaork provides a useful methodology
for valuing put and call stock options, which maintnon-arbitrage properties such as
the put-call parity. Second, we document a sigaift pricing improvement using the
stochastic interest (SI) model relative to the Bi&choles (BS) model. Since the latter
serves as a common standard in pricing contingknins, using the SI model has
practical implications when market prices are mmigsiespecially for long-term options
(in which we demonstrate the highest significanpiavement: up to 47% for call options
and 43.5% in put options).

This paper derives a new closed-form solution Earopean options with

Gaussian short-term interest rate (henceforth thad8lel)! We suggest a construction

! Our option pricing formula does not appear in Halig007] book.




method and proof that are different from those died in the literature, and apply them
in an extension of the BS model that incorporakes Merton [1973] and the Vasicek
[1977] term structure of interest rates modélOur method does not rely on a replicated
continuously rebalanced portfolio and yields anliapple and friendly mathematical
expression for option pricing.

Our SI model is motivated by the insight that optiprices reflect only the
unexpected part of path-dependent excess retudadl. options price only the positive
abnormal excess returns, while put options pridg nagative abnormal excess returns.
This perception guides us in proving a closed-f@wtution for pricing options under
stochastic interest rates. We show that incorpayathe uncertainty of short-term
interest rates raises the value of stock optiofise longer the time to maturity and the
higher the interest rate volatility, the higher tr@ue. In fact, when the interest rate is
stochastic, we have an additional implicit optian:option on the interest rate.

We conduct empirical tests to compare the perfaneaf the SI model to the
performance of the BS model using 24,766 call owticontracts and 36,837 put
contracts on the S&P 500 index for the period betwg&anuary 3, 2005 and December

30, 2006. Performance is measured relative t@thgal option prices in the market; the

2 Although Gaussian term structure models can plysaifsign a positive probability for negative imsr rates in the
long-run, the simplicity of these models and thet faat most options do not have a time to exgiratong enough to
get to this point, makes them a good choice forpaupose.

% The literature modelling the stochastic naturéhefterm structure of interest rates is vast. Eplamof single-factor
models include Brennan and Schwartz [1977], Dotli®78], Cox, Ingersoll and Ross [1985], Ho and [£@86],
Black and Karasinski [1991] and Heath, Jarrow araitivh [1992].

4 Our method can also be applied to non-Gaussiams&ucture models.

5 See Ho, Stapleton and Subrahmanyam [1997].




closer the prices evaluated by the model are ta¢hgal market prices, the more accurate
is its performance considered to be. Our resulbsvsthat the SI model provides a better
estimation than the BS model using the mean scprane (MSE) criterion. For example,
the comparison over the total sample shows thathreodel yields an average accuracy
improvement in MSE of 29.51% for call options arfil6B% for put options relative to
BS modef.

We find fewer pricing errors (relative to the mairlprice) for the SI model than
for the BS model as the time to maturity of theiaptincreases, for both call and put
options. For options with less than 180 days tpiraion we find that the highest
mispricing magnitude is for options around the mynd-or options with 180 days or
more to expiration, the improvement in mispriciod the SI model relative to BS model)
of put options increases as the option is morehm money; the improvement in
mispricing of call options increases as the optsomore out of the money. We test the
statistical significance of the mispricing diffec&s between the models using the Huang
and Wu [2004] measure, and find that most of thepniing differences are significant
across moneyness and time to maturity of the optioQur results are robust to out-of-
sample estimation of the interest rate term stregbarameters.

The empirical evidence of option pricing modelghagtochastic interest rate is
mixed. On the one hand, Rindell [1995] tests theirAand Jarrow [1992] model using
(only) index call options from the Swedish optioarket and shows that the Amin and

Jarrow [1992] model outperforms the BS model. @& ¢ther hand, Kim [2002] uses

5 The MSE improvement represents reduction in péagenof the MSE estimation of the SI model relativéhe BS

model.




data of index call options on the Nikkei 225 indsnd compares between stock option
models with stochastic interest rate. He findg theorporating stochastic interest rates
into option pricing does not improve the performarmd the BS pricing formula. Our
findings are aligned with those of Rindell [199%)ho finds an improvement in
performance relative to the BS model. We contgliat this literature by providing an
empirical examination on both call and put optiarséng our model on U.S. data. In
addition, contrary to Rindell [1995] and Kim [2002}e use the common approach for
examining the performance of option pricing modelembined with a more recent
methodologies of statistical significant such astuang and Wu [2004] measure.

Our model integrates into the family of option prig models that incorporate the
stochastic nature of the short-term interest rat@enerally speaking, in this family
models differ in the stochastic process (usualhglei factor) that governs the short-term
interest rate and in the sources of uncertaintpr éxample, Bailey and Stulz [1989],
Goldstein and Zaopatero [1996] and Kaushik and NP8] assume a single source of
uncertainly for both the underlying asset and titerest rate. Bailey and Stulz [1989]
assume a single-product economy with a represeatatvestor with a constant relative
risk tolerance; Goldstein and Zapatero [1996] adersia general equilibrium in a
continuous version of the Lucas [1978] exchangeecty and Kaushik and Ng [1993]
assume stochastic consumption growth and introdug@eference-dependent option
model. The Merton [1973] paper provides the bamisubsequent papers by Amin and
Jarrow [1992] and Miltersen and Schwartz [1998]JottBpapers develop a closed-form

option pricing formula for the Merton-type intereate based on Heath, Jarrow, Morton




[1992]7 Our model is different since it incorporates Wesicek [1977] model into the
BS model. Bakshi, Cao and Chen [1997] and Baksti@hen [1997a] present option
pricing models with stochastic volatility, whicheadifferent in nature. However, both
models assume that changes in the interest ratéhan@turn of the underlying asset are
uncorrelated. Despite its richness, the BakshirC[E97a] model is not easy to
implement in practice, since identifying the ecoryemde factors and the firm-specific
factors is not simpl&2 Brenner et al. [1987] assume that the short-terterest rate
follows a mean reverting stochastic process, isgmméng a numerical analysis inquiring
into the impact of interest rate uncertainty onghiee of stock index options.

The work most closely related to the theoreticat p&athis paper is Rabinovitch
[1989]. However, our model differs in several S8 from Rabinovitch [1989]: First,
we construct a simpler closed-form solution withvée parameters than Rabinovitch
[1989]1° Second, while Rabinovitch's model prices Europedihoptions, we also derive
a closed-form solution for the price of a Europgamn option, and demonstrate that our
pricing method maintains the non-arbitrage argunodérine put-call parity. In addition,

when resetting the interest rate term structurarpaters the Rabinovitch model does not

7 Heath, Jarrow, and Morton [1992] develop a noteabe model of stochastic term structure of interates. Their
model derives a no-arbitrage risk-neutral forwanteliest rate process consistent with a set oélrfiirward rates.

8 See also Bakshi and Chen [1997b], who suggestdeinior the valuation of foreign exchange claimsduilibrium.

9 Additional examples of models of this type haverbpresented by Ho, Stapleto and Subrahmanyam [ #9@7Scott
[1997].

10 See also Chen [1991]. In addition to the pararsetet characterize the term structure of intewsss, Rabinovitch's
[1989] model also uses a bond's price (with theesamturity of the stock option), its instantaneexpected return

and its instantaneous return variance.




converge to the BS model, while our does. Finadlg empirical tests show that our
pricing improvements to the BS model are signiftbabetter than those of Rabinovitch.

Our theoretical model differs from the above modelthat it has two sources of
uncertainly, namely the interest rate and the uUyithgr asset. Moreover, we do not
impose any assumption on the correlation betweenntierest rate and the return on the
underlying asset, and we employ parameters whinlbesempirically estimated and used
to evaluate options in practice.

A possible application of the SI model is in thduation of employee stock
options (ESOs), which are usually granted for aogeiof 10 years. According to
accounting standard ASC 718, firms that grant simaftons to employees must report
them as an expense in their financial reports.nggéihe SI model for such cases would
lower the estimation errors caused by the BS assanp

The rest of this paper is organized as follows. ctiSe 2 establishes the
fundamental framework of the SI model and suggastsodel for call and put option
pricing that incorporates a stochastic term stmactf interest rates. Section 3 simulates
the effect of specific model parameters on theipgienodel. Section 4 investigates the
effect of stochastic interest rates on pricing caild put options, and presents an

empirical comparison of the SI model with the BSd@lo Section 5 concludes.

2. The model

In this section we introduce our main theorems. Wifet establish the
fundamentals of the model and then present thai&hg model for European call and

put stock options. In general, we relax the assiompf constant short-term interest




rates and propose a generalization of the BS mtméhcorporate a stochastic term

structure of interest ratés.

A. Preliminaries

Assume a non-dividend paying underlying assett S(a) be its price at the

initial time t, and let its price at tim& be S(T). The price of the underlying asset is

characterized by a mean;, and a standard deviatiow;, and follows the geometric

Brownian motion dynamic:
) ds(t) = S(t)(,u+%o-2jdt+8(t)o-dz (®),

wheredZ is a standard Wiener process.
The short-term interest rate is assumed to follow a single-factor Gaussian

process,
() dr (t)=(c—pr(t))dt+E£dH (1),
where dH is a standard Wiener process under an equivalemtingale probability
measure,£ is the standard deviation of the short-term irderate, andx and g are
constant coefficients. We assume tHaandH are correlated with coefficienp , i.e.
dZdH = pdt .*?

If all the three coefficientser, f and &, that characterize the term structure

model, are equal to zero then the short-term isterate and the discount factor are

1 The main proofs are detailed in the Appendix.

12 For simplicity we prove our results for the cageime-independent coefficientsy , B and £. The model can,

however, be extended to the case of time-depemdefficients.




constant. If, however, at least one of the cofits is not zero then we get a stochastic

short-term interest rate and, thus, a stochastwodint factor. Explicitly, ife #0, £#0
and g =0 then the Merton [1973] and the Ho and Lee [19&6int structure models of
interest rate are obtained. If, howeverz 0, g =0 and & =0, then the Vasicek [1977]

model of short-term interest rate is obtaifed.

The path-dependediscount factor is defined by

Y(t,T)=

R(t,T)’

where
(3) R(t,T)= eprr(u)duj ,  Vte[OT].™

The excess-return factor, X(t,T) conditional on a random sample path during a

holding periodzr =T -t, is

X (t,T) = S(Tt)

S(R(LT)’
with the boundary conditiorX (t,t) =1. Literally, the excess-return factor is the pamti
of the underlying-asset price which is purely atited to risk. The natural logarithm of

this factor is the path-dependent excess returnaofisky asset. We define the

normalization factor as the expectation of the excess-return factor:

F(LT)=E[X(t.T)].

131n these cases the short-term interest rate fel@mean-reverting Ornstein-Uhlenbeck process.

14 Theaccumulation factor, R(t,T), is one plus the short-term interest rate, comaddti on a continuous sample path,

and can be interpreted as the outcome of $1 cailyneinvested in the risk-free asset.




The natural logarithm of the normalization factm[F(t,T)], is the risk premium for

holding a risky asset during the periog-T —t.

B. European call stock options under stochastic intest rate

A call stock option with exercise prick, written at timet on a non-dividend-

paying underlying asset with price S(t) and volatility o, pays

(S(T)-K) =max(S(T)-K,0 at maturity timeT. The following theorem states our

main theoretical result.

Theorem 1. At time t the price of a European call option with exercise price K at

maturity time T is

InS}(<t)+ A(t,T)—lvzr

C(t,T)=S(t)N — 2wl

4) St :
Inﬁ+ A(t,T)—évzr
~Ke 7 VN[ —K 2__B(t,T)Vr

oz

where N(-) denotes the standard normal cumulative probability distribution, 7 =T —t
stands for the time to maturity, v’ =0°+B?(t,T)-2pcB(t,T), and the functions

A(t,T) and B(t,T) are defined as follows:

N w

i. If f=0 then A(t,T)=r(t)r+%arz and B(t,T)=%§r




i. If %0 then A(t,T):%r+(r(t)—%j/1(t,T) and

B(t,T)=%\/r—ﬂ(t,T)—§ﬂz(t,T), where /1(t,T)=%(1—e‘ﬂf).

Theorem 1 generalizes the BS call option pricingleddo the case of stochastic

interest rate$. In the BS model the pricé:(t,T), of the option is a function of the time
to maturity, z =T —t, the price of the underlying asséi(t), at timet, its volatility, o,

and a constant risk-free rate. In our model theepof the option is also a function of the

parameters characterizing the interest rate,f/ and &, and the correlation between the
interest rate and the underlying asget;®

Theorem 1 extends the BS model by capturing artiaddl source of uncertainty
introduced by the randomness of the interest rdtduitively, including the effect of
random interest rates has a similar effect to msirey the variance of the underlying
asset, which results in a positive effect on theoopprice. As we demonstrate below,
the call price is increasing with the time to maguand with the variance of the short-
term interest rate, and decreasing with the cdrogldetween the price of the underlying

asset and the short-term interest rate. If theetyithg asset is a bond, the correlation

15 As in the classical BS model, when the stock payslividends, the price of a European call optiqnads the price
of an American call option.
16 A detailed empirical analysis of the effect of sheparameters on the option price is presentetignfdllowing

section.
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coefficient between the dynamics of the underlyasget and the dynamics of the interest

rate is p =1, so that there is only one source of uncertainty.

Corollary 1, below, shows that if the interest rates constant over time, then the

S| model collapses to the BS model.

Corollary 1: If the interest rate is constant over time then the call option pricing model
in Theorem 1 collapses to the BS model.

Proof: If the interest rater , is constant themx =0, =0 and £ =0, and Equation (2)
becomesdr (t)=0. Therefore A(t,T)=r(t)(T-t)=rzr and B(t,T)=0. Substituting

into Equation(4) of Theorem 1 gives the standard BS formuila.

C. Intuition

The intuition of Theorem 1 is that the price afadl (put) option is determined by
the states of nature in which theexpected excess return is higher (lower) than a given
implicit threshold.

A sample path of asset returns is composed oétboenponents: compensation
for time, expected excess return and unexpectedsexeturn (the last two components
compensate for risk). The price of the underlyasget is determined by the expected
return, which consists of compensation for time é&odrisk (expected excess return).
Option prices are derived solely from the unexpbagcess return of the underlying

asset. The price of a call option considers pasitinexpected excess returns while the

17 See also Chen [1991].
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price of a put option considers negative unexpeetestss returns. Therefore, the price

of a European call option can be evaluated by

(5) C(t,T):E[Y(t,T)(FS((t,TT))_Kj*],

and the price of a European put option by

(6) P(t.T)= E[Y(t ’T)(K 3 I:S((tTT))j]

The normalization factor,F (t,T), represents the portion of expected excess

S(T)

returns. Thus, the expressier~—— represents the unexpected portion of the priee, i.

F(t,T)
the future adjusted price of the underlying as$tetr &liminating the effect of expected
returns. Equation (5) suggests that the price adlloption is the sum of the discounted
abnormal asset’s prices over all states of natumhich the adjusted price is higher than

the exercise price. Writing the call option prae

S(T)
t

C(t,T)=S(t)E[(Y(t,T)W—Y(t,T)%J ]

Y(t,T)S(T)

the expression—————= s, then, one plus the unexpected excess refriting the

S(t)F(t.T)
call option takes into account only the states ature in which the unexpected excess

return In m exceeds the threshold Wf(t,T)L .
S(t)F(t.T)

S(t)
In the BS model the unexpected excess return isechby a single source of

randomness: the price of the underlying assebulrmodel the unexpected excess return

12



has an additional source of randomness: the disdagtor, which is governed by the
stochastic behavior of the short-term interest.rakais is the reason that in most cases

the BS underprices in comparison to the SI model.

D. European put stock options and the put-call parity

In this section we propose a formula for pricing ptock options and use it to
prove the existence of the put-call parity under foamework. Theorem 2 below uses a
technique identical to that of Theorem 1 to introgl@a pricing model for European put

stock options?

Theorem 2: At time t the price of a European put option with maturity time T and

exercisepriceK is

S(t) 1,
g | IS AT =
P(t,T)=Ke "N K 2 B(tT)Vr
oz
(7) :

InSS)+A(t,T)—;VZT V=
gy —WT

-S(t)N| -

where N(-) denotes the standard normal cumulative probability distribution, 7 =T -t
stands for the time to maturity, Vv?=0?+B?*(t,T)-2poB(t,T), and the functions

A(t, T) and B(t,T) are defined as follows:

3
2.

i. If =0 then A(t,T)=r(t)r+%o¢r2 and B(t,T)=%§r,

18 The proof is analogous to the proof of Theorem 1.
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ii. 1f =0 then A(t,T)=%r+(r(t)—%j/’t(t,T) and

B(t,T) =%\/r—z(t,T)—§zz(t,T) , where A(t,T) =%(1— e’).

Like Theorem 1, Theorem 2 generalizes the BS ptibiap pricing model to the
case of stochastic interest rates. As in callomgti the stochastic interest rate has an
effect similar to the effect of increasing the aace of the underlying asset, which in
most cases has a positive effect on the optioreprithis positive effect on the option
price is increasing with the time to maturity ame tvariance of the short-term interest
rate, and decreasing with the correlation betwherptice of the underlying asset and the
short-term interest rate.

Corollary 2 demonstrates that in the case of constéerest rates our put option

pricing model also collapses to the BS model.

Corollary 2: If the interest rate is constant over time then the European put option

pricing formula in Theorem 2 collapses to the BS model.

Having a closed-form solution for the price of cafitions and put options, we

prove that the put-call parity is preserved undeclsastic Gaussian interest rates.

Theorem 3 The put-call parity
C(t)+KY(t,T)=P(t)+S(t)

is satisfied under stochastic interest rates that follow a Gaussian process.

14



Apart from the fact that with stochastic interestes there is no opportunity for
arbitrage, Theorem 3 leads to the conclusion th@tstochastic interest rate affects the
price of both put and call options in the same ifp@ direction, thus preserving the put-

call-parity.

3. Simulation

This section presents a number of simulationshadled on common parameters,
that shed light on the effect of stochastic interages on the prices of put and call stock
options. Our simulations examine the value ohatihoney call and put options.

Figure 1 presents the values of the BS model,Shenodel using the Merton
[1973] term structure and the SI model using theis&k [1977] term structure as a
function of time to maturity. In call options, arcrease in time to maturity increases the
value of the option in all the models. Neverthg)dhe highest value appears in the Sl-
Vasicek model, followed by the SI-Merton model. eTimtuition is that since the time
value in a call option is positive and the SI madalso price the interest-rate risk, an
increase in time to maturity leads to higher caitgs. The time value of at-the-money
put options is also positive. Hence, the BS vahereases as a function of time to
maturity, as does the Sl-Vasicek model. The Sltbfemodel shows a steeper increase

than the Sl-Vasicek model, possibly because thédvianodel is not mean reverting.

[ INSERT FIGURE 1 ]
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Figure 2 presents the value of the BS model, thde3ton and the Sl-Vasicek as
a function of the correlation between changes enuhderlying-asset return and changes
in the interest rate. In call options, the cottiela coefficient has a negative effect on
options values, i.e. a decrease in the correld¢iads to an increase in option values. The
reason is that a lower correlation leads to a fapsnvironment,” which leads to higher
option prices in the SI models. Put options presbe same effect relative to the

correlation coefficient, with a steeper decreasealnes using the Sl-Vasicek model.
[[ INSERT FIGURE 21]]

Figure 3 presents the value of the BS model, tHde&ton and the SlI-Vasicek as
a function of the interest rate's standard devmattp An increase in the standard
deviation ¢ resembles an increase in the underlying assel#ilitp, and thus has a
positive effect on the SI model’s option pricesatiée to the BS model. The BS model
serves as a benchmark and obviously is not affdzyechanges in the interest rate term
structure parameters. Notice that the effect e@$ih-Vasicek model is stronger than the
effect in the SI-Merton model, indicating that agagve3 has a positive effect on option

prices.

[[ INSERT FIGURE 3 ]]

4, Empirical analysis
Using our theoretical model, we now estimate appoices using historical data.
The main goal of this section is to investigate ¢fifect of stochastic interest rates on

option prices, and to examine whether the SI madelore accurate in estimating option

16



prices than the BS model. We measure the accufaihye models relative to the actual
option prices in the market, i.e. the closer thegw estimated by the model to the actual
market prices, the more accurate the model is densil to be. Our analysis is
conducted in two steps. First, we estimate therpaters of the interest rate's term
structure and the correlation coefficient betwesa underlying asset and the short-term
interest rate. Then, we use these parameter®iBitnd BS models, and compare their

accuracy’

A. The short-term interest rate

We begin with estimating the coefficients, f and &, which characterize the

stochastic nature of the short-term interest ratée follow the methodology of Chan,

Karolyi, Longstaff and Sanders [1992] and Nowma®9[2], and subject t(E(sm) =0

and E(sﬁl) = &2 use the discrete-time process

i —h = +&,,,

to estimate the parameters that characterize theéncous-time process in the Merton

[1973] term structure model, and the discrete-tomaress

r

- =a+pr+e.,

to estimate the parameters that characterize thBncous-time process in the Vasicek

[1977] term structure modél.

19 We also compare our call option model to the Raditoh [1989] model. Our results indicate alsoubstantial
improvement relative to Rabinovitch's model using MSE measure.
20 Chan et al. [1992] follow Brennan and Schwartz8A]9 Dietrich-Campbell and Schwartz [1986], Sanderd Unal

[1988], and others, and use a discrete-time ecofrmmgpecification as an approximation for a coatins-time

17



We estimate the term structure parameters usiagitld to maturity (YTM) of
the one-month Treasury-bill (T-bill) reported by ERs monthly treasury section. The
data are monthly and cover the period from Jan@860 to December 2009, providing
600 observations in tot&l. For each month we select the YTM of the T-bitlsgst to 30
days to maturity in absolute values. We use an @gsession, since the discrete-time
econometric specification of the continuous-timedele we examine is a simple AR(1)
with constant volatility?

Table 1 summarizes the parameter estimations otdW€l973] and Vasicek
[1977] term structure models. It shows that theapeeter of the Merton model is

a =-0.000062 with t-value -0.204 and the varianceds- 0.0000t. The parameters of
the Vasicek model are =0.00169¢ and g =—-0.03488! with t-values 2.672 and -3.143,
respectively, and the variance &=0.00005t Since the parameters of the Merton

model are statistically insignificant, hencefortle woncentrate on the Vasicek model in

our empirical estimation.

[INSERT TABLE 1]]

B. The option pricing models — a comparison
In this section we estimate the call and put eppaces using the SI model and

the BS model. We compare these models by examitlieg mispricing measures

process.
2L Chan et al. [1992] use the one-month T-bill camsted by Fama [1984]. The term structure pararsebee
quantitatively similar if we use the one-month Tl-bonstructed by Fama [1984].

22 Since we are estimating a single AR(1) equatitie, parameter estimators are the same if we usenmaxi

likelihood estimation or GMM with one instrumentrizble.
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relative to the actual option price in the marlaéting to examine whether the SI model
provides a better estimation than the BS model.

We choose to compare the SI model only to BS meidek we find that the MSE
estimations of Rabinovitch [1989] model are sigrfitly higher than the MSE of the SI
and the BS models. For example, for the totalmations sample, the MSE of the Sl and
the BS models are 40.79 and 57.87, respectivelie\itie MSE of Rabinovitch model is
287.88.

Our empirical estimation of options is based on $&P 500 index call options
(SPX). Options written on this index are the madtvely traded European-style options
(Bakshi, Cao and Chen, [1997]) and have been thesfof many studied. In general,
the market for the S&P 500 index options is theosdcmost active index of options in
the USA and is the largest in terms of open intgfideston and Nandi, [1997]).

The data sample we use is from the period betweswaly 3, 2005 and
December 29, 2008. All the relevant option data are obtained frora @ptionMetrics
database. We calculate the mid-point of the enth@{day bid-ask quotes of call and put
options on the S&P 500 as a proxy for the optiemnd-of-the-day market pri¢e. The
appropriate risk-free interest rate per trading taget by matching the maturity of the
option to the interest rate with the closest dorato the remaining time to expiration of
the option, which appears in the zero coupon yeldse (continuously compounded)

calculated by OptionMetrics. The proxy for the S&B0 expected volatility is the

Z gee, for example, Rubinstein [1995], who emphasthat the S&P 500 is one of the best markets detirtg
European pricing models, Heston [1997] and others.
24\We choose a stable period of the economy. Cleauyresults will be significantly stronger in nstable periods.

2 OptionMetrics provides data on the highest closiibprice and the lowest closing ask price onS&® 500.
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realized historical volatility of the S&P 560 We follow the common practice of
calculating the realized volatility over a dategarof 182 calendar days®

For European options, the spot price needs to hested to dividends. We use
the annualized S&P 500 dividend yield and adjustitidex price by discounting the spot
price using the adjusted dividend yield to the renng life of the option. This
contemporaneous adjusted index level is later @sedn underlying-asset value in the
option models?

Examining the SI model also requires the estimatibthe correlation between
changes in the stochastic movement of the inteedstand the stochastic movement of
the underlying asset. As a proxy for this corielatwe estimate the correlation between
the S&P 500 daily returns and the one-year T-llydreturns from the period between
January 3, 1990 and December 31, 2008. The cbamlastimation obtained is

insignificant, with a value of 0.001 and-atatistic of 0.24"

%6 We use historical volatility rather than a measufrémplied volatility (such as the VIX) since meass of implied
volatility are based on specific pricing models,ilehwe are interested in testing pricing models, using them to
derive volatility measures.

27 OptionMetrics calculates the realized volatilising a simple standard deviation calculation onldigarithm of the
close-to-close daily total return.

2 The common practice is to use closing prices fdaity data over the most recent 90 to 180 day® F8el [2009].

2 Our results remain similar when we use data rabgeseen 60 day and 365 days to measure the listodlatility.

- time

—div——
%0 The adjusted spot price is calculatedpot -€ 30, wherediv denotes the annual dividend yield of the S&P 500

andtime denotes the number of days remaining until theoapxpires.
31 Most of the correlation estimations in the literat focus on a rolling estimation window and usegléerm bonds
(usually 10-year government bonds). See, for elxan@onnolly, Strivers and Sun [2007]. Svenssod Bietzsch

[2009] find that the estimated monthly mean cotiefabetween the S&P 500 returns and one-year [TishiD.09 (for
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Following the literature, we use the conventionatlesion filters for the raw
data. We exclude options whose mid-bid-ask quaies below $0.5 to avoid
microstructure bias€$. In addition, to limit the effects of option exaiion, we exclude
options which are less than 10 days to expirafionle also exclude contracts that have a
trading volume of less than 50 options on a givadihg day to minimize the effects of
bid-ask spread® The final sample after applying all these filtemnsists of 24,766 call
option contracts and 36,837 put contracts.

Table 2 provides summary statistics of the optiatadsample. It presents the
distribution of the number of call (Panel A) andt ganel B) option contracts by
moneyness (i.e. the stock price to exercise pat®)r and time to maturity. Table 2
shows that most of the call contracts (90.6%) haemeyness between 0.94 and 1.03,
while 52% are call contracts with 60 days or les®xpiration. This indicates that our
empirical estimation also covers short-term optiareund the money. One can see that
call contracts with more than 180 days to expiratoe fairly active. Most of the put
contracts are either short term with 60 days @& tesxpiration (50%), or long term with
180 days or more to expiration (23.6%), while 34.6fthe put contracts are deep out of

the-money. In general, 73.5% of the put sample @riout of the money.

[INSERT TABLE 2 ]]

the period from January 1982 to September 2008 (@antitative results remain similar if we use Bvensson and
Dietzsch [2009] estimation period.

32 See Bakshi, Cao, and Chen [1997], Chu and Frel®@5], and Liu and Shen [2008].

33 Bakshi, Cao, and Chen [1997], Hsieh and Ritch2805], Fleming [1998] and others use this filter.

34 An additional conventional filter excludes optiomswhich 1.22 K >0.8. Our results are quantitatively similar

when we apply this filter.
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C. Comparison of models

In this section we examine the accuracy of thenBtlel compared to the BS
model. The benchmark for our tests is the actptibo price in the market. Explicitly,
we inquire into which of the price estimations bé ttwo models deviates less from the
actual price. The deviation from the actual optmice is measured using the mean
square error (MSE) criterion. A smaller MSE meanbetter estimation and a lower
model mispricing. Mispricing is defined as thefeliénce between the market price and

the model value. The MSE criterion that we uséésfollowing:

n

1 ) 32
- market price__ model prlcj

z (CJ Cj !
N

MSE =

where C™*P™* is observatio)'s market price C"*'P™ is observation's value of the

option according to the model, ands the number of observatiofts.

Table 3 reports the MSE estimations of the SI m@Bahel A) and the BS model
(Panel B) relative to the market option pricespasrmoneyness and time to maturity, for
both call and put options. It shows that the ager®SE over the entire call option
sample using the SI model is 48.17, while the ay@MSE using the BS model is 57.87.
For put options, the SI model yields an MSE of 8lrdlative to 89.01 of the BS model.
For call options, both pricing models have a higMi&E the more the options are in the
money and the longer the time to expiration. THeBVWbf put options also increases the

longer the time to expiration. However, put opsopresent a different moneyness

% The MSE measure is a common estimator for opti@pricing in the literature. See for example Chnd &reund
[1996], Christoffersen and Jacobs [2004], Bakship,Gind Chen [1997], Dumas, Fleming, and Whale9§},%Heston

[1997], Liu and Shen [2008] and others.
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pattern. For the same time to expiration, the M&SEmaller for deep-out-of-the-money

and deep-in-the-money options, and tends to beshighthe at-the-money condition.

[INSERT TABLE 3 ]]

Table 4 shows the improvement (in percentaged)@nMSE estimation of the Sl
model relative to the BS model. Panel A presemsitnprovement for call options and
Panel B presents the improvement for put optiorisese differences (in percentages) are
obtained by dividing the difference in the MSE b&tmodels by the MSE of the BS
model, across moneyness and time to maturity. ingot the total sample, the SI model
yields an average improvement in MSE of 29.51%cft options and 19.69% for put
options. For both call and put options, the imgmoent is more significant the longer the
time to maturity of the option, indicating the impance of changes in the interest rate for
long-term options. These findings are highly ral@vfor long-term call options, such as
employee stock options, and for the accuracy obaating reports. There is no clear
tendency for the MSE to improve across moneynesgpt for options with 180 days or
more to maturity. In this category of maturitye timprovement in the MSE increases the

more the call option is out of the money and aswiee the put option is in the money.

[INSERT TABLE 4 ]|

Table 5 presents the statistical significance & tlifference in pricing errors
between any two modeisandj by adopting the-statistic test of the sample differences

in daily mean squared errors, following Huang and [2004]. Thet-value is calculated

by
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MSE - MSE;
stdev(ﬁi _ﬁj),

t =

statistic

where the overline on the MSE denotes the sampdeage andstde\(-) denotes the

standard error of the sample mean difference. ®¥em®deli to be the BS model and
modelj to be the SI model. A posititevalue in this test implies that the MSE of the Sl
model is statistically more significant than thatlee BS model and vice versa.

Since thd-statistic uses the sample average of the daily 848 first group the
daily MSEs and report the sample size across massyand maturity for both call and
put options in Panel A. Pursuant to Table 2, thestinactive group, in terms of
moneyness and maturity, is the group of in-the-ngaradl contracts with 120 to 180 days
to expiration. Out-of-the-money call and put opscare more tradable than their in-the-
money counterparts.

Panel B in Table 5 presents the statistical sigaifce of the SI model relative to
the BS model. In call options, the SI model pregigignificantly lower MSE values, in
all categories across moneyness and maturity, cadp® the BS model, except for
deep-out-of-the-money options with 120 days or kessnaturity. Specifically, the Sl
model yields a significant improvement in the MSEall options with 120 days or more
to maturity and in call options with moneyness &/or higher. Regarding put options,
the SI model also yields significantly lower MSElues in all categories across
moneyness and maturity than the BS model. Hewe,otily exception is for in-the-
money put options with 120 days or less to matuntiere the BS performs better,

though not significantly better.  Specifically, th®l model yields a significant
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improvement in MSE of put options with 120 daysmore to maturity, and in put

options with moneyness of 0.97 or higher.

[[INSERT TABLE 5 ]]

5. Conclusions

This paper extends the Black-Scholes European mopicing model to the case
of stochastic Gaussian interest rates. We pradleseed-form solution for option pricing
under the term structure models of Vasicek [19Td Merton [1973]. We show that our
model preserves the properties of non-arbitragany;j and when the interest rate is non-
stochastic our formulas for both call and put apgicollapse to the BS expression. Since
stochastic interest rate constitutes an additisoarce of risk not priced by the BS, in
most cases options are more under-priced in thm8&el than in our generalized model.

We compare our SI model to the BS model using sarmdata on S&P 500 index
options. Our empirical results support the expegbeicing improvement of the Sl
model. They present a significant improvementatl and put pricing using the MSE
criterion as the measure of accuracy: the magnitdideis improvement is a function of
the option's time to maturity, the greatest improeat being obtained for around-the-
money short-term options. The SI model has impbea for pricing options with no
market value, and is especially useful for longrtewptions, such as employee stock

option pricing, which must be accurately pricedimancial reports.

25



APPENDIX
Lemma 1: Assume that the short-term interest ratét), follows the dynamics of
Equation (2). Then the accumulation factor of alimg periodz =T -t is

Tr(u)du

(8) R(t,T) — etJ. — eA(t,T)+B(t,T)H(T) ’

with the boundary conditioR(t,t) =1, such that ifg =0 then A(t,T)=r(t)r +%az‘2

and B(t,T):%gri, and if ##0 then A(t,T)=%r+(r(t)—%)ﬂ(t,T) and

B(t,T)=%\/r—z(t,T)—§zz(t,T) , whereﬂ(t,T):%(l—e‘ﬂ’) 3

Proof: The proof adjusts a method of solving stochastifedintial equations for the
Ornstein-Uhlenbeck process combined with the ststah&ubini theorem. We prove the

lemma in two different parts, for the case whgre 0 and for the case wheg = 0.

Part 1 (f=0): Define the proces¥ (u)=r(u)(T —u).

T T
Applying Ito’s lemma and integrating giveﬁr (u)du=r(t)(T-t)+ j(T —u)dr (u).
t

t

Define the process W (t,T)= T_[r (u)du. Thus¥ (t,T)=r(t)(T —t)+T_[(T —u)dr(u).

t
Substituting fordr (u) (Equation (2) withg = 0) yields
T

‘P(t,T)=r(t)(T—t)+%a(T—t)2+ [e(T-uydH (u).

t

% Note that the value assigned@omust be a real valug} € R , such thatB (t,T) is well defined as a real number.
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Since f (u)=&(T —u) is continuous, the variance of this Gaussian E®E’
V(t,T)= j f2(u)du T —t)’ &2,

Finally, a sample path of the stochastic proCEiﬂT) is as follows:

P (t,T)=r(t)(T —t)+%a(T ~t)° +%(T —t)g EH(T-1).

Part 2 (§ #0): Define the processy (u)=r(u)e”"™, where u<T.

Applying Ito’s lemma and substituting Equation {@) dr (u) gives

dY (u) =€’ (ardu— Br(u)du+&dH (u)+ Br (u)du)=e”"" (adu+£dH (u)).

.
Hence, r(T)=r(t)e”™ +%(l— e’ ) + [£€”TaH (u).

t

;
Defining the proces¥’ (t,T) = jr (u)du and substituting for (u) leads to
t

T T T Tu
9) W(LT)=r(t) [e’ du +% Idu—% [e”™du+¢ [ feMIdH (x)du.
t t t tt

Applying the Riemann integral to the first termExfuation (9) gives

A(6T) = :f AT g ;(1_e—ﬂ(T-t))_

Applying the stochastic Fubini theorem to the tasin of Equation (9) gives

71 dW is a standard Wiener process then for any contimfmnction f ; [t,T] —-> R,

tjf (u)aw (u) ~ N(O,Z‘-fz(u)duj.
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T_[Lj[e‘ﬂ[“‘x]dH (x)du = :[L;[e‘ﬂ”eﬂde (x)du = :[ft(x,T) dH (x).%*

tt

Since f (u)= (1— e‘ﬂ(T‘”)) =£A(u,T) is continuous, the variance of the process is

= |
[Tp™

V(t,T)=:[f2(u)du _ 22[(T—t)—ﬂ(t,T)—giz(t,T)j.

he)

Finally, a sample path of the stochastic procégs T) is as follows:

‘P(t,T):—%(T—t)+[r(t)+%jl(t,T)—% (T-0)-2(tT)-L2* (LT)H (2).

where A(t,T) =%(1— e‘ﬂ(T“)). n

Lemma 2: The excess return factoiX (t) follows a geometric Brownian motion

defined by the stochastic differential form
(10) dX (t) = X (t)ndt+ X (t)vdW(t),
with a drift n=u-A (O,t)+%v2 and a diffusion v’ =o?+B?(0,t)- 200B(0}),
where dW (t) is a standard Wiener processes, ag(t,T) stands for the derivative of
A(t,T) with respect tor =T —t.

: , S(T)
Proof: The processX (t,T) is defined asX (t,T) = ———+—.

S(t)R(t,T)

Differentiating R(t,T) using Ito’s lemma gives

38 See Theorem IV in Protter [1990].
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dR(t) = R(t)(A (t,T)+% B’ (t,T)) dt+ R(t)B(t,T)dH (t).

Differentiating X(t,T) using Ito’s lemma, where for brevity the time dgstors are

S
R

S

omitted, givesdX == dS—— dR- — dSdR+— dRdR .
R R R

Substituting fordS and dR and collecting terms yields
1, 1.
dX = X(,u—A +§O' +_ZB —paBjdt+ X (o—B)dw

Since Z and H are both Wiener processes (Gaussian distribut®d)s also a Wiener

process with variance’ = o° + B*—2poB. HencedX = Xzdt + XvdW , where

77=;1—A+%v2 andv’=o°+B?’-2pcB. m

Lemma 3: The normalization factoF (t,T) is
(11) F(t,T):eXp(,uz'—A(t ,T)+%V22'j,
where v =o?+B*(t,T)-2p0B(t,T).

Proof: By Lemma 2dX = X {,u— A +%v2}dt+ XvdW . Since the boundary condition

is X (t,t)=1, then X =1+ jx (,u— A +%v2Jdu+ ijdW. Take expectation
0 0

E(X)=1+ ;jE(x)[y—A +%v2jdu. HenceF (t,T)=E(X)= exp{,ur—A+%vzrj. L

Lemma4: The discount factor) (t,T), of a sample random path is as follows:
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(12) Y(LT) === exp(-A(t T)-B(tT)H (),

R(t,T)

with the boundary condition’ (t,t) =1.

Proof: Differentiating Y(t,T) =

1 using Ito’s lemma and substituting for
R(t,T)
dR = R(A +% szdt+ RBAH , gives d =—Y(A —%szdt—YBdH .

HenceY (t,T)=exp(-A-BH(7)). =

Lemma5: The expected discount factar(t,T) is

(13) A(t,T)=exp(—A(t ,T)+%Bz(t ,T)fj.

Proof: By Lemma 4dY follows a differential form of the geometric Broian motion

dY:—Y(A —%szdt—YBdH . The initial value isY (t,t)=1. Thus

Y=1- IY(A —% szdu— _[YBdH . Taking expectation gives
0 0

E(Y)=1- ]Em(A -2 BZJdu . HenceE(T) = exp(—A+% BZTJ .

0

Proof of Theorem 1:

Applying Lemma 4 to the option price model in Eqoat(5) gives

C(t,T):E[S(t)X(t’T)—K 1 }

F(t,T) R(t,T)
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For simplicity, sett =0 and omit the time descriptors. Then,

0

(14) j —(——Kde=S(O) j Pr(S)(Fde K Kj = P(S)dS
ECH ECH

wherePr(-) stands for the probability density function.

Applying Lemma 2 for the random proceXsyields X (0,t) =e“ A" 3

We begin with the first part of Equation (14):= S(0) _[ Pr(S)(éJ as.
K

%F

12

Substituting forF(o,t):eﬂt 2 X(0,t)=e“""" and changing the variables for

v 2t VW

S(t)=e"" yields | =S(0) j Prie“")e? e "odw.

Substituting for the log-normal probability densftyction, LN (O,O-Zt), of S(t):

1 -%(%-M
In —J; 3 %t \/_
50

o

| =5(0) wa .

Changing the variableslV =W+/t , such thatw ~ N(O,]) and using the symmetry

Inﬂ+A—EVZt
property gives | =S(0)N K 2w

ot

% Notice that the procesS(T) is a special case of the proce¥§t,T) when A(t,T)=0 and B(t,T)=0. The process

Y (t,T) is also a special case of the proc#gs,T) when x=0 and 6=0.
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We apply the same procedure to plriof Equation (14), and obtain the call formula

IniO)+A—1v2t ™ InS(O)+A—}v2t
C=S(0)N| —K 2_iwit|-ke 2 N|—K 2 __BJt| m

ot ot

Proof of Theorem 3: The put-call parity can be written as

KA(t,T)=P(t,T)+S(t)-C(t,T), whereA(t,T)=E[Y(t,T)] .

S(0 S(0
In ( )+A—1V22' In ( )+A—£Vzr
Set m=—XK 2__ . vw/r and n=—XK 2___BJr.

oz ot

Substituting for the prices of call and put optignges

—Aclp?

P(t,T)+S(t)-C(t,T)=Ke 2

Using Lemma 5: KA(t,T)=P(t,T)+S(t)-C(t,T). m

32



References

Amin, K. I., and R. A. Jarrow. "Pricing Options &isky Assets in a Stochastic Interest
Rate Economy.Mathematical Finance, 2 (1992), 217-237.

Amin, K. I., and V. K. Ng. "Inferring Future Voldity from the Information in Implied
Volatility in Eurodollar Options: A New ApproachReview of Financial Sudies, 10
(1997), 333-367.

Bailey, W., and R. M. Stulz. "The Pricing of Stodkdex Options in a General
Equilibrium Model." Journal of Financial and Quantitative Analysis, 24 (1989), 1-
12.

Bakshi, G.; C. Cao; and Z. Chen. "Empirical Perfante of Alternative Option Pricing
Models."Journal of Finance, 52 (1997), 2003-2049.

Bakshi, G. S., and Z. Chen. "An Alternative ValoatiModel for Contingent Claims."
Journal of Financial Economics, 44 (1997a), 123-165.

Bakshi, G. S., and Z. Chen. "Equilibrium Valuatioh Foreign Exchange Claims."
Journal of Finance, 52 (1997b), 799-826.

Black, F., and P. Karasinski. "Bond and Option iRAgcwhen Short Rates are
Lognormal."Financial Analysts Journal, 47 (1991), 52-59.

Black, F., and M. Scholes. "The Pricing of Opti@m&l Corporate Liabilities.Journal of
Political Economy, 81 (1973), 637-654.

Brennan, M., and E. Schwartz. "An Equilibrium ModaelBond Pricing and a Test of
Market Efficiency."Journal of Financial and Quantitative Analysis, 17 (1982), 301-
329.

Brennan, M. J., and E. S. Schwartz. "Savings BoRugractable Bonds and Callable

33



Bonds."Journal of Financial Economics, 5 (1977), 67-88.

Brenner, M.; G. Courtandon; and M. Subrahmanyamtetest Rate Uncertainty and the
Valuation of Stock Index Options." Working paperviN&ork University Salomon
Center, (1987).

Chan, K.; G. Karolyi; F. Longstaff; and A. Sandetdn Empirical Comparison of
Alternative Models of the Short-Term Interest Rageurnal of Finance, 47 (1992),
1209-1227.

Chen, R. "Pricing Stock and Bond Options when tle¢aDit-Free Rate is Stochastic: A
Comment."Journal of Financial and Quantitative Analysis, 26 (1991), 433-434.

Christoffersen, P., and K. Jacobs. "Which GARCH #lofor Option Valuation?"
Management Science, 50 (2004), 1204-1221.

Chu, S., and S. Freund. "Volatility Estimation fStock Index Options: A GARCH
Approach."Quarterly Review of Economics and Finance, 36 (1996), 431-450.

Connolly, R.; C. Stivers; and L. Sun. "Commonalitythe Time-Variation of Stock-
Stock and Stock-Bond Return Comovementi®tirnal of Financial Markets, 10
(2007), 192-218.

Cox, J.; J. Ingersoll Jr; and S. Ross. "A Theoryhef Term Structure of Interest Rates."
Econometrica, 53 (1985), 385-407.

Dietrich-Campbell, B., and E. Schwartz. "ValuingdDeptions: Empirical Evidence."
Journal of Financial Economics, 16 (1986), 321-343.

Dothan, L. U. "On the Term Structure of Interesttd?d’ Journal of Financial
Economics, 6 (1978), 59-69.

Dumas, B.; J. Fleming; and R. Whaley. "Implied \iiky Functions: Empirical Tests."

34



Journal of Finance, 53 (1998), 2059-2106.

Fama, E. "The Information in the Term Structu@lrnal of Financial Economics, 13
(1984), 509-528.

Fleming, J. "The Quality of Market Volatility Forasts Implied by S&P 100 Index
Option Prices.Journal of Empirical Finance, 5 (1998), 317-345.

Goldstein, R., and F. Zapatero. "General Equilioriwvith Constant Relative Risk
Aversion and Vasicek Interest Ratelgldthematical Finance, 6 (1996), 331-340.

Haug, E. G.The Complete Guide to Option Pricing Formulas, 2" Edition (2007),
McGraw-Hill, New York.

Heath, D.; R. Jarrow; and A. Morton. "Bond Priciagd the Term Structure of Interest
Rates: A New Methodology for Contingent Claims \aion." Econometrica, 60
(1992), 77-105.

Heston, S., and S. Nandi. "A Closed-Form GARCH Q@ptPricing Model." Working
paper 97-9 (1997), Federal Reserve Bank of Atlanta.

Ho, T.; R. C. Stapleton; and M. G. Subrahmanyarhe"Valuation of American Options
with Stochastic Interest Rates: A Generalizatiorihef Geske-Johnson Technique."
Journal of Finance, 52 (1997), 827-840.

Ho, T. S. Y., and S. B. Lee. "Term Structure Movaitseand Pricing Interest Rate
Contingent Claims.Journal of Finance, 41 (1986), 1011-1029.

Hsieh, K., and P. Ritchken. "An Empirical Comparnisof GARCH Option Pricing
Models."Review of Derivatives Research, 8 (2005), 129-150.

Huang, J., and L. Wu. "Specification Analysis oft@p Pricing Models Based on Time

Changed Lévy Processeddurnal of Finance, 59 (2004), 1405-1440.

35



Hull, J. Options, Futures and Other Derivatives, 7" Edition, Pearson Prentice Hall
(2009).

Kim, Y.J. "Option Pricing under Stochastic Inter&sites: An Empirical Investigation.”
Asia-Pasific Financial Markets, 9 (2002), 23-44.

Liu, X., and L. Shen. "An Empirical Investigatioh Option Pricing Models." Working
paper (2008), University of Essex.

Lucas Jr, R. E. "Asset Prices in an Exchange EcgrioBtonometrica, 46 (1978), 1429-
1445.

Merton, R. "Theory of Rational Option PricingThe Bell Journal of Economics and
Management Science, 4 (1973), 141-183.

Miltersen, K. R., and E. S. Schwartz. "Pricing gbtons on Commodity Futures with
Stochastic Term Structures of Convenience Yieldd$ kwerest rates.Journal of
Financial and Quantitative Analysis, 33 (1998), 33-59.

Nowman, K. B. "Gaussian Estimation of Single-Facantinuous Time Models of the
Term Structure of Interest Rateddurnal of Finance, 52 (1997), 1695-1706.

Ogden, J. "An Analysis of Yield Curve Noteddurnal of Finance, 42 (1987), 99-110.

Rabinovitch, R. "Pricing Stock and Bond Options whihe Default-Free Rate is
Stochastic.'Journal of Financial and Quantitative Analysis, 24 (1989), 447-457.

Rindell, K. "Pricing of Index Options when Interdates are Stochastic: An Empirical
Test."Journal of Banking and Finance, 19 (1995), 785-802.

Rubinstein, M. "On the Accounting Valuation of Emopee Stock Options.The Journal
of Derivatives, 3 (1995), 8-24.

Sanders, A., and H. Unal. "On the Intertemporal &&r of the Short-Term Rate of

36



Interest."Journal of Financial and Quantitative Analysis, 23 (1988), 417-423.
Svensson, S., and S. Dietzsch. "The Correlatiow®e Treasury Securities and the
Stock Market: A study of Explanatory Variables." $ishool of Economics and

Management. Lund: Lund University (2009).
Vasicek, O. "An Equilibrium Characterization of theerm Structure."Journal of

Financial Economics, 5 (1977), 177-188.

37



Option values as a function of time to maturity (T)
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== Merton
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== Nlerton
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Figure 1: The value of at-the-money call and put optiossagunction of time to maturity. We use t
following parameters: stock price S=100; exerciseep K=100; interest rate r=5%; stock's stand
deviationoc =0.3 and correlation coefficiept=0. The short-term interest parameters for the derhodel
areoa =0.0005,8 =0, ¢ =0.02, and for the Vasicek model they are0.0254 3 =0.1779¢ =0.02.

ard
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Option values as a function of the correlation ot (p)
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Figure 2: The value of at-the-money call and put optionsaafinction of the correlation coefficient
We use the followi

between changes in the underlying asset to chaimgé#ise interest rate level.

parameters: stock price S=100; exercise price K=iiirest rate r=5%; stock's standard deviatief.3
and time to maturity T=1. The short-term interegerparameters for the Merton model are0.0005,3

=0, & =0.02, and for the Vasicek model they are0.0254 3 =0.1779% =0.02.
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Option values as a function of the standard deoriatif the interest rat)
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Figure 3. The value of at-the-money call and put optionsaafinction of the interest rate's standard
deviation. We use the following parameters: stoike S=100; exercise price K=100; interest ratedts=
stock's standard deviatios=0.3; time to maturity T=1 and correlation coeffict p=0. The short-tern
interest rate parameters for the Merton model cgx8.0005,3=0, and for the Vasicek model they are

0=0.02543=0.1779.
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Table 1

Parameter estimation of the Merton and Vasicek mods of short-term interest rate

This table depicts the estimated parameters olMdbgon and Vasicek models of short-term interetd.ra
The estimation uses the yield to maturity of oneathoT-bills reported by CRSP's monthly treasury
section. The estimation horizon is monthly dataetmg the period from January 1960 to December
2009, providing 600 observations in total. Forreamnth the selected T-bill is the one closestGaays

to maturity in absolute values. The parameter®atienated using an OLS regression.

Parameter
(t-stat)
Model a s o’ R?
-0.00062
Merton (-0.204) --- 0.000050 0
. 0.001695 -0.034883
Vasicek (2.672) (-3.143) 0.000055 0.01628
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Table 2

Number of call and put contracts across moneynessid maturity

This table reports descriptive statistics on call aut contracts on the S&P 500 index for the mkfiom
January 3, 2005 to December 30, 2006. Each sampigided into four maturity bins and six moneyses
bins.

A. Call
Number of days to expiration (D)
Moneyness (S/K) D<60 66D<120 12&D<180 D>180 Total sample
S/K <0.94 310 723 566 2,235 3,834
0.94< S/K <0.97 3,224 1,247 390 683 5,544
0.97<S/K <1.00 5,233 1,730 439 1,169 8,571
1.00< S/K < 1.03 2,773 712 217 787 4,489
1.03<S/K < 1.06 669 170 63 185 1,087
S/IK>1.06 672 279 76 214 1,241
Total sample 12,881 4,861 1,751 5,273 24,766
B. Put
Number of days to expiration (D)
Moneyness (S/K) D<60 60D<120 | 12&D<180 D>180 Total sample
S/K <0.94 244 230 113 775 1,362
0.94< S/K < 0.97 534 188 168 746 1,636
0.97<S/K < 1.00 3,545 1,387 434 1,394 6,760
1.00< S/K<1.03 4,933 1,398 472 1,095 7,898
1.03<S/K < 1.06 4,090 1,071 412 857 6,430
S/IK>1.06 5,068 2,495 1,333 3,855 12,751
Total sample 18,414 6,769 2,932 8,722 36,837
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Table 3

MSE estimation

This table reports the MSE estimation of call andl @ptions contracts using the SI model and the BS
model. The underlying asset is the S&P 500 indépe dption's sample period is from January 3, 2605 t
December 30, 2006. The option's market pricesal@ilated using the mid-point of the end-of-thg-da
bid-ask quotes. We calculate the SE of each cdantiad then calculate a mean for all the contracts
across moneyness and maturity.

A. MSE of the SI model
Number of days to expiration (D)

Moneyness (S/K) Ot';g‘é” D<60 | 6@D<120 | 126D<180 | D»180 S;?;%'le
Call 0.42 1.4 311 43.08 25.87
S/K <0.94 Put 2.81 3.06 9.79 20212 | 117.00
Call 1.85 5.44 153 137.69 | 20.34
0.94< S/K <0.97 Put 6.36 23.44 45.28 46081 | 219.54
Call 451 16.08 48.87 27543 | 46.07

0.97< S/K <1.00 Put 7.64 28.53 75.66 315.96 | 79.87
Call 6.55 27.67 63.48 297.43 | 63.74

1.00=5/K <1.03 Put 9.04 38.25 102.37 | 327.89 | 64.56
Call 8.31 34.63 77.61 275.79 | 61.96

1.03= 5/K < 1.06 Put 9.11 42.59 10757 | 314.89 | 61.75
Call 4.72 12.7 48.94 18453 | 40.23

S/K>1.06 Put 3.88 158 44.91 142.33 | 52.36
Total samole Call 4.39 13.32 29.45 158.79 | 40.79

P Put 7.45 27.09 66.18 242.88 | 71.48

B. MSE of the BS model
Number of days to expiration (D)

Moneyness (S/K) Ot';g‘é” D<60 | 6@D<120 | 126D<180 | D»180 S;?;%'le
Call 0.41 1.35 318 81.8 48.44

S/K <0.94 Put 281 3.97 10.41 358.09 | 205.8
Call 1.83 5.49 16.93 209.9 29.34

0.94< S/K <0.97 Put 6.38 23.99 49.08 715.49 | 336.14
Call 4.52 16.68 53.35 407.79 | 64.48

0.97< S/K <1.00 Put 7.69 29.42 81.47 40857 | 99.55
Call 6.61 28.6 68.35 43092 | 87.47

1.00=5/K <1.03 Put 10.03 39.26 108.37 | 40587 | 75.96
Call 8.35 35.44 82.06 34853 | 74.76

1.03= 5/K < 1.06 Put 9.16 43.34 112.1 368.60 | 69.35
Call 4.73 128 50.53 22284 | 46.96

S/K=1.06 Put 3.88 15.92 45.84 158.10 | 57.25
Total samole Call 4.41 13.7 31.79 237.85 | 57.87

P Put 7.49 27.67 69.31 315.36 | 89.01
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Table 4
Differences in MSE estimations between the S| modahd the BS model

This table reports the difference (in percentapetiveen the MSE estimations of the SI model and the
BS model, for call and put options contracts acroeseyness and maturity. The underlying asseteis th
S&P 500 index. The option's sample period is framuary 3, 2005 to December 30, 2006. The option's
market prices are calculated using the mid-poirthefend-of-the-day bid-ask quotes.

A. Call

Number of days to expiration (D)

Moneyness (S/K) D<60 60D<120 | 12&D<180 D>>180 Total sample
SIK < 0.94 -2.44% -3.70% 2.20% 47.33% 46.59%
0.94< S/K < 0.97 -1.22% 0.55% 9.63% 34.40% 30.67%
0.97< S/K < 1.00 0.22% 3.60% 8.40% 32.46% 28.55%
1.00< S/K < 1.03 0.91% 3.25% 7.13% 30.85% 27.13%
1.03< S/K < 1.06 0.48% 2.29% 5.42% 20.87% 17.12%
SIK>1.06 0.21% 0.78% 3.15% 17.19% 14.33%
Total sample 0.45% 2.77% 7.36% 33.24% 29.51%
B. Put
Number of days to expiration (D)
Moneyness (S/K) D<60 60D<120 | 12&D<180 D>>180 Total sample
SIK < 0.94 0.00% 0.25% 5.96% 43.56% 43.15%
0.94< S/K < 0.97 0.31% 2.29% 7.74% 35.60% 34.69%
0.97< S/K < 1.00 0.65% 3.03% 7.13% 22.67% 19.77%
1.00< S/K < 1.03 0.90% 2.57% 5.54% 19.21% 15.01%
1.03< S/K < 1.06 0.55% 1.73% 4.04% 14.57% 10.96%
S/IK>1.06 0.00% 0.75% 2.03% 9.97% 8.54%
Total sample 0.53% 2.10% 4.52% 22.98% 19.69%
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Table 5
t-statistic of the MSE differences between the S| ndel and the BS model

This table reports theestatistics of the MSE differences between the 8tdlehand the BS model, for call
and put option contracts across moneyness and ityafitve underlying asset is the S&P 500 index. The
option's sample period is from January 3, 2005 éceébnber 30, 2006. The option's market prices are
calculated using the mid-point of the bid-ask geofehet-statistic measure is based on Huang and Wu
(2004). For each test (Model Modelj), at-value greater than 1.645 implies that the meamarsgu
pricing error from modei is significantly larger than the mean squaredreinam modelj. A t-value
less than -1.645 implies the opposite, i.e. mPdeVISE is significantly larger than mod&l MSE.

A. Number of days in the sample
Number of days to expiration (D)
Moneyness (S/K) Ot';’/g‘;” D<60 | 6&D<120| 12&D<180 | D>180 S;?;%'le
Call 199 363 286 493 499
S/K<0.94 Put 173 159 85 325 420
Call 500 465 276 375 500
0.94< S/K < 0.97 Put 258 150 140 384 460
Call 500 464 300 436 500
0.97< S/K <1.00 Put 500 439 313 482 500
Call 498 362 182 353 499
1.00=S/K<1.03 Put 500 470 317 463 500
Call 357 135 59 134 412
1.03<S/K<1.06 Put 500 460 313 427 500
Call 320 173 59 145 422
S/K=>1.06 Put 500 469 334 495 500
ol | Call 500 476 337 500 500
otal sample Put 500 476 340 500 500
B. Pairwiset-statistic for model comparisons
Number of days to expiration (D)
Moneyness (S/K) Ot%‘é” D<60 | 6&D<120 | 12&D<180 | D»180 s;?;?)lle
Call 7.08% | -8.92 0.49 15.06* | 14.37*
S/K <0.94 Put -156 -0.43 4.23% 11.47% | 9.66%
Call | -13.29 0.1 11.95% 11.87* | 12.89%
0.94< S/K < 0.97 Put | -0.05 5.82%* 13.22% | 20.34* | 15.19%
Call | 2.65~ 17.33" 24.08* 10.8% | 17.99%
0.97< S/K <1.00 Put | 7.06%* 20.27* 30.11% 26.51% | 24.97*
Call | 1667~ | 23.04 2314 16.11% | 15.74*
1.00= S/K <1.03 Put | 20.85* | 33.03* 35.80% | 20.83% | 21.24%
Call | 1452 | 1634~ | 1500 10.06% | 7.47%
1.03<S/K<1.06 Put | 28.81% | 37.88% | 38.43% 18.60* | 18.87**
K> 1,06 Call | 8.49% 6.52% 9.07% 5.04% | 450
z1 Put | 31.91% | 26.55* 23.38% 20.06%* | 23.57%
otal | Call | 4617 16.08* 43.43% 28.36" | 29.00%
otal sample Put | 19.04* | 28.86* 32.62%* 31.6* | 37.64*

** 99% confidence level
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