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1 Introduction

Understanding the variation of asset returns presents an important challenge to economists.

Such an understanding is important for both financial investors themselves, as well as for the

entire macroeconomy (for example, Bernanke and Gertler (2001), Rigobon and Sack (2003)).

Every model of variation in asset returns tells a story about the exogenous shocks that are

ultimately responsible for changes in the prices of risky assets. The characterization of these

ultimate sources of variability is of fundamental interest, in order to better understand what

drives asset returns.

Economic reasoning tells us that financial assets should be priced by investors according to

a Discounted Cash Flow (DCF) or Net Present Value (NPV) methodology. This fundamental

understanding yields a natural decomposition of asset returns into sources of variation related

to the cash flows associated with these assets, and sources of variation related to changes in

the discount factor. There exists an important puzzle in this literature, stemming from the

result that in this context cash-flow variation does not play an important role in determining

the returns of publicly traded equity, in that asset prices are too volatile to be driven by this

source of variation (this is known as the excess volatility puzzle, first formulated by Shiller

(1981) and LeRoy and Porter (1981)). In contrast to these results, studies such as Evans

(1998), or Hall (2001b) find evidence in favor of the importance of cash flow information in

the stock price formation process.1 The consequence of the excess volatility result is that

either investors do not use the NPV framework to price these assets, or that the discount

factor itself is extremely variable, in order to impart such overall volatility to asset prices.

Both implications are economically troubling.

One of the empirical problems associated with tests of the NPV model for stocks is that

it is often difficult to find variables that accurately reflect changes in the two fundamental

sources of variability; doing so effectively is necessary to correctly attribute price variability to

a respective source. Chen and Zhao (2009), for example, discuss this point in great detail, and

Chen (2009) further highlights its importance. Our study focuses on the empirical challenge

1This debate is still very active in the literature today. For example, Hall (2001a), Robertson and
Wright (2006), or Larrain and Yogo (2008) also find evidence in favor of the importance of cash flows or
generally fundamentals in asset pricing. Cochrane (1992, 2001, 2008), and van Binsbergen and Koijen (2009),
among others discuss excess volatility, its causes, and its implications. Other studies, such as, for example,
Goetzmann and Jorion (1993, 1995) treat the broader relationship between dividends and asset prices and
are therefore also related. Other literatures, such as the firm investment literature, also share the focus on
the role of cash flow information on ultimate investment value of firms and therefore securities. For example
Abel and Eberly (2011) treat this question in a theoretic framework and show that cash flow information is
important here.
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of appropriately capturing changes in cash flows. While basic economic rationale posits that

for equity securities, actual payments to investors (i.e. primarily dividends) should be the

relevant metric for the cash flows associated with the security, empirical tests have failed to

show that changes in information related to dividends hold the expected level of importance

in determining asset returns. We argue that this result could be due a measurement problem

of the cash flow stream associated with securities. This is due to the fact that dividends

(and even earnings) are not accurate representations for the stream of cash flows which

investors perceive underlies the equity securities in question, because they can be smoothed,

managed, or otherwise manipulated by the firm, and firm management has incentive to do

this.2 If it were possible for an econometrician to observe the true (un-smoothed) cash flow

information that underlies a security, it would be possible to make better attributions of

sources of variation.3

We contribute to the literature by exposing the role that the accuracy with which cash

flows are measured plays in findings of excess volatility. Specifically, we examine the im-

provements to the performance of dynamic Net-Present-Value models that can be achieved

by using more complete cash-flow information. We are in the unique position to measure

cash flows that enter the firm rather than payouts. Assuming money is not systematically

wasted, investors should perceive that their security entitles them to all these cash flows and

should therefore price them in.4 We find that using a more complete cash flow measure,

vastly improves the predictive ability of such models. The improved performance of our

model comes despite the fact that, unlike previous literature, we conduct all estimation out

of sample and thus avoid look-ahead bias.5

We are able to construct such cash flow proxies by taking advantage of the unique fea-

tures of commercial property markets, as a natural laboratory. The market for commercial

2For example Bergstresser, Desai and Rauh (2006) document this in great detail, as do Ackert and Hunter
(1999). Boudoukh, Michaely, Richardson and Roberts (2007) also document this and investigate in detail
the implications for asset pricing of this recognition.

3Robertson and Wright (2006) argue along the same lines. In a related approach, Larrain and Yogo (2008)
model overall firm value using total firm payouts, and also find no excess volatility under this approach.

4These will eventually be paid out through anticipated dividends, currently unannounced future dividends,
or even through a payout of terminal value upon the firm’s liquidation.

5Our rolling out-of-sample estimation further constitutes a similar paradigm to that of Evans (1998),
who allows for the possibility that aggregate dividends and discount rates do not follow stable time series
processes; investors rationally account for instability in the dividend and discount rate processes. Relatedly,
Barsky and De Long (1993), argue that investors re-estimate dividend growth rates every period and their
paradigm pivots on the informativeness of current dividend levels for forecasting future dividend growth
rates. Our work is consistent with both of these views, and we show the improvements that result from
being better able to capture dividend (or cash flow) information that exists in the market at a given time.
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property cash flows is unique, in that these cash flows are traded independently in two

parallel asset markets. One is the direct property market, in which these cash flows are

traded privately through purchases and sales of buildings and land. The other is the market

for Real Estate Investment Trusts (REITs), which is a subset of the larger publicly traded

US equity market. This latter market becomes our natural laboratory, in that REIT share

prices are subject to all of the normal influences of stock prices in general, and yet we have

additional insights into REIT cash flows by measuring cash flows derived from the direct

property market.6

More precisely, REITs present at least two important advantages, when compared to

ordinary equity securities. First, due to the fact that REITs derive their cash flows from

the operation of commercial property, these firms should offer a higher level of transparency

than other firms, since commercial real estate (held and operated by REITs) is more straight-

forward to price than more complex assets held by ordinary companies (e.g. a production

line for rivets). Thus, there is less incentive and necessity for firm management to manage

traditional cash flow measures in order to signal information about the firm to the market, as

the informational asymmetry is lower.7 Second, it is possible to directly observe commercial

property income returns from the primary (or direct) real estate market, in which REITs

trade, but which of course has its own readily observable dynamics, since REITs only consti-

tute a part of this asset market. Thus, we as econometricians are better able to understand

the investor’s information set as it pertains to cash flows, since in this way we can proxy for

the cash flows that enter the firm. Securities for which one can observe this type of cash flow

information are extremely rare. However, if one can find these, they do constitute a more

appropriate empirical framework to use in testing the Present-Value paradigm. Correspond-

ingly, we are in the unique position to show that the paradigm actually functions (exactly

as formulated, for example in Shiller (1992) ) at the security level,8 for an important part of

the US equity market, in which cash flow information can be captured more fully.

6Plazzi, Torous and Valkanov (2010) examine this question in the other of the two parallel asset mar-
kets (i.e. the direct property market). In this privately-traded asset market they also find that cash flow
information plays a more important role in the price formation process than changes in the discount factor.

7See, for example, Wang, Erickson and Gau (1993). In addition to this, REITs are mandated to pay out
at least 90% of their taxable income as dividends. While this removes some discretion from dividend policy,
it is a less binding constraint than it seems, due to the high amounts of depreciation which REITs can claim.
See Kallberg, Liu and Srinivasan (2003), who also use REITs in the context of testing NPV models. We
discuss important differences between their work and our approach later. Section 2 also presents further
elaboration of this issue.

8This qualification is often referred to as the portfolio approach, to be distinguished from the macro

approach which examines overall firm value. Larrain and Yogo (2008) show that the paradigm works at the
overall firm level.
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The approach of Pontiff (1997) resembles ours in spirit, in that this study too uses a

subset of public equity markets better suited to test this question, as a natural laboratory.

However, our study differs markedly from that of Pontiff (1997), in that REITs allow us to

better examine cash flow data and how this information is incorporated in price formation.

An important difference is that we work with a richer data set which fully incorporates the

parallel asset markets at work in real estate. Thus, our setup examines more closely the

formation of prices placed on streams of cash flows. Closed-end funds yield a better insight

into already-formed underlying asset values and allow the author to test whether additional

volatility is imposed on these. In his context, Pontiff finds in favor of excess volatility, while

in our context we find that cash flows actually play an important role when more fully

captured by an empirical measure.

We first validate the use of our natural laboratory, by comparing the R2 from a Fama

and French (1993) three-factor model for our REIT industry portfolio to that obtained for

each of the Fama-French 49 industries and show that, at .54 this lies right at the center of

the distribution of industry R2s. This means that systematic risk plays as important a role

for these securities as it does across the rest of the stock market, and that therefore REITs

are as difficult to price as any other portfolio of securities.9

Our main approach relies on the methodology of Shiller (1992) and Campbell and Shiller

(1988a,b). We impose a structural model on asset price dynamics, which is based on an

empirically estimable version of a dynamic (i.e. time-varying) Net Present Value Model,

that is, a dividend ratio model. We use this to model the dividend yield based on variables

relating to cash flow- and interest-rate information, and test what fraction of the overall

variation in dividend yields this information explains.

We first use REIT dividends alone as a cash flow variable. As stated above, REIT

dividends should contain more information and be less smoothed than the dividends of

ordinary equities.10 This study’s most important contribution in this respect, however, lies in

9This finding also fundamentally differentiates our results from those of studies such as Vuolteenaho
(2002), who finds that cash flow information is important at the firm level but only constitutes idiosyncratic
risk in a portfolio setting. Given that we use a diversified portfolio and the variation of returns in our setting
is dominated by systematic risk, the results we present are therefore of a different nature than those of this
earlier study.

10Kallberg, Liu and Srinivasan (2003) test the dividend-yield models of Campbell and Shiller (1988a) on a
sample of REITs, using not just dividends but all distributions, and find that the dividend pricing model is
not rejected for REITs. They also rerun these tests on the S&P 500 Index, where they do reject the dividend
pricing model. Our benchmark results confirm these findings qualitatively, but our analysis is conducted out
of sample. Our study differs fundamentally from that of Kallberg et al. (2003), however, in that we capture
cash flows at the level at which they enter the firm, and do not merely limit ourselves to payouts.
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exploiting the relationship between the two parallel asset markets, by adding direct-property

returns data (instead of earnings data, like for example in Campbell and Shiller (1988b))

to the cash flow information set on which a dividend pricing model is tested. The data

we use for this purpose comes from properties held by entities which are not continuously

publicly traded, and it is collected privately and only published in aggregate by its provider.

Therefore, it seems that the participants who provide this data have little to no incentive for

manipulation or management thereof, and so this data should provide us as econometricians

with reliable information on the true cash flows produced by the commercial property market,

to measure the dynamics of cash flows that enter REITs. In this study we demonstrate the

improvement that this information content gives to traditional dividend pricing models.

Further, by more fully capturing cash flow-related information, we should also come closer

to isolating that component of dividend yields which is driven by changes in the discount

factor.

We follow the methodology of Campbell and Shiller (1988a,b), which consists of using

a vector of state variables containing the dividend yield as well as variables pertaining to

certain sources of variation in a VAR estimation, in order to construct predicted dividend

yields based on these variables. Economically, these predicted dividend yields constitute that

component of the variation in dividend yields which is driven by the variables in this state

vector. It is then possible to draw statistical comparisons between the predicted dividend

yields and the actual observed ex-post dividend yields, in order to determine how much of the

overall variation in dividend yields is captured by the state variables included. The figures

we produce in order to make this comparison are the ratio of the standard deviation of the

predicted dividend yields from each VAR specification over the standard deviation of the ex-

post observed dividend yields, as well as the correlation between the two series of dividend

yields. If this ratio is high, and at the same time the two series of dividend yields are highly

correlated, the predicted dividend yields constructed solely from a particular information set

closely mirror those actually applied to asset prices in the market, and therefore this set of

variables has a large influence on the overall variation in dividend yields and ultimately asset

prices. It is important to note once again that our empirical approach differs from that of

Campbell and Shiller (1988a,b)11, in that while these studies estimate their VARs over their

entire data sample and compute the predicted dividend yields just as fitted values from the

VAR estimation, we conduct our VAR estimations on which we base our predictions using

a 40-quarter rolling window, and construct the predictions out of sample. This should more

11As well as much of the rest of the literature, including Kallberg et al. (2003).
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cleanly capture the true information content available to market participants at a particular

point in time, while also allowing for the relationships described within this VAR system to

be time-varying.

Using quarterly data from 1980 through 2007, we begin by estimating a benchmark

VAR system, consisting of the logs of REIT dividend yields, the logs of REIT dividend

growth rates, and the logs of the long-term interest rate. We find that with two lags, where

this system seems to generate the best forecast dividend yields, the ratio of the standard

deviations of the predicted over the actual dividend yield is .7108, while the correlation

between the two yield series is .4528.12 When we add the logs of NOI yields (quarterly net

operating income to our direct property portfolio, divided by end-of-quarter REIT prices)

to this system, the ratio of the standard deviations increases to .9563, while the correlation

coefficient increases to .6847. These numbers increase further to .9813 and .7323, respectively,

when we add the logs of quarterly direct-property NOI growth to this system and do not

decrease much (.9291 and .7313), if we exclude the logs of quarterly REIT dividend growth

and only use the logs of dividend yield, NOI yield, NOI growth, and the long-term rate.

We further compute an out-of-sample R2 measure for each model.13 The dividend-only

specification yields an out-of-sample R2 of .30, while this is nearly doubled (.59) in the best-

performing specification which includes property-based cash flows.14 This presents strong

evidence that our direct property cash flow variables constitute important information for

the pricing of REITs. More generally, however, this suggests that, if cash flow information

is more fully captured empirically (at the level at which cash flows enter the firm), such

information does constitute a very important component in the determination of asset prices,

yielding generally strong support to the Present-Value paradigm.

We then estimate OLS regressions with the log-difference between the observed dividend

yields and the predicted dividend yields from each rolling VAR estimation as a dependent

variable, and log quarterly volatility of daily total REIT returns as an independent variable.

The idea behind this specification is that, after having accounted for variation in the dividend

yield that is due to cash flow and interest-rate information, we should have approximately

isolated a component of variation that should be related to time-varying risk premia, which

in turn should be driven at least in part by a measure of risk. If, on the other hand, we

12This ratio of standard deviations is close to that found in Kallberg et al. (2003), who use similar variables
in their VAR setup, while Campbell and Shiller (1988a) in the model specification that resembles ours but
uses regular stocks, find the ratio of standard deviations to be .186 and the correlation coefficient .253.

13See Welch and Goyal (2008).
14Figure 2 shows ex-post realized and predicted dividend yields for our best specification.
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have not isolated this component to enough of an extent (namely by subtracting from actual

dividend yields a component of variation in the dividend yield that does not satisfactorily

capture cash flow- and interest-related parts of variation), we should see other sources of

variation potentially overpower that component related to time-varying risk premia, and

thus obtain a model that is only noise.

In these regressions we do not find a significantly positive effect of log REIT return

volatility on either the overall log dividend yield itself (we run this model for calibration

purposes), or on observed dividend yield minus the predicted dividend yield generated with

REIT-dividend variables and interest rate only. We do find, on the other hand, that log REIT

return volatility has a significantly positive effect on both the log differences computed with

dividend yields predicted using our additional cash flow measures. While we must approach

these results with caution, as the coefficients are only significant at the ten-percent level and

the R-squareds are only .0482 and .0434, these results do seem to lend additional support

to our hypothesis that direct property cash flow information plays an important role in

determining REIT prices, and more generally that cash flow information, when captured

more fully, constitutes an important determinant of asset prices in general. This applies

especially if one considers that realized quarterly volatility only incompletely accounts for

risk-related pricing information (which must be forward looking).

The rest of this study proceeds as follows. Section 2 presents the empirical methodology

and results for the dividend yield models using our natural laboratory. Section 3 concludes.

2 Taking Advantage of the Parallel Asset Markets to

Assess the Performance of Dividend Pricing Models

2.1 Modeling the Dividend Yield

We employ dividend pricing models, as a useful approach in attributing the variability of

asset returns. This approach has been taken frequently in the asset pricing literature (see

for example Shiller (1987), Campbell and Shiller (1988a,b), Campbell (1991), and Kallberg

et al. (2003) who test this approach for REITs). This framework can be summarized as

follows.

In a basic view, a financial asset can be seen as simply a claim to all future cash flows

this asset offers, and thus can be priced as the present discounted value of all these cash

flows. With equity, these cash flows will consist of dividends paid out by a firm, and so a
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share of stock should be priced as the present discounted value of all future dividends, or

Pt =
∞

∑

k=1

γk
t+kDt+k (1)

In this formulation, the stock price today, Pt, is the sum of all future dividends (assuming

an infinite life time for the firm), discounted by a possibly time-varying discount factor

γτ < 1, and thus this formulation is called a dividend pricing model. Since the right-hand

side of equation (1) concerns future cash flows, the stock price Pt will in reality be based on

expectations of future dividends (E[Dt+k]), and (assuming a time-varying discount factor)

also on expectations of future discount factors (E[γt+k]).

A further modification in the approach to equation (1) will allow an additional insight.

The stream of expected future dividends, E[Dt+1], E[Dt+2], E[Dt+3], . . ., given the current

observed dividend, Dt, can be seen as a product of the current dividend and an expectation

of the dividend growth rate E[∆Dt+k], which means that, given today’s dividend, asset prices

depend solely on the market’s expectations of future discount factors and dividend growth

rates.

Pt = Dt E

[

∞
∑

k=1

γk
t+k∆Dt+k

]

(2)

It is therefore intuitively appealing to examine the dynamics of asset prices conditional

on the current dividend, in that this provides insight into the component of variation in

asset prices that is due to the market’s processing of current cash flow and discount rate

information, by making predictions of both discount rates and dividend growth rates into the

indefinite future. This provides an intuitive explanation for why a high degree of attention

has been devoted to modeling dividend-price ratios or dividend yields15 (in the above notation

Dt/Pt), and why we now turn our attention to this measure.

15This is a vast literature which we do not attempt to summarize here. A useful overview of this line of
literature is given in Campbell, Lo and MacKinlay (1997).
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2.2 Why REITs?

Real Estate Investment Trusts (REITs) offer distinct advantages in applying dividend pricing

models in several respects. First, REITs are mandated by law to pay out at least 90% of their

taxable income as dividends (this figure was 95% before 2000). However, while this regulation

is in place in order to make REITs more like pass-through investment vehicles, in reality

this is not a particularly binding constraint, in that a REIT’s taxable income is generally

low in comparison with its overall cash flows, due to the high amounts of depreciation a

REIT can deduct, due to its property holdings. Thus, while to some extent, there is a

constraint placed on REITs’ dividend policy and these firms’ ability to manage dividends

(thus apparently making their dividend stream a better proxy for their true underlying

cash flows than that of other firms), there is still a large heterogeneity of dividend payout

ratios, indicating that a large amount of discretion exists on the part of management in

determining dividends. Kallberg et al. (2003), for example, find that out of the 50 largest

REITs in 1999, only three paid out the required 95%, while the median payout ratio lies at

111%, and the distribution of REITs’ payout ratios extends well above this number. Due to

the misleading nature of the taxable income figure with respect to REITs, the industry uses

Funds From Operation (FFO) as a cash flow measure, which adjusts, among other things,

for depreciation.16 While there is less dispersion in the percentage of FFO that REITs pay

out as dividends (the median figure here lies at 85%, according to Kallberg et al. (2003)),

there is still some dispersion (the authors find that 84% of firms pay between 70 and 105%

of FFO), which may indicate some degree of dividend management by REITs, and therefore

even for REITs, dividends remain a noisy proxy of the firm’s underlying cash flows, and thus

of the cash flows investors perceive equity ownership entitles them to. However, it does seem

to be the case that the dividend payout constraint (or perhaps the custom of paying out a

large percentage of cash flows as dividends) does add at least somewhat more information

content to REIT dividends than what one finds in the dividend of other firms.

A second factor which should increase the overall informativeness of REIT dividends lies

in these firms’ relative transparency, which may make signaling through dividends less of a

motivation for dividend management, since there is generally less informational asymmetry,

and therefore less necessity for this. Wang et al. (1993), for example, document that while

REIT prices tend to exhibit abnormal returns upon dividend announcements, the magnitude

of these returns is only about 40% that of ordinary equities. Thus, while one must approach

16Further adjustments include amortization as well as revenues from unconsolidated partnerships and joint
ventures.
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both of these points with some degree of caution, it does seem to be the case that dividends

themselves offer a greater information content about the cash flows of the firm in the case of

REITs, when compared to other equities. This explains the results of Kallberg et al. (2003).

There exists a second important advantage in using REITs to determine the relative

importance of cash flows versus market predictions on discount factors, in the dynamics of

price formation. Because REITs generate their cash flows by holding and operating com-

mercial real estate, and commercial real estate returns themselves are generally observable,

it is possible to use returns data directly from the commercial property market, to proxy for

data on REIT cash flows and supplement the information content of dividends. For exam-

ple, the cash flows a REIT earns by holding a property of a particular type (say, an office

building) in a particular city (say, New York City) should be closely related to the overall

rental cash flows that the market for New York office buildings gives at that time. Simi-

larly, in aggregate, the dynamics of the cash flows earned by the REIT industry as a whole,

should be closely related to those of the cash flows a broad nationally diversified portfolio of

commercial properties of the same type generates. This study’s contribution in this respect

lies in exploiting this relationship between the two asset markets, by adding direct-property

returns data to the cash flow information set on which a dividend pricing model is tested.

While REITs present the above advantages in terms of granting us as econometricians

insight into the investor base’s cash flow information set, at the same time the general nature

of the stock returns to this industry very much resembles that of other industries within the

US publicly traded equity market. In order to demonstrate this, we run regressions of excess

returns to our REIT portfolio on the three factors from a Fama and French (1993) three-

factor model. We also perform these regressions for each of the Fama-French 49 industries for

comparison. Figure 1 shows the histogram of R
2

obtained in these regressions. For REITs

the R
2

equals 0.54, while the median R
2

from the 49 industries equals 0.60 and the mean is

0.56. These results indicate that the traditional factors play a similar role in pricing REITs

as they do in pricing other industries. Further, these results indicate that REIT returns

contain a significant amount of systematic shocks.

This fact also constitutes a key distinction between our experimental setup and that

of Vuolteenaho (2002), who examines this question on an individual firm level and finds

that cash flows are an important driver of returns in that setting. Vuolteenaho’s finding

is reconciled with excess volatility, by arguing that cash-flow related variation accounts for

idiosyncratic risk, but is then diversified away at a larger portfolio level.17 The above results

17To our knowledge, no economic explanation has so far been found for why this should happen, and, for
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show that systematic variation accounts for more than half the total variation of returns

in our setting (at least four times as much as one would find on any individual firm in the

market). Thus, our finding that cash flow information constitutes an important driver in

the price formation process for a portfolio this diversified, simply will not allow for the same

reconciliation to be made between our findings and market-wide excess volatility, as can be

made for those of Vuolteenaho (2002). Thus, we offer important new insights into this topic,

beyond those of this earlier study. The power of our study to do this pivots crucially on the

availability of a more reliable cash flow measure within our natural laboratory, which has

not been the case for any study in the past.

These results thus indicate that the price formation for REITs should follow a similar

process to that for other industries in publicly traded US equity markets, and that systematic

risk factors play as important a role for pricing these stocks, as they do for the stocks of

other industries. Yet at the same time, with REITs we have unique insight into the investor’s

information set regarding cash flows. Therefore, REITs constitute an ideal natural laboratory

to shed new light on the role of cash-flow information within a dynamic net-present-value

model, applied to stocks.

2.3 The Empirical Approach

In the Campbell and Shiller (1988a,b) framework, dividend pricing models are tested by

attributing a component of the variation in the dividend yield to a part of the investor’s

information set which is linked to the dynamics of dividends. If this component does not

constitute a sufficiently high fraction of the overall observed variation in the dividend yield,

the dividend pricing model is rejected. In order to model the dividend yield based on this

information set, Campbell and Shiller employ a Vector Autoregression (VAR), and we follow

their technique, and for the purpose of this exposition largely borrow their notation.

It is clear from equation (2), that while the dividend yield (Dt/Pt) is a function of

expected dividend growth rates and discount rates, this relationship is non-linear, and it

would therefore not be possible to model this variable within the linear framework of a VAR.

In order to remedy this, Campbell and Shiller re-write this equation in terms of natural

logarithms of variables. In the limit as the prediction window becomes arbitrarily large, and

assuming constant excess returns, Campbell and Shiller obtain what they term the dividend-

ratio model, or the dynamic Gordon Model, a dynamic version of the Gordon Growth Model18

example Chen and Zhao (2009) show specific empirical evidence against this.
18In the Gordon Growth Model, both the discount rate and the dividend growth rate are assumed to be
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in which expected dividend growth rates, as well as, to a certain extent, discount factors can

vary through time:

δt =
∞

∑

j=1

ρjEt [rt+j − ∆dt+j ] + C (3)

This version of the dividend ratio model assumes that, while the risk-free interest rate

can vary through time, the excess return is constant. In this representation, δ is the log of

the dividend yield, rt+j is the return to an alternative asset (a proxy for the risk-free rate)

during the time period ending j periods from now, ∆dt+j is the dividend growth rate during

this time period, ρ is the ex-post observed discount factor, and C is a constant relating the

observable discount rate to the actual, unobservable discount rate.

It is now possible to model the time-series dynamics of the dividend-ratio model through

a VAR consisting of the variables δt and rt − ∆dt, the growth-adjusted interest rate. Since

this is just a restricted form of a three variables VAR system, modeling δt, ∆dt and rt

separately, we elect to use this latter specification. Thus, with only one lag, the basic VAR

we estimate becomes:







δt

∆dt

rt






=







a11 a12 a13

a21 a22 a23

a31 a32 a33













δt−1

∆dt−1

rt−1






+







u1,t

u2,t

u3,t






(4)

In this representation, aij are the regression coefficients and ui,τ are error terms, while

all other variables are as defined above. We also estimate augmented versions of this system

which include direct-property cash flow variables, creating systems of up to five variables

and including up to two lags.19 We de-mean all data, in order to be able to specify these

systems without a constant.

The system in equation (4) can be written more compactly in matrix form as

zt = Azt−1 + vt (5)

where zτ is the observed vector of state variables at time τ , A is the matrix of coefficients,

constant through time, and so the dividend yield becomes an exact linear function of the discount rate (r)
and growth rate (g), or Dt/Pt = r − g.

19For details on the exact regressions we estimate as well as variable definitions, please see section 2.4.
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and vt is the vector of error terms. Economically, it can be argued that the vector of state

variables zt contains all present and past information concerning the variables in this vector.

Therefore, in order to construct a forecast of this vector k periods ahead, conditioned upon

this information set, one simply needs to multiply zt by the matrix of VAR coefficients A

raised to the k power. In other words, forecasts are computed as

E[zt+k] = Akzt (6)

We proceed by estimating various specifications of this VAR system over a 40-period

rolling window (i.e. at any time t we use observations from t−39 to t, to generate At,t−39) and

creating a one-period out-of-sample forecast δ′t+1, which economically represents the portion

of the dividend yield that is entirely based on the information contained in the state vector

used. We then draw statistical comparisons between the series of forecast dividend yields

based on only cash flow and interest rate information, and the ex-post realized dividend

yield for the same period (δt+1), in order to determine how well the overall dynamics of

the dividend yield are explained by these state variables. Since none of our state variables

concern time-varying risk premia, we posit that the portion of dividend yields that is not

forecast by our VAR will be largely due to this component, and conduct basic tests for this

hypothesis, using the difference between forecast and observed dividend yields.

Note that our empirical approach differs from that of Campbell and Shiller (1988a,b) and

other studies in this literature, in that earlier studies estimate the matrix of coefficients A

over the entire sample, and generate their predicted values δ′ as essentially just fitted values

from the VAR. Our approach seems advantageous in this respect, in that by predicting δ′

out of sample, we use only information about state variables that truly was available to

market participants at that particular time. Further, by doing this, we allow the nature of

the cash flow and interest rate processes to vary through time, which these previous studies

do not do. Our technique also demonstrates that even with a relatively short estimation

period upon which A is estimated, ex-post reasonable estimates can be generated from this

data. Finally, by using only one-quarter forecasts and not a sum of infinite-horizon forecasts,

we do not need to pick an exogenous discount factor ρ, since we do not need to produce a

bounded sum of future growth rates. The implication here would simply be that the VAR

coefficients we estimate differ from the true weightings the market places on these sources of

information by a cross-sectionally consistent multiplicative constant. Since we do not place

much interest on the size of the coefficients we obtain, this does not matter to our analysis.
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2.4 Data and Methodology

The innovation of this study within the framework of modeling the dividend yield lies in

adding information related directly to the underlying property market to the traditional

REIT dividend information. This allows us to more closely proxy for the overall cash flow

information, with which an investor or analyst is able to make forecasts. This informa-

tion is derived from the data provided by the National Council of Real Estate Fiduciaries

(NCREIF). NCREIF collects data on Net Operating Income (NOI), as well as appraisals

from a large portfolio of institutional-grade commercial properties. Table 1 shows the total

appraised value of the portfolio NCREIF follows, in comparison with the total estimated

market capitalization of publicly-traded REITs at the end of each year since 1980. It is ap-

parent from this comparison that the size of the portfolio followed by NCREIF is similar to

that of the overall REIT industry. The properties on which NCREIF collects data are held

by private institutions such as commingled real estate funds. It is widely documented that

the appraisal values used in this data are somewhat problematic, in that they suffer from

various types of appraisal bias. However, in this part of the study, we only use Net Operating

Income (NOI), which is simply the quarterly operating cash flow for each property, reported

to NCREIF directly, and which therefore does not suffer from these problems.20 The types

of commercial property covered by NCREIF are Apartment, Hotel, Industrial, Retail, and

Office. When we construct the REIT data we only retain equity REITs which invest in

these types of properties in our sample.21 This data is of quarterly frequency, and this is the

frequency we use throughout this study. We obtain NOI per square foot values from this

dataset, disaggregated by property type. We then use weights based on the relative market

capitalization of the REITs that invest into this property type, in order to form a weighted

average quarterly NOI per square foot, which becomes our basic direct property cash flow

measure. Table 1 shows these weights as of the end of each year. Weights are computed

quarterly, based on REITs’ relative market capitalization at the end of the previous quarter.

The direct-property NOI variable has two very desirable properties in terms of the in-

formation content on direct property cash flows it provides. First, as mentioned above, the

20Net Operating Income consists of rental revenue (as well as other ancillary income, such as parking
revenue, billboard space, etc.) minus operating expenses. Capital Expenditures made on the property are
not part of NOI, as these are not considered part of the property’s normal operations. While we also have
data on CapEx, we elect to exclude this quantity from our direct-property cash flow measure, as economically
this should not constitute an industry-wide systematic expenditure, to which REITs would necessarily also
be exposed.

21Further, until 1983 the NCREIF portfolio does not contain any Hotel properties, and thus we eliminate
Hotel REITs from our sample before this time.
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properties in the NCREIF dataset are held by institutions which are not publicly traded.

Therefore, the managers of these property portfolios have no adverse market overreaction to

fear, upon reporting lower-than-expected cash flows, a common explanation for the incen-

tive to smooth dividends and even earnings for publicly traded firms. Second, the NOIs for

each individual property are reported to NCREIF in private under a strict non-disclosure

agreement, and NCREIF then only publishes these returns in aggregate. This should fur-

ther mitigate the incentive for managers to smooth or mask low cash flows for a particular

quarter.

Our data on REITs comes from the Center for Research in Securities Prices (CRSP). We

identify and use all equity REITs which invest in the five types of property that NCREIF

covers, and form a value-weighted portfolio, using market capitalizations from the end of the

previous quarter (quarter t−1) to compute weights for quarter t. This procedure makes this

portfolio tradeable. Further, at the end of each quarter, we record the market capitalization

of all the firms we identified as investing into the NCREIF property types as a fraction of total

REIT market capitalization that quarter (end-of-year snapshots are reported under Fraction

Matched in Table 1), as well as the market capitalization associated with each of our five

property types, as a fraction of all firms we were able to match (end of year snapshots are

reported under each property type heading in Table 1).22 These fractions serve as weights to

construct the weighted-average NOI per square foot coming from NCREIF. Our data starts

in 1980.

The basic variables we then construct for this portfolio are a series of quarterly weighted-

average total returns (variable RET in CRSP), which includes dividends and other distribu-

tions, and a series of quarterly weighted average price returns (variable RETX in CRSP),

which consists of quarterly price movements only. We then construct a series of weighted

average dividend yields, which at time t is defined as the total weighted average distributions

during quarter t divided by the price at the end of quarter t. We also construct a series of

quarterly weighted-average dividends for the REIT portfolio. Both series are constructed as

functions of the total return and price return series, and (as is customary with index-type

construction) are defined up to an arbitrary multiplier, which is consistent through time.

For details on the construction of these series, see Appendix A. We also construct a REIT

price index, which we set to a value of 100 in the last quarter of 1979, and we then compute

as 100 times the geometrically compounded price returns. The REIT variables we use in

22Once again, since NCREIF does not cover any hotel properties until 1983, we exclude these REITs from
our sample until then.
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our analysis are the natural logarithm of the dividend yield (div.yield), and the log of the

quarterly dividend growth rate (∆dividend), which is defined as the difference of the logs of

the dividends paid in quarter t and in quarter t − 1.

We further define the variable (noi.yield), as the natural log of the ratio of weighted-

average NOI per square foot over the end-of-quarter level of the REIT price index mentioned

above. Once again, this variable is defined only up to an arbitrary multiplier which is constant

through time.23 The other direct-property cash flow variable we use is ∆noi which is the

first difference in the natural logs of quarterly weighted-average NOI per square foot figures,

and represents the quarterly growth rate of direct property cash flows.

The final variable we use for our analysis is lt.rate which is defined as the natural log

of the long-term interest rate as of the end of quarter t. We use the 30-year US Treasury

Bond rate where available, and otherwise the 20-year US Treasury Bond rate. Note that

Campbell and Shiller (1988a,b) use the short-term interest rate for their analysis. We elect

to use the long-term interest rate, because this variable offers a better idea of the market’s

indefinite forecast of future risk-free rates. While we only construct one-quarter forecasts

of the dividend yield from our VAR, economically these should still constitute the market’s

best forecast of the combination of dividend growth rate, cash flow growth, and the risk-free

rate, over the indefinite future, and so the choice of a long-term interest seems warranted.

2.5 Results and Implications

Before proceeding to a discussion of the results from our VAR procedure, we present a simple

and preliminary test designed to illustrate that the time-series dynamics of our noi.yield

measure behave as we would expect those of a dividend yield to behave. This in turn

should constitute preliminary evidence that direct property NOIs give useful information

for the cash flow-related portion of REIT price movements. Specifically, we run a simple

OLS regression of the first difference in noi.yield on the change in lt.rate. Note that both

variables are logs of their raw data series, and so these first differences approximate fractional

changes in these series. Economically, since the dividend yield consists in part of the risk-free

rate, a change in the latter should cause a change in the former, with the two changes being

positively related. Conversely, if noi.yield does not resemble a dividend yield at all (most

likely because NOIs do not yield useful information about REIT cash flows and therefore

REIT prices), fluctuations in NOI yield would be less likely to be explained by fluctuations

23Because we de-mean all data in our VAR analysis, the size of these multipliers is irrelevant for all
variables, even those that are not defined as a log difference.
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in the long term rate.

Table 2 shows the results from this regression. The coefficient for the interest rate is

positive, and statistically significant at the 10% level. The R2 from the model is .027. It

is congruous with economic intuition that the risk-free interest rate alone should explain a

part of the dynamics of a cash-flow yield, yet not a very important one. Therefore, these

results establish preliminary evidence that direct-property NOI yields contain economically

meaningful cash flow yield information, in that the time-series dynamics of our NOI yield

do resemble those of a dividend yield.

Table 3 presents the matrix of coefficients for the one-lag version of the most complete

VAR system we estimate, estimated on the entire 1980-2007 sample, in order to illustrate

some of the dynamics and interlinkages between our data series. We include a time trend

variable in all systems. In the first line of Table 3, we see that the dividend growth rate

from the previous period negatively affects dividend yield, and that this effect is significant

at the 5% level (coefficient of −0.2132 and t-statistic of −1.9961). Further, we can see that

noi.yield the previous period significantly positively affects div.yield (coefficient of 0.1975,

t-statistic of 1.9099). This can be contrasted with the earnings yield used in Campbell and

Shiller (1988b), which, while helping the VAR system as a whole, does not show a significant

effect on the dividend yield next period. In this equation, the coefficient on the risk-free rate

is positive and very significant. Together with the negative and significant coefficient on the

dividend growth rate, this does coincide with the basic formulation of the Dynamic Gordon

Model (equation 3), which models the dividend yield as a function of the growth-adjusted

interest rate. One more issue of note about this equation is that its R2 is 0.5867, while

that of the equivalent equation in Campbell and Shiller (1988b) is 0.503, so we do explain

a slightly higher fraction of the dividend yield with our direct-property cash flow measures

than Campbell and Shiller do with earnings.

Of note in the second line of Table 3, is the significantly positive coefficient on noi.yield

(coefficient 0.2163, t-statistic 2.2719, which makes this coefficient 5% significant). This sug-

gests that direct property cash flow information is relevant in predicting not just REIT divi-

dend yields, but also REIT dividend growth rates. Besides this, the coefficient on ∆dividend

may be of note, in that it is negative, while Campbell and Shiller (1988b) find this to be

significantly positive. This may be due to intra-year autocorrelation patterns in dividends

which are apparent in our quarterly data, but get smoothed out of the annual data Campbell

and Shiller use.

We can also see from Table 3 that the three remaining variables are strongly autocor-
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related, noi.yield and lt.rate positively, and ∆noi negatively.24 Besides this, ∆dividendt−1

seems to have a significantly negative effect on ∆noit. Economically this effect is difficult

to rationalize, and we can perhaps ascribe it to different seasonality patterns in what is

otherwise a pair of series that describe very similar information.

Table 4 presents the primary results from this section. For each quarter t > 40, we

estimate eight different VARs, over a rolling 40-quarter (10-year) time window and with

the estimated coefficient matrix generate a predicted log dividend yield for the next quarter

t + 1 (pred.div.yieldt,t+1). As mentioned before, intuitively this should be a dividend yield

that only contains the information included in the VAR. We draw statistical comparisons

between this predicted dividend yield and the ex-post realized dividend yield for quarter

t + 1. The reason we include only two lags in this table is because the full VAR system that

contains both dividend and NOI growth rates becomes near rank-deficient at greater lags.

While this prevents us from investigating higher-order lags,25 this is also quite informative,

in that this shows that the dividend growth rate and the NOI growth rate contain very

similar information. The table reports for each VAR specification, the ratio of the standard

deviations of the predicted and the realized dividend yield, as well as the correlation between

the two, together with a test statistic of the hypothesis that the true correlation between the

two series is 0. While, ideally, we should be pleased with the ratio of the standard deviations

being as close to 1 as possible, in that this would presumably show that the VAR system

is explaining a large fraction of the variation in realized dividend yields, one must approach

this statistic with caution, since another reason why this statistic is high could simply be the

fact that the predicted dividend yield is constructed very imprecisely, for example from noisy,

unstable VAR coefficient matrices. Only in conjunction with a high correlation coefficient

can we infer that the variation in the predicted dividend yield actually resembles that of the

realized dividend yield.

VAR System 1 contains the benchmark model specification without direct-property cash

flow measures, making this a specification that is comparable to that of Campbell and Shiller

(1988a) and Kallberg et al. (2003). For one lag, we obtain a ratio of standard deviations

of 0.6941 and a correlation coefficient of 0.4593 and this is nearly unchanged if we extend

the VAR specification to two lags. This closely resembles results of Kallberg et al. (2003),

who obtain standard deviation ratios of 0.5970 and 0.7575 respectively, without conducting a

24The persistence of these variables is not problematic in the VAR setting, given our focus on predicted
values rather than significance of coefficients.

25For the sake of consistency we only use one and two lags for each of the other specifications, where this
would not be the case. Using one or two lags is also standard in this literature.
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rolling window VAR estimation.26 In the model estimated by Campbell and Shiller (1988a)

that is closest to this specification, the ratios of standard deviations are 0.186 and 0.253

respectively, while the correlation coefficients are 0.395 and 0.383. Thus despite the fact that

we as well as Kallberg et al. (2003) use a quarterly frequency while Campbell and Shiller

(1988a) use an annual frequency, it seems to be the case that REIT dividends themselves

offer more pertinent information for forecasting dividend yields, than the dividends of other

companies. For REITs we manage to explain a higher fraction of the variation in dividend

yields, and due to the higher correlation coefficient we can infer that this is not just due to

more estimation noise, but that the variation in these predicted dividend yields really does

follow that of actual yields more closely.

As is visible in the next panels of Table 4, these results improve dramatically when direct-

property cash flow variables are added to the rolling VAR system. When adding the noi.yield

in System 2, we find that the ratio of standard deviations increases to 0.9298 for one lag

and 0.9563 for two lags, with the correlations at 0.6086 and 0.6847, respectively. Adding

the NOI growth rate, further improves these values to 0.9765 for one lag and 0.9813 for two,

with correlations of 0.6503 and 0.7323, respectively. Once again, while the increase in the

ratio of standard deviations alone would not necessarily indicate better performance of these

specifications over the benchmark model, the strongly increased correlations yield strong

credibility to the idea that direct-property cash flows do proxy for important information in

REIT price formation.

System 4 omits REIT dividend growth rate, and retains the two direct-market cash flow

variables. This system performs especially well with two lags, where the ratio of the standard

deviations is reduced to 0.9291, while the correlation figure is only reduced to 0.7313 (from

0.7323 in the full specification). The inference we draw from this is twofold. First, it is

probably the case that the reduction in the ratio of the standard deviations is due in large

part to a reduction in estimation noise, since the correlation is almost unchanged. Second,

and more importantly, however, it seems to be the case that the quarterly direct-property

NOI growth rate contains more relevant information to generating predictions about the

future value to be derived from REITs, than the REIT dividend growth rate itself. This

highlights the importance of the information contained in this measure in pricing REITs.

Figure 2 shows a plot of the predicted dividend yield (the red dashed line) and the ex-

post realized dividend yield (the black solid line). Notice how closely the predicted dividend

yield tracks many of the movements of the ex-post realized yield. This plot, together with

26Kallberg et al. (2003) do not report correlation coefficients of predicted and actual dividend yields.
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the results in Table 4 presents strong evidence that cash flow information, when completely

accounted for, does constitute a very important part of price dynamics. The problem with

previous studies has simply been that it is very difficult to measure the true underlying cash

flows of a firm. With the unique opportunity that REITs offer, in that the direct property

market yields an informative view of the firm’s true cash flows, we are in fact able to show

that a strong dependency exists between cash flows and security prices.

We supplement these results by computing an out-of-sample R2 measure along the lines

of Welch and Goyal (2008). The measure is defined as follows:

R2
OOS = 1 −

∑T

t=40(δ
′

t,t+1 − δt+1)
2

∑T

t=40(δt − δt+1)2
(7)

In this expression δt+1 is the ex-post realized dividend yield at time t+1, δ′t,t+1 is the predicted

dividend yield for time t + 1 generated at time t from the 40-quarter rolling VAR, and δt

is the historical average dividend yield over the 40-quarter rolling window ending at time t.

This figure compares the sum-squared prediction error from the VAR to the prediction error

that would be obtained by using the historical mean as the best predicted dividend yield.

The more of an improvement the VAR offers over the historical mean, the closer to 1 this

statistic gets. If the VAR does no better than the historical mean, the statistic is zero, and

if it does worse, the statistic is negative. We calculate this measure for the two-lag version

of each VAR system in Table 4.

For System 1, which contains only REIT dividends and growth rate, we obtain an out-

of-sample R2 of 0.3040. This measure increases to 0.5165 for VAR System 2 which includes

NOI yield in addition to the previous measures and to 0.5346 for VAR System 3, which also

includes NOI growth. For VAR System 4, we obtain an out-of-sample R2 of 0.5909, which

supports our earlier conjecture that by removing REIT dividend growth, we obtain a VAR

system that contains largely the same explanatory power, but less estimation noise. These

results further strengthen our overall picture that a large portion of dividend yield variation

can be explained by cash flow information, when such information is measured more fully.

We perform two robustness tests for this setup. First, we estimate a set of single VAR

systems over the entire sample, one for each specification shown in Table 4, and then produce

“predicted” dividend yields as fitted values from each VAR. Of course, it should be clear that

such a procedure cannot possibly model the true price formation process of investors in the

market, as, for example, observations of state variable levels in 2007 were not available to
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investors in 1990. Thus, doing this introduces look-ahead bias to the empirical methodology.

However, this type of in-sample “prediction” is common in this literature, and we therefore

test this alternate empirical setup, for consistency. The second robustness test we undertake

is to specify the VAR models shown in Table 4 with the inclusion of quarter dummies,

to account for possible seasonality effects. In both cases, our results remain qualitatively

unaltered.27

The final test we conduct in this section constitutes a preliminary attempt to model the

nature of the residual variation in dividend yields, that is not explained by a state vector

containing reliable cash flow proxies, and the risk-free rate. Economically, this variation

should be brought about by time-varying risk premia, which determine a security’s required

outperformance over the risk-free rate. From basic intuition, these should be a product of

the market-price of risk, and forecast volatility. If using logs, once again we should have a

linear relationship here. Specifically, we run an OLS regression with as dependent variables

the difference between the ex-post realized log dividend yield and the predicted log dividend

yields from our VARs, and as an independent variable the log of realized volatility (variance)

of daily total returns to the value-weighted REIT portfolio over the same quarter. While

the risk measure that should enter into a dividend yield would need to forecast the entire

expected term-structure of volatility, it would seem that the most recent realized volatility

would feature prominently in the information set used to conduct such a forecast, and that

therefore it should help explain at least some of the residual variation in dividend yields.

Additionally, if the dividend yield still has too much other variation left in it (i.e. we have not

isolated the risk-related component in its variation enough) this other variation, especially if

not completely orthogonal to risk-related variation, might mask the component of variation

that is due to volatility, yielding a noise relationship in this regression.

Table 5 shows the results from this regression. Note, first of all, that in the first column,

where the dependent variable is the entire log dividend yield, the coefficient for volatility

is indistinguishable from zero. As mentioned above, while presumably the overall dividend

yield should at least in part be driven by volatility, it seems to be the case that the variation

related to this variable is masked by other sources of dividend yield variation, leading to

no significance in the regression. Following in this line of argument, we find practically no

improvement over this in the second column, where we use the difference between realized

dividend yields and the dividend yields predicted by VAR System 1, which has only dividend

and interest rate variables, but no direct-property cash flow variables. It still seems to be the

27The results are not reported here to save space, but are available from the authors upon request.
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case that this predicted dividend yield does not account for enough of the cash flow-related

variation in dividend yields, in order to isolate in a clean enough way, the component related

to risk.

This situation, however, changes in the third column, where we use as a dependent

variable the difference between the realized dividend yield and the predicted yield from

VAR System 3, which adds NOI yield to the REIT dividend and interest rate variables. In

this model, we find a positive coefficient of 0.0509, with a t-statistic of 1.8298, making this

coefficient significant at the 10% level. From basic intuition, we would in fact expect a risk

measure to have a positive effect on the dividend yield, as higher risk should increase the

overall discount factor, and therefore lower prices relative to dividends. A similar situation

can be found in the fifth column, where as a dependent variable we use the difference between

the realized dividend yield and the predicted dividend yield from VAR System 4, which

contains no REIT dividend growth, but only REIT dividend yield, NOI yield, NOI growth,

and the risk-free rate. In this model we also have a positive significant coefficient of 0.0441,

with a t-statistic of 1.7311, also making this coefficient significant at the 10% level. The

R2 for the two models are similar, at 0.0482 and 0.0434, respectively. The model based on

predicted dividend yields from System 3, does not exhibit a positively significant coefficient;

however, the coefficient value for volatility, its t-statistic, as well as the model’s R2 are more

comparable with the other models that contain predicted dividend yields based on direct

property cash flow information, than with those that do not. It may be the case here,

that the estimation error argument raised above becomes relevant in this case, in that the

predictions from System 3 seem to be more noisy.

These results further validate the usefulness of reliable cash flow measures in modeling

dividend yields. It seems that by modeling the cash flow-related portion of the variation in

dividend yield more accurately, we are not only able to demonstrate the relative importance

of true cash flow information in asset price formation, but we are also able to more cleanly

isolate components of the dividend yield that are driven by time-varying risk premia.

3 Conclusion

In this study we examine sources of variability in asset returns within a framework of a

dividend pricing model. We use data on two parallel asset markets – Real Estate Investment

Trusts (REITs) and on directly owned real estate. Thus, we supplement information on

REIT cash flows with information on cash flows derived from the direct property market.
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We find that this fuller view of cash flow information significantly improves the performance

of the dividend discount asset pricing model.

We analyze the connection between cash flows and asset returns within the structural

framework of the dividend pricing model, and more specifically by modeling the dividend

yield. We find in basic tests that the time-series dynamics of our direct-property NOI-based

yield resemble those of a dividend yield, and that therefore direct-property NOIs do seem

to contain useful information for REIT prices. Further, we are able to generate predicted

dividend yields (based on information from REIT dividends and cash flow information from

the direct property market) which closely resemble ex-post observed dividend yields. We are

thus able to show that a strong dependency exists between cash flows and security prices,

if this cash flow information is captured fully enough. Further, we demonstrate that by

modeling the cash flow-related portion of the variation in dividend yield more accurately,

we are also able to more cleanly isolate components of the dividend yield that are driven by

time-varying risk premia.

Taken together, these findings suggest that better measurement of cash flows (dividends)

can significantly improve the performance of dynamic dividend pricing models, and thus

contribute to the resolution of the excess volatility puzzle.
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A Appendix: Computation of Weighted-Average Div-

idend and Dividend Yield Series

This section illustrates the method we use to compute the weighted-average dividend and

dividend yield series for the value-weighted REIT portfolio. CRSP has two return figures:

RET and RETX. RET is total holding period return, and RETX is holding period re-

turn excluding distributions. While both of these contain factors to adjust for stock splits,

conceptually, we have:

RETt =
Pt + Dt

Pt−1

− 1 (8)

RETXt =
Pt

Pt−1

− 1 (9)

Thus, the dividend yield yt = Dt/Pt for our weighted portfolio is constructed as

yt = (rett − retxt) × (retxt + 1)−1 (10)

This is because

(rett − retxt) × (retxt + 1)−1 =

[

Pt + Dt

Pt−1

− 1 −
Pt

Pt−1

+ 1

]

×
Pt−1

Pt

(11)

=
Dt

Pt−1
×

Pt−1

Pt

= Dt/Pt

Here rett and retxt are the total returns and price returns respectively, to our value-weighted

portfolio of REITs over quarter t. Pt is the price at the end of quarter t, and Dt the total

dividend paid out over quarter t, to someone holding one share of the value-weighted index.

Subsequently, the dividend for quarter t (Dt) is computed as the dividend yield above,

multiplied by the level of our REIT price index. This figure is once again only correct up to

an arbitrary multiplier that is consistent over time. However, since we use log-differences of

this dividend series for our study, this is irrelevant.
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Adjusted R−squares for 49 Industries (F−F 3−Fac)
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Figure 1: This figure shows the distribution of adjusted R2 obtained by regressing each of
the Fama-French 49 industries on a Fama-French three-factor model.

Note: Mean: .565. Median: .602.
R2 for REITs: .537.
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Table 1: Summary Statistics for REIT and Property Portfolios.
This table presents summary statistics for the REIT– and Direct Property data, as of the end of each year in our sample. The statistics presented are the total market

capitalization of the REIT industry (in millions of Dollars), the fraction of market capitalization that we matched against NCREIF’s property types (Apartment, Hotel,

Industrial, Office Retail), the fraction of the matched portfolio market capitalization that is made up by each property sector, and the total appraised value of all

properties in NCREIF’s property universe (also in millions of Dollars).

Year Total Industry Fraction Matched Apartment Hotel Industrial Office Retail Total NCREIF
Capitalization Portfolio Value

1980 3, 365 0.361 0.305 0 0.069 0.048 0.579 1, 770

1981 3, 115 0.307 0.384 0 0.091 0.049 0.477 3, 351

1982 4, 451 0.301 0.456 0 0.121 0.033 0.39 4, 603

1983 5, 554 0.411 0.395 0.095 0.054 0.025 0.43 8, 427

1984 5, 901 0.436 0.408 0.107 0.048 0.041 0.396 10, 828

1985 7, 673 0.362 0.305 0.128 0.095 0.049 0.422 14, 575

1986 10, 438 0.325 0.326 0.091 0.102 0.037 0.444 17, 214

1987 9, 890 0.334 0.264 0.093 0.118 0.046 0.48 21, 025

1988 11, 140 0.343 0.235 0.063 0.107 0.106 0.488 26, 472

1989 11, 889 0.372 0.196 0.034 0.082 0.106 0.581 30, 801

1990 9, 302 0.343 0.187 0.018 0.065 0.108 0.622 37, 066

1991 13, 289 0.336 0.219 0.008 0.043 0.104 0.626 37, 423

1992 16, 903 0.394 0.229 0.004 0.027 0.069 0.671 39, 289

1993 33, 336 0.532 0.3 0.006 0.048 0.081 0.565 39, 872

1994 44, 429 0.665 0.313 0.024 0.105 0.089 0.469 38, 919

1995 59, 305 0.661 0.281 0.073 0.1 0.118 0.429 45, 896

1996 82, 171 0.68 0.275 0.096 0.123 0.163 0.342 51, 817

1997 137, 833 0.769 0.213 0.132 0.127 0.276 0.252 61, 744

1998 146, 105 0.78 0.198 0.167 0.132 0.247 0.257 63, 344

1999 126, 649 0.779 0.227 0.118 0.141 0.242 0.271 77, 024

2000 137, 756 0.819 0.234 0.124 0.149 0.265 0.227 89, 383

2001 162, 026 0.758 0.231 0.106 0.145 0.248 0.27 105, 175

2002 170, 319 0.741 0.219 0.104 0.141 0.231 0.305 110, 797

2003 229, 935 0.727 0.211 0.101 0.133 0.215 0.34 119, 999

2004 321, 050 0.691 0.198 0.12 0.158 0.2 0.323 127, 365

2005 363, 112 0.708 0.194 0.132 0.136 0.206 0.332 155, 700

2006 494, 965 0.701 0.195 0.163 0.117 0.23 0.296 195, 663

2007 375, 748 0.679 0.163 0.163 0.152 0.177 0.345 246, 209

Note that NCREIF’s data contains hotels only from 1983 onwards.
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Table 2: OLS Regression of NOI Yield on the Risk-Free Rate.
This table shows results from an OLS regression which models changes in NOI yield on changes in the risk-free rate. The

dependent variable is the first difference in the natural logarithm of the NOI Yield (defined as the ratio of the weighted average

quarterly total Net Operating Income (NOI) per square foot to the NCREIF property portfolio, over the weighted average

share price of the REIT portfolio). The independent variable is the quarterly change in the natural logarithm of the long-term

interest rate. (T-statistics in parentheses).

∆noi.yield

(Intercept) 0.0015

(0.1510)

∆lt.rate 0.2393

(1.7307)∗

R2 0.02698

F 2.995∗

N 110

∗: p < 10%; ∗∗: p < 5%; ∗∗∗: p < 1%.
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Table 3: Matrix of Results from First-Order Vector Autoregression
This table presents coefficient estimates from a first-order Vector Autoregression (VAR). The system consist of the natural logarithm of the dividend yield to the

value-weighted REIT portfolio (div.yield), the quarterly dividend growth rate to this portfolio (∆dividend), the NOI Yield, defined as the ratio of the quarterly Net

Operating Income (NOI) to the direct property portfolio over the weighted average price of the REIT portfolio, the quarterly NOI growth rate for the direct property

portfolio (∆noi), and the long-term interest rate (lt.rate). All variables are computed as the natural logarithm of their respective raw series, and all change variables are

computed as the first difference of the natural logarithms. A time trend variable is included in the VAR system. All variables are de-meaned. The F-statistic included

is the joint significance test that all variables are different from zero, for each equation of the system. (T-statistics in parentheses).

div.yieldt−1 ∆dividendt−1 noi.yieldt−1 ∆noit−1 lt.ratet−1 trend R2 F

div.yieldt 0.210029 −0.21323 0.197454 0.019985 0.660167 −0.000197 0.5867 26.31∗∗∗

(1.5252) (−1.9961)∗∗ (1.9099)∗ (0.0701) (4.5899)∗∗∗ (−0.54)

∆dividendt −0.726002 −0.258301 0.216349 −0.097534 0.628109 −0.000228 0.4679 16.68∗∗∗

(−5.7235)∗∗∗ (−2.6251)∗∗∗ (2.2719)∗∗ (−0.3714) (4.7408)∗∗∗ (−0.6779)

noi.yieldt −0.072603 −0.02268 0.926821 −0.146556 0.035216 4 × 10−6 0.8339 90.50∗∗∗

(−1.1039) (−0.4445) (18.7703)∗∗∗ (−1.0762) (0.5126) (0.0229)

∆noit −0.007475 −0.0683 −0.05502 −0.263807 0.006015 1.6 × 10−5 0.1450 4.02∗∗∗

(−0.1654) (−1.9477)∗ (−1.6212) (−2.8186)∗∗∗ (0.1274) (0.1351)

lt.ratet 0.088218 −0.042538 −0.073408 0.119099 0.857163 −0.000208 0.9524 358.13∗∗∗

(1.973)∗ (−1.2264) (−2.1868)∗∗ (1.2865) (18.3539)∗∗∗ (−1.7571)∗

Number of observations: 108
∗: p < 10%; ∗∗: p < 5%; ∗∗∗: p < 1%.
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Table 4: Results from Rolling Vector Autoregressions.
This table presents statistics comparing the predicted dividend yield for quarter t + 1 (generated by a VAR using 40 quarters’

worth of data, ending at t), pred.div.yieldt,t+1, with the ex-post realized dividend yield at quarter t+1, div.yieldt+1. Specifically,

the table presents, for each VAR specification, the ratio of the standard deviations between the predicted and the realized series,

as well as their correlation coefficient. In parentheses there is the value of a t-statistic testing the hypothesis that the actual

correlation between the two series is 0. The set of candidate variables for the VAR consists of div.yieldt, the dividend yield

to the value-weighted REIT portfolio, ∆dividendt, the quarterly growth in the weighted-average REIT dividend, noi.yieldt

the ratio of the quarterly weighted-average net operating income (NOI) per square foot to the property portfolio, over the

weighted-average end-of-quarter price to the REIT portfolio, ∆noit the quarterly NOI growth, and lt.ratet, the long-term

interest rate. All variables are computed as the natural logarithm of their respective raw series, and all change variables are

computed as the first difference of the natural logarithms. All variables are de-meaned.

VAR System 1: [div.yieldt, ∆dividendt, lt.ratet]
′

Lags: 1 2

σ(pred.div.yieldt,t+1)/σ(div.yieldt+1) 0.6941 0.7108

cor(pred.div.yieldt,t+1 , div.yieldt+1) 0.4593 0.4528

(4.201)∗∗∗ (4.126)∗∗∗

VAR System 2: [div.yieldt, ∆dividendt, noi.yieldt, lt.ratet]
′

Lags: 1 2

σ(pred.div.yieldt,t+1)/σ(div.yieldt+1) 0.9298 0.9563

cor(pred.div.yieldt,t+1 , div.yieldt+1) 0.6086 0.6847

(6.232)∗∗∗ (7.631)∗∗∗

VAR System 3: [div.yieldt, ∆dividendt, noi.yieldt, ∆noit, lt.ratet]
′

Lags: 1 2

σ(pred.div.yieldt,t+1)/σ(div.yieldt+1) 0.9765 0.9813

cor(pred.div.yieldt,t+1 , div.yieldt+1) 0.6503 0.7323

(6.955)∗∗∗ (8.736)∗∗∗

VAR System 4: [div.yieldt, noi.yieldt, ∆noit, lt.ratet]
′

Lags: 1 2

σ(pred.div.yieldt,t+1)/σ(div.yieldt+1) 0.9464 0.9291

cor(pred.div.yieldt,t+1 , div.yieldt+1) 0.5949 0.7313

(6.012)∗∗∗ (8.712)∗∗∗

VARs are computed on a rolling 40-quarter window. Statistics are computed on the remaining 68
observations.
∗: p < 10%; ∗∗: p < 5%; ∗∗∗: p < 1%.
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Plot of Actual and Predicted Dividend Yields

Date

lo
g(

di
v.

yi
el

d)
, d

e−
m

ea
ne

d

1995 2000 2005

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Figure 2: This figure shows a plot of the log of realized dividend yields (the black continuous
line) and predicted dividend yields from VAR System 4 (Table 4) for the same quarter (the
red dashed line).
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Table 5: Regression Results of Residual Dividend Yield on Realized Quarterly REIT Volatility.
This table presents results from an OLS regression of the difference between ex-post realized dividend yield on the REIT portfolio (div.yieldt+1) minus the predicted

dividend yields, generated through a 40-quarter rolling window VAR in quarter t, and concerning quarter t + 1. Each of the variables pred.div.yieldt,t+1,i corresponds

to the predicted dividend yields generated by VAR system i in Table 4. The independent variable is the logarithm of the volatility of daily returns on the value-weighted

REIT portfolio for quarter t + 1, minus its mean. (T-statistics in parentheses).

div.yieldt+1 div.yieldt+1− div.yieldt+1− div.yieldt+1− div.yieldt+1−

pred.div.yieldt,t+1,1 pred.div.yieldt,t+1,2 pred.div.yieldt,t+1,3 pred.div.yieldt,t+1,4

(Intercept) 0.00056 0.0043 0.0405 0.0523 0.0295

(0.0173) (0.1421) (1.6213) (2.2286)∗∗ (1.2912)

reit.volt+1 0.00702 0.0207 0.0509 0.0399 0.0441

(0.1800) (0.6111) (1.8298)∗ (1.5273) (1.7311)∗

R2 0.0003 0.0056 0.0482 0.0341 0.0434

F 0.0324 0.3734 3.348∗ 2.333 2.997

N = 68

∗: p < 10%; ∗∗: p < 5%; ∗∗∗: p < 1%.
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