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The Implied Volatility Bias: A No-Arbitrage Approach

for Short-Dated Options

Abstract

Under the efficient market hypothesis, the implied volatility associated to an option price

should be the best possible forecast of the future realized volatility of the underlying asset.

However, a vast number of studies in the financial literature have found that implied volati-

lity is a biased estimator of the future realized volatility. In this paper we introduce a new

ex-post measure of implied volatility (the Market Neutral Volatility) that is simply based

on no-arbitrage and preference-free arguments. We demonstrate that the implied volatility

retrieved from options prices is an unbiased estimator of the Market Neutral Volatility for

options close to maturity. This result is empirically tested and validated using S&P 500

monthly option prices for the period between January 2005 and June 2011.
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JEL Classification: C53; G13.



1. Introduction

The implied volatility (hereafter IV) associated to an option price can be seen as the market’s

forecast of the future volatility for the underlying asset over the option remaining life. Under

the rational expectations assumption that the market uses all the available information and

under the market’s efficiency hypothesis, the IV should be the best possible forecast of the

future volatility given the currently available information. If this is not true, i.e. if an option

fails to embody optimal forecasts of the underlying asset’s future volatility, the option pricing

theory implies that a profitable trading strategy is available and its implementation should

push the option price towards the best possible forecast of future volatility.

Most of the studies in the literature find evidence that IV forecasts of future volatility are

informative, superior to other measures of volatility, but upward-biased. The bias problem

is not new and has been documented and studied for decades—see, for instance, Canina

and Figlewski (1993), Day and Lewis (1992), Jorion (1995), and Lamoureux and Lastrapes

(1993). For a more in depth comparison of 93 studies that deal with the forecast of future

realized volatility see Poon and Granger (2003).

Poon and Granger (2003) argue that the existence of an implied volatility bias carries

a severe problem, since it should only persist if it is difficult to perform arbitrage trades

that may remove the mispricing. In the case of stocks indexes, both options and futures

contracts are highly liquid which should mitigate this problem, but the bias still persists in

the majority of studies. Doran and Ronn (2008) argue that the extra premium resulting from

the bias explains why options traders tend to be short, since they can write options at the

higher implied volatility and reap the extra premium by delta-hedging their price exposures.

Due to this problem, several explanations for the implied volatility bias problem have

been put forward in the literature. A first explanation is focused on model risk: options

implied volatilities are model dependent. Given an observed option market value, its implied

volatility is estimated by using a pricing model, and the one commonly used is the Black

and Scholes (1973) model. However, the underlying model may be miss-specified. Facing

this problem, the investors may require an extra premium for incurring in model risk.

A second explanation is related with econometric issues, namely the variables’ measure-
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ment error and the empirical methodologies used to estimate the realized volatility. Related

with the first issue, Christensen and Prabhala (1998) argue that implied volatility is biased

because of errors in the measurement of variables, such as the (neglected) American-style

feature of the option contract or the use of overlapping observations. Ederington and Guan

(1999, 2002) study the implied volatility of futures options on the S&P 500 index and also

find that the apparent bias and inefficiency of implied volatility detected in early studies are

due to variables’ measurement errors. Concerning the second econometric issue, Poteshman

(2000) finds that half of the bias in the S&P 500 futures options market can be removed

when actual volatility is estimated with a more efficient volatility estimator based on intra-

day 5-minutes returns.

A third explanation is the existence of a volatility risk premium. This explanation is

based on the notion that volatility risk is non-diversifiable, which leads investors to require a

premium for bearing this risk—see, among many others, Chernov (2007), Poteshman (2000),

Doran and Ronn (2005, 2008), Coval and Shumway (2001), and Bakshi and Kapadia (2003).1

A fourth explanation arises from general equilibrium models. Guidolin and Timmermann

(2003) propose an equilibrium model for asset prices under Bayesian learning. The introduc-

tion of Bayesian learning generates biases similar to those observed in option prices, offering

a new economic explanation for Black and Scholes (1973) biases. Garcia et al. (2003) propose

an utility based option pricing model with stochastic volatility and jump features. In this

model, preferences matter for option pricing and this can help to explain the bias in IV as

well as other empirical features of IV (e.g asymmetric IV curves).

In restricting ourselves to no-arbitrage arguments within the Black and Scholes (1973)

framework, we introduce the concept of Market Neutral Volatility (hereafter MNV) and de-

rive a theoretical model that captures the relationship between this new concept and the

IV. In this setting, we only address the bias problem; i.e. within our framework, and in

opposition with the above mentioned general equilibrium models, no explanation is provided

for other IV features (such as the IV smile). Nevertheless, we demonstrate that IV is di-

rectly forecasting the Market Neutral Volatility, being an unbiased estimator of this new

1This is the case, for instance, of the Heston (1993) model that allows volatility to be stochastic and its
market price of risk to be non-zero.
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no-arbitrage measure. Hence, we are able to provide a simpler explanation for the IV bias

associated to option contracts that are close to maturity, which is only based on no-arbitrage

arguments and is, therefore, valid for any system of preferences.

The outline of the paper is as follows. In the next section we discuss the MNV concept

and we derive the theoretical model that captures the relationship between this new concept

and the IV. In section 3, our theoretical result is tested on the S&P 500 options market. The

final section summarizes our conclusions.

2. The market neutral volatility model

This section presents the theoretical framework proposed to address the relationship between

MNV and IV.

2.1. Model assumptions

In what follows, uncertainty will be represented by a complete probability space (Ω,F ,Q),

where Q denotes the martingale probability measure obtained when the money market ac-

count is taken as the numéraire of the economy. We also assume that the market trades a

stock index, whose market price at the close of day t will be represented by St. Hence, the

probability space is endowed with a right continuous and complete filtration F = {Ft : t ≥ 0},

where Ft = σ (Su, 0 ≤ u ≤ t) is the sigma-algebra generated by the observation of the trading

prices for the stock index.

Additionally, the market also trades futures contracts and European-style futures options

(with “stock-style margining”) on the same stock index, and for the same expiry date.

Hereafter, Ft,T will denote the time-t price of a futures contract on the stock index S, and

for delivery at time T (≥ t). Similarly, ct (Ft,T , K, T ;σ) and pt (Ft,T , K, T ;σ) will represent

the time-t price of a European-style call or put option, respectively, on the futures price Ft,T ,

with strike K ∈ R+, with maturity at time T , and computed through the estimate σ of the

realized volatility of the underlying futures contract during the time-interval [t, T ]. As usual,

both option prices are taken to be adapted to the filtration F. Note also that the well known

put-call parity for European-style futures options implies that at-the-money (ATM) forward
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calls and puts must have the same price (for any volatility level σ, and for any expiry date

T ):

ct (Ft,T , Ft,T , T ;σ) = pt (Ft,T , Ft,T , T ;σ) . (1)

The expiry date of the future and option contracts will be taken as the next trading

day, i.e. T − t = 1
∆

, where ∆ is an annualizing factor. Moreover, the market is assumed to

be complete in the sense that tradable European-style and ATM-forward calls and puts (on

the stock index futures contract) with a time-to-maturity of just one trading day are always

available before the close of the market at each day t. This assumption is not restrictive as

it seems: in today’s financial markets, daily and even intra-day options for stock indexes,

currencies and commodities are readily available.2

To define the novel concept of Market Neutral Volatility, it is useful to introduce first

the notion of a (long) ATM-forward straddle. This is simply a portfolio of options contracts

designed to bet on a high volatility scenario, which involves a long position on both ATM-

forward call and put options with the same expiry date (time t + 1
∆

), and on the same

underlying futures contract. The time-t value of such portfolio will be denoted by gt (σ), and

the absence of arbitrage opportunities requires that

gt (σ) = ct

(
Ft,t+ 1

∆
, Ft,t+ 1

∆
, t+

1

∆
;σ

)
+ pt

(
Ft,t+ 1

∆
, Ft,t+ 1

∆
, t+

1

∆
;σ

)
. (2)

2.2. Market neutral volatility

The time-tMarket Neutral Volatility (MNVt, 1
∆

), for the time to maturity 1
∆

, will be defined in

terms of the time-t fair value of an ATM-forward straddle. For this purpose, next proposition

assumes, for the moment, that
∣∣∣Ft+ 1

∆
,t+ 1

∆
− Ft,t+ 1

∆

∣∣∣ is Ft-measurable.

Proposition 1 Under the strong assumption that the information about the absolute vari-

ation between the close of day t and the close of day t + 1
∆

is available at the end of day t,

2Daily options on a wide range of stock indexes, currencies and commodities can be traded, for example,
on the IG Index (a regulated Financial Services Authority company). Moreover, daily options on the AEX
index are also available on NYSE Euronext.
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then the time-t no-arbitrage price of an ATM-forward straddle would be equal to

get = e−
r
∆

∣∣∣Ft+ 1
∆
,t+ 1

∆
− Ft,t+ 1

∆

∣∣∣ , (3)

for any volatility level σ, and where r represents the constant risk-free (and continuously

compounded) interest rate.

Proof. Using equation (2), and since Geman et al. (1995, Corollary 2) imply that the

relative price of any financial asset (in terms of the money market account numéraire) must

be a Q-martingale, then

gt (σ) = e−
r
∆EQ

[(
Ft+ 1

∆
,t+ 1

∆
− Ft,t+ 1

∆

)+
∣∣∣∣Ft]

+e−
r
∆EQ

[(
Ft,t+ 1

∆
− Ft+ 1

∆
,t+ 1

∆

)+
∣∣∣∣Ft] ,

where (x)+ = max (x, 0), for any x ∈ R. Furthermore, imposing that
∣∣∣Ft+ 1

∆
,t+ 1

∆
− Ft,t+ 1

∆

∣∣∣ is

Ft-measurable, the previous equation can be rewritten as

get = e−
r
∆

[(
Ft+ 1

∆
,t+ 1

∆
− Ft,t+ 1

∆

)+

+
(
Ft,t+ 1

∆
− Ft+ 1

∆
,t+ 1

∆

)+
]
,

which is exactly equivalent to equation (3). �

In practice, at the end of day t no agent is endowed with the information about the

absolute variation between the close of day t and the close of day t+ 1
∆

. Therefore, equation

(3) is, in practice, simply the time t + 1
∆

discounted payoff generated by the ATM-forward

straddle strategy. Nevertheless, such no-arbitrage price of the ATM-forward straddle enables

the definition of the Market Neutral Volatility concept.

Definition 1 The time-t Market Neutral Volatility (MNVt, 1
∆
), for the time to maturity 1

∆
,

is the time-t implied volatility level that would price an ATM-forward straddle at its no-

arbitrage value, i.e.

gt

(
MNVt, 1

∆

)
= get

= e−
r
∆

∣∣∣Ft+ 1
∆
,t+ 1

∆
− Ft,t+ 1

∆

∣∣∣ . (4)
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The MNV is the time-t implied volatility that ensures, for any time-t bet on a straddle

strategy, that the payout will be zero. In practice, no agent at time-t knows the value of

MNVt, 1
∆

. Nevertheless, we will argue that the IV retrieved from options prices at time t is

forecasting this no-arbitrage implied volatility MNVt, 1
∆

.

2.3. The relationship between IV and MNV

Following, for instance, Jackwerth and Rubinstein (1996), it is well known that the usual

geometric Brownian motion assumption is not able to accommodate the negative skewness

and the high kurtosis that are typically implicit in the empirical asset return distributions.

Nevertheless, it is common market practice to compute implied volatilities through the Black

and Scholes (1973) model, for options on the spot, or through the Black (1976) model, for

futures options, respectively. For a European-style call option on a futures contract this

procedure corresponds to finding the root IVt,τ of the following non-linear equation:

ct (Ft,T , K, T ; IVt,τ ) = e−rτ [Ft,TΦ (d+)−KΦ (d−)] , (5)

where

d± :=
ln
(
Ft,T
K

)
± IV 2

t,τ

2
τ

IVt,τ
√
τ

,

τ := T − t is the time-to-maturity (in years) of the futures and option contracts, Φ (·) is the

distribution function of the standard univariate normal probability law, and the left-hand

side of equation (5) is read as the market price of the European-style call.

Even though no closed-form solution (in IVt,τ ) exists for equation (5), the following

result arises as a straightforward extension of Brenner and Subrahmanyam (1988, Equation

3) to European-style futures options, and provides an accurate approximation for the time-t

implied volatility associated to an ATM-forward call option:

IVt,τ ≈
√

2π

τ

ct (Ft,T , Ft,T , T ; IVt,τ )

Ft,T
erτ . (6)

This (first order) proportional relationship between volatility and the option price is ob-
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tained through a power series expansion of the distribution function Φ (·)—along the lines of

Abramowitz and Stegun (1972, Equation 26.2.10)—and is only valid for the ATM-forward

(i.e. K = Ft,T ) option contracts to be considered in the forthcoming empirical analysis.

Moreover, the accuracy of such first order approximation is also higher for smaller values of

d±, which are implicit in the one day ahead option contracts to be priced.

Based on approximation (6), next proposition offers our main theoretical result: The

time-t Market Neutral Volatility is approximately equal to 125% of the one day ahead an-

nualized absolute return.

Proposition 2 Under the non-restrictive assumptions described in Subsection 2.1,

MNVt, 1
∆
≈
√

2π

2

√
∆

∣∣∣Ft+ 1
∆
,t+ 1

∆
− Ft,t+ 1

∆

∣∣∣
Ft,t+ 1

∆

(7)

∼= 1.25
√

∆

∣∣∣Ft+ 1
∆
,t+ 1

∆
− Ft,t+ 1

∆

∣∣∣
Ft,t+ 1

∆

.

Proof. Replacing IVt,τ by MNVt, 1
∆

in approximation (6), then

MNVt, 1
∆
≈
√

2π∆
ct

(
Ft,t+ 1

∆
, Ft,t+ 1

∆
, t+ 1

∆
;MNVt, 1

∆

)
Ft,t+ 1

∆

e
r
∆ . (8)

The call price on the right-hand side of equation (8) can be rewritten in terms of the

underlying futures price through the combination of equations (1) and (2),

gt

(
MNVt, 1

∆

)
= ct

(
Ft,t+ 1

∆
, Ft,t+ 1

∆
, t+

1

∆
;MNVt, 1

∆

)
+ct

(
Ft,t+ 1

∆
, Ft,t+ 1

∆
, t+

1

∆
;MNVt, 1

∆

)
,

and using Definition 1:

e−
r
∆

∣∣∣Ft+ 1
∆
,t+ 1

∆
− Ft,t+ 1

∆

∣∣∣ = 2ct

(
Ft,t+ 1

∆
, Ft,t+ 1

∆
, t+

1

∆
;MNVt, 1

∆

)
. (9)
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Combining equations (8) and (9), it follows that

MNVt, 1
∆
≈
√

2π

2

√
∆
e−

r
∆

∣∣∣Ft+ 1
∆
,t+ 1

∆
− Ft,t+ 1

∆

∣∣∣
Ft,t+ 1

∆

e
r
∆ , (10)

which is equivalent to equation (7).�

Note that if we define the time t+ 1
∆

annualized volatility as

σr
t, 1

∆
:=

∣∣∣Ft+ 1
∆
,t+ 1

∆
− Ft,t+ 1

∆

∣∣∣
Ft,t+ 1

∆

√
∆, (11)

then

MNVt, 1
∆
≈ 1.25σr

t, 1
∆
,

i.e. the time-t Market Neutral Volatility can be understood as corresponding to appro-

ximately 125% of the one day ahead annualized realized volatility. The definition of the

realized market volatility through equation (11) arises from the notion that the payoff of a

European-style option at expiration only depends on the difference between initial and ter-

minal underlying asset prices, and not on the prices observed in the market between those

two dates. This way of measuring volatility is also inspired on former works found in the

literature. Figlewski (1997) argues that taking deviations from zero instead of the sample

mean typically increases volatility forecasting accuracy. Ding et al. (1993) suggest measuring

volatility directly from absolute returns. Andersen and Bollerslev (1998) refer to the daily

realized volatility as the sum of intra-day squared returns.

Having derived, in Proposition 2, the theoretical value of the MNV, and being the MNV

an ex-post no-arbitrage measure of implied volatility, we argue that the IV retrieved from

options prices should be forecasting this ex-post value. This hypothesis is tested in the

following section.
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Table 1: Average Daily Volume of all SPX and S&P 500 Futures Options per year

2007 2008 2009 2010
SPX 629,819 707,688 614,562 695,601
S&P Futures 76,913 64,737 41,073 42,369

SPX and S&P Futures stand for options on the SPX and the S&P 500 futures, respectively.
Data retrieved from CBOE for SPX and from CME for S&P 500 futures.

3. Empirical analysis

3.1. Data

This paper uses data from the closing values of the S&P 500 index (SPX) and S&P 500

monthly options from January 2005 to June 2011. We choose the S&P index options market

and not the S&P futures options market to mitigate possible liquidity-related biases. The

average daily volume of the options on the SPX is more than 10 times the average daily

volume of the options on the S&P futures, as can be seen in Table 1. The SPX options

market is widely used in the literature and, as pointed by Rubinstein (1994), in this market

the conditions required by the Black and Scholes (1973) model are well approximated.

The IV and the index price data are retrieved from the Thinkorswim trading platform, a

division of TD Ameritrade. The implied volatility is retrieved from the nearest ATM straddle

(nearest ATM call, plus nearest ATM put). As pointed by Hentschel (2003), by using ATM

straddles we avoid the additional errors in IV usually associated to options that are far from

the ATM level.

The SPX options are European-style contracts and may be exercised only on the last

business day before expiration. The trading in SPX options will ordinarily cease on the

business day (usually a Thursday) preceding the day on which the exercise-settlement value

is calculated.

Since our model only considers one day ahead forecasts, for each month we get the data

for the SPX and SPX 500 options when just one business day is left to trade the option

(usually a Wednesday). At the close of that day we retrieve the implied volatility of the

nearest ATM straddle and the value of the SPX. At the close of the following day we retrieve

9



Table 2: Average Daily Volumes and Open Interest per year of the S&P 500 options used

Total 2005 2006 2007 2008 2009 2010 2011
Panel A: Average Daily Volume

Calls 7,898 4,378 9,621 14,999 4,022 6,964 8,388 6,520
Puts 7,238 3,668 9,145 17,292 6,033 2,939 4,349 6,648

Panel B: Average Open Interest
Calls 27,323 24,768 25,148 60,481 11,298 20,493 27,142 21,639
Puts 23,988 21,787 17,746 55,437 20,293 14,017 15,547 21,821

The calls and puts considered in Table 2 are selected monthly, from January 2005 to June
2011, and correspond to the nearest ATM contracts with just one business day left to ma-
turity. Data retrieved from Thinkorswim.

the value of the SPX and compute the MNV value from equation (7).3

All option contracts used satisfy the usual lower / upper no-arbitrage boundaries, and

have trading volumes that are higher than the cutoff point used by Gonçalves and Guidolin

(2006) of 100 traded contracts per day. Table 2 reports the average daily volume (in Panel

A) and the average open interest (in Panel B) of the contracts used.

3.2. Descriptive statistics

Our data includes 154 observations for the S&P 500 index that allow us to compute 77

values for the MNV—since we need an observation from time t and another one from time

t+ 1
∆

to calculate the MNV at time t. The same number of 77 monthly observations is also

collected for the IV associated to the S&P 500 monthly options prices. One observation is

excluded from the sample (November 20, 2008). The maximum value of 160.72% attained

for the MNV in this day is only comparable with the values obtained in the 87 crash and,

therefore, this extreme outlier is removed—similarly, Bakshi and Kapadia (2003) exclude all

options with IV above 100% and Guo and Whitelaw (2006) exclude the trading days between

October 17, 1987, and October 28, 1987.

Panel A of Table 3 provides the descriptive statistics for both the implied volatility and

3For this purpose, we simply take Ft+ 1
∆ ,t+ 1

∆
= St+ 1

∆
(by obvious no-arbitrage arguments) and Ft,t+ 1

∆
≈

St. The latter identity is justified because the effect of interest rates and dividends is negligible for the single
trading day to maturity option contracts considered.
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Table 3: Descriptive Statistics for IV and MNV

Variable Obs Mean Std.Dev. Min Max t-sig l-sig
Panel A: Options with just one trading day to maturity

IV 77 20.48% 12.77% 8.90% 85.17% 0.6882 4.06e-6
MNV 77 19.31% 22.07% 0.20% 103.78%

Panel B: Options with 15 days to maturity
IV 77 18.75% 10.29% 8.82% 62.43% 0.9462 0.0110
MNV 77 18.62% 13.81% 5.43% 95.16%

IV and MNV stand for Implied Volatility and Market Neutral Volatility, respectively. Obs
is the number of observations, Mean is the arithmetic mean, Std. Dev. is the standard
deviation, while Min and Max represent the minimum and the maximum value for each
series. t-sig is the probability associated with the two-independent samples t-test where in
the null it is assumed the equality of IV and MNV means. l-sig is the probability associated
with the Levene’s test for the equality of IV and MNV variances.

the MNV. The means’ difference between the IV and the MNV is not statistically significant,

which can be justified by the high probability (in the seventh column) associated with the

two independent samples t-test, where in the null it is assumed that the population means

are equal. However, the low probability associated to the Levene’s test result (in the last

column of Table 3 shows that the dispersion (measured by the variance) is statistically higher

in the MNV distribution when compared to the one of the implied volatility law. Therefore,

the implied volatility seems to be a smoothed expectation of the MNV.

The range between the maximum and the minimum observations is considerably large,

which is consistent with the relative low values of volatility prevailing between 2005-2007

and the extremely high values observed in 2008.

3.3. Testing for unbiasedness

To test the hypothesis that implied volatility is an unbiased predictor of MNV we esti-

mated the following two linear regressions, that are in line with the common practice in the

literature—see for instance Christensen and Prabhala (1998) when studying the relationship

between IV and realized volatility:

MNVt,τ = α + βIVt,τ + εt+τ , (12)
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and

MNVt,τ = α + βIVt,τ + γMNVt−,τ + εt+τ , (13)

where MNVt,τ denotes the MNV at period t and for a time to maturity of τ years (i.e.

calculated using the time t + τ and the time t closing values of the SPX, for τ > 0), IVt,τ

denotes the implied volatility at period t and for maturity after τ years, MNVt−,τ denotes

the MNV calculated in the previous month, and εt+τ is a zero mean homoskedastic error

that is uncorrelated with the explanatory variables.

Three hypotheses are typically tested in the literature concerning this regression. First,

IV is informative only if the estimate for β is significantly greater than zero. Second, IV is an

unbiased estimator if the joint hypotheses of α equal to zero and β equal to 1 is not rejected.

Third, IV is informational efficient if no other variable (e.g. past values) is statistically

significant, that is, if γ is equal to zero.

For implied volatility to be an unbiased estimator of the MNV, we must have the case

that α = 0 and β = 1. Thus, the two restrictions must be tested simultaneously and the

decision must point for the nonrejection of the null, where it is assumed that α = 0 and β = 1

in regressions (12) and (13). For implied volatility to be informational efficient the decision

must point for the nonrejection of the null, where it is assumed that γ = 0 in regression (13).

Panel A of Table 4 reports the results from the two regressions, where α and β are the

estimated coefficients from the regressions (12) and (13), γ is the estimated coefficient from

regression (13), and τ = 1
∆

. The t-test values are presented in brackets and F gives the

probability associated with the F -test of unbiasedness, where in the null it is assumed that

H0 : α = 0 and β = 1.

Based on the t-tests presented in Panel A of Table 4, and for a 5% significance level, only

the estimates for β are significantly different from zero in both regressions; the estimates for

α in both regressions are not statistically significant and the estimate for γ in regression (13)

is also not statistically significant. The joint hypothesis of α = 0 and β = 1 is not rejected in

both regressions due to the probability associated with the F -test shown in the last column

of Table 4. This result allows us to confirm the hypothesis that implied volatility is directly

forecasting the one day ahead Market Neutral Volatility.
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Table 4: MNV Regression over Implied Volatility

α β γ R2 Obs F
Panel A: Options with just one trading day to maturity

Regression (12) -4.005 1.138 - 0.426 77 0.548
(-1.100) (7.534)

Regression (13) -4.083 1.278 -0.150 0.437 76 0.292
(-1.116) (7.255) (-1.478)

Panel B: Options with 15 days to maturity
Regression (12) -1.928 1.095 - 0.661 77 0.561

(-1.008) (12.24)
Regression (13) -2.469 1.279 -0.158 0.664 76 0.247

(-1.257) (7.595) (-1.271)

MNV stands for Market Neutral Volatility. α, β and γ are the estimates for the coefficients
of equations (12) and (13); the t-statistics are presented in brackets below the coefficients’
estimates. R2 is the coefficient of determination from equations (12) and (13). Obs is the
number of observations and F is the probability associated with the F-test of unbiasedness
where in the null it is assumed that H0 : α = 0 and β = 1.

3.4. Checking for robustness

To access the robustness of our results we rerun the same analysis done in the previous

section, but now considering options that have 15 days to maturity (descriptive statistics

are presented in Panel B of Table 4). This analysis is outside the main purpose of this

paper, and the results should be taken with care since to perform this analysis one has to

assume that it would be possible to trade a series of consecutive forward start options with

one day to maturity each. We carry this analysis to access if possible measurement errors,

when dealing with options with just one day to maturity, have a significant impact on the

obtained results.

Panel B of Table 4 reports the estimation results from the regressions (12) and (13),

but now considering the 15 day period until maturity. The estimates for α and γ are still

not significantly different from zero, and the joint hypothesis of α = 0 and β = 1 is again

not rejected in both regressions. These results allow us to confirm the robustness of the

conclusions drawn from Panel A of Table 4.
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4. Conclusions

The finding, in numerous studies, that the IV is a biased estimator of future realized volatility

has puzzled researchers for decades since it contradicts the efficient market hypothesis.

Several explanations for this anomaly have been put forward in the literature, namely the

existence of model risk, the use of inadequate econometric methodologies, the presence of a

volatility risk premium, and idiosyncrasies concerning investor’s attitudes and preferences.

By introducing the new concept of Market Neutral Volatility, we follow a different path

to access the IV bias problem. Based on the benchmark Black (1976) model, we show that

the MNV is an ex-post no-arbitrage measure of IV for the options market. We argue that

the IV is directly forecasting the MNV, and we are able to explain the upward bias of IV for

option contracts that are close to maturity by simply using no-arbitrage and preference-free

arguments.

The relationship between MNV and IV was tested using actual market data retrieved

from the S&P 500 options market, and the results obtained support our hypothesis that IV

is an unbiased forecast of the MNV, which corresponds to approximately 125% of the one

day ahead annualized realized volatility.
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