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An Efficient Implementation of Implied Binomial Trees 

 

Abstract 

 Implied binomial trees are constructed by fitting a risk-neutral density (in the form of 

ending nodal probabilities) to observed option prices. Since there are usually not enough options 

traded in the marketplace, a quadratic program is often used to extract the ending nodal 

probabilities from observed option prices. A problem with this commonly used approach is that 

the quadratic program is usually a high dimensional one and can be difficult or inefficient to 

solve. This is because numerical accuracy may require the construction of a large binomial tree, 

resulting in a high dimensional quadratic program as the number of unknowns (i.e., the number 

of ending nodal probabilities) is proportional to the number of binomial periods. In this paper, 

we propose a more efficient implementation of implied binomial trees by incorporating cubic 

spline smoothing in the quadratic program. Only a selected subset of ending nodal probabilities 

is treated as unknowns while the remainder is interpolated using cubic splines. This allows us to 

substantially reduce the dimension of the quadratic program and thus improve the efficiency of 

its numerical implementation. We demonstrate the effectiveness of the smoothed implied 

binomial tree method by evaluating its numerical accuracy in estimating the risk-neutral density 

and moments such as volatility, skewness and kurtosis.  

 

JEL classifications: G13 

 

Key words: Implied binomial trees; Cubic splines; Risk-neutral density; Option implied 
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I.  Introduction 

 Implied binomial trees were developed and introduced to a wide audience by Rubinstein 

(1994). Implied binomial trees differ from their predecessors such as the Cox, Ross and 

Rubinstein (1979, CRR) binomial tree in that they are non-parametric in nature and designed to 

exactly match observed option prices. No assumption is made about the dynamics or distribution 

of the underlying stock price. The only requirement is that the constructed binomial tree must 

automatically price options correctly. This implied approach provides a viable alternative to 

traditional option pricing models in situations where it is unclear which parametric option pricing 

model (e.g., Black and Scholes (1973) and Merton (1973)) should be used. Unlike parametric 

models (and their underlying assumptions), model specification errors are ruled out from the 

outset in a non-parametric approach such as the implied binomial tree method.   

 The tradeoff or cost of this non-parametric approach is that implied binomial trees are 

much more difficult to construct than regular binomial trees (such as the CRR binomial tree). 

This is because an N-period implied binomial tree requires the estimation of N+1 unknown 

parameters while a regular binomial tree requires the estimation of only a single parameter (i.e., 

stock return volatility). The degree of difficulty escalates even further if an application requires a 

rather large implied binomial tree with many periods (e.g., N = 200) due to the high level of 

numerical accuracy demanded by the application. Solving a numerical problem with that many 

unknowns is clearly a daunting task, let alone the lack of confidence in any solution we may be 

lucky to find. In this paper, we propose a simple solution to this problem and develop a more 

efficient implementation method for implied binomial trees.  

 As discussed in Rubinstein (1994), an implied binomial tree is fully specified by the risk-

neutral density of the underlying stock price distribution at option maturity. In other words, the 

construction of an implied binomial tree is equivalent to searching for a set of ending nodal 

probabilities (i.e., the discretized risk-neutral density) that exactly matches observed option 

prices. The ending nodal probabilities can be solved easily, and uniquely, if there are a sufficient 

number of strike prices available for traded options. To build an N-period implied binomial tree, 

we need to have option prices available for N-1 strike prices, ideally over a wide range of the 

support of the stock price distribution. In practice, however, this is almost never the case unless 

we build a small implied binomial tree with a small number of periods. As a result, the 

calibration of the ending nodal probabilities is typically set up as a quadratic program for 
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minimizing the sum of squared errors between model prices (calculated using the implied 

binomial tree given ending nodal probabilities) and market prices of the options (e.g., Jackwerth 

and Rubinstein (1996)). As the number of ending nodal probabilities on an N-period binomial 

tree is N+1, the quadratic program has N+1 unknowns to solve.1 This is a high dimensional 

problem if the number of periods is large (e.g., N = 200). Solving such a high dimensional 

quadratic program is potentially problematic.  

In this paper, we propose a more efficient implementation method for implied binomial 

trees by incorporating cubic spline smoothing in the quadratic program. The essence of the 

problem is that the entire set of ending nodal probabilities is treated as unrelated unknowns in the 

standard implementation of implied binomial trees. Although this is technically correct, it is not 

necessary in most practical applications. A slight deviation from this standard approach can lead 

to a much more efficient implementation of implied binomial trees. If the risk-neutral density is a 

smooth function (with continuous first or higher order derivatives), which is a reasonable 

assumption for most applications, ending nodal probabilities are not truly independent of one 

another. Nearby nodal probabilities are naturally connected due to smoothness. If a particular 

nodal probability is high (low), nearby nodal probabilities are likely to be high (low) as well 

since sudden jumps in the density function are ruled out by the smoothness assumption. This 

local connectedness of ending nodal probabilities thus provides a convenient way to reduce the 

number of unknowns in the quadratic program. By treating only a subset of ending nodal 

probabilities (e.g., one of every four nodal probabilities) as unknowns, the dimension of the 

quadratic program can be reduced substantially. The remaining ending nodal probabilities can be 

interpolated from the selected subset of ending nodal probabilities using cubic splines. In 

particular, cubic spline smoothing allows us to state each ending nodal probability as a linear 

combination of the ending nodal probabilities in the selected subset. With this linear 

transformation (facilitated by cubic spline smoothing), the original quadratic program, with the 

entire set of ending nodal probabilities as unknowns, is transformed into a new quadratic 

program with only the selected subset of ending nodal probabilities as unknowns. This reduction 

in dimensionality can drastically improve the efficiency of the implied binomial tree method. 

                                                      
1 The number of unknowns is actually N-1 since the ending nodal probabilities must sum to 1 and the binomial tree 
must price the underlying stock correctly. If these two conditions are treated as constraints, then the number of 
unknowns remains N+1.  
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This modified implementation of the implied binomial tree method will be referred to as the 

smoothed implied binomial tree method or simply the smoothing method. 

The important question to ask then is whether or not the smoothed implied binomial tree 

method is also as accurate as the standard implied binomial tree method is. Cubic spline 

smoothing may introduce errors or noise in the set of ending nodal probabilities since only a 

subset of ending nodal probabilities is used to match option prices. To evaluate the numerical 

performance of the smoothed implied binomial tree method, we implement the implied binomial 

trees using both the standard and smoothing methods. The extracted risk-neutral density is then 

used to calculate volatility, skewness and kurtosis of the risk-neutral distribution. An extensive 

analysis of the numerical results shows that the smoothed implied binomial tree method is as 

accurate as the standard implied binomial tree method. The efficiency gains are thus achieved 

without any sacrifice in numerical accuracy.  

Alternatively, we can compare the numerical accuracy of the implied binomial trees 

when they are constructed using a quadratic program of identical dimension (i.e., the same 

number of unknowns) with either the standard or smoothed method. This is the case, for 

example, if an N-period implied binomial tree is constructed using the standard approach while a 

4N-period implied binomial tree is constructed using the smoothing approach with on a subset of 

N ending nodal probabilities as unknowns. Both implied binomial trees require the solution of a 

quadratic program with N unknowns. The smoothing approach is a better method if the 

constructed implied binomial tree is more accurate than the matching implied binomial tree 

constructed using the standard method. As we show subsequently, this is indeed the case.  

 The rest of the paper proceeds as follows. Section II describes cubic spline smoothing 

and how it is incorporated in the implementation of implied binomial trees. Section III evaluates 

the numerical performance of the smoothed implied binomial tree method in comparison with 

the standard implied binomial tree method. Robustness analysis is performed to ensure that the 

results are sufficiently general in practical applications. The final section concludes.   

 

II. Implied Binomial Trees with Cubic Spline Smoothing 

 We first describe the standard method for building implied binomial trees and the 

difficulties associated with its implementation. Cubic spline smoothing is then introduced into 
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the construction of implied binomial trees in order to reduce the dimension of the quadratic 

program.  

 

A. The standard method for building implied binomial trees 

 As explained in Rubinstein (1994) and Jackwerth (1999), the first step in the construction 

of an implied binomial tree is the calibration of ending nodal probabilities to observed option 

prices. These are unconditional probabilities of reaching the stock price at a particular node at 

option maturity. After the calibration of ending nodal probabilities, the next step is to calculate 

the ending path probabilities which are unconditional probabilities of reaching the stock price at 

option maturity along a particular path. Assuming path probabilities are identical across all 

possible paths from the initial node to the ending node (see Rubinstein’s (1994) Assumption 5 on 

p.778), the ending path probability is simply equal to the corresponding ending nodal probability 

divided by the number of possible paths reaching that node. A backward recursive procedure is 

then used to construct the implied binomial tree (see Section IV of Rubinstein (1994) on pp.789-

790).  

 The key step is thus the calibration of ending nodal probabilities to observed option 

prices. Unlike the more commonly used CRR binomial tree, the jump size of the implied 

binomial tree is not explicitly specified. Instead, a grid for the ending stock prices is specified 

first to cover the support of the risk-neutral distribution. An evenly spaced grid (either in stock 

price or log stock price) is typically used, with the highest and lowest stock prices on the grid 

sufficiently spread out in order to cover the support of the stock price distribution in the interval 

(0, +∞). For most applications, a 10-standard deviation spread from the current stock price on 

either side is usually sufficient.  

 For an N-period implied binomial tree, there are N+1 ending nodes and thus N+1 ending 

nodal probabilities to calibrate. As ending nodal probabilities must sum to 1 and the binomial 

tree must price the underlying stock correctly, N–1 observed option prices (across different strike 

prices) are required to solve for a unique set of ending nodal probabilities. Note that the price of 

a European option can be directly calculated from the ending stock prices (Sj, j = 0, 1, …, N) and 

ending nodal probabilities (Pj, j = 0, 1, …, N): 





N

j
jj KSgPrTV

0

model ),()exp(  
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where K is the option’s strike price, T is its maturity, r is the risk-free rate, g is the payoff 

function. The observed price of the option thus provides a constraint for the ending nodal 

probabilities: 





N

j
jj KSgPrTV

0

mkt ),()exp(  

With N–1 observed option prices across different strike prices, together with the other two 

constraints (on probabilities and the underlying stock price), a unique set of ending nodal 

probabilities can be solved easily from the system of N+1 linear equations. The implied binomial 

tree is thus quite straightforward to build if there are a sufficient number of European options 

available.  

 In most practical applications, however, we do not have a sufficient number of traded 

options to extract a unique set of ending nodal probabilities (for any reasonably sized binomial 

tree, say with N ≥ 100 time periods). In this case, multiple sets of ending nodal probabilities can 

match the observed option prices correctly. The question is thus how to distinguish among these 

feasible sets of ending nodal probabilities and choose one that is the most appropriate. Jackwerth 

and Rubinstein (1996) argue that the additional degrees of freedom should be used to search for a 

smooth implied risk-neutral density. Specifically, they propose the use of the following 

optimization problem for finding the ending nodal probabilities:2 

  


 
 

1

1 1

2mktmodel2
11

'
)()2(min

N

j

m

i
iiijjj

sP
VVwPPP   (1) 

Subject to: 

 0jP , for all j (0 ≤ j ≤ N) 

 1
0




N

j
jP   

 



N

j
jjSPTqrS

0

])(exp[)0(   

                                                      
2 This setup of the quadratic program for the construction of implied binomial trees follows the approach used in 
Tian (2011).  
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where S(0) and mkt
iV ’s are the current market prices of the underlying stock and the traded 

options, respectively, model
iV ’s are model prices of the options calculated using the implied 

binomial tree (given the ending nodal probabilities Pj’s), T is the common maturity of all options, 

q is the dividend yield of the underlying stock, Sj’s are the ending stock prices of the binomial 

tree at option maturity, wi’s are the weights for pricing errors, and  is a positive parameter 

specifying the penalty for not matching option prices correctly. While the first part of the 

objective function in Eq. (1) is inversely related to the smoothness of the risk-neutral density, the 

second part is a constraint that model prices match correctly with the corresponding market 

prices. Given the estimated ending nodal probabilities, an implied binomial tree is 

straightforward to construct following Rubinstein’s (1984) procedure.  

Note that the implied binomial tree approach described above is slightly different from 

the one implemented by Jackwerth and Rubinstein (1996). In their implementation, the non-

negative probability constraint is initially ignored in the optimization procedure. If optimization 

leads to negative probabilities, an ad hoc “clamping down” approach is then used to eliminate 

negative probabilities. This is done by rerunning the optimization program but with a reduced 

support for the density function. The clamping down continues until a set of non-negative 

probabilities is obtained. Our setup of the optimization problem in Eq. (1) does not require such 

clamping down adjustment and automatically solves for non-negative probabilities. Although 

this is a relatively minor change in the implementation of the binomial tree method, it avoids the 

unnecessary use of an ad hoc clamping down approach.   

 

B. Problems with the standard method for building implied binomial trees 

 The optimization problem in Eq. (1) is essentially a quadratic program and relatively 

simple to solve as long as the number of unknowns is not too large. Unfortunately, the number of 

unknowns in the quadratic program, which is equal to the number of ending nodal probabilities 

(N+1), is directly tied to the number of binomial periods (N). This means that a 100-period 

implied binomial tree requires solving a quadratic program with 101 unknowns. It is conceivable 

that the accuracy demanded by most practical applications requires the use of binomial trees with 

at least 100 periods, especially with American options. Such high dimensional quadratic 

programs may be problematic to solve. Even if it is possible to solve such high-dimensional 

quadratic programs, it is certainly inefficient to construct implied binomial trees this way. 
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Another potential problem is overfitting when too many unknowns are used in the optimization. 

Options data inevitably contain noise (due to bid-ask spread and other microstructure concerns) 

that can cause deviations of observed option prices from “true” option prices. The use of too 

many unknowns may lead to an increased risk of overfitting the risk-neutral density to noisy 

option prices.  

 The essence of the problem with this standard implementation is that it treats ending 

nodal probabilities as a set of unrelated unknowns which directly leads to the problem of large 

dimensions and overfitting. Of course, these nodal probabilities are not entirely unrelated if we 

assume that the risk-neutral density is a smooth function (i.e., with continuous first or higher 

derivatives). Since the objective of the quadratic program in Eq. (1) is to maximize smoothness 

of the risk-neutral density, it is certainly consistent with the assumption of a smooth risk-neutral 

density. As a result, nearby nodal probabilities are naturally connected due to smoothness. If a 

particular nodal probability is high (low), nearby nodal probabilities are likely high (low) as well. 

A sharp jump in nearby nodal probabilities is inconsistent with a smooth risk-neutral density.  

 The local connectedness induced by smoothness thus provides an opportunity to reduce 

the number of unknowns in the quadratic program in Eq. (1). By grouping nodal probabilities 

into subsets of nearby bundles, we can select a single nodal probability in each bundle to 

represent that bundle. Only the representative nodal probabilities are estimated directly from 

option prices. Other nodal probabilities are then inferred from the representative nodal 

probabilities. The total number of unknowns is no longer the total number of nodal probabilities. 

Instead, it is equal to the total number of bundles.  

To maintain the nonparametric spirit of the implied approach, we do not impose a 

parametric relationship between representative nodal probabilities and the other nodal 

probabilities. Rather, we use a spline smoothing approach to connect nearby nodal probabilities 

within each bundle. In particular, cubic splines are applied to the representative nodal 

probabilities in order to obtain a smooth risk-neutral density function. Although other spline 

fitting such as quadratic or exponential splines may be used as well, we choose cubic spline 

fitting for its simplicity, sufficiently high order of smoothness, and popularity in volatility smile 

applications (e.g., Campa, Chang and Reider (1998), Bliss and Panigirtzoglou (2002), Jiang and 

Tian (2005), and Figlewski (2010)). 
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C. Cubic spline smoothing 

 Before discussing how to reduce the dimensions of the quadratic program using cubic 

splines, we briefly explain how cubic splines work. Spline smoothing is appropriate when the 

objective is to estimate an unknown smooth function given a set of observed values of the 

function. Aside from the fact that the function to be estimated is smooth, no parametric form or 

other analytical properties of the function is known. This is precisely the situation we face with 

the estimation of risk-neutral density using implied binomial trees.  

 Suppose that we observe the value of a smooth function f(x) (with continuous second-

order derivatives) at the following n+1 points (known as the knot points):  

x0 < x1 < x2 < ··· < xn 

Denote these observed values of the function as yi ≡ f(xi) for 0 ≤ i ≤ n. In each interval [xi-1, xi] for 

1 ≤ i ≤ n, the function f(x) is approximated by a cubic function of the form:3 

 ""
11 )()()()()( iiiiiiiii yxDyxCyxByxAxg    (2) 

where 

 
1

)(





ii

i
i xx

xx
xA  (2a) 

 )(1)( xAxB ii   (2b) 

   2
1

3 )()()(
6

1
)(  iiiii xxxAxAxC  (2c) 

   2
1

3 )()()(
6

1
)(  iiiii xxxBxBxD  (2d) 

for all xi-1 ≤ x ≤ xi, and ''
1iy  and ''

iy  are the second-order derivative of the function at the two knot 

points xi-1 and xi, respectively: 

)(""
ii xfy   and )(" 1

"
1   ii xfy . 

Since a different cubic spline is used for each interval [xi-1, xi] (for 1 ≤ i ≤ n), we must ensure that 

the adjacent splines are connected properly so that the resulting piecewise cubic function is 

smooth across the entire support of the function. This means that we need to ensure that the left 

                                                      
3 See Stoer and Bulirsch (1980) and Press, Teukolsky, Vetterling and Flannery (1996) for further discussions on 
cubic splines. 
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and right derivatives match up exactly at each knot point. By construction, the second-order 

derivatives of the adjacent cubic splines automatically match up exactly at each knot point. This 

is straightforward to verify from Eq. (2): 

")(" ii yxg   and "
11)("   ii yxg . 

Thus, we only need to require that the first-order derivatives of the adjacent cubic splines match 

up properly. This requirement leads to the following n-1 equations: 
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1

1''1''11''
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ii
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xx
 (2e) 

for all 1 ≤ i ≤ n-1. 

 Given the observed values of the function at the n+1 knot points, the cubic splines are 

fully specified by the n+1 second-order derivatives (i.e., y"’s). Since Eq. (2e) provides n-1 

restrictions on these derivatives, we still need two additional conditions to fully specify the cubic 

splines. As the density function is most likely diminishing to zero at the two tails, we simply set 

the second-order derivative to zero at the two extreme points: 

 0""
0  nyy  (2f) 

Combining with the n-1 equations in (2e), we obtain the full set of second-order derivatives at 

the n+1 knot points in terms of the observed function values. These second-order derivatives in 

turn completely specify the cubic spline function in Eq. (2).  

 

D. The smoothing method for building implied binomial trees 

 We now reconsider the calibration of an N-period binomial tree to a set of m observed 

option prices. The key step of this calibration is again the estimation of the risk-neutral density 

from the observed option prices. In the binomial tree setting, this means that we need to estimate 

the N+1 ending nodal probabilities. Without any restrictions, this leads to a quadratic program 

with N+1 unknowns and the estimation can be either difficult, inefficient or both. It is thus 

sensible to reduce the number of unknowns and solve an equivalent quadratic program with a 

lower dimension. In this paper, we use cubic spline smoothing to accomplish this task. Only a 

subset of the nodal probabilities is treated as unknowns to be estimated while the remainder is 

interpolated from this subset using cubic splines. 
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To incorporate cubic splines into the estimation of the risk-neutral density, we first 

specify a finite interval [Smin, Smax] as the support of the risk-neutral density where Smin and Smax 

are the lowest and highest stock price that can be reached at option maturity. In an N-period 

binomial tree, there are N+1 ending nodes after N periods: 

S0 = Smin < S1 < S2 < … < SN = Smax. 

This stock price grid is designed to span the entire support of the risk-neutral distribution. The 

stock price grid can be equally spaced between Smin and Smax or specified otherwise as required 

by the application. These stock prices specify the possible ending stock prices of the binomial 

tree after N periods (at the option maturity). Prior to maturity, a recursive procedure is used (e.g., 

Rubinstein (1984)) to determine the possible stock prices and conditional binomial probabilities 

in each period using the ending stock prices and ending nodal probabilities.  

 Next, we introduce a bandwidth parameter h (≥ 1) that plays a similar role that the width 

of bins plays in histograms. The ending nodes are divided into n bundles with h nodes in each 

bundle, N = n·h. Only one nodal probability in each bundle is treated as unknown while others 

are indirectly specified using cubic splines. The nodes selected for the unknown nodal 

probabilities are spread out evenly across the vertical span of the binomial tree:  

S0 = Smin, Sh, S2h, …, Snh = Smax 

These nodes will be referred to as the knot points or knot nodes. The standard implied binomial 

tree is a special case when there is only one nodal probability in each bundle (i.e., h = 1).  

 Between two adjacent knot nodes, S(i-1)h and Sih, the nodal probability at node Sj (for all 

(i-1)h ≤ j ≤ ih) is interpolated from the nodal probabilities at the two knot nodes using cubic 

splines. Applying the cubic spline specification in Eq. (2), these nodal probabilities are 

determined as follows:  

 ''''
)1()1( )()()()( ihjihijiihjihijij PSDPSCPSBPSAP    (3) 

where 

 
hiih
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


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 )(1)( jiji SASB   (3b) 
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1
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   2
)1(
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)( hiihjijiji SSSBSBSD   (3d) 

for all (i-1)h ≤ j ≤ ih, and ''
)1( hiP   and ''

ihP  are the second-order derivative of the cubic spline 

function at the two knot nodes, S(i-1)h and Sih, respectively. To ensure the splines are connected 

properly (i.e., with continuous second-order derivatives), the following condition must be 

satisfied by any two adjacent splines:  
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for all 1 ≤ i ≤ n-1. Together with the simplifying assumption that the second-order derivative of 

the cubic spline function diminishes at both the lowest and highest stock price nodes (i.e., 

0"''
0  nPP ), the second-order derivatives at all the knot nodes are fully specified by the n-1 

linear equations in (3e) in terms of nodal probabilities at the knot nodes. Write down this linear 

relationship as: 
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 Given these second-order derivatives at the knot points, the cubic spline specified in Eq. 

(3) is now stated without any explicit reference to the second-order derivatives: 

 


 
n

k
khkiji

n

k
khkijiihjihijij PuSDPuSCPSBPSAP

0
,

0
,1)1( )()()()(  (5) 

for all 0 ≤ j ≤ N and i is the smallest integer not exceeding j/h (i.e., (i-1)h < j ≤ ih). We then 

restate the quadratic program in Eq. (1) as a problem for nodal probabilities at the knot points 

only: 
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 0jP , for all j (0 ≤ j ≤ N) 

 1
0




N

j
jP   

 



N

j
jjSPTqrS

0

])(exp[)0(   

where 




 
n

k
khkiji

n

k
khkijiihjihijij PuSDPuSCPSBPSAP

0
,

0
,1)1( )()()()(

 

for all 0 ≤ j ≤ N and i is the smallest integer not exceeding j/h (i.e., (i-1)h < j ≤ ih). 

 Although the quadratic program in Eq. (6) appears to be similar to the one in Eq. (1), only 

n+1 of the total nh+1 nodal probabilities are treated as unknowns. In contrast, all nh+1 nodal 
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probabilities are treated as unknowns in Eq. (1). The dimension of the quadratic program is thus 

reduced by a factor of h (≥ 1). Depending on the choice of this bandwidth parameter h, the 

potential gains in efficiency can be substantial. Consider, for example, a 100-period implied 

binomial tree (i.e., N = 100). With the standard setup of the quadratic program in Eq. (1), we 

need to solve 101 unknown nodal probabilities in order to calibrate the binomial tree to option 

prices. Such a quadratic program requires the use of a 101×101 matrix. With a moderate choice 

of the bandwidth parameter of h  = 4, we only need to solve 26 unknown nodal probabilities. The 

dimension of the matrix used in the quadratic program is reduced to 26×26. The potential 

improvement in efficiency is thus very clear.  

 

III. Numerical Performance 

 Improved implementation and numerical efficiency may not be meaningful unless they 

are also accompanied by a maintained or improved level of numerical accuracy. We now 

perform numerical analysis to evaluate the numerical accuracy of the smoothed implied binomial 

tree method in comparison with the standard implied binomial tree method. Option prices are 

first calculated using a given option pricing model for a discrete set of strike prices (with 

identical maturity). The smoothed implied binomial tree is then calibrated to these option prices. 

The risk-neutral density and its moments (e.g., volatility, skewness and kurtosis) are then 

extracted from the fitted binomial tree and compared to the true risk-neutral density and its 

moments of the underlying stock price distribution. Numerical accuracy is evaluated on the basis 

of how closely these extracted measures match those of the corresponding accurate measures of 

the underlying stock price distribution. A similar analysis is then carried out for the standard 

implied binomial tree method. A comparison of the numerical performance of the two implied 

binomial tree methods provides insight on the relative numerical accuracy of these methods.   

To perform the required numerical analysis, we assume that the dynamics of the 

underlying stock price are specified by the following stochastic volatility with jumps (SVJ) 

model (under the risk-neutral probability measure): 

 ݀ܵሺݐሻ

ܵሺݐሻ
ൌ ൫ݎ െ ݐ௃൯݀ߤߣ ൅ ඥܸሺݐሻ݀ݖௌሺݐሻ ൅ ሻ (7)ݐሺݍሻ݀ݐሺܬ

 ܸ݀ሺݐሻ ൌ ሾߠ௩ െ ݇௩ܸሺݐሻሿ݀ݐ ൅ ሻ (8)ݐ௩ሺݖሻ݀ݐ௩ඥܸሺߪ
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where t is the time index, S(t) is the stock price, V(t) is the diffusion component of return 

variance, zs(t) and zv(t) are correlated standard Brownian motions:  

,ሻݐௌሺݖሾ݀ݒ݋ܥ ሻሿݐ௩ሺݖ݀ ൌ  ,ݐ݀ߩ

J(t) is the percentage jump size that is lognormally, identically and independently distributed 

over time with unconditional mean μJ and standard deviation σJ:  

ln ሾ1 ൅ ሻሿ~ܰሺln൫1ݐሺܬ ൅ ௃൯ߤ െ
1

2
௃ߪ
ଶ, ௃ߪ

ଶሻ 

q(t) is a Poisson jump counter with intensity λ (i.e., frequency of jumps per year):  

Prሼ݀ݍሺݐሻ ൌ 1ሽ ൌ  ,ݐ݀ߣ

and r is the risk-free rate. Jump frequency and size are uncorrelated with each other or with the 

two diffusion components. We select a base set of model parameters for the SVJ model based on 

empirical estimates from previous studies (e.g., Bakshi, Cao, and Chen (1997)): kv = 1, σv = 0.25, 

ρ = 0, λ = 0.5, μJ = -0.15σI, σJ = 0.15σI, θv = 0.85kvσI
2, V0 = θv/kv and σI = 0.2 is the annualized 

integrated volatility. Both the risk-free rate and dividend yield are assumed to be zero. With this 

base set of parameters, the diffusion (jump) portion of the volatility accounts for 85% (15%) of 

the total volatility. We do perform robustness tests subsequently using alternative sets of model 

parameters that deviate from the base set of parameters and the results are not materially 

different.  

 

A. Measures of numerical accuracy 

 If the constructed implied binomial tree provides an accurate estimate of the risk-neutral 

density, it should also provide accurate estimates of option prices. We thus focus on the accuracy 

of the estimated risk-neutral density when we evaluate the numerical performance of an implied 

binomial tree method. In particular, we evaluate whether or not the constructed implied binomial 

tree provides accurate estimate of volatility, skewness and kurtosis of the risk-neutral density. 

These three moments capture key aspects of the risk-neutral density and are widely used in 

empirical applications such as volatility forecasting, variance risk premium, empirical asset 

pricing, and portfolio selection (e.g., Jiang and Tian (2005), Ang, Hodrick, Xing, and Zhang 

(2006), Conrad, Dittmar, and Ghysels (2008), Bollerslev, Tauchen, and Zhou (2009), Carr and 

Wu (2009), Chang, Christoffersen and Jacobs (2009), DeMiguel, Plyakha, Uppal and Vilkov 

(2009), and Feunou, Fontaine and Tedongap (2009)). 
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 There are two commonly used methods for calculating these higher moments. The first 

one is based on numerical integration of option prices (NIP). As derived by Bakshi, Kapadia and 

Madan (2003), the volatility (i.e., standard deviation), skewness and kurtosis of the risk-neutral 

density are given by the following expressions, respectively:  

 2
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Vcall and Vput are call and put prices, K and T are option strike price and maturity, respectively, 

and S* is an arbitrary level of the stock price which is usually chosen as the current stock price or 

forward stock price. The required option prices can be either calculated using a specified option 

pricing model or observed directly in the market. For this approach to be accurate, we need 

prices of options with strike prices across the entire support of the risk-neutral density at a 

reasonably small increment. Numerical integration may not work well if the increment in stock 

price is too large or the available strike prices do not cover a sufficient range of the support of 

the risk-neutral density.  

 Another approach is to calculate the higher moments from numerical integration of the 

risk-neutral density (NID). Given the risk-neutral density (either theoretically or estimated), the 

j-th order non-central moments can be calculated directly as integrals of the risk-neutral density:  

 ... 3, 2, 1,for ,)(  



jdxxfxm j

j  (12) 
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With these moments, the volatility, skewness and kurtosis of the risk-neutral density are 

straightforward to calculate: 

 2
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 Theoretically, these two methods are equivalent since the risk-neutral density determines 

a unique price for an option. Conversely, a continuum of option prices across all strike prices 

determines a unique risk-neutral density function. The relevant question is then how these 

methods actually perform when they are used to estimate the higher moments. To evaluate their 

numerical performance, we apply these two methods to the SVJ model with the base set of 

parameter values described above. The initial stock price is normalized at 100. Option maturities 

vary from 0.5 to 12 months. The support of the risk-neutral distribution is approximated by an 

interval [Smin, Smax] covering a 6-standard deviation spread from the current stock price on either 

side. The support is then divided into 600 subintervals to facilitate numerical integration. For 

integration over option prices, we calculate 601 option prices at the end point of each subinterval 

using the SVJ model. For integration over the density function, we calculate the 601 values of 

the density function directly from the SVJ model. The results are reported in Table 1. As a 

benchmark for comparison purposes, we also report the higher moments calculated from the 

moment generating function (MGF) of the risk-neutral distribution.   

 

 

 

 As reported in Table 1, the two numerical integration methods provide virtually identical 

values for all three moments (i.e., volatility, skewness and kurtosis) across all maturities. These 

values are also virtually identical to those calculated directly from the moment generating 

function. The differences are so small that it is barely noticeable. We also perform robustness 

analysis using alternative sets of model parameter values. Untabulated results show that both 

methods remain very accurate and there are virtually no differences at all between moments 

Table 1 about here 
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calculated from these methods. We thus conclude that both methods are very accurate and either 

one may be used to calculate moments of the risk-neutral density. The choice between the two is 

essentially a matter of convenience. If option prices are already available, numerical integration 

of option prices (NIP) is a better choice. Using the density-based approach requires a further step 

of estimating the risk-neutral density from option prices. On the other hand, numerical 

integration of risk-neutral density (NID) is a better choice if the risk-neutral density is already 

known or estimated. In our applications below, the construction of the implied binomial tree 

automatically provides an estimate of the risk-neutral density function. We thus will use the NID 

method to calculate the risk-neutral moments.  

 

B. Numerical performance of implied binomial trees 

 To evaluate the numerical performance of implied binomial trees, we calculate a set of 

option prices using the SVJ model with the base set of parameter values as described above. The 

initial stock price is normalized at 100. Option maturity varies from 0.5 to 12 months. A set of 

strike prices is chosen to cover an interval of 3 standard deviations from either side of the initial 

stock price. The strike price interval is then divided into 20 subperiods, with 21 equally spaced 

strike prices selected to cover the end points of the subintervals.  

An N-period implied binomial tree is then constructed to match these SVJ option prices. 

For the standard implied binomial tree (BIN) approach, we use N = 120 periods and the penalty 

parameter α for pricing errors is equal to 1.4 For comparison purposes, we also use N = 120 

periods for our cubic spline smoothed implied binomial tree (csBIN) method. To improve the 

efficiency of the implied binomial tree implementation, we vary the bandwidth parameter (h) 

from 1 to 4. For h = 1, the smoothed implied binomial tree method is identical to the standard 

implied binomial tree method. For h > 1, the number of unknowns in the quadratic program is 

reduced by a factor of h, thus making the implied binomial tree method more efficient. For 

example, only 30 unknowns are solved in the quadratic program if h = 4 in comparison to 120 

unknowns for the standard implied binomial tree method. More importantly for efficiency gains, 
                                                      
4 Note that our choice of the penalty parameter (α) value is quite different from those in Jackwerth and Rubinstein 

(1996). This is because our penalty parameter is applied to the weighted average squared pricing errors instead of 
the sum of squared pricing errors. Applying the penalty parameter this way minimizes the impact of the number of 

options used in the construction of the implied binomial tree. Otherwise, a larger (smaller) α value may have to be 

used when the number of options is smaller (greater).    
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we no longer need to solve a quadratic program with a 120×120 matrix. Instead, we only need to 

solve one with a 30×30 matrix. 

Solving the quadratic program (either Eq. (1) or (6)) provides the ending nodal 

probabilities, Pj’s, for the implied binomial tree. These ending nodal probabilities are then 

converted into values of the risk-neutral density observed at the ending stock prices: 

 Nj
R

P
Rp

j

j
j 


 0for ,)( , (16) 

where Rj = ln[Sj/S(0)] is continuously compounded stock return, and ∆Rj = (Rj+1–Rj-1)/2 is the 

subinterval covered by the nodal probability. The density function is then used to calculate the 

risk neutral moments using numerical integration of the density function (NID) as discussed 

before. The results are reported in Table 2 for both implementation methods for implied binomial 

trees.  

 

 

 

 Consider first the results from the standard implied binomial tree method. These are 

reported in Table 2 in the column labeled “csBIN” with bandwidth parameter h = 1. The standard 

implied binomial tree is a special case of the smoothed implied binomial tree when the 

bandwidth parameter (h) is equal to 1. We thus do not separately report the results for the 

standard implied binomial tree method. Comparing with the accurate values calculated using the 

moment generating function (MGF), the risk-neutral moments estimated using the standard 

implied binomial tree method are virtually identical in every case. This is true for volatility, 

skewness and kurtosis across all maturities. These results suggest that the implied binomial tree 

method does a very good job extracting risk-neutral moments from option prices.  

 More importantly, the numerical accuracy of the smoothed implied binomial tree method 

(csBIN) is virtually identical to that of the standard implied binomial tree method. In fact, as the 

bandwidth parameter h increases from 1 to 4, there is no virtually no change at all in the 

estimated value of the risk-neutral volatility or skewness. As expected, we do observe a slight 

increase in estimation error for the fourth moment, the risk-neutral kurtosis, especially for longer 

maturities. Even in that case, the difference is still so small and clearly immaterial for any 

practical applications. The smoothed implied binomial tree method thus maintains virtually the 

Table 2 about here 
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same level of numerical accuracy as the standard implied binomial tree and yet provides a 

substantial improvement in computational efficiency. With bandwidth parameter h as high as 4, 

the smoothed method still achieves the same level of numerical accuracy by replacing a 

quadratic program with a 120×120 matrix with a much lower dimensional quadratic program 

with a 30×30 matrix. The improvement in efficiency is thus quite clear.  

 Of course, the moment measures may not be sufficient in gauging the numerical accuracy 

of the implied binomial tree method since not all features of the risk-neutral distribution are 

captured by these moments. We thus plot the entire risk-neutral density estimated using the 

implied binomial tree method, in comparison with the true density from the SVJ model. The 

results are presented in Figure 1 for the case with a 3-month maturity and a bandwidth parameter 

of 4. The results for other cases are similar and thus omitted. As shown in Figure 1, the density 

plot is virtually indistinguishable between the implied binomial tree method and the true SVJ 

density. This is true for both the standard and the smoothed implied binomial tree methods. 

These results provide further support for the numerical accuracy of the implied binomial tree 

method in extracting the risk-neutral density from option prices.  

 

 

 

 To ensure that the results reported in Table 2 and Figure 1 are not confined to that 

specific setting, we perform several robustness tests. First, a commonly encountered problem in 

practice is the lack of available strike prices to span the support of the risk-neutral distribution. In 

the analysis so far, we assume that we have prices of options across 21 strike prices that 

collectively cover 3 standard deviations on either side of the current stock price. How does the 

implied binomial tree method perform if there are fewer (e.g., only 11) strike prices? With fewer 

strike prices available, the gap between two adjacent strike prices becomes larger and may thus 

affect the numerical accuracy of the implied binomial tree method. With a reduced number of 

strike prices, we recalibrate the implied binomial trees and then recalculate the three risk-neutral 

moments using the extracted risk-neutral density. The new results are reported in Table 3, with 

the number of strike prices ranging from 7 to 21. Option maturity is fixed at 3 months. The 

results for other maturities are similar and thus omitted for brevity. Although the estimate values 

of the risk-neutral moments deviate a bit more from the accurate values of the corresponding 

Figure 1 about here 
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moments, the differences are still too small to have any material impact on practical applications. 

Even when there are only 7 or 9 strike prices available, the implied binomial tree method 

remains quite accurate.  

 

 

 

 Next, the strike prices may not be evenly spaced over a given range of stock prices. More 

realistically, there are usually more strike prices around the at-the-money region and fewer strike 

prices away from the at-the-money region. In other words, the gap between two adjacent strike 

prices tends to increase as we move away from the at-the-money strike price (on either side). To 

see if the implied binomial tree method still works well in this case, we let the gap between two 

adjacent strike price increases by 25% each time we move away from the at-the-money region by 

one strike price. This is roughly how strike prices on the S&P 500 index options are spaced. We 

still have 21 strike prices available, covering 3 standard deviations around either side of the 

current stock price. The difference is that these strike prices are no longer evenly spaced. We 

recalibrate the implied binomial trees using the new set of strike prices and reproduce the 

moment results in Table 2. The new results are reported in Table 4.  

 

 

 

 As shown in Table 4, both implied binomial tree methods continue to work well when the 

strike prices are spread out unevenly, with decreased availability in strike prices as we move 

away from the at-the-money strike price in either direction. The numerical accuracy is 

comparable to the level reported in Table 2 where the strike prices are evenly spread over the 

same span in stock price. This is particularly true for volatility and skewness. For kurtosis, 

numerical accuracy is slightly worse than the level reported in Table 2. The errors are 

nonetheless quite small and are most likely immaterial in any practical applications.  

 Finally, we consider the robustness of numerical performance in case of greater volatility 

and higher jump risk. All results reported so far are obtained for option prices from an SVJ 

model with a 20% total volatility and with diffusion and jumps accounting for 85% and 15% of 

the total volatility, respectively. With such moderate levels of total volatility and jumps, the risk-

Table 3 about here 

Table 4 about here 
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neutral density has fairly low levels of skewness and kurtosis (as reported in Table 2). To further 

examine robustness, we elevate the level of total volatility to 30% and let jumps (diffusion) to 

account for 25% (75%) of the total volatility. To do so, we specify the parameters of the SVJ 

model as follows: kv = 1, σv = 0.25, ρ = 0, λ = 0.25, μJ = -0.15σI, σJ = 0.25σI, θv = 0.75kvσI
2, V0 = 

θv/kv and σI = 0.3. Both skewness and kurtosis are now much greater (as reported subsequently in 

Table 5). Given these new parameters of the SVJ model, we then recalibrate the implied 

binomial tree to option prices for each maturity and bandwidth combination used in Table 2. The 

extracted risk-neutral density is then used to calculate the three moments, with the results 

reported in Table 5.5  

 

 

 

 As shown in Table 5, the elevated levels of volatility and jumps indeed lead to higher 

levels of skewness and kurtosis. As expected, numerical accuracy is not as precise as that is 

reported in Table 2 when the base set of parameters of the SVJ model is used. For risk-neutral 

volatility, both the standard and smoothed implied binomial tree methods remain very accurate 

with numerical errors virtually zero in every case. The elevated levels of total volatility and 

jumps do not have any impact on the numerical accuracy of the estimated volatility at all. This is 

no longer the case for skewness and kurtosis. The errors are clearly larger than those reported in 

Table 2. For skewness, the largest percentage errors are found in the case of options with 0.5 

month to maturity, ranging from 5.1% to 5.7%. In comparison, the largest error in the estimated 

skewness reported in Table 2 is only 3.8% (in the case of options with 6 months to maturity and 

a bandwidth parameter of 4). The numerical accuracy for kurtosis deteriorates even more. The 

largest errors are also found in the case of options with 0.5 month to maturity. The percentage 

errors in the estimated kurtosis range from 8.2% to 9.0%. In comparison, the largest 

corresponding error reported in Table 2 is only 0.4%. Numerical accuracy is clearly impacted by 

the higher levels of total volatility and jumps. Nevertheless, the estimation errors are still 

relatively small and will probably not have any material impact in practical applications. 

                                                      
5 Because of the increased level of jump risk (25% as opposed to 15% of total volatility), the tails of the risk-neutral 
density become more important. We thus increase the coverage of the strike prices to 4 standard deviations on either 
side of the current stock price (instead of the 3 standard deviations used before). 

Table 5 about here 
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IV. Conclusions 

 In this paper, we have developed a more efficient method for implementing implied 

binomial trees. A key innovation in our approach is the use of cubic spline smoothing for 

reducing the dimensionality of the quadratic program. Instead of treating all ending nodal 

probabilities as unrelated unknowns, only a selected subset of ending nodal probabilities is 

treated as such. The remaining ending nodal probabilities are interpolated from the selected 

subset using natural cubic splines. This allows for the transformation of the original quadratic 

program, with all ending nodal probabilities as unknowns, into a lower dimensional quadratic 

program with only the selected subset of ending nodal probabilities as unknowns. The reduction 

of dimensionality substantially improves the numerical efficiency of the implied binomial tree.  

More importantly, the efficiency gains are achieved without any sacrifice in numerical 

accuracy. An extensive numerical analysis demonstrates that the smoothed implied binomial tree 

method is as accurate as the standard implied binomial tree method as long as the bandwidth 

parameter is not too large (e.g., h ≤ 4).6 Both methods are designed to extract a smooth risk-

neutral density from option prices. The extracted risk-neutral density also provides very accurate 

estimates for the risk-neutral volatility, skewness and kurtosis.  

The efficiency gains of the smoothed implied binomial tree method can be very helpful in 

practical applications. Faster implementation is an obvious advantage. A more important 

advantage is the ability to handle very large binomial trees. The standard implied binomial tree 

method runs into difficulties when the implied binomial tree is constructed for a large number of 

periods (e.g., N = 400). With so many unknowns, an optimization routine such as a quadratic 

program is most likely difficult, if not impossible, to implement. This can be a problem if the 

application demands the use of a large binomial tree due to the level of accuracy required. The 

smoothed implied binomial tree method provides a simple solution to this problem.   

 

 

                                                      
6 As the selected subset of ending nodal probabilities shrinks in size (or equivalently, as the bandwidth parameter h 
increases), the numerical accuracy of the smoothed implied binomial tree method may deteriorate eventually. For 
most practical applications, however, a bandwidth of 4 is usually sufficient. The tradeoff between numerical 
efficiency and accuracy is thus quite favorable for the smoothed implied binomial tree method in most cases.  
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Table 1 
Risk-neutral moments by numerical integration 

 
This table evaluates the numerical performance of two alternative methods for risk-neutral 
volatility, skewness and kurtosis calculations – the numerical integration of option prices (NIP) 
method based on numerical integration of option prices (e.g., Bakshi, Kapadia and Madan 
(2003)) and the numerical integration of risk-neutral density (NID) method based on numerical 
integration of the risk-neutral density function. The moment generating function (MGF) is also 
used to calculate a benchmark value for each higher moment for evaluation purposes. The 
underlying stock price is assumed to follow a stochastic volatility with jumps (SVJ) model 
specified in Eqs. (7) and (8) with the following parameters: kv = 1, σv = 0.25, ρ = 0, λ = 0.5, μJ = -
0.15σI, σJ = 0.15σI, θv = 0.85kvσI

2, V0 = θv/kv and σI = 0.2 is the annualized integrated volatility. 
The risk-free rate is assumed to be zero for convenience. With this base set of parameters, the 
diffusion (jump) portion of the volatility accounts for 15% (85%) of the total volatility. 
 

Maturity Volatility  Skewness  Kurtosis 
(month) NIP NID MGF  NIP NID MGF  NIP NID MGF 

0.5 0.038 0.038 0.038  -0.044 -0.044 -0.044  3.170 3.126 3.154
1 0.054 0.054 0.054  -0.034 -0.034 -0.034  3.178 3.179 3.178
2 0.076 0.076 0.076  -0.031 -0.031 -0.031  3.277 3.277 3.278
3 0.094 0.094 0.094  -0.034 -0.034 -0.034  3.376 3.376 3.377
6 0.132 0.132 0.132  -0.053 -0.052 -0.052  3.625 3.614 3.617
12 0.187 0.187 0.187  -0.091 -0.090 -0.091  3.889 3.877 3.888
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Table 2 
Numerical performance of implied binomial trees 

 
This table evaluates the numerical performance of two alternative methods for constructing 
implied binomial tree – the standard implied binomial tree (BIN) method and the cubic spline 
smoothed implied binomial tree (csBIN) method. All binomial trees are constructed with 120 
periods, matched to 21 option prices with strike prices equally spaced over an interval covering 3 
standard deviations on either side the initial stock price. The risk-neutral density from the 
implied binomial tree is then used to calculate volatility, skewness and kurtosis of the risk-
neutral density. For comparison purposes, the corresponding accurate moments are calculated 
using the moment generating function (MGF) of the theoretical density function of the assumed 
SVJ model. Estimates from the standard implied binomial tree method are not separately 
reported in the table since they are identical the csBIN estimates when the bandwidth parameter 
h is equal to 1. The underlying stock price is assumed to follow a stochastic volatility with jumps 
(SVJ) model specified in Eqs. (7) and (8) with the same set of parameters as in Table 1.  
 
Maturity Bandwidth  Volatility  Skewness  Kurtosis 
(month) (h)  csBIN MGF  csBIN MGF  csBIN MGF 

0.5 1  0.038 0.038  -0.045 -0.044  3.158 3.154 
0.5 2  0.038 0.038  -0.045 -0.044  3.158 3.154 
0.5 3  0.038 0.038  -0.045 -0.044  3.158 3.154 
0.5 4  0.038 0.038  -0.045 -0.044  3.158 3.154 
1 1  0.054 0.054  -0.034 -0.034  3.177 3.178 
1 2  0.054 0.054  -0.034 -0.034  3.177 3.178 
1 3  0.054 0.054  -0.034 -0.034  3.177 3.178 
1 4  0.054 0.054  -0.034 -0.034  3.177 3.178 
2 1  0.076 0.076  -0.030 -0.031  3.275 3.278 
2 2  0.076 0.076  -0.030 -0.031  3.275 3.278 
2 3  0.076 0.076  -0.030 -0.031  3.275 3.278 
2 4  0.076 0.076  -0.030 -0.031  3.275 3.278 
3 1  0.093 0.093  -0.034 -0.034  3.369 3.377 
3 2  0.093 0.093  -0.034 -0.034  3.369 3.377 
3 3  0.093 0.093  -0.034 -0.034  3.369 3.377 
3 4  0.093 0.093  -0.034 -0.034  3.368 3.377 
6 1  0.132 0.132  -0.054 -0.052  3.615 3.617 
6 2  0.132 0.132  -0.054 -0.052  3.615 3.617 
6 3  0.132 0.132  -0.054 -0.052  3.615 3.617 
6 4  0.132 0.132  -0.054 -0.052  3.617 3.617 
12 1  0.187 0.187  -0.093 -0.091  3.904 3.888 
12 2  0.187 0.187  -0.093 -0.091  3.904 3.888 
12 3  0.187 0.187  -0.093 -0.091  3.903 3.888 
12 4  0.187 0.187  -0.094 -0.091  3.896 3.888 
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Table 3 
Robustness: Number of strike prices 

 
This table evaluates the impact of available number of strike prices on the numerical 
performance of the implied binomial tree method. All binomial trees are constructed with 120 
periods. Option maturity is 3 months and the strike prices are equally spaced over an interval 
covering 3 standard deviations on either side the initial stock price. The risk-neutral density from 
the implied binomial tree is then used to calculate volatility, skewness and kurtosis of the risk-
neutral density. For comparison purposes, the corresponding accurate moments are calculated 
using the moment generating function (MGF) of the theoretical density function of the assumed 
SVJ model. Estimates from the standard implied binomial tree method are not separately 
reported in the table since they are identical the csBIN estimates when the bandwidth parameter 
h is equal to 1. The underlying stock price is assumed to follow a stochastic volatility with jumps 
(SVJ) model specified in Eqs. (7) and (8) with the same set of parameters as in Table 1.  
 
Number Bandwidth  Volatility  Skewness  Kurtosis 
of strikes (h)  csBIN MGF  csBIN MGF  csBIN MGF 

21 1  0.093 0.093  -0.034 -0.034  3.365 3.376 
21 2  0.093 0.093  -0.034 -0.034  3.365 3.376 
21 3  0.093 0.093  -0.034 -0.034  3.365 3.376 
21 4  0.093 0.093  -0.034 -0.034  3.364 3.376 
17 1  0.093 0.093  -0.034 -0.034  3.370 3.376 
17 2  0.093 0.093  -0.034 -0.034  3.371 3.376 
17 3  0.093 0.093  -0.034 -0.034  3.370 3.376 
17 4  0.093 0.093  -0.033 -0.034  3.371 3.376 
13 1  0.093 0.093  -0.034 -0.034  3.363 3.376 
13 2  0.093 0.093  -0.034 -0.034  3.363 3.376 
13 3  0.093 0.093  -0.034 -0.034  3.363 3.376 
13 4  0.093 0.093  -0.034 -0.034  3.363 3.376 
11 1  0.093 0.093  -0.034 -0.034  3.368 3.376 
11 2  0.093 0.093  -0.035 -0.034  3.368 3.376 
11 3  0.093 0.093  -0.035 -0.034  3.368 3.376 
11 4  0.093 0.093  -0.035 -0.034  3.367 3.376 
9 1  0.093 0.093  -0.040 -0.034  3.419 3.376 
9 2  0.093 0.093  -0.040 -0.034  3.419 3.376 
9 3  0.093 0.093  -0.040 -0.034  3.419 3.376 
9 4  0.093 0.093  -0.040 -0.034  3.420 3.376 
7 1  0.093 0.093  -0.025 -0.034  3.473 3.376 
7 2  0.093 0.093  -0.025 -0.034  3.472 3.376 
7 3  0.093 0.093  -0.025 -0.034  3.473 3.376 
7 4  0.093 0.093  -0.025 -0.034  3.473 3.376 
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Table 4 
Robustness: Uneven increment in strike prices 

 
This table evaluates how uneven increment in strike prices affects the numerical performance of 
the implied binomial tree method. All binomial trees are constructed with 120 periods, matched 
to 21 option prices associated with strike prices covering 3 standard deviations around the initial 
stock price. From the at-the-money strike price, the gap between two adjacent strike prices 
increases by 25% each time as we move away from the money. The risk-neutral density from the 
implied binomial tree is then used to calculate volatility, skewness and kurtosis of the risk-
neutral density. For comparison purposes, the corresponding accurate moments are calculated 
using the moment generating function (MGF) of the theoretical density function of the assumed 
SVJ model. Estimates from the standard implied binomial tree method are not separately 
reported in the table since they are identical the csBIN estimates when the bandwidth parameter 
h is equal to 1. The underlying stock price is assumed to follow a stochastic volatility with jumps 
(SVJ) model specified in Eqs. (7) and (8) with the same set of parameters as in Table 1.  
 
Maturity Bandwidth  Volatility  Skewness  Kurtosis 
(month) (h)  csBIN MGF  csBIN MGF  csBIN MGF 

0.5 1  0.038 0.038  -0.043 -0.044  3.134 3.154 
0.5 2  0.038 0.038  -0.043 -0.044  3.134 3.154 
0.5 3  0.038 0.038  -0.043 -0.044  3.133 3.154 
0.5 4  0.038 0.038  -0.043 -0.044  3.133 3.154 
1 1  0.054 0.054  -0.035 -0.034  3.173 3.178 
1 2  0.054 0.054  -0.035 -0.034  3.173 3.178 
1 3  0.054 0.054  -0.035 -0.034  3.173 3.178 
1 4  0.054 0.054  -0.035 -0.034  3.173 3.178 
2 1  0.076 0.076  -0.035 -0.031  3.290 3.278 
2 2  0.076 0.076  -0.035 -0.031  3.290 3.278 
2 3  0.076 0.076  -0.035 -0.031  3.290 3.278 
2 4  0.076 0.076  -0.035 -0.031  3.295 3.278 
3 1  0.093 0.093  -0.039 -0.034  3.398 3.377 
3 2  0.093 0.093  -0.039 -0.034  3.398 3.377 
3 3  0.093 0.093  -0.039 -0.034  3.398 3.377 
3 4  0.093 0.093  -0.040 -0.034  3.401 3.377 
6 1  0.132 0.132  -0.054 -0.052  3.666 3.617 
6 2  0.132 0.132  -0.054 -0.052  3.667 3.617 
6 3  0.132 0.132  -0.054 -0.052  3.671 3.617 
6 4  0.132 0.132  -0.050 -0.052  3.690 3.617 
12 1  0.187 0.187  -0.090 -0.091  3.850 3.888 
12 2  0.187 0.187  -0.090 -0.091  3.850 3.888 
12 3  0.187 0.187  -0.090 -0.091  3.850 3.888 
12 4  0.187 0.187  -0.090 -0.091  3.849 3.888 
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Table 5 
Robustness: Higher volatility and greater jump risk 

 
This table evaluates how higher volatility and greater jump risk affect the numerical performance 
of the implied binomial tree method. All binomial trees are constructed with 120 periods, 
matched to 21 option prices with strike prices equally spaced over an interval covering 4 
standard deviations on either side the initial stock price. The risk-neutral density from the 
implied binomial tree is then used to calculate volatility, skewness and kurtosis of the risk-
neutral density. For comparison purposes, the corresponding accurate moments are calculated 
using the moment generating function (MGF) of the theoretical density function of the assumed 
SVJ model. The underlying stock price is assumed to follow a stochastic volatility with jumps 
(SVJ) model specified in Eqs. (7) and (8) with the following parameters: kv = 1, σv = 0.25, ρ = 0, 
λ = 0.25, μJ = -0.15σI, σJ = 0.25σI, θv = 0.75kvσI

2, V0 = θv/kv and σI = 0.3 is the annualized 
integrated volatility. The risk-free rate is assumed to be zero for convenience. With this base set 
of parameters, the diffusion (jump) portion of the volatility accounts for 25% (75%) of the total 
volatility. 
 
Maturity Bandwidth  Volatility  Skewness  Kurtosis 
(month) (h)  csBIN MGF  csBIN MGF  csBIN MGF 

0.5 1  0.058 0.058  -0.861 -0.908  8.286 9.025 
0.5 2  0.058 0.058  -0.862 -0.908  8.287 9.025 
0.5 3  0.058 0.058  -0.860 -0.908  8.267 9.025 
0.5 4  0.058 0.058  -0.856 -0.908  8.214 9.025 
1 1  0.082 0.082  -0.633 -0.644  5.895 6.050 
1 2  0.082 0.082  -0.633 -0.644  5.895 6.050 
1 3  0.082 0.082  -0.633 -0.644  5.894 6.050 
1 4  0.082 0.082  -0.633 -0.644  5.891 6.050 
2 1  0.116 0.116  -0.457 -0.459  4.552 4.595 
2 2  0.116 0.116  -0.457 -0.459  4.552 4.595 
2 3  0.116 0.116  -0.457 -0.459  4.553 4.595 
2 4  0.116 0.116  -0.461 -0.459  4.600 4.595 
3 1  0.142 0.142  -0.384 -0.380  4.180 4.134 
3 2  0.142 0.142  -0.384 -0.380  4.181 4.134 
3 3  0.142 0.142  -0.385 -0.380  4.196 4.134 
3 4  0.142 0.142  -0.389 -0.380  4.248 4.134 
6 1  0.201 0.201  -0.284 -0.284  3.728 3.726 
6 2  0.201 0.201  -0.284 -0.284  3.728 3.726 
6 3  0.201 0.201  -0.284 -0.284  3.730 3.726 
6 4  0.201 0.201  -0.282 -0.284  3.729 3.726 
12 1  0.285 0.284  -0.236 -0.231  3.647 3.578 
12 2  0.285 0.284  -0.236 -0.231  3.648 3.578 
12 3  0.285 0.284  -0.236 -0.231  3.646 3.578 
12 4  0.285 0.284  -0.231 -0.231  3.585 3.578 
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Figure 1 
Risk-neutral density 

 
This figure illustrates the risk-neutral density extracted from option prices using the implied 
binomial tree methods. Both the standard implied binomial tree (BIN) method and the cubic 
spline smoothed implied binomial tree (csBIN) method are used to estimate the density function.  
Both binomial trees are constructed with 120 periods, matched to 21 option prices with strike 
prices equally spaced over an interval covering 3 standard deviations on either side the initial 
stock price. The bandwidth (h) used for the csBIN is 4. The underlying stock price is assumed to 
follow a stochastic volatility with jumps (SVJ) model specified in Eqs (7) and (8) with the 
following parameters: kv = 1, σv = 0.25, ρ = 0, λ = 0.5, μJ = -0.15σI, σJ = 0.15σI, θv = 0.85kvσI

2, V0 
= θv/kv and σI = 0.2 is the annualized integrated volatility. The risk-free rate is assumed to be zero 
for convenience. With this base set of parameters, the diffusion (jump) portion of the volatility 
accounts for 15% (85%) of the total volatility. 
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