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Abstract 

This paper investigates stock returns behaviour as a function of lagged idiosyncratic risk in the 

Fama-French three-factor model using two approaches to estimating idiosyncratic risk. The 

application of ordinary least squares and quantile regression methods to heteroskedasticity 

corrected data in a panel structure reveals that the form of relationship does not change with the 

method of estimating idiosyncratic risk and is indeed dynamic. The relationship curves resemble the 

shapes of the utility curves of risk-seeking and risk-aversion, and not the risk-neutral attitude. The 

findings are robust to the choice of FF three-factor and capital asset pricing one-factor models, and 

to the choice of estimation window. Our results help explain some of the basis of conflicting results 

reported in the literature on the form of idiosyncratic risk –return relation. The form of the 

relationship is too dynamic to support idiosyncratic risk as a ‘priced’ item. 
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Introduction 

The Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965) and Black (1972) depicts 

systematic risk representing contemporaneous positive linear relationship between excess stock 

returns and excess market returns. The model advocates that the systematic risk is sufficient to 

explain the expected stock returns in the cross-section. Risk arising from any specific events, the 

idiosyncratic risk, can be diversified away by holding a portfolio of stocks and that investors will not 

be compensated for such risk. 

The theoretical asset pricing model of Merton (1987) in markets with incomplete information 

shows a positive relation between idiosyncratic risk and stock returns. In recent years there has been 

considerable interest in exploring the behaviour of idiosyncratic risk due to the belief that higher 

idiosyncratic risk may be responsible for generating higher returns, i.e., idiosyncratic risk is a priced 

factor. Empirical studies in this area use different measures of estimating idiosyncratic risk and 

models to investigate the idiosyncratic risk-return relationship at the portfolio or stock level. 

However, the findings provide conflicting evidence about the form of this relation and many refer to 

this relation as a ‘puzzle’. This makes the study of IRSK very interesting. Many corporate and financial 

decisions require some knowledge of the expected returns from an investment on an individual 

stock or a portfolio of risky assets. Some traders and institutional investors perceive stock volatility 

as an important determinant in their decision to select stocks. Thus, understanding the nature of 

idiosyncratic risk-return relationship is important. As all stock market investments are exposed to 

systematic as well as idiosyncratic risk to a certain degree, and in some cases the idiosyncratic risk 

may constitute the major portion of the total risk, examining idiosyncratic risk-return relationship 

issue is not only relevant for asset pricing theory, but also of interest to portfolio managers. All 

studies to date have explored the idiosyncratic risk-return relationship at the mean level via the use 

of ordinary least squares (OLS). Our study uses quantile regression technique that allows 

investigation of this relation at various quantiles of the conditional distribution of returns, and thus 

provides a deeper insight into the form of the relationship. 

Malkiel and Xu (1997), Goyal and Santa-Clara (2003), Fu 2009 and many others find a positive 

relation between idiosyncratic risk and stock returns. Bali et al. (2005) and Wei et al. (2005) 

independently replicate Goyal and Santa-Clara (2003) study using an extended sample and find no 

positive relation. Wei et al. (2005) find the relationship to be negative and not very significant. Ang 

et al. (2006, 2009) and Jiang et al. (2009) observe a negative relation between idiosyncratic risk and 

future stock returns. All of the above studies are based on US data. Drew et al. (2007) replicate 

Malkiel and Xu (1997) study using New Zealand data and find a positive relation. Bollen et al. (2009) 

build their study model on Bali et al. (2005) framework but use the Australian data and observe that 

idiosyncratic risk is not priced in Australia. Nartea et al. (2010) apply Ang et al. (2006, 2009) model to 

explore the role of idiosyncratic risk in five South East Asian markets of Malaysia, Singapore, 

Thailand, Indonesia and the Philippines. They find positive relation between idiosyncratic risk and 

stock returns in Malaysia, Singapore, Thailand and Indonesia, and no significant relation in the 

Philippines. 

Some studies have investigated idiosyncratic risk-return relationship in models representing 

contemporaneous relationship (Fu 2009), while others use predictive models (Ang et al. 2006, 2009). 
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This paper is related most closely to studies that support the notion of predictive models, i.e., IRSK 

and other explanatory variables are estimated or recorded in a period prior to the period of realising 

stock returns. From a decision or a policy maker’s perspective, models with predictive element have 

a lot more appeal than static single or same period models depicting contemporaneous relationships. 

A model that does not offer opportunity to investors to weigh their investment strategy in short to 

medium term time frame is of limited use. The time between buying and selling of stock (s) to realise 

returns on an investment is not zero, and therefore a model representing contemporaneous 

relations cannot serve well. Like Ang et al. (2006, 2009) we observe the idiosyncratic risk to be highly 

persistent that justifies the use of lagged idiosyncratic risk for predicting stock returns in this paper.  

Our study uses Australian data for a number of good reasons. Australia has the most regulated 

market trading system and the available financial market data is very genuine and reliable. Its 

economy and the banks enjoy good health; it survived the GFC of 2008 and is weathering quite well 

the European sovereign debt crisis. Australia, being well poised between the developed financial 

markets of the West and the fast developing and established markets of the Asia-Pacific region, 

reflects a good balance between outcomes of financial events of the East and the West. There is also 

a lot of foreign investment in Australian Stock Market. A study of idiosyncratic risk-return 

relationship based on Australian data would not only be relevant to asset pricing theory, but also 

important for the investment community. 

This paper investigates idiosyncratic risk and stock returns relationship using two approaches of 

estimating idiosyncratic volatility, a proxy for idiosyncratic risk. The relationship is explored by 

applying the quantile regression method in a panel data structure after correcting data for 

heteroskedasticity. The method estimates parameters of the explanatory variables at various 

quantiles of the conditional distribution of returns that allows the marginal effects of regressors to 

change at different quantiles, facilitating parameter heterogeneity across different types of stock 

returns. The ordinary least squares (OLS) method is used for bench marking. It is observed that the 

stock returns and idiosyncratic risk relationship is indeed dynamic, of parabolic nature and depends 

on the quantile of the conditional distribution of returns. The form of the parabolic curves indicate 

that investors may be risk-averse or risk-seekers rather than being risk-neutral. The findings are 

invariant to the choice of capital asset pricing one-factor and FF three-factor models. The results 

hold when the size of estimation window, rolling window and the length of time of holding a stock to 

realize returns are changed. Thus, our results explain some of the basis of mixed results reported on 

the form of the idiosyncratic risk-return relationship puzzle. 

The rest of paper is organised as follows. Section 2 describes the data used and the empirical 

modelling framework of the paper. Findings of the analysis together with a likely form of the 

idiosyncratic risk-return relationship are reported in Section 3, confirming the stability of the results 

via robustness checks. Finally, Section 4 concludes the paper by summarising the main contributions.  
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2 Empirical Framework 

2.1 Data Description 

We use daily end of the day prices of stocks trading on the Australian Securities Exchange (ASX) 

together with end of the day All Ordinaries Index as a representative of a general market portfolio 

from Datastream data bank for the 10 years period of January 2001 to June 2010. Data on stock’s 

market capitalisation (firm size), book-to-market (BM) and 30-day Cash rate as set by Reserve Bank 

of Australia’s Board at each monthly meetings as a proxy for daily risk free rate of return are also 

downloaded from Datastream. Stocks that did not trade for 20% or more days during the sampling 

period or had missing data on one or more important variables or did not trade for 100 consecutive 

days were excluded from the data. Due to recent global financial crisis many of the companies did 

not meet this criterion and the sample ended up with 207 companies that traded during the study 

period representing 35 of the 40 industry sectors. Our sample consists of a good mixture of small, 

medium and large stocks, and should provide a good insight into the nature of investor attitude to 

risk. The days of public holidays were eliminated from the sample for all stocks. This resulted in daily 

data on the 207 stocks available for the entire length of the sampling period. 

2.2 Setting up data Panels for predictive models  

Observing a lot of persistence in estimated idiosyncratic risk for the current data, the use of a 

predictive model is justified. The majority of the empirical studies listed above form portfolios of 

stocks on explanatory variables size, book-to-market or idiosyncratic risk to study idiosyncratic risk-

return relation. Studies indicate that in practice many investors do not hold a portfolio of stocks 

(Goetzmann and Kumar (2004)) let alone holding a perfectly diversified portfolio. As per Fama and 

French (1992), the main reason for studies to form portfolios is to get better estimates, or to control 

the effect of an explanatory variable. Although the forming of portfolios may improve the precision 

of estimates, it also reduces the number of observations available for estimation. Also the process of 

aggregation via portfolios may smooth out the underlying pattern, whereas the disaggregation may 

present better understanding of the pattern (Ferson and Harvey (1999)). Besides, the aggregation of 

stocks into portfolios may induce the effect of diversifying away the idiosyncratic risk as was the 

belief of many researchers in the past. In the light of the above, we move away from forming 

portfolios of stocks. The choice of forming portfolios each month or rolling the estimation window 

each month by many researchers in the past is just a convenience matter. We use a model of rolling 

windows where the choice of the size of the estimation window, rolling forward of a window and the 

period of observation of returns of stocks is all flexible. This creates a panel data structure where 

panels can be formed using any length of the estimation window and rolling forward of a window by 

any number of time periods (days or months). The framework can be set up as a contemporaneous 

or predictive model. 

 

In the following, we provide details of the empirical framework, and clearly set up the models 

as predictive, i.e., explanatory variables estimated or recorded in a previous time period are linked 

to the future stock returns. As per Ang et al. (2009) remark that “FF three-factor loadings might not 
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account for all variation in expected returns compared to firm-level characteristics” and foot note 3 

in Ferson and Harvey (1999), variables size and book-to-market are used as stock specific important 

explanatory variables in all models. As past returns may be perceived as an important indicator of a 

stock’s performance, the average of past returns over the estimation period is included in the list of 

explanatory variables. All results are obtained within the Fama and French (1993) three-factor model 

(referred to as FF three-factor). Later the same modelling framework is evaluated for the CAPM one-

factor model to show robustness and the invariant nature of the findings.  

We apply two different methods of OLS and GARCH(1,1) to time series of each stock for 

estimating parameters of the FF three-factors and idiosyncratic risk for checking the sensitivity of 

idiosyncratic risk-return relationship to the method of estimation. To allow a stock to have time 

varying betas, idiosyncratic risk and other important stock specific characteristics, the two-stage 

procedure of Fama and MacBeth (1973) is adapted. The first stage involves using rolling windows for 

estimation of parameters and calculation and/or recording of information on important stock 

specific characteristics for each stock. The estimates from the first stage are used in the second stage 

for testing purposes and evaluating relationships by running cross-sectional regressions (OLS and 

quantile regression) in each panel. Specifically, FF three-factor model is fitted using time series of 

100 days’ excess returns of a stock, excess market returns and Fama-French daily factors SMB, small 

minus big, and HML, high minus low, via OLS and GARCH(1,1) methods. The estimates of FF three-

factor betas for each stock as well as idiosyncratic risk obtained (details in Section 2.3) using OLS and 

GARCH(1,1) methods are fed into two separate models. Information on median stock size (lnsize), 

median book-to-market (lnBM) and average excess return, R1, over these 100 days is also recorded 

in this phase. Next a stock’s average excess return, R, over the next 25 days is computed and used as 

the response variable. The process is repeated for each of the 207 stocks; this makes one panel for 

each of the OLS and GARCH(1,1) based models. The panel’s structure is in line with the literature 

that the dependent variable is constructed in a way that it is non-overlapping over time with the 

estimation period to avoid possible inter-temporal correlation across panels. By rolling the window 

25 days forward, the process is repeated over entire data of 2473 days which creates 91 panels 

comprising information on dependent and independent variables for each of the 207 stocks. This 

completes the first stage of the procedure. This first stage of the procedure is referred to as the 

E/H/R plan, where E represents the size of estimation sample, H the length of the period of holding 

stocks to realise excess returns and R the rolling size of the window. So our first stage E/H/R plan as 

explained above is 100/25/25, where all numbers represent days.  

2.3 Measuring idiosyncratic risk: FF three-factor model 

Daily Fama and French factors for Australian data are constructed using each day’s data for the study 

sample over 10 years. Each day, six intersecting portfolios are formed based on size and book-to-

market value. A stock with size less than or equal to the median size is classified as Small (S), 

otherwise Big (B). The three groupings on book-to-market values are created using the smallest 30%, 

Low (L), the top 30%, High (H), and the middle 40%, Medium (M), percentiles. The factors SMB and 

HML are calculated as given in Fama and French (1993). 

Let Pid and Md be the price of a stock i (i = 1, 2, …, N) and the market index on day d, and rf the 

daily risk free rate of return. We define excess return on stock i and market index on day d as,            
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yid = log(Pid /Pid-1) − rf  and rmd = log(Md/Md-1) − rf . Two different measures of idiosyncratic risk are 

detailed below.  

2.3.1 Using Ordinary Least Squares  

Assuming parameters of the FF three-factor model to be constant over the estimation period, 

idiosyncratic risk for stock i (= 1, 2, … , 207) is estimated with respect to OLS estimation of model 

)1(,,, iddiHMLdiSMBmdiiid HMLSMBry εβββα ++++=  

as standard deviation of residuals, referred to as IRSK estimate. The betas in model (1) are the factor 

loadings of the FF three factor model. The recording of stock specific variables, the average excess 

return R1, lnsize and lnBM along with idiosyncratic risk and FF three-factor loadings over 100 days, 

and average excess stock return, R, over the next 25 days for each of the207 stocks completes one 

panel. The process is repeated rolling the window forward by 25 days until all data is covered. This 

completes the first stage of the two-step procedure, producing a panel data structure of T = 91 

panels where each panel comprises information on dependent and explanatory variables for each of 

the 207 stocks. 

The second step involves estimating cross-sectional relation between average excess return R 

and explanatory variables R1, lnsize, lnBM, factor loadings from model (1) and idiosyncratic risk in 

each panel via the use of ordinary least squares and quantile regression methods and pooling 

estimates from all the panels. 

We observe significant correlation between idiosyncratic risk and explanatory variables R1, 

lnsize, lnbm and the factor loading of FF three-factor model (1) in each panel. This can potentially 

create a multicollinearity problem, making the conclusions not sound at all. The Breusch-Pagan-

Godfrey tests applied to panels reveals the presence of heteroskedasticity in 86 of the 91 panels 

generated by fitting FF three-factor model via OLS. Detailed analysis suggests that this 

heteroskedasticity is mainly caused by idiosyncratic risk estimates. Thus to obtain 

heteroskedasticity-consistent standard errors of the estimates from the fitted models, it seems 

important to correct data for heteroskedasticity. Multiplying each data row by a factor 

‘1/(idiosyncratic risk estimate)’ corrects heteroskedasticity in 78 of the 91 total panels, and the 

remaining panels show mild heteroskedasticity due to other occasional explanatory variables. We 

take no further action for correcting heteroskedasticity. After correcting data for heteroskedasticity, 

we apply the OLS and quantile regression methods to the predictive models set up above. 

Specifically, the predictive model encompassing the FF three-factor loadings is 
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where the dependent variable Rit represents the realised average excess returns for stock i in panel t, 

Xkit represents explanatory variables (lnsize and lnbm in our model) in addition to FF three-factor 

betas and idiosyncratic risk (IRSK) for stock i and panel t, and notation ][' ⋅tE represents estimated 

variable value conditional on the information set available in the estimation phase at time t’ prior to 
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recording excess returns Rit. For example, ][' itt IRSKE is an estimate of IRSK for stock i in panel t 

conditional on information set available during the estimation phase at time t’. 

The use of model (2) allows a detailed examination of the contribution of the FF three-factor model. 

Like Ferson and Harvey (1999) and Ang et al. (2009), the assumption here is that if the FF factor 

loadings (betas) explain expected excess returns in the cross section then γ2 and γ3 would be 

significantly different from zero at most quantiles and γ coefficients corresponding to lnsize and 

lnBM would be virtually zero. Estimates from equation (2) are pooled using Ferson and Harvey (1999) 

method.  

2.3.2 Using GARCH model 

In estimating idiosyncratic risk as standard deviation of residuals from fitting OLS method to FF 

three-factor model (1), it was observed that idiosyncratic volatility estimates of stocks showed a lot 

of persistence over time and that idiosyncratic volatility estimate was the main factor in producing 

cross-sectional heteroskedasticity panels. We needed an estimate that was better in capturing the 

time-varying dynamics of idiosyncratic volatility. Following Fu (2009), we decided to use an 

autoregressive conditional heteroskedasticity (ARCH) family of models. Since our study builds model 

on daily data and uses an estimation window of size 100 days rather than confining estimation to 

calendar months like many past studies, we decided to use the generalised autoregressive 

conditional heteroskedasticity (GARCH) model of Bollerslev (1986) to capture the finer dynamics 

over past 100 days. Specifically, we use GARCH(1,1) defined as 
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and estimate idiosyncratic risk as detailed below. 

Foster and Nelson (1996) investigate strategies used for estimating time-varying variances and 

covariances. They comment that the use of rolling regression approach of Officer (1973) and Fama 

and MacBeth (1973) is one way of overcoming this problem. They derive analytically optimal 

window lengths for standard rolling regressions and optimal weights for weighted rolling regressions 

and show that the optimal weight (w) and length of the estimation window (E) in standard rolling 

regression that minimizes asymptotic variance has the relation 3=wE . They comment that 

GARCH models are one-sided weighted rolling regressions and propose the use geometrically 

declining weights
wkwew −=' , where k is the time index. For a chosen E, the weight w and therefore 

declining weights 'w can be obtained easily. Thus, for each panel idiosyncratic risk for ith stock (i = 1, 

2,    , 207) is estimated using weighted sum of past GARCH variances as ∑
=

E

k
ikkw

1
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1

' 1. We also obtain an average of the GARCH variances over estimation window ‘E’ of past 

100 days as an estimate of idiosyncratic risk. A comparison of the average GARCH variances against 

the weighted GARCH variances reveals that the two estimates are almost identical during tranquil 
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periods but the weighted variance is more amplified otherwise. Thus, we decided to use the 

weighted GARCH variance to estimate idiosyncratic risk. This estimate is referred to as IRSK-G. 

Once again, we observe significant correlation between idiosyncratic risk and explanatory 

variables R1, lnsize, lnbm and the factor loading of FF three-factor model (3). The Breusch-Pagan-

Godfrey tests applied to panels reveal the presence of heteroskedasticity in 87 of the 91 panels 

which once again is mainly caused by idiosyncratic risk estimates. Thus to obtain heteroskedasticity-

consistent standard errors of the estimates from the fitted models, we correct data for 

heteroskedasticity. Dividing each data row by its corresponding factor 

2/1
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root of the idiosyncratic risk as estimated from the GARCH model, corrects heteroskedasticity in 74 

of the 91 total panels, and heteroskedasticity in the remaining panels is present due to an occasional 

other explanatory variable. The number of panels affected is very small indeed and we take no 

further corrective action. After correcting data for heteroskedasticity, we apply the OLS and quantile 

regression methods to the predictive model (2) encompassing GARCH model based estimates of FF 

three-factor loadings and idiosyncratic risk. 

2.4 The Quantile Regression Method 

To date, most of the idiosyncratic risk-return related studies have used ordinary least squares 

estimation method in the second stage of the Fama and MacBeth (1973) method. The contribution 

of idiosyncratic risk and all explanatory variables used in a model for explaining expected returns 

dynamics is based on OLS estimates. The method of ordinary least squares explains the conditional 

distribution of returns given a vector of explanatory variables at the mean level. Thus, the 

conclusions in these studies about the stock returns and idiosyncratic risk relationship apply only at 

the mean level. A relaionship significant or insignificant at the mean level may not necessarily be so 

in other parts of the conditional distribution of returns. This could be one reason for the literature 

reporting mixed results on idiosyncratic risk-return relationship.  

Also, the tests based on ordinary least squares method require the model errors to follow a 

normal distribution, and this may not be the case with stock returns distribution. As per Buchinsky 

(1998), the quantile regression estimators do not require strong distributional assumptions and are 

more efficient than ordinary least squares in the absence of normality and are not sensitive to the 

presence of extreme values. Furthermore, the linear programming representation of quantile 

regression method makes estimation easier; different solutions at distinct quantiles may be 

interpreted as differences in the response of the dependent variable to changes in the regressors at 

various points in the conditional distribution of the dependent variable. The technique has been 

used in many areas of empirical economics and applied econometrics (Buchinsky (1997,1998), 

Koenker and Bassett (1978), Koenker and Hallock (2001)). Financial applications include the study of 

Engle and Manganelli (1999) to the problem of Value at Risk , and Morillo (2000) application to 

options pricing. Barnes and Hughes (2002), Weng and Wang (2008) and Li (2009) used this method 

to study the behaviour of beta risk and to test the CAPM. To date, it seems that we are the first ones 

to use quantile regression technique to explore the stock returns and idiosyncratic risk relationship. 
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2.5 Pooling estimates: the Ferson-Harvey (1999) method  

The application of ordinary least squares and quantile regression methods to cross-sectional data in 

each panel via estimation equation (2) produces T ordinary least squares estimates of each 

kγ coefficient, and T quantile regression estimates of each kγ for each of the 9 quantiles (τ = 0.1, 

0.2, 0.3, …, 0.9) along with standard errors of the estimates. In the next step, the time-series of 

these T parameter estimates are pooled before testing to see if kγ , k = 0, 1, 2, …., K, is zero or 

significantly different from zero.  

We use Ferson and Harvey (1999) method for combining these estimates. The Ferson-Harvey 

estimator )( FHkγ of kγ is defined as, 

∑
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3 Empirical Findings 

The main aim of the paper is to study (i) the form of the idiosyncratic risk-return relationship in a 

predictive model in the cross section, (ii) whether the form of the relationship depends on the 

measure used for estimating idiosyncratic risk, and (iii) if the use of quantile regression methodology 

helps explain conflicting findings of past researchers.  

The ordinary least squares regression model assesses the effects of explanatory variables at 

the mean level; however, the nature of these effects may be quite different in the tails of the 

conditional distribution. As we below the quantile regression model provides a richer specification 

than the OLS model, revealing large amount of variation over the range of quantiles that was not 

expected. Although the quantile regression coefficient at a given quantile indicates the effect on 

excess returns of a unit change in an explanatory variable, assuming that the other explanatory 

variables are held fixed, viewing and interpreting a quantile regression coefficient in isolation may 

provide misleading impressions about the relationship. In the following, OLS (for bench marking) and 

quantile regression based results are reported and discussed. 

Tables 1(a) and 2(a) report OLS and quantile regression estimates from fitting model (2) when 

idiosyncratic risk is estimated as standard deviation of residuals from fitting Model (1) via OLS 

method (the IRSK estimate) and weighted variance from fitting Model (3) via GARCH(1,1) method 

(the IRSK-G estimate), respectively. Observing a significant relationship between stock returns and  
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Table 1 (a): Idiosyncratic risk and stock returns relation in a predictive FF three-factor model (2). 

 

Table 1 (b): Evidence of quadratic form of idiosyncratic risk and stock returns relation in a predictive FF three-

factor model (2). 
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Table 2 (a): Idiosyncratic risk and stock returns relation in a predictive FF three-factor model (2), using GARCH 

based estimates. 

 

Table 2 (b): Evidence of quadratic form of idiosyncratic risk and stock returns relation in a predictive FF three-

factor model (2), using GARCH based estimates. 
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Figure 1: Evidence of quadratic form of idiosyncratic risk and stock returns relation in a predictive FF three-

factor model (2). The curves represent the quantile regression based estimates and the dashed horizontal line 

the OLS estimates. 

 

Figure 2: Evidence of quadratic form of idiosyncratic risk and stock returns relation in a predictive FF three-factor 

model (2), using GARCH based estimates. The curves represent the quantile regression based estimates and the 

dashed horizontal line the OLS estimates. 
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lagged idiosyncratic risk obtained as standard deviation as well as variance, we decided to include 

variance and standard deviation terms on idiosyncratic risk measured via the application of Models 

(1) and (3) in the fitting of Model (2). This not only produced highly significant idiosyncratic risk 

coefficients at many quantiles but also improved the R
2
 and Adj-R

2
 values. Tables 1(b) and 2(b) 

report the results from fitting the expanded models and Figures 1 and 2 display coefficient estimates 

graphically.  

Graphs in Figures 1 and 2 display striking resemblance in quantile regression based estimates of 

coefficients obtained from the two models. The dynamic nature of the covariate effects on the conditional 

distribution of realised excess returns is obvious. In the following we interpret patterns in coefficients of 

each explanatory variable and the intercept.  

3.1 Interpreting Quantile regression coefficients: Tables 1(b) and 2(b), and Figures 1 and 2  

Intercept: It represents the unanticipated returns at various quantiles and average level of the 

conditional distribution of returns when all predictors in the model have a zero value. The 

unanticipated returns, γ0, are significant under the ordinary least squares estimation for both 

measures of idiosyncratic risk. However, the quantile regression based intercept estimates are not 

significant when IRSK estimate is used, but are significant and positive at quantiles 0.7 to 0.9 with 

the IRSK-G estimate. A general upward trend in coefficients at quantiles 0.1 to 0.9 is evident.  

Average returns R1: The ordinary least squares based estimates of the coefficient of R1, the average 

excess returns over past 100 days, reveal a positive non-significant relation with expected future 

returns for both models. The quantile regression based estimates change from being large positive 

at lower quantiles to small positive at higher quantiles, and negative at quantiles 0.5 to 0.7. The 

coefficients are significant only at quantiles 0.1 and 0.2.  

Lnsize: The pattern in ordinary least square regression estimates of coefficients of lnsize are in line 

with the literature (Fama and French (1992), Fu (2009), and references therein) that small size firms 

have higher returns and vice-a-versa, meaning a negative linear relationship. Although the ordinary 

least squares estimates for our data are negative for both models, significance is achieved only in the 

case of IRSK-G based model (Table 2(b)). As per Figures 1 and 2, the relationship between size and 

excess returns is negative. For estimates based on quantile regression we observe that lnsize 

coefficients are significant at higher quantiles only confirming that small firms do tend to contribute 

higher returns than larger firms.  

LnBM: The ordinary least squares regression estimates of coefficient of lnBM are positive and 

significant and agree with reported findings in the literature. Quantile regression estimates of lnBM 

are all positive but not all significant. As the coefficients change with quantiles means that the 

relationship is not static and depends on the quantile of the returns distribution. Thus, our results 

confirm that the relationship between stock returns and lnBM is positive, but the marginal effect 

changes with quantile levels.  

Beta: The coefficients of beta risk show increasing trend for quantiles 0.1 to 0.9 but its quantile 

regression based as well as OLS estimates are not significant in either model. 
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c-smb: The c-smb coefficients change from being small negative to small positive from lower 

quantiles to higher quantiles. With the exception of quantile 0.1, the quantile regression and OLS 

based c-smb coefficients are not significant for either model. 

c-hml: The c-hml coefficients show a decreasing trend from quantile 0.1 to 0.9 but estimates are 

mostly insignificant in both models. The OLS estimates are not significant either. 

IRSK/sqrt_IRSK-G: The ordinary least squares estimate of coefficient of predictor IRSK/sqrt_IRSK-G is 

positive (negative) and insignificant. The quantile regression based coefficients show increasing 

trend, are significant at the extreme quantiles of the conditional distribution of excess returns, and 

change from being very negative to very positive values, passing through a zero point around the 

median (Figures 1 and 2).  

IRSK
2
/IRSK-G: The ordinary least squares estimates of coefficients of predictors IRSK

2
and IRSK-G are 

both negative and insignificant. The quantile regression based coefficients show decreasing trend, 

are significant at the extreme quantiles of the conditional distribution of excess returns, and change 

from being positive to negative values, passing through a zero point around the median (Figures 1 

and 2).  

As the interest in this paper is to study the idiosyncratic risk-return relation, the rest of the 

paper is devoted to exploring only this relationship. Figures 3(a) and 3(b) graph quantile regression 

based coefficient values of pairs IRSK and sqrt_IRSK-G, and IRSK
2
 and IRSK-G along with their 

corresponding t-ratios. The similarity in values is striking. It means that both measures of 

idiosyncratic risk produce the same pattern in relationship, and that extra effort in obtaining the 

GARCH model based estimates is not justified. In the work that follows, we shall base our discussion 

on IRSK estimates only. 

 

 

 

 

 

Figure 3 (a): IRSK and sqrt_IRSK-G coefficients & their corresponding t-ratios 

 

 

 

 

Figure 3(b): IRSK
2
 and IRSK-G coefficients & their corresponding t-ratios 
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3.2 Patterns in predicted returns 

In order to find out possible patterns in predicted returns from the quantile regression and OLS 

based estimates of idiosyncratic risk, we recorded mean IRSK values in each of the 91 panels. As 

contribution of explanatory variables other than idiosyncratic risk (Table 1 (b)) is almost negligible, 

we assume them to be zero. Using quantile regression and OLS estimates of coefficients of IRSK and 

IRSK
2
 and the vector of mean IRSK values from the 91 panels, we predict stock returns. These returns 

are graphed in Figure 4. 

 

 

Figure 4: Predicted returns for a given vector of idiosyncratic risk.  

We can make the following observations from prediction curves in Figure 4. 

1. The predictions resulting from the risk-return relationship at various quantiles using the 

same vector of idiosyncratic risk values are quite different. For large IRSK values, the 

disparity in these predictions is much greater and would be harder to predict returns for 

high values of RISK. Since we corrected data for heteroskedasticity, it is unlikely that returns 

are influenced by heteroskedasticity. A likely scenario is that the shape of the conditional 

distribution of predicted returns changes with the quantiles; it is dynamic.  

2. Return curves (lines) are not parallel, meaning that the prediction curves at various quantiles 

are quite different and that the shape of the conditional distribution of returns changes with 

quantiles. The relationship between idiosyncratic risk and returns is not linear. 



Page 16 of 21 

 

3. Variation in spacing between quantile curves tells that the conditional distribution of returns 

is not symmetric.  

 

3.3 Exploring the form of the idiosyncratic risk-return relation in the predictive model 

Viewing patterns in pairs of IRSK and IRSK
2 

coefficients as displayed in Tables 1(b) and 2(b), the 

relation between expected future excess stock returns R and lagged IRSK can be expressed as 

cIRSKbIRSKaR ++= 2
                                                                                 (7) 

In relation (7), c denotes the net effect of all explanatory variables in the model on returns when 

IRSK is zero, and can be calculated from the known values of average excess return R1, lnsize, lnBM 

etc. over the estimation window for a stock. The constant c may be positive or negative. The first 

two terms involving IRSK on the right hand side of equation (7) capture the effect of idiosyncratic 

risk over and above the contribution of other explanatory variables in the model. 

Relation (7) represents a family of parabolic curves with vertex ]4/)4(,2/[ 2 aacbab −−− . 

The shape and location of these parabolic curves in the XY- plane depends on the values of constants 

(parameters) a, b and c. While c is the Y-intercept of the parabolic curve resulting from IRSK (defined 

as standard deviation of residuals from FF three-factor model) being zero in equation (7), the 

location of the vertex, concavity or convexity of the curve depends on the values of a and b. There 

are four possibilities. 

(i) a < 0 and b > 0: the curve is concave with vertex in first quadrant of the XY-plane. 

Entries in Table 1(b) corresponding to quantiles 0.6 to 0.9 and OLS represent this 

situation. 

(ii) a < 0 and b < 0: the curve is concave with vertex in second quadrant of the XY-plane. 

This situation is possible only when IRSK is negative. Since IRSK cannot be negative, only 

part of the parabolic curve corresponding to positive values of IRSK passing through the 

first and fourth quadrant will be relevant and visible in drawings. Entries corresponding 

to quantile 0.5 in Table 1(b) and OLS in Table 2(b) OLS represent this situation. 

(iii) a > 0 and b < 0: the curve is convex with vertex in fourth quadrant of the XY-plane. 

Entries in Table 1(b) corresponding to quantiles 0.1 to 0.4 represent this situation. 

(iv) a > 0 and b > 0: the curve is convex with vertex lying in the third quadrant of XY-plane. 

Once again, as IRSK cannot be negative, only part of the curve corresponding to positive 

values of IRSK will be relevant. We do not observe this case for our data sample. 

Figure 5 graphs are sketched generating estimates of predicted excess returns based on 

Ferson-Harvey estimates of IRSK and IRSK
2
 coefficient pairs listed in Table 1(b) and using 

hypothetical IRSK values ranging from 0 to 0.3, in steps of 0.05. For the sake of convenience and 

without loss of generality, constant c is assumed to be zero. It is easy to see that estimated values of 

a and b listed in Table 2(b) will produce similar curves. Indeed, the relationship between expected 

future returns and lagged idiosyncratic risk is parabolic that changes with the quantiles of the 

conditional distribution of expected returns. Thus, owing to the underlying dynamic nature of this 
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relationship, the future returns are not likely to be predicted accurately via the use of a simple linear 

model. Also, due to the parabolic nature of the idiosyncratic risk-return relationship, it is possible to 

realise the same amount of positive or negative returns for two different high and low values of IRSK. 

Besides, the returns may decrease or increase with increase or decrease in idiosyncratic risk level.  

Graphs labelled Q 0.4 and Q 0.5 in Figures 5 indicate the possibility of parabolic shape 

changing from being convex to concave around the quantile 0.5, the median level. This means that 

there is a small range of values of IRSK for which an insignificant positive or negative relation with 

returns may result. Thus, observations of Ang et al. (2006, 2009), Fu (2009) and others about the 

idiosyncratic risk-return relationship being negative or positive are all plausible via the use of OLS  

 

 

 

Figure 5: Dynamic parabolic nature of the conditional distribution of returns. The graphs show patterns in 

predicted returns conditional on the idiosyncratic risk values between 0 and 0.3, in steps of 0.05. The predicted 

returns are estimated from equation (7) using c =0, and coefficients a and b of IRSK
2 

and IRSK as listed in Table 

1 (b) for quantile 0.1 to 0.9 and the average level (ordinary least squares). 

 

method. Besides, it is possible to observe this relationship not being significant as reported by Wei 

and Zhang (2005) and Bollen et al. (2009). The last curve labelled Average level (OLS) in Figure 5 may 

be mistaken to reflect a negative linear relation if IRSK values were recorded to fall between 0.1 and 

0.2. Thus, the form of the idiosyncratic risk-return relation is far from being a simple predictive 

episode as mentioned by Goyal and Santa-Clara (2003). Moreover, the change in shape of the curves 

at various quantiles suggests that the conditional distribution of returns may not be symmetric, and 
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thus the ordinary least squares based estimates that explain relationship at the mean level may not 

serve well at all. 

The form of the parabolic curves at low and high quantiles of returns resemble the utility 

curves of risk-seeking and risk-aversion, respectively, rather than risk-neutral attitude. Thus, the 

idiosyncratic risk-return relationship pattern may be linked to risk-seeking and risk-aversion of 

investros towards trading of stocks. 

 

3.4 Robustness of results: Idiosyncratic risk-return relation in CAPM one-factor model  

In this section, we confirm the form of the idiosyncratic risk-relationship via the use of CAPM one-
factor model. Idiosyncratic risk for stock i (i = 1, 2, 3,   , 207) is measured as standard deviation of 
residuals resulting from OLS application of model 

)8(,idmdiiid ry εβα ++=  

various symbols in (8) are the same as explained in Section 2.3. Ferson-Harvey (1999) estimates from 
the application of OLS and quantile regression methods to panels are displayed in Table 3. Significant 
t-ratios for variables IRSK and IRSK2 are presented in bold.  It is clear that there is a quadratic 
relationship between idiosyncratic risk and stock returns for the CAPM one-factor model as well. 

Table 3: Quadratic form of idiosyncratic risk and stock returns relation in a predictive CAPM one-factor model. 

 

We also applied E/H/R plan of 60/20/20 within CAPM one-factor model (results available on 
request) and noticed that quadratic form of relation between idiosyncratic risk and future stock returns 
holds. Thus, our findings about the form of idiosyncratic risk-return are not sensitive to the choice of 
CAPM one-factor and FF three-factor models, or the choice of estimation window E, the length H of 
the period of holding stocks to realise returns and R the rolling size of the window, or the measure of 
estimating idiosyncratic risk.  
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4 Conclusions and Implications 

This paper investigates idiosyncratic risk and stock returns relation in the cross section in a 

heteroskedasticity corrected predictive model, where lagged idiosyncratic risk is used for explaining 

future stock returns. Idiosyncratic risk is measured with respect to FF three-factor model using two 

different measures. It is observed that the form of the relationship is not affected by the choice of 

measure used for estimating idiosyncratic risk; the GARCH based estimate does not have a superior 

performance.  

The use of quantile regression method facilitates in capturing a more complete picture of the 

covariates effects on the conditional distribution of expected excess returns. It is established /shown 

that the relationship is dynamic, changes with quantiles of the conditional distribution of returns 

given a certain level of idiosyncratic risk, and has a parabolic form. The conclusions of past research 

are based on partial view of the relationship via the use OLS, and therefore the conflicting findings. 

The nature of the relationship as reported in this paper is invariant under the CAPM one-factor and 

FF three-factor models , and is robust to the choice of E/H/R plan values, i.e., to the choice of sample 

size used for estimation, period of holding stocks to realise returns and size of the rolling window. It 

is observed that the coefficients of FF factors SMB and HML are insignificant practically at all 

quantiles of the conditional distribution as well as at the mean level as captured by the ordinary 

least squares method. Given almost identical results based on FF three-factor and CAPM one-factor 

models, one wonders if the use of more involved framework of FF three-factor for asset pricing is 

justified.  

The non-linear dynamic parabolic nature of the realtionship means it is much harder to predict 

direction of returns for a given level of idiosyncratic risk. Also high gains from holding high 

idiosyncratic risk may not be realized often as per the common belief. The idiosyncratic risk-return 

relationship is too dynamic to support idiosyncratic risk as a ‘priced’ item. 

The major contributions of the paper are summarised below:  

• A new perspective has been provided on the form of the much debated idiosyncratic 

volatility risk-return relationship puzzle in the finance literature via the use of quantile 

regression method. The form of the idiosyncratic risk-return relationship is not linear. It is 

dynamic and parabolic in nature. The parabolic shape changes from being convex at lower 

quantiles to being concave at higher quantiles of the conditional distribution of expected 

returns. 

• The dynamic parabolic nature of relationship means the possibility of big losses from holding 

even small levels of idiosyncratic risk for some stocks, and big gains from holding the same 

amount of idiosyncratic risk for some other stocks. It is hard to defend idiosyncratic risk as a 

‘priced’ item. 

• It is shown that the form of the relationship is not sensitive to the choice of CAPM one-

factor and FF three-factor models, and to the choice of measure used for estimating 

idiosyncratic risk.  

• It is demonstrated that the idiosyncratic risk-return relationship is predictive in nature in the 

sense that future returns are linked to the recent past (lagged) idiosyncratic risk. 
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• The assessment of the relationship at various quantiles suggests higher impact of the 

idiosyncratic risk and other important stock specific explanatory variables at the extreme 

quantiles of the conditional distribution of returns than at the median level. 
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