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Abstract

This paper investigates stock returns behaviour as a function of lagged idiosyncratic risk in the
Fama-French three-factor model using two approaches to estimating idiosyncratic risk. The
application of ordinary least squares and quantile regression methods to heteroskedasticity
corrected data in a panel structure reveals that the form of relationship does not change with the
method of estimating idiosyncratic risk and is indeed dynamic. The relationship curves resemble the
shapes of the utility curves of risk-seeking and risk-aversion, and not the risk-neutral attitude. The
findings are robust to the choice of FF three-factor and capital asset pricing one-factor models, and
to the choice of estimation window. Our results help explain some of the basis of conflicting results
reported in the literature on the form of idiosyncratic risk —return relation. The form of the
relationship is too dynamic to support idiosyncratic risk as a ‘priced’ item.
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I ntroduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965) and Black (1972) depicts
systematic risk representing contemporaneous positive linear relationship between excess stock
returns and excess market returns. The model advocates that the systematic risk is sufficient to
explain the expected stock returns in the cross-section. Risk arising from any specific events, the
idiosyncratic risk, can be diversified away by holding a portfolio of stocks and that investors will not
be compensated for such risk.

The theoretical asset pricing model of Merton (1987) in markets with incomplete information
shows a positive relation between idiosyncratic risk and stock returns. In recent years there has been
considerable interest in exploring the behaviour of idiosyncratic risk due to the belief that higher
idiosyncratic risk may be responsible for generating higher returns, i.e., idiosyncratic risk is a priced
factor. Empirical studies in this area use different measures of estimating idiosyncratic risk and
models to investigate the idiosyncratic risk-return relationship at the portfolio or stock level.
However, the findings provide conflicting evidence about the form of this relation and many refer to
this relation as a ‘puzzle’. This makes the study of IRSK very interesting. Many corporate and financial
decisions require some knowledge of the expected returns from an investment on an individual
stock or a portfolio of risky assets. Some traders and institutional investors perceive stock volatility
as an important determinant in their decision to select stocks. Thus, understanding the nature of
idiosyncratic risk-return relationship is important. As all stock market investments are exposed to
systematic as well as idiosyncratic risk to a certain degree, and in some cases the idiosyncratic risk
may constitute the major portion of the total risk, examining idiosyncratic risk-return relationship
issue is not only relevant for asset pricing theory, but also of interest to portfolio managers. All
studies to date have explored the idiosyncratic risk-return relationship at the mean level via the use
of ordinary least squares (OLS). Our study uses quantile regression technique that allows
investigation of this relation at various quantiles of the conditional distribution of returns, and thus
provides a deeper insight into the form of the relationship.

Malkiel and Xu (1997), Goyal and Santa-Clara (2003), Fu 2009 and many others find a positive
relation between idiosyncratic risk and stock returns. Bali et al. (2005) and Wei et al. (2005)
independently replicate Goyal and Santa-Clara (2003) study using an extended sample and find no
positive relation. Wei et al. (2005) find the relationship to be negative and not very significant. Ang
et al. (2006, 2009) and Jiang et al. (2009) observe a negative relation between idiosyncratic risk and
future stock returns. All of the above studies are based on US data. Drew et al. (2007) replicate
Malkiel and Xu (1997) study using New Zealand data and find a positive relation. Bollen et al. (2009)
build their study model on Bali et al. (2005) framework but use the Australian data and observe that
idiosyncratic risk is not priced in Australia. Nartea et al. (2010) apply Ang et al. (2006, 2009) model to
explore the role of idiosyncratic risk in five South East Asian markets of Malaysia, Singapore,
Thailand, Indonesia and the Philippines. They find positive relation between idiosyncratic risk and
stock returns in Malaysia, Singapore, Thailand and Indonesia, and no significant relation in the
Philippines.

Some studies have investigated idiosyncratic risk-return relationship in models representing
contemporaneous relationship (Fu 2009), while others use predictive models (Ang et al. 2006, 2009).
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This paper is related most closely to studies that support the notion of predictive models, i.e., IRSK
and other explanatory variables are estimated or recorded in a period prior to the period of realising
stock returns. From a decision or a policy maker’s perspective, models with predictive element have
a lot more appeal than static single or same period models depicting contemporaneous relationships.
A model that does not offer opportunity to investors to weigh their investment strategy in short to
medium term time frame is of limited use. The time between buying and selling of stock (s) to realise
returns on an investment is not zero, and therefore a model representing contemporaneous
relations cannot serve well. Like Ang et al. (2006, 2009) we observe the idiosyncratic risk to be highly
persistent that justifies the use of lagged idiosyncratic risk for predicting stock returns in this paper.

Our study uses Australian data for a number of good reasons. Australia has the most regulated
market trading system and the available financial market data is very genuine and reliable. Its
economy and the banks enjoy good health; it survived the GFC of 2008 and is weathering quite well
the European sovereign debt crisis. Australia, being well poised between the developed financial
markets of the West and the fast developing and established markets of the Asia-Pacific region,
reflects a good balance between outcomes of financial events of the East and the West. There is also
a lot of foreign investment in Australian Stock Market. A study of idiosyncratic risk-return
relationship based on Australian data would not only be relevant to asset pricing theory, but also
important for the investment community.

This paper investigates idiosyncratic risk and stock returns relationship using two approaches of
estimating idiosyncratic volatility, a proxy for idiosyncratic risk. The relationship is explored by
applying the quantile regression method in a panel data structure after correcting data for
heteroskedasticity. The method estimates parameters of the explanatory variables at various
guantiles of the conditional distribution of returns that allows the marginal effects of regressors to
change at different quantiles, facilitating parameter heterogeneity across different types of stock
returns. The ordinary least squares (OLS) method is used for bench marking. It is observed that the
stock returns and idiosyncratic risk relationship is indeed dynamic, of parabolic nature and depends
on the quantile of the conditional distribution of returns. The form of the parabolic curves indicate
that investors may be risk-averse or risk-seekers rather than being risk-neutral. The findings are
invariant to the choice of capital asset pricing one-factor and FF three-factor models. The results
hold when the size of estimation window, rolling window and the length of time of holding a stock to
realize returns are changed. Thus, our results explain some of the basis of mixed results reported on
the form of the idiosyncratic risk-return relationship puzzle.

The rest of paper is organised as follows. Section 2 describes the data used and the empirical
modelling framework of the paper. Findings of the analysis together with a likely form of the
idiosyncratic risk-return relationship are reported in Section 3, confirming the stability of the results
via robustness checks. Finally, Section 4 concludes the paper by summarising the main contributions.
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2 Empirical Framework

2.1 Data Description

We use daily end of the day prices of stocks trading on the Australian Securities Exchange (ASX)
together with end of the day All Ordinaries Index as a representative of a general market portfolio
from Datastream data bank for the 10 years period of January 2001 to June 2010. Data on stock’s
market capitalisation (firm size), book-to-market (BM) and 30-day Cash rate as set by Reserve Bank
of Australia’s Board at each monthly meetings as a proxy for daily risk free rate of return are also
downloaded from Datastream. Stocks that did not trade for 20% or more days during the sampling
period or had missing data on one or more important variables or did not trade for 100 consecutive
days were excluded from the data. Due to recent global financial crisis many of the companies did
not meet this criterion and the sample ended up with 207 companies that traded during the study
period representing 35 of the 40 industry sectors. Our sample consists of a good mixture of small,
medium and large stocks, and should provide a good insight into the nature of investor attitude to
risk. The days of public holidays were eliminated from the sample for all stocks. This resulted in daily
data on the 207 stocks available for the entire length of the sampling period.

2.2 Setting up data Panels for predictive models

Observing a lot of persistence in estimated idiosyncratic risk for the current data, the use of a
predictive model is justified. The majority of the empirical studies listed above form portfolios of
stocks on explanatory variables size, book-to-market or idiosyncratic risk to study idiosyncratic risk-
return relation. Studies indicate that in practice many investors do not hold a portfolio of stocks
(Goetzmann and Kumar (2004)) let alone holding a perfectly diversified portfolio. As per Fama and
French (1992), the main reason for studies to form portfolios is to get better estimates, or to control
the effect of an explanatory variable. Although the forming of portfolios may improve the precision
of estimates, it also reduces the number of observations available for estimation. Also the process of
aggregation via portfolios may smooth out the underlying pattern, whereas the disaggregation may
present better understanding of the pattern (Ferson and Harvey (1999)). Besides, the aggregation of
stocks into portfolios may induce the effect of diversifying away the idiosyncratic risk as was the
belief of many researchers in the past. In the light of the above, we move away from forming
portfolios of stocks. The choice of forming portfolios each month or rolling the estimation window
each month by many researchers in the past is just a convenience matter. We use a model of rolling
windows where the choice of the size of the estimation window, rolling forward of a window and the
period of observation of returns of stocks is all flexible. This creates a panel data structure where
panels can be formed using any length of the estimation window and rolling forward of a window by
any number of time periods (days or months). The framework can be set up as a contemporaneous
or predictive model.

In the following, we provide details of the empirical framework, and clearly set up the models
as predictive, i.e., explanatory variables estimated or recorded in a previous time period are linked
to the future stock returns. As per Ang et al. (2009) remark that “FF three-factor loadings might not
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account for all variation in expected returns compared to firm-level characteristics” and foot note 3
in Ferson and Harvey (1999), variables size and book-to-market are used as stock specific important
explanatory variables in all models. As past returns may be perceived as an important indicator of a
stock’s performance, the average of past returns over the estimation period is included in the list of
explanatory variables. All results are obtained within the Fama and French (1993) three-factor model
(referred to as FF three-factor). Later the same modelling framework is evaluated for the CAPM one-
factor model to show robustness and the invariant nature of the findings.

We apply two different methods of OLS and GARCH(1,1) to time series of each stock for
estimating parameters of the FF three-factors and idiosyncratic risk for checking the sensitivity of
idiosyncratic risk-return relationship to the method of estimation. To allow a stock to have time
varying betas, idiosyncratic risk and other important stock specific characteristics, the two-stage
procedure of Fama and MacBeth (1973) is adapted. The first stage involves using rolling windows for
estimation of parameters and calculation and/or recording of information on important stock
specific characteristics for each stock. The estimates from the first stage are used in the second stage
for testing purposes and evaluating relationships by running cross-sectional regressions (OLS and
guantile regression) in each panel. Specifically, FF three-factor model is fitted using time series of
100 days’ excess returns of a stock, excess market returns and Fama-French daily factors SMB, small
minus big, and HML, high minus low, via OLS and GARCH(1,1) methods. The estimates of FF three-
factor betas for each stock as well as idiosyncratic risk obtained (details in Section 2.3) using OLS and
GARCH(1,1) methods are fed into two separate models. Information on median stock size (Insize),
median book-to-market (/nBM) and average excess return, R1, over these 100 days is also recorded
in this phase. Next a stock’s average excess return, R, over the next 25 days is computed and used as
the response variable. The process is repeated for each of the 207 stocks; this makes one panel for
each of the OLS and GARCH(1,1) based models. The panel’s structure is in line with the literature
that the dependent variable is constructed in a way that it is non-overlapping over time with the
estimation period to avoid possible inter-temporal correlation across panels. By rolling the window
25 days forward, the process is repeated over entire data of 2473 days which creates 91 panels
comprising information on dependent and independent variables for each of the 207 stocks. This
completes the first stage of the procedure. This first stage of the procedure is referred to as the
E/H/R plan, where E represents the size of estimation sample, H the length of the period of holding
stocks to realise excess returns and R the rolling size of the window. So our first stage E/H/R plan as
explained above is 100/25/25, where all numbers represent days.

23 Measuring idiosyncratic risk: FF three-factor model

Daily Fama and French factors for Australian data are constructed using each day’s data for the study
sample over 10 years. Each day, six intersecting portfolios are formed based on size and book-to-
market value. A stock with size less than or equal to the median size is classified as Small (S),
otherwise Big (B). The three groupings on book-to-market values are created using the smallest 30%,
Low (L), the top 30%, High (H), and the middle 40%, Medium (M), percentiles. The factors SMB and
HML are calculated as given in Fama and French (1993).

Let P,y and My be the price of a stock i (i =1, 2, ..., N) and the market index on day d, and ry the
daily risk free rate of return. We define excess return on stock i and market index on day d as,
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Vid = 109(Pig/Pia-1) — ry and rpq = log(My/M 1) — ry . Two different measures of idiosyncratic risk are
detailed below.

2.3.1 Using Ordinary Least Squares

Assuming parameters of the FF three-factor model to be constant over the estimation period,
idiosyncratic risk for stock j (=1, 2, ..., 207) is estimated with respect to OLS estimation of model

Yia =0 + By +/89\/|B,i SMB, +18HML,i HML, +¢&,4 , @

as standard deviation of residuals, referred to as IRSK estimate. The betas in model (1) are the factor
loadings of the FF three factor model. The recording of stock specific variables, the average excess
return R1, Insize and InBM along with idiosyncratic risk and FF three-factor loadings over 100 days,
and average excess stock return, R, over the next 25 days for each of the207 stocks completes one
panel. The process is repeated rolling the window forward by 25 days until all data is covered. This
completes the first stage of the two-step procedure, producing a panel data structure of T=91
panels where each panel comprises information on dependent and explanatory variables for each of
the 207 stocks.

The second step involves estimating cross-sectional relation between average excess return R
and explanatory variables R1, Insize, InBM, factor loadings from model (1) and idiosyncratic risk in
each panel via the use of ordinary least squares and quantile regression methods and pooling
estimates from all the panels.

We observe significant correlation between idiosyncratic risk and explanatory variables R1,
Insize, Inbm and the factor loading of FF three-factor model (1) in each panel. This can potentially
create a multicollinearity problem, making the conclusions not sound at all. The Breusch-Pagan-
Godfrey tests applied to panels reveals the presence of heteroskedasticity in 86 of the 91 panels
generated by fitting FF three-factor model via OLS. Detailed analysis suggests that this
heteroskedasticity is mainly caused by idiosyncratic risk estimates. Thus to obtain
heteroskedasticity-consistent standard errors of the estimates from the fitted models, it seems
important to correct data for heteroskedasticity. Multiplying each data row by a factor
‘1/(idiosyncratic risk estimate)’ corrects heteroskedasticity in 78 of the 91 total panels, and the
remaining panels show mild heteroskedasticity due to other occasional explanatory variables. We
take no further action for correcting heteroskedasticity. After correcting data for heteroskedasticity,
we apply the OLS and quantile regression methods to the predictive models set up above.
Specifically, the predictive model encompassing the FF three-factor loadings is

R =Vou t Vo EclBel+ Vo Ecl Bavsie] + Vo Bl Bt il + Ve Er[IRSKn]+Zth E [ Xl U,
i=12,...,N,t=1...,T ()

where the dependent variable R; represents the realised average excess returns for stock i in panel t,
Xii: represents explanatory variables (Insize and Inbm in our model) in addition to FF three-factor

betas and idiosyncratic risk (IRSK) for stock i and panel t, and notation E ,.[[] represents estimated

variable value conditional on the information set available in the estimation phase at time t’ prior to
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recording excess returns R;. For example, E,.[IRSK , ] is an estimate of IRSK for stock i in panel t

conditional on information set available during the estimation phase at time t”.

The use of model (2) allows a detailed examination of the contribution of the FF three-factor model.
Like Ferson and Harvey (1999) and Ang et al. (2009), the assumption here is that if the FF factor
loadings (betas) explain expected excess returns in the cross section then Yy, and y; would be
significantly different from zero at most quantiles and y coefficients corresponding to Insize and

InBM would be virtually zero. Estimates from equation (2) are pooled using Ferson and Harvey (1999)

method.
2.3.2 Using GARCH model

In estimating idiosyncratic risk as standard deviation of residuals from fitting OLS method to FF
three-factor model (1), it was observed that idiosyncratic volatility estimates of stocks showed a lot
of persistence over time and that idiosyncratic volatility estimate was the main factor in producing
cross-sectional heteroskedasticity panels. We needed an estimate that was better in capturing the
time-varying dynamics of idiosyncratic volatility. Following Fu (2009), we decided to use an
autoregressive conditional heteroskedasticity (ARCH) family of models. Since our study builds model
on daily data and uses an estimation window of size 100 days rather than confining estimation to
calendar months like many past studies, we decided to use the generalised autoregressive
conditional heteroskedasticity (GARCH) model of Bollerslev (1986) to capture the finer dynamics
over past 100 days. Specifically, we use GARCH(1,1) defined as

Yie =0 + Bl + Bavej SMB, + By HML, +&,

&, ~N(@O0}), (3)
oy =v+agg + [0,

and estimate idiosyncratic risk as detailed below.

Foster and Nelson (1996) investigate strategies used for estimating time-varying variances and
covariances. They comment that the use of rolling regression approach of Officer (1973) and Fama
and MacBeth (1973) is one way of overcoming this problem. They derive analytically optimal
window lengths for standard rolling regressions and optimal weights for weighted rolling regressions
and show that the optimal weight (w) and length of the estimation window (E) in standard rolling

regression that minimizes asymptotic variance has the relation WE = \/..7% . They comment that
GARCH models are one-sided weighted rolling regressions and propose the use geometrically

declining weights W' = we ™" where k is the time index. For a chosen E, the weight w and therefore
declining weights W can be obtained easily. Thus, for each panel idiosyncratic risk for ith stock (i = 1,

E
2, ,207)is estimated using weighted sum of past GARCH variances as Zwkaii such that
k=1

E
Zwk =1. We also obtain an average of the GARCH variances over estimation window ‘E’ of past
k=1

100 days as an estimate of idiosyncratic risk. A comparison of the average GARCH variances against

the weighted GARCH variances reveals that the two estimates are almost identical during tranquil
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periods but the weighted variance is more amplified otherwise. Thus, we decided to use the
weighted GARCH variance to estimate idiosyncratic risk. This estimate is referred to as IRSK-G.

Once again, we observe significant correlation between idiosyncratic risk and explanatory
variables R1, Insize, Inbm and the factor loading of FF three-factor model (3). The Breusch-Pagan-
Godfrey tests applied to panels reveal the presence of heteroskedasticity in 87 of the 91 panels
which once again is mainly caused by idiosyncratic risk estimates. Thus to obtain heteroskedasticity-
consistent standard errors of the estimates from the fitted models, we correct data for

E 1/2
heteroskedasticity. Dividing each data row by its corresponding factor (z Wka'izkj , the square
k=1

root of the idiosyncratic risk as estimated from the GARCH model, corrects heteroskedasticity in 74
of the 91 total panels, and heteroskedasticity in the remaining panels is present due to an occasional
other explanatory variable. The number of panels affected is very small indeed and we take no
further corrective action. After correcting data for heteroskedasticity, we apply the OLS and quantile
regression methods to the predictive model (2) encompassing GARCH model based estimates of FF
three-factor loadings and idiosyncratic risk.

2.4 The Quantile Regression Method

To date, most of the idiosyncratic risk-return related studies have used ordinary least squares
estimation method in the second stage of the Fama and MacBeth (1973) method. The contribution
of idiosyncratic risk and all explanatory variables used in a model for explaining expected returns
dynamics is based on OLS estimates. The method of ordinary least squares explains the conditional
distribution of returns given a vector of explanatory variables at the mean level. Thus, the
conclusions in these studies about the stock returns and idiosyncratic risk relationship apply only at
the mean level. A relaionship significant or insignificant at the mean level may not necessarily be so
in other parts of the conditional distribution of returns. This could be one reason for the literature
reporting mixed results on idiosyncratic risk-return relationship.

Also, the tests based on ordinary least squares method require the model errors to follow a
normal distribution, and this may not be the case with stock returns distribution. As per Buchinsky
(1998), the quantile regression estimators do not require strong distributional assumptions and are
more efficient than ordinary least squares in the absence of normality and are not sensitive to the
presence of extreme values. Furthermore, the linear programming representation of quantile
regression method makes estimation easier; different solutions at distinct quantiles may be
interpreted as differences in the response of the dependent variable to changes in the regressors at
various points in the conditional distribution of the dependent variable. The technique has been
used in many areas of empirical economics and applied econometrics (Buchinsky (1997,1998),
Koenker and Bassett (1978), Koenker and Hallock (2001)). Financial applications include the study of
Engle and Manganelli (1999) to the problem of Value at Risk , and Morillo (2000) application to
options pricing. Barnes and Hughes (2002), Weng and Wang (2008) and Li (2009) used this method
to study the behaviour of beta risk and to test the CAPM. To date, it seems that we are the first ones
to use quantile regression technique to explore the stock returns and idiosyncratic risk relationship.
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2.5 Pooling estimates: the Ferson-Harvey (1999) method

The application of ordinary least squares and quantile regression methods to cross-sectional data in
each panel via estimation equation (2) produces T ordinary least squares estimates of each

yk coefficient, and T quantile regression estimates of each Vk for each of the 9 quantiles (T = 0.1,

0.2,0.3, ..., 0.9) along with standard errors of the estimates. In the next step, the time-series of

these T parameter estimates are pooled before testing to see if Vk ,k=0,1,2, ...,K is zero or

significantly different from zero.

We use Ferson and Harvey (1999) method for combining these estimates. The Ferson-Harvey

estimator yk(FH ) of Vk is defined as,

.
yk(FH):T_lz Wy Vi (4)
t=1
* ~ T ~
where, W, = [var( y )] 7t/ > [var( p )l (5)
t=1

and sample variance of Vk(FH) is obtained as
T T
Sz(yk(FH ) =@/ T)T —12 (W Vi) — (T —12 Wi Vie)?) (6)
= t=1

t=1
3 Empirical Findings

The main aim of the paper is to study (i) the form of the idiosyncratic risk-return relationship in a
predictive model in the cross section, (ii) whether the form of the relationship depends on the
measure used for estimating idiosyncratic risk, and (iii) if the use of quantile regression methodology
helps explain conflicting findings of past researchers.

The ordinary least squares regression model assesses the effects of explanatory variables at
the mean level; however, the nature of these effects may be quite different in the tails of the
conditional distribution. As we below the quantile regression model provides a richer specification
than the OLS model, revealing large amount of variation over the range of quantiles that was not
expected. Although the quantile regression coefficient at a given quantile indicates the effect on
excess returns of a unit change in an explanatory variable, assuming that the other explanatory
variables are held fixed, viewing and interpreting a quantile regression coefficient in isolation may
provide misleading impressions about the relationship. In the following, OLS (for bench marking) and
guantile regression based results are reported and discussed.

Tables 1(a) and 2(a) report OLS and quantile regression estimates from fitting model (2) when
idiosyncratic risk is estimated as standard deviation of residuals from fitting Model (1) via OLS
method (the IRSK estimate) and weighted variance from fitting Model (3) via GARCH(1,1) method
(the IRSK-G estimate), respectively. Observing a significant relationship between stock returns and
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Table 1 (a): Idiosyncratic risk and stock returns relation in a predictive FF three-factor model (2).

Quantile 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 oLs

Intercept| -6.9E-06 7.03E-07 35.46E-06 4.19E-060 6.13E-06 B.15E-06 1.04E-05 161E-05 1.68BE-05 BE-06
t_Interce] -1.68435 0213184 1169548 1424413 19561489 2365847 2705222 3772515 3.029903| 2.581072
R1 0.001537| 0.000854 000038 0000165 7.62E-05 -BE-05 4.37E-05 0000155 -0.00025] 000043
t_R1 3.964000 2683041 1.265441 0631097 0.301581 -0.3007 0.147085 0.380624 -0.44266| 1.429532
Insize 3.55E-07 3.42E-0B -4.6E-09 -1.2E-O07 -2E-07 -4E-07 -6.6E-07 -1.2E-06 -1.6E-D6] -5.7E-O07
t_Insize | 0.655605 0.089956 -0.01377 -0.38067 -0.63088 -1.11231 -1.7709 -282559 -2.B9665] -1.80735
Inbm 1.11E-06 1.2BE-06 1.3E-06 155E-06 147E-06 1.45E-06 1.01E-06 14BE-06 1.49E-06| 1.24E-06
t_Inbm 1386321 1.9B5058 2.268421 2642962 2451206 2.206236 1455573 1.889263 1.334744| 2.147129
beta -1.1E-06 -5.1E-0Y -14E-07 6.8BE-07 94BE-07 1.04E-06 1.38E-06 1.34E-06 1.2BE-06| 7.26E-O07
1_beta -0.7656 -0.46859 -0.13204 0.680546 0988444 0970602 1.303802 1.01399 0.796964] 0.703957
c-smb -7.BE-05 189E-06 3.25E-05 5.22E-05 4.74E-05) 4.34E-05 4.69E-05 167E-05 4.43E-05] 3.83E-05
t_c-smb | -1.84541 0.055812 1.032424 1647085 1.368B824 1.225841 1158517 0.379948 0.7B0537| 1.129644
c-hml 0.000113 ©9.24E-05 5.79E-05 4.34E-05 3.BeE-05 2.56E-05 -5.3E-06 -5.7E-05 -4.2E-05] 4.5E-05
t_c-hml | 2569483 2463994 1.6725BE 1246856 1136012 0.766068 -0.138B77 -1.25822 -0.73555] 1.321532
IRSK -0.00139 -0.00107 -0.00078) -0.0005 -0.00023 B8.37E-05 0.000438 0.000904 0001511 -7.2E-05
t_IR3K -11.1268 -10.7266 -9.35924 -6.78941 -3.08703 1.125762 5.449013 9.698813 10.00558| -0.85336
R 0.098263 0.077307 0071677 0070314 0.069403 0.07048E 0.073541 0.0B0645 0.096737| 0.112009
Adj-R* 0.067427 0.045013 0.059186 0037775 0.0368B52 0.057955 0.041115 ) 0.048467 0.065123] 0.080929

Table 1 (b): Evidence of quadratic form of idiosyncratic risk and stock returns relation in a predictive FF three-

factor model (2).

CQuantile 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 oLs

Intercept| -B.1E-07 2.B9E-06 3.97E-06 3.9E-06 4.96E-06 5.09E-068 35.3BE-06 7.95E-06 9.B1E-DB| 7.35E-06
t_Intercej -0.18396 0806141 1.232501 1293666 1.526616 1.333876 0851557 1920479 1.B66B67| 2.398375
R1 0.00143 0000744 0000391 0000209 8.32E-05 -B.2E-05 1.48E-05 000017 -7.4E-06] 0.000456
t_R1 3902753 2.296476 1.306684 0789216 0.325127 -0.31027 0049729 0412992 -0.01332| 1.510523
Insize 3.75E-07 -19E-07 -1.5E-08 -8E-08  -14E-07 -2.1E-07 -1.8E-07 -B.BE-OY -1.5E-06] -5.4E-07
t_Insize | 0.789636 -053473 -0.04472 -0.25975 -0.44218 -058023 -049424 -221128 -3.06131| -1.7824
Inbm 125E-06 1.18E-06 1.73E-06Y 1.59E-06 157E-06) 1.2BE-06 2 14E-06 134E-06 2.2BE-06| 1.2BE-06
t_Inbm 1530488 181056  3.025567 2657088 2549212 1879595 2054397 1796099 2.059724] 2.213829
beta -5.4E-07 -29E-07 -3.9E-07 3.91E-07 595E-07 6.15E-07 5.B5E-07 9.47E-07 997E-07] 5.96E-07
t_beta -0.36186 -0.26112 -0.38044 0.38B011 0.656778 0.620262 0591684 0772007 0.705856| 0.590442
C-smb -0.0001| -1.3E-05 1.7BE-O05 5.24E-05 5.43E-05 5.93E-05 6.73E-05 4.19E-05 B.76E-05] 3.99E-05
t_c-smb -2.609 -0.34724) 0525677 1599442 1519789 1614023 1.670523 05940124 1.766173] 1.15171
c-hml 745E-05 BB6E-05) 493E-05 496E-05 399E-05 323E-05 -12E-06 -2E-05 -1.7E-O07] 454E-05
t_c-hml | 1.B28545 2418397 1434911 1435651 1.202711 0.938563 -0.051 -0.45645 -0.00314] 1.342278
IRSK -0.002 -0.00139 -0.00092 -0.00054 -7.1E-05 0000432 0001052 0001631 0.002519] 2.29E-05
T_IR3K -71.62033 -7.09029 -5.61519 -3.67562 -0.4575 2.624876 5.400875 7.476419 6.246846| 0.148101
IRSK® 0.011856 0.0068 0004174 0001478 -0.0014 -0.0043% -0.00832 -0.01102 -0.01617] -0.00076
t_IRSK 513097 3.759928 2.129787 0557211 -052%04 -2.68145 -4.34205 -4.95238 -4.09152 -0.447
R 0.105139 008245 0.07655 0074307 007317 0074369 0078016  0.0B6453 0.10426| 0.117589
Adj-R* 0.069165 0045564 00358426 0037093 003591 0037158 0040952 00459727 006825 0.082115
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Table 2 (a): Idiosyncratic risk and stock returns relation in a predictive FF three-factor model (2), using GARCH

based estimates.

Quantile 01 0.2 0.3 0.4 05 06 0.7 08 09 oLs

Intercept| -3.6E-05 -22E-05 -1.1E-05 -44E-06 4.11E-06 1.21F-05 2.23E-05 3.39E-05 5.0BE-05] 7.5E-06
t_Interce| -7.40607 -7.00635 -4.16237 -1.70282 1.393007 3.662164 6.17169% B.311416 ©O.64045| 2437664
R1 0.001557 0.000665 0.000417 594E-05 -9.3E-05 -0.00013 -0.00017 944E-05 -0.0002] 0.000291
t_R1 4305861 2.198091 1.52088% 0.230855 -0.35104 -0.45744 -0.5522 0.238304 -0.3337] 0.965921
Insize 241E-06 1.67E-06 BS51E-07 3.99E-07 -2.3E-07 -B.5E-07) -16E-06 -2.5E-06 -3.9E-06 -6E-07F
t_Insize | 3.643077 4.089076 2487304 1325863 -0.70066 -2.25775 -45258B5 -5.66499 -7.1134]| -1.BG6778
Inbm 252E-06 145E-06 142FE-06 1.71E-06) 1.3E-06 1.11E-D6 7.36E-07 3.1BE-07 3.37E-07| 1.18E-06
t_Inbm 2983105 227661 2541898 3.011766 2162985 1604049 05982676 0462843 0.282116] 2.091417
beta -2 3E-06 -2.BE-06 -12E-06 -1.6E-07 3.76E-07 122FE-06 299E-06 3.39E-06 5.53E-06] 7.95E-07
t_beta -1.66882 -2.17401 -1.07345 -0.14788 0.33B7B3 1.099734 262039 2632437 3.493824] 0.700837
c-smb -9 4E-05 4.12E-06 946E-06 4.13E-05 3.61E-05 3.76E-05 4.04E-05 15BE-05 4.66E-06] 2.01E-05
t_c-smb | -2.25488 0104056 0258525 1130676 0939109 1001066 0943541 0441283 0.078701] 0.557101
c-hml 0.000162 0.00012% 9.537E-05 6.79E-05 4.12E-05 4.14E-060 -34E-05 -4.6E-05 -5.9E-05] 5.16E-05
t_c-hml | 3.214245 3.056034 2428392 1741054 1152008 0.112691 -0.81009 -1.0811% -1.14518| 0.B59818
IRSK-G -0.00873 -0.0083 -D.00643 -0.00462 -0.00271 -0.00038 0001396 0004312 0.010389] -0.00121
t_IRSK-G | -9.69431 -11.1026 -10.4403 -7.72262 -4.5389 -0.57985 1.65548% 4917583 B.799571| -1.45564
R* 0.091452 0.072954 0.069468 006908 0069143 0070184 0.073225 0077709 0.088122] 0.111593
Adj-R* 0.059494 0.040344 0036736 0036334 0036399 0037477 0.040625 0.045266 0.056046] 0.080343

Table 2 (b): Evidence of quadratic form of idiosyncratic risk and stock returns relation in a predictive FF three-

factor model (2), using GARCH based estimates.

Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 oLs

Intercept] -3.2E-06 9.51E-0Y| 37E-06 4.29E-06 597E-06 7.64E-06 1.02E-05 1.23E-05| 1.76E-05| B.61E-DB
t_Intercey -0.72631 0.271435 1.079829 136166 1765706 199168 242693 2.7B115 3.352411| 2.7530936
R1 0.001528 0000703 0000323 942E-05| -14E-05 -9.2E-05 -1.9E-05 0.000151 4.35E-05| 0.000368
t_R1 4120143 2148704 1.080595 0.356896 -0.05411 -0.3233 -0.06116 0.382153 0.077735| 1.237045
Insize 4 93E-07 3.73E-0B -7E-DB -1E-07 -1.3E-O07| -3.4E-07 -B6E-O7 -1.2E-06 -2.2E-06] -6.5E-07
t_Insize | 0.779862 0105964 -0.19546 -0.32373 -042265 -096488 -232347 -2.806 -3.52609] -2.12818
Inbbm 9.17E-07 102E-06 1.31E-06 146E-06 1.19E-06) 1.3E-06 944E-07 B.OGE-07 2.03E-06] 1.1BE-D6
t_Inbm 1.072416 1644726 2298346 249056 1900082 19537177 1376105 1.1B3793 1.768279| 2.103572
beta -7.1E-07 -1.2E-068 -B.1E-O7 -8E-09 4.83E-08 5.71E-07 164E-06) 153E-06 2B6E-06| 6.4E-07
t_beta -0.45015 -1.01606 -0.72B63 -0.00759 0.04928B4 0.555586 1.503922 1.2522B6 1.942747] 0.62366
c-smb -0.00013 -14E-05 977E-D6 3.06E-05 457E-05| 4.24E-05 4.32E-05 394E-05 3.71E-05] 1.BG6E-05
t_c-smb | -3.36215 -0.34598 0.257359 0.855616 1.15492 1140605 0992372 0.830378 0.664269] 0.501453
c-himl 9.97E-05 0.000108 6.02E-05 4.95E-05 5.53E-05| 1.93E-05 -B.3E-06 -1.5E-05 -14E-05] 3.47E-05
t_c-hml | 2.355352 2.677725| 1.70B626 1.3533B9 1577101 0558811 -0.20967 -0.38582  -0.25165| 058727
sqrt_IR53K] -0.00191 -0.00136| -0.00089 -0.00055 -0.00012 0000325 0000769 0.001291 0002367 -2.9E-05
t_=qrt_IR] -7.6044 -7.26638 -6.11078 -4.29892 -0.91702 2.252248 5.176119 6.736574 6.937181| -0.20833
IRSK-G 0.010848 0.007031 0.003935 0002209 -0.00059 -0.00344 -0.00633 -0.00948 -0.01574] -0.00014
t_IRSK-G | 5.407259 4.368044 2.B60052 1.8%253% -05270% -2.90266 -4.78464 -5.26B8 -5.1699| -0.08732
R* 0.106586 0.083552 0077496 0075071 0.074107 0.075592 0.081054 0.0BB972 0.10669| D.119839
Adj-R* 0.070488 0046523 0.040224 0.0377 0.036697 0.038658 0043925 0.052163 0.070596] 0.084277
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Figure 1: Evidence of quadratic form of idiosyncratic risk and stock returns relation in a predictive FF three-
factor model (2). The curves represent the quantile regression based estimates and the dashed horizontal line
the OLS estimates.
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Figure 2. Evidence of quadratic form of idiosyncratic risk and stock returns relation in a predictive FF three-factor

model (2), using GARCH based estimates. The curves represent the quantile regression based estimates and the
dashed horizontal line the OLS estimates.
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lagged idiosyncratic risk obtained as standard deviation as well as variance, we decided to include
variance and standard deviation terms on idiosyncratic risk measured via the application of Models
(1) and (3) in the fitting of Model (2). This not only produced highly significant idiosyncratic risk
coefficients at many quantiles but also improved the R* and Adj-R? values. Tables 1(b) and 2(b)
report the results from fitting the expanded models and Figures 1 and 2 display coefficient estimates
graphically.

Graphs in Figures 1 and 2 display striking resemblance in quantile regression based estimates of
coefficients obtained from the two models. The dynamic nature of the covariate effects on the conditional
distribution of realised excess returns is obvious. In the following we interpret patterns in coefficients of
each explanatory variable and the intercept.

31 Inter preting Quantile regression coefficients: Tables 1(b) and 2(b), and Figures 1 and 2

Intercept: It represents the unanticipated returns at various quantiles and average level of the
conditional distribution of returns when all predictors in the model have a zero value. The
unanticipated returns, Yo, are significant under the ordinary least squares estimation for both
measures of idiosyncratic risk. However, the quantile regression based intercept estimates are not
significant when IRSK estimate is used, but are significant and positive at quantiles 0.7 to 0.9 with
the IRSK-G estimate. A general upward trend in coefficients at quantiles 0.1 to 0.9 is evident.

Average returns R1: The ordinary least squares based estimates of the coefficient of R1, the average
excess returns over past 100 days, reveal a positive non-significant relation with expected future
returns for both models. The quantile regression based estimates change from being large positive
at lower quantiles to small positive at higher quantiles, and negative at quantiles 0.5 to 0.7. The
coefficients are significant only at quantiles 0.1 and 0.2.

Lnsize: The pattern in ordinary least square regression estimates of coefficients of Insize are in line
with the literature (Fama and French (1992), Fu (2009), and references therein) that small size firms
have higher returns and vice-a-versa, meaning a negative linear relationship. Although the ordinary
least squares estimates for our data are negative for both models, significance is achieved only in the
case of IRSK-G based model (Table 2(b)). As per Figures 1 and 2, the relationship between size and
excess returns is negative. For estimates based on quantile regression we observe that Insize
coefficients are significant at higher quantiles only confirming that small firms do tend to contribute
higher returns than larger firms.

LnBM: The ordinary least squares regression estimates of coefficient of InBM are positive and
significant and agree with reported findings in the literature. Quantile regression estimates of InBM
are all positive but not all significant. As the coefficients change with quantiles means that the
relationship is not static and depends on the quantile of the returns distribution. Thus, our results
confirm that the relationship between stock returns and InBM is positive, but the marginal effect
changes with quantile levels.

Beta: The coefficients of beta risk show increasing trend for quantiles 0.1 to 0.9 but its quantile
regression based as well as OLS estimates are not significant in either model.
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c-smb: The c-smb coefficients change from being small negative to small positive from lower
quantiles to higher quantiles. With the exception of quantile 0.1, the quantile regression and OLS
based c-smb coefficients are not significant for either model.

c-hml: The c-hml coefficients show a decreasing trend from quantile 0.1 to 0.9 but estimates are
mostly insignificant in both models. The OLS estimates are not significant either.

IRSK/sqrt_IRSK-G: The ordinary least squares estimate of coefficient of predictor IRSK/sqrt_IRSK-G is
positive (negative) and insignificant. The quantile regression based coefficients show increasing
trend, are significant at the extreme quantiles of the conditional distribution of excess returns, and
change from being very negative to very positive values, passing through a zero point around the
median (Figures 1 and 2).

IRSK?/IRSK-G: The ordinary least squares estimates of coefficients of predictors IRSK*and IRSK-G are
both negative and insignificant. The quantile regression based coefficients show decreasing trend,
are significant at the extreme quantiles of the conditional distribution of excess returns, and change
from being positive to negative values, passing through a zero point around the median (Figures 1
and 2).

As the interest in this paper is to study the idiosyncratic risk-return relation, the rest of the
paper is devoted to exploring only this relationship. Figures 3(a) and 3(b) graph quantile regression
based coefficient values of pairs IRSK and sqrt_IRSK-G, and IRSK” and IRSK-G along with their
corresponding t-ratios. The similarity in values is striking. It means that both measures of
idiosyncratic risk produce the same pattern in relationship, and that extra effort in obtaining the
GARCH model based estimates is not justified. In the work that follows, we shall base our discussion
on IRSK estimates only.
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Figure 3 (a): IRSK and sqrt_IRSK-G coefficients & their corresponding t-ratios
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Figure 3(b): IRSK” and IRSK-G coefficients & their corresponding t-ratios
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3.2 Patterns in predicted returns

In order to find out possible patterns in predicted returns from the quantile regression and OLS
based estimates of idiosyncratic risk, we recorded mean IRSK values in each of the 91 panels. As
contribution of explanatory variables other than idiosyncratic risk (Table 1 (b)) is almost negligible,
we assume them to be zero. Using quantile regression and OLS estimates of coefficients of IRSK and
IRSK? and the vector of mean IRSK values from the 91 panels, we predict stock returns. These returns
are graphed in Figure 4.

Predicted returns resulting from quantile & OLS
based estimates
0.0001
0.00008
0.00006 Qo1
—=—Q 0.2
0.00004
—+—- Q0.3
» 0.00002 —— Qo4
¥
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-0.00004 — :
7""-\_'_- oLs
-0.00006 T
~—
-0.00008
IRSK

Figure 4: Predicted returnsfor a given vector of idiosyncratic risk.
We can make the following observations from prediction curves in Figure 4.

1. The predictions resulting from the risk-return relationship at various quantiles using the
same vector of idiosyncratic risk values are quite different. For large IRSK values, the
disparity in these predictions is much greater and would be harder to predict returns for
high values of RISK. Since we corrected data for heteroskedasticity, it is unlikely that returns
are influenced by heteroskedasticity. A likely scenario is that the shape of the conditional
distribution of predicted returns changes with the quantiles; it is dynamic.

2. Return curves (lines) are not parallel, meaning that the prediction curves at various quantiles
are quite different and that the shape of the conditional distribution of returns changes with
guantiles. The relationship between idiosyncratic risk and returns is not linear.
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3. Variation in spacing between quantile curves tells that the conditional distribution of returns
is not symmetric.

3.3 Exploring the form of the idiosyncratic risk-return relation in the predictive model

Viewing patterns in pairs of IRSK and IRSK? coefficients as displayed in Tables 1(b) and 2(b), the
relation between expected future excess stock returns R and lagged IRSK can be expressed as

R=alRK?+bIRXK +c (7)

In relation (7), c denotes the net effect of all explanatory variables in the model on returns when
IRSK is zero, and can be calculated from the known values of average excess return R1, Insize, InBM
etc. over the estimation window for a stock. The constant ¢ may be positive or negative. The first
two terms involving IRSK on the right hand side of equation (7) capture the effect of idiosyncratic
risk over and above the contribution of other explanatory variables in the model.

Relation (7) represents a family of parabolic curves with vertex [-b/2a, — (b® —4ac)/4a] .

The shape and location of these parabolic curves in the XY- plane depends on the values of constants
(parameters) a, b and c. While c is the Y-intercept of the parabolic curve resulting from IRSK (defined
as standard deviation of residuals from FF three-factor model) being zero in equation (7), the
location of the vertex, concavity or convexity of the curve depends on the values of a and b. There
are four possibilities.

(i) a <0and b > 0: the curve is concave with vertex in first quadrant of the XY-plane.
Entries in Table 1(b) corresponding to quantiles 0.6 to 0.9 and OLS represent this
situation.

(ii) a<0andb<0:the curve is concave with vertex in second quadrant of the XY-plane.
This situation is possible only when IRSK is negative. Since IRSK cannot be negative, only
part of the parabolic curve corresponding to positive values of IRSK passing through the
first and fourth quadrant will be relevant and visible in drawings. Entries corresponding
to quantile 0.5 in Table 1(b) and OLS in Table 2(b) OLS represent this situation.

(iii) a>0and b <0:the curve is convex with vertex in fourth quadrant of the XY-plane.
Entries in Table 1(b) corresponding to quantiles 0.1 to 0.4 represent this situation.

(iv) a>0andb >0:the curve is convex with vertex lying in the third quadrant of XY-plane.
Once again, as IRSK cannot be negative, only part of the curve corresponding to positive
values of IRSK will be relevant. We do not observe this case for our data sample.

Figure 5 graphs are sketched generating estimates of predicted excess returns based on
Ferson-Harvey estimates of IRSK and IRSK? coefficient pairs listed in Table 1(b) and using
hypothetical IRSK values ranging from 0 to 0.3, in steps of 0.05. For the sake of convenience and
without loss of generality, constant c is assumed to be zero. It is easy to see that estimated values of
a and b listed in Table 2(b) will produce similar curves. Indeed, the relationship between expected
future returns and lagged idiosyncratic risk is parabolic that changes with the quantiles of the
conditional distribution of expected returns. Thus, owing to the underlying dynamic nature of this
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relationship, the future returns are not likely to be predicted accurately via the use of a simple linear
model. Also, due to the parabolic nature of the idiosyncratic risk-return relationship, it is possible to
realise the same amount of positive or negative returns for two different high and low values of IRSK.
Besides, the returns may decrease or increase with increase or decrease in idiosyncratic risk level.

Graphs labelled Q 0.4 and Q 0.5 in Figures 5 indicate the possibility of parabolic shape
changing from being convex to concave around the quantile 0.5, the median level. This means that
there is a small range of values of IRSK for which an insignificant positive or negative relation with
returns may result. Thus, observations of Ang et al. (2006, 2009), Fu (2009) and others about the
idiosyncratic risk-return relationship being negative or positive are all plausible via the use of OLS
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Figure 5: Dynamic parabolic nature of the conditional distribution of returns. The graphs show patterns in
predicted returns conditional on the idiosyncratic risk values between 0 and 0.3, in steps of 0.05. The predicted
returns are estimated from equation (7) using ¢ =0, and coefficients a and b of IRSK> and IRSK as listed in Table
1 (b) for quantile 0.1 to 0.9 and the average level (ordinary least squares).

method. Besides, it is possible to observe this relationship not being significant as reported by Wei
and Zhang (2005) and Bollen et al. (2009). The last curve labelled Average level (OLS) in Figure 5 may
be mistaken to reflect a negative linear relation if IRSK values were recorded to fall between 0.1 and
0.2. Thus, the form of the idiosyncratic risk-return relation is far from being a simple predictive
episode as mentioned by Goyal and Santa-Clara (2003). Moreover, the change in shape of the curves
at various quantiles suggests that the conditional distribution of returns may not be symmetric, and
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thus the ordinary least squares based estimates that explain relationship at the mean level may not
serve well at all.

The form of the parabolic curves at low and high quantiles of returns resemble the utility
curves of risk-seeking and risk-aversion, respectively, rather than risk-neutral attitude. Thus, the
idiosyncratic risk-return relationship pattern may be linked to risk-seeking and risk-aversion of
investros towards trading of stocks.

3.4 Robustness of results: Idiosyncratic risk-return relation in CAPM one-factor model

In this section, we confirm the form of the idiosyatic risk-relationship via the use of CAPM one-
factor model. Idiosyncratic risk for stocki = 1, 2, 3, , 207) is measured as standard dewiaf
residuals resulting from OLS application of model

Yia =0 + By &4 ®)

various symbols in (8) are the same as explain&ation 2.3. Ferson-Harvey (1999) estimates from
the application of OLS and quantile regression wesho panels are displayed in Table 3. Significant
t-ratios for variables IRSK and IRSkre presented in bold. It is clear that there daiadratic
relationship between idiosyncratic risk and stagtkims for the CAPM one-factor model as well.

Table 3: Quadratic form of idiosyncratic risk and stock returns relation in a predictive CAPM one-factor model.

Quantile 0.1 02 0.3 04 0.5 0.6 0.7 0.8 09 oLs

Intercept 2592E-06 3.594E-06) 6.163E-06 6.639E-06 6.423E-06 6.439E-06 6.352E-06) 1.061E-05 1.0099E-05] B.699E-06
t_Intercept] 0.7032836) 10573121 17612825 20216015 18362146 161089160 15155622 24930488 2.4090298| 2.7153869
R1 0.001429 0.00055 0.0002508 3.331E-05 -5.552E-05 4.597E-06 2.336E-05 0.00025%96 -5.791E-05] 0.0004062)
t_R1 58006634 17605561 O0.7770504 0.1124287) -0.2001705 00162727 00849387 0.7616362 -0.1031072| 1.287B424
Insize -1.215E-07| -2.237E-07 -4.425E-07 -3.656E-07 -4.01E-07 -4.089E-07 -6.502E-07 -1.161E-06 -1.659E-06| -6.799E-07
t_Insize -0.2592386 -0.6158075| -1.2900895 -1.0920465 -1.1212603 -1.1138416 -1.601598 -2.9851428 -3.3109861] -2.11B4BB3
Inbm 1638E-06 1415E-06 1.324E-06 1.484E-06 1.622E-06 1.741E-06 1.652E-06 1.327E-06 1.755E-06] 1.431E-06
t_Inbm 193775 20439367 21368105 2461108 26715871 26913367 23176558 17257751 1.7981075] 2.5592431
beta -9.209E-07 -6.837E-07 3.032E-07 2.676E-07 6.597E-07 9.695E-07 1.081E-06 1.B9E-06  1.9BE-O6) 7.B15E-07|
1_beta -0.595365 -0.5637041 02767739 0.2638008 06702817 09122418 099031820 15667258 1.26719%47] 0.7400727
IRSK -0.002173 -0.0013566| -0.0009174 -0.00056%6 -9.116E-05 00004461 0.0009853) 0.0014358 O0.0024891) 1.143E-05
t_IRSK -9.0494761 -7.1239762 -5.6993499 -4,0941877 -0.6543601 3.0091218 5.0264356 6.2766065 7.1321742| 0.0776437
IRSK* 0.010285| 00051272 O0.0034498 00018191 -0.0004077 -0.0033554| -0.0055578 -0.0065673 -0.0123353| -0.0001249
t_IRSK? 6.2862574 3.2708577 2.6780281 1.726019%4 -0.39592161 -3.0803068 -4.2148017 -4.1252476 -3.7994467| -0.0859G687)
R 0.0891046 00704068 00640774 000614672 0.0601467 0.0618947 00643963 0.07118997 0.0840549] 0.098642
Adj-R* 0.0619136 00426577 00361394 000334513 0.0320913 0.0338915 00364677 0.0434743 000567132 0.0717358]

We also applie@/H/R plan of 60/20/20 within CAPM one-factor model (rks@available on
request) and noticed that quadratic form of retabetween idiosyncratic risk and future stock nesur
holds. Thus, our findings about the form of idiosatic risk-return are not sensitive to the chate
CAPM one-factor and FF three-factor models, ordih@ice of estimation window, the lengtiH of
the period of holding stocks to realise returns Rtide rolling size of the window, or the measure of
estimating idiosyncratic risk.
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4 Conclusions and Implications

This paper investigates idiosyncratic risk and stock returns relation in the cross section in a
heteroskedasticity corrected predictive model, where lagged idiosyncratic risk is used for explaining
future stock returns. Idiosyncratic risk is measured with respect to FF three-factor model using two
different measures. It is observed that the form of the relationship is not affected by the choice of
measure used for estimating idiosyncratic risk; the GARCH based estimate does not have a superior
performance.

The use of quantile regression method facilitates in capturing a more complete picture of the
covariates effects on the conditional distribution of expected excess returns. It is established /shown
that the relationship is dynamic, changes with quantiles of the conditional distribution of returns
given a certain level of idiosyncratic risk, and has a parabolic form. The conclusions of past research
are based on partial view of the relationship via the use OLS, and therefore the conflicting findings.
The nature of the relationship as reported in this paper is invariant under the CAPM one-factor and
FF three-factor models, and is robust to the choice of E/H/R plan values, i.e., to the choice of sample
size used for estimation, period of holding stocks to realise returns and size of the rolling window. It
is observed that the coefficients of FF factors SMB and HML are insignificant practically at all
quantiles of the conditional distribution as well as at the mean level as captured by the ordinary
least squares method. Given almost identical results based on FF three-factor and CAPM one-factor
models, one wonders if the use of more involved framework of FF three-factor for asset pricing is
justified.

The non-linear dynamic parabolic nature of the realtionship means it is much harder to predict
direction of returns for a given level of idiosyncratic risk. Also high gains from holding high
idiosyncratic risk may not be realized often as per the common belief. The idiosyncratic risk-return
relationship is too dynamic to support idiosyncratic risk as a ‘priced’ item.

The major contributions of the paper are summarised below:

e A new perspective has been provided on the form of the much debated idiosyncratic
volatility risk-return relationship puzzle in the finance literature via the use of quantile
regression method. The form of the idiosyncratic risk-return relationship is not linear. It is
dynamic and parabolic in nature. The parabolic shape changes from being convex at lower
guantiles to being concave at higher quantiles of the conditional distribution of expected
returns.

e The dynamic parabolic nature of relationship means the possibility of big losses from holding
even small levels of idiosyncratic risk for some stocks, and big gains from holding the same
amount of idiosyncratic risk for some other stocks. It is hard to defend idiosyncratic risk as a
‘priced’ item.

e |tis shown that the form of the relationship is not sensitive to the choice of CAPM one-
factor and FF three-factor models, and to the choice of measure used for estimating
idiosyncratic risk.

e Itis demonstrated that the idiosyncratic risk-return relationship is predictive in nature in the
sense that future returns are linked to the recent past (lagged) idiosyncratic risk.
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e The assessment of the relationship at various quantiles suggests higher impact of the
idiosyncratic risk and other important stock specific explanatory variables at the extreme
guantiles of the conditional distribution of returns than at the median level.
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