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The Term Structure of Expected Bond Returns 

1.   Introduction 
In this paper we propose a model to estimate ex-ante expected bond returns (EBR), implied 
by market prices and the information-set available to the public when bond prices are quoted.  
We believe our model adds a useful perspective and tool-set to fixed income research, 
valuation, and trading.   This paper presents a methodology for term structure estimation of 
EBR and develops analytic expressions of bond yield components.  In addition to computing 
the EBR, we also show how to decompose bond yields into credit risk premium (CRP) and a 
certainty equivalence premium (CEP).  We discuss the practical estimation issues and present 
results using the Fixed Income Securities Database (FISD) data, a sample of straight 
corporate bond transactions in the period of September-December 2004, to derive rating-
adjusted expected return term structures and the CEP which embodies the systematic risk 
premium of the market. 
Asset pricing theory typically focuses on expected returns.  Good examples are the single-
factor capital asset pricing model (CAPM) and the multi-factor arbitrage pricing model 
(APT); in these models the expected return is derived from the appropriate risk factor 
loadings.  Due to low liquidity of corporate bonds and data availability, empirical research of 
corporate bonds using such models are relatively rare (in contrast to the equity market 
research).  Gebhardt, Hvidkjaer, and Swaminathan (GHS, 2003) explore factor models for 
corporate bond expected returns, formulating beta sorted portfolios in the sense often found 
in stock returns analysis.  However, typical to such models, the GHS “expected” returns are 
actually ex-post realized returns that are regressed on various factors and bond 
characteristics.  For additional cross section bond realized returns analysis see also Fama and 
French (1993) and Elton et al (2001).  Our model, on the other hand, assumes that the 
expectations are embodied in ex-ante (“forward looking”) observables such as bond rating 
and market price.1 

Whereas the stock pricing literature focuses on expected returns, the bond literature deals 
predominantly with yield to maturity and spreads.  The yield to maturity (ytm) of a 
defaultable bond is its promised return based on promised future cash flows, if the bond 
is held to maturity and its issuer doesn’t default. Given the positive probabilities of 
default on these bonds, it is clear that ytm is quite different from the bond’s expected 
return. 
Campello et al. (2008) focus on the expected returns of equity.  However to avoid using ex-
post averaged returns as a proxy for ex-ante expected returns, as most researchers do (e.g. 
Fama and French and their follower), they use the link between corporate equity and debt 
value.  They propose an estimation methodology for expected excess bond returns, which are 
used to estimate the excess equity returns. They define the expected excess return on a 
corporate bond as the difference between the bond yield spread and the sum of the expected 
default loss rate and the expected tax compensation.  Their bond excess return model is based 
on Jarrow (1978) which assumes a diffusion process of the bond yield to maturity (a 
geometrical Brownian motion).  We aim to avoid assuming a canonical smooth distribution 

                                                 
1 We share a similar view to that of Elton (1999): “Developing better measures of expected return and 
alternative ways of testing asset pricing theories that do not require using realized returns have a 
much higher payoff than any additional development of statistical tests that continue to rely on 
realized returns as a proxy for expected returns.” 
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for the returns on risky bonds and thus we cannot benefit from similar elegant formulation 
and Ito’s calculus.  

Another approach is to infer the expected returns from the current market price combined 
with a projection of future cash-flows. If one has a projection of expected cash-flows, the 
discount rate that matches the current market price (i.e. the IRR) is by definition the expected 
returns on these risky cash-flows. Obviously, the computed expected return is as good as the 
cash-flow projection is.  Hence, in the equity market, where the future cash-flows are usually 
unknown, the implementation of this approach is highly questionable.  In the bond market, on 
the other hand, we know the promised payoffs.2  Hence ytm, the promised returns, is very 
useful for bonds while there is no such parallel value in the equity market since “the 
promised” payoffs of a common stock are unknown.  Our proposed model of EBR uses this 
approach.  It calculates the discount rate that matches the current bond price to the expected 
bond payoffs.  It calculates these expected payoffs using the promised payoffs and a term 
structure of default probability.  We suggest using a Markov process of rating transition 
matrices to estimate the default probability term structure. 

Although the literature on bond credit risk is vast, there are very few papers that focus on the 
expected returns of risky bonds modeling and estimation.  A notable exception is Yu (2002), 
who develops a continuous-time expected returns model based on Jarrow, Lando and Yu 
(2005).  Yu’s model is relatively complex, using the one-factor CIR interest rate dynamics 
under the physical and the risk-neutral measure and an exponentially affine model of bond 
prices.  Our model, on the other hand, is very simple, intuitive, easy to understand and to 
implement.  

Bond ratings and their transition dynamics are a critical input in our model.  Bond ratings are 
under significant scrutiny by practitioners and academics.  Their accuracy, consistency, and 
timely update are controversial and doubtful, even long before the recent market crisis.3  
Although we use the S&P ratings in this paper, our model could work with other ratings 
transition matrices.  The literature supports the contention that there are only modest 
differences between the various rating systems, so that we regard our choice of S&P ratings 
as insignificant for the purpose of this paper (see, for example, Schuermann and Jafry 2003).  

Rating transition matrices (TM) are a key ingredient in many credit risk related models and 
thus are widely discussed in the literature.  We mention here only a handful of sources that 
we find useful in our work.  Schuermann (2007) provides an excellent introduction to major 
matters and a survey of key papers.  Lando and Skødeberg (2002) emphasize the importance 
of continuous time estimation compared to the cohort method.  Jafry and Schuermann (2004) 
introduce a new measure for TM comparison.  Israel, Rosenthal, and Wei (2001) research the 
finding of generators for Markov chains via empirical TM's.  The estimation accuracy of the 
TM has challenged researchers and practitioners, recent examples are research of confidence 
interval for default rates by Hanson, and Schuermann (2006), and Cantor, Hamilton, and 
Tennat (2007). 

The model of this paper assumes a homogeneous Markov model for a bond rating and its 
default probability.  We take the transition matrix for the Markov chain as an exogenous 
input from the rating agencies, S&P in this paper, Vazza and Aurora (2004).  The time 
homogeneity is also assumed by Jarrow, Lando, and Turnbull (JLT) (1997).  JLT propose a 
procedure to convert the physical transition probabilities to risk-neutral probabilities and use 

                                                 
2 This is surely the case for straight bonds 
3 Recent examples of bond-rating scepticism are John, Ravid, and Reisel (2005) and Löffler (2004, 2005). 
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these for the valuation of risky assets.  We, on the other hand, use the historical probability 
transition matrix to calculate the physical measure of default to estimate the yield 
components.  When we need the risk-neutral probabilities, we estimate these from the market 
price of bonds without using the transition matrix.  Similar to JLT, we assume that the credit 
migration Markov model is independent of the spot rate of interest rates. 

Our assumption of Markov stationarity of the transition matrix is not without problems.  
Parnes (2005) surveys the Markov rating transition literature and compares the homogeneous 
Markov model to several non-homogeneous alternative models.  Especially intriguing are 
findings such as of Nickell, Perraudin and Varotto (2000) concluding:  “Business cycle 
effects make an important difference especially for lowly graded issuers. Default probabilities 
in particular depend strongly on the stage of the business cycle.”  The “momentum effect” in 
bond rating transitions would challenge the assumption that transitions are Markovian (see 
for example Bahar and Nagpal 2001). 

Upon default, our model assumes a final payment to the bond holder in the amount of a 
recovery-rate times the bond face value.  Uhrig-Homburg (2002) and Bakshi , Madan, and 
Zhang (2004) describe common definitions of the recovery rate.  We use this term to express 
the value of the bond at default.  This definition is consistent with the study of Altman and 
Kishore (1996) and Moody's publications that use market value of defaulted bonds.  
However, recoveries may relate to the value of the bond at the end of the distressed-
reorganization period (see Altman and Eberhart 1994).  We ignore the effect of value changes 
after default on a bond yield. 

We believe this model has a few merits.  It provides a practical method to estimate expected 
bond returns implied by market information.  These returns are forward looking and are 
based on the information set available to an investor ex-ante.  It bridges the gap between 
promised and expected yields of bonds. 4  The paper presents the composition of the bond 
spread and links its risk-aversion component (premium) to the CAPM market risk premium.  
Furthermore, we believe this model could be useful for research, such as Campello et al. 
(2008) that requires expected bond returns as an input, and for practical applications of 
practitioners.5  

The structure of the remainder of the paper is as follows:  In Section 2 we present the model 
and develop the relations among its components.  Section 3 addresses practical 
implementation issues, describes the data, presents and discusses a sample of estimation 
results.  Section 4 concludes. 

 

                                                 
4 An example of the inappropriateness of the ytm is the computation of the weighted average cost of capital 

( )1E D
E DWACC r r T
V V

 = + − 
 

.  Whereas the cost of equity rE is typically computed from the security 

market line and hence represents the expected return to equity holders, the cost of debt rD is usually computed as 
the ytm of the firm’s debt.  These two measures are incompatible.  A more consistent measure of the cost of debt 
is the debt’s expected return. 
5 For example, we have some initial promising results of using abnormal credit risk premium for an implied 
bond rating application.  This issue is beyond the scope of this paper. 

http://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=53361
http://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=262728
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2. The discrete-time term-structure model of expected bond returns and 
yield decomposition 
In this section we develop a simple tree-like model for the estimation of expected bond 
returns (EBR), bond spreads and premia.  The model also provides an intuitive economic 
meaning to the yield decomposition, including the credit risk premium (CRP) and the 
certainty equivalence premium (CEP) embedded in risky bond yields.  We start with a single 
period model which we then extend to a multiple period one, under some often used 
assumptions. 

 

Expected Bond Returns introduction and basic relations 
We present below the basic definitions and relations that are used in our model.  The bond 
yield to maturity (ytm) is commonly defined as the solution to equation (1): 

(1) ( )
0

1 (1 )

T
t
t

t

prom CF
price

ytm=

=
+∑  

where: 

t = 1,…,T are the payment dates 

prom(CFt) is the promised cash flow at date t (typically coupon payment when t<T and 
coupon plus principal at t = T) 

price0 is the bond market price at t = 0. 

We define the expected bond return (EBR) as the solution to equation (2): 

(2) [ ]
( )0

1 1

T
t

t
t

E CF
price

EBR=

=
+

∑  

where E(CFt) is the expected cash flow of the bond at time t.  The expectation is with respect 
to the “real” (often called “physical”) probability measure and not the “risk neutral” 
probabilities.  The EBR is thus the discount factor that prices the expected payments.   

Since the default risk is the only effect that we include in the expected payoffs, the EBR 
differs from the bond’s ytm by a credit risk premium (CRP):   

(3) ytm = EBR + CRP 

It is easy to show that CRP ≥ 0 by equating the price at t = 0 in equations (1) and (2), since 
prom(CFt) ≥ E(CFt).  CRP = 0 when the expected payoffs equal the promised payments, in a 
(credit) risk free bond.  EBR as we define it is not the risk free rate since it is based on the 
bond’s market price and it is a risk-adjusted discount rate.  Therefore CRP is not the 
commonly used bond spread; it is a new measure of credit risk. 

To simplify the discussion we assume below a frictionless market in which all securities are 
perfectly liquid and traded without transaction costs.6  In a risk-neutral world EBR would 
equal the risk free rate.  However, in a risk averse world, where investors prefer a certain 

                                                 
6 These assumptions are used to develop the model in this section.  In our data analysis we compensate for this 
assumption partially (by using AAA returns as a proxy to the risk-free rate). 
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payment over a lottery with the same expected payment, the EBR is higher than the risk free 
rate, r.  We call the resultant return difference the certainty equivalence premium (CEP).7 

(4) EBR = r + CEP 

It follows that we can rewrite equation (2) as: 

(5) [ ]
( )

[ ]
( )

[ ]
( )0

1 1 11 1 1

T T T
t t t

t t t
t t t

E CF E CF E CF
price

EBR ytm CRP r CEP= = =

= = =
+ + − + +

∑ ∑ ∑  

Using equation (5) it is easy to see that CEP represents the systematic risk in a CAPM 
framework (see Appendix A).   

We use these definitions in the model below. 

 

Single Period Tree Model 
To establish some essential intuitions, we start with a single-period model where we observe 
two traded bonds described graphically in Figures 1a and b: 

R  is the risk free rate for the period (1 + r) 

p  is the price of the risky bond 

π  is the physical (“real”) probability of default 

δ  is the recovery rate on the risky bond. 

There are a few common definitions of recovery rate.  We use a widely accepted definition: 
the residual value of the bond, immediately after the credit event, normalized by its face 
value 

[INSERT FIGURE 1a,b] 

 

Theorem 1:  In a frictionless one-period world the following relations hold: 

• The expected bond return is given by: 

(10) [ ] 1 11 1
E payoff

EBR
p p p

δπ
 −

= − = − − 
 

 

• The credit risk premium is given by: 

(11) 1CRP ytm EBR
p
δπ

 −
= − =  

 
 

• The certainty equivalent premium is given by: 

(12) 1 1CEP R
p p

δπ
 −

= − − 
 

 

Proof:  Equation (10) follows directly from the definition of EBR and the setup of Figure 1: 

                                                 
7 We adopted this term since adding this premium to the risky lottery return makes the investor indifferent 
between receiving E[CF] for sure (at risk free rate) and the expected value of the stochastic, risky lottery 
outcome, CF (at risk free rate + CEP).   
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[ ] 1 (1 ) 1 11
E payoff

EBR
p p p p

π δ π δπ
 ⋅ − + ⋅ −

+ = = = −  
 

 

Equation (11) is derived by substituting the EBR (10) into the definition of CRP, eq. (3) and 
1 + ytm = 1/p, since 1 is the promised payoff of the single period.   

To derive equation (12), we use the definition of CEP in equation (4).  Subtracting r from 
equation (10) gives: 

1 1 1CEP EBR r r
p p

δπ  −
= − = − − − 

 
, 

which, when we write R = 1+r gives (12). 

■  

Discussion: 
We find it useful to present the above relations of EBR, CRP, and CEP in terms of expected 
loss and yield reduction.  In our subsequent discussion loss = promised payoffs less residual 
value, normalized by face value (which equals 1 in the above exposition).  This parallels the 
usual definition of loss given default (LGD) which is prevalent in the credit literature; see for 
example Schuermann (2004).  Hence loss = 1 – δ, and we can thus we intuitively define yield 
reduction as the loss divided by the bond price p.  Rewriting eq. (10): 

(13) 

1 1
1 ( _ )

[ _ ]  , and
[ _ ] (1 ) [ ]

EBR ytm yield reduction
p p

EBR ytm E yield reduction
CRP E yield reduction ytm E loss

δ
π π

−
= − − ⋅ = −

= −

= = + ⋅
 

where the expectations are under the physical probability measure.8   

Equation (13) gives an intuitive meaning to the credit risk premium:  CRP is the expected 
yield reduction on the bond.  It is a fraction of the gross promised yield (1+ytm) which is 
proportional to the expected loss of face value. 

 

Bond spread, risk-neutrality and state prices 
Fixed income literature and practitioners often use the term bond spread (BS) for the 
difference between a risky bond yield and the risk free rate:  BS = ytm – r .9   Since CEP and 
EBR are new terms, we discuss here their relation to the bond spread.  For completeness we 
also develop the state prices of the default and non-default states.  

Assume the prices of state contingent claims (Arrow-Debreu securities) are defined by 
Figures 2a and b: 

                                                 
8 Throughout this paper we use E[·] for the expectation under the physical probability measure and E*[·] under 
the risk neutral measure.  We use similar notation for probabilities (e.g. π and π*).  We extract the “real” 
probability of default from historical data as explained in section 3.1 “Practical Implementation” below, see 
equation (37) and its explanation. 
9 This definition of BS requires a refinement when the term structure of the risk free rate is not flat, yet for our 
purpose in this section the simple definition suffices. 
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[INSERT FIGURE 2a,b] 

The law of one price requires: 

(14) 
1

u dq q
R
= +  and u dp q qδ= + ⋅  

From the prices of these two traded securities we can easily calculate the state prices: 

(15) / 1 1/,
1 1u d u

p R R pq q q
R

δ
δ δ

− −
= = − =

− −
  

The state prices are positive and well defined when  1/p > R > δ/p  and  δ < 1.  The risk 
neutral probability of a “down” state is given by: 

(16) 
1 1 /

*
1 1 / /d

p R p R u R
q R

p p u d
π

δ δ
− ⋅ − −

= ⋅ = = =
− − −

 , 

where:  u = 1/p and d = δ/p are the “up” and “down” gross returns of the risky bond.10  
Rearranging the above and using the definitions of BS and yield reduction : 

(17) 1
(1 )

*
_p

ytm R BS

yield reductionδ
π

−

+ −
= =  

hence  

(18) [ ]*BS E yield reduction= , 

where E* denotes expectations under the risk-neutral measure.  Comparing BS with CRP, we 
see that both are expected values of the yield reduction, under the risk-neutral and physical 
probabilities respectively: 

(19) [ ] [ ] ( )( )* * 1 /BS CRP E yield reduction E yield reduction pπ π δ− = − = − −  

Rearranging (12) and using our definition of expected yield reduction (13): 

1 1 1
[ _ ]CEP R R E yield reduction

p p p

δ
π

−
= − − ⋅ = − −  

1/p – R is the bond spread (by definition) and equals the risk-neutral expected yield reduction 
by (18).  Therefore: 

(20a) [ _ ] [ _ ]CEP E yield reduction E yield reduction∗= −  

and 

(20b) CEP BS CRP= −  

It is also easy to show that: 

                                                 
10 These results and definitions are identical to those of binomial trees used in option pricing where  d < R < u , 
otherwise admitting arbitrage opportunities.  Thus π* and 1- π* are non-negative and smaller than 1, forming the 
RN probability set which is defined uniquely by the market price of the risky zero-coupon bond, its recovery 
rate and the market risk-free rate for the period. 
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(21) 
1 1 ( )(1 )

1 (1 )
CEP R R

p p

δ π π δ
π

π δ

∗

∗

− − −
= − ⋅ − =

− −
 

This result shows clearly that CEP which embodies the risk aversion premium is 
monotonically increasing with the difference between the risk neutral and the physical 
probabilities of default.  It is also directly (though not linearly) related to the relative loss 
given default (1-δ) on the bond.   

 

Multiple Period Tree Model 
We now show that the results of the previous sub-section can be extended to a multi-period 
framework.  There is a vast volume of research and publications on tree models for bond 
pricing.  We mention just a few of them.  Black, Derman, and Toy (1990) impose a structure 
of a risk free interest tree based on market observed prices and volatilities.  Jarrow and 
Turnbull (1995) focus on the default process and its integration into an interest rate (bond 
price) tree.  Broadie and Kaya (2007) construct a binomial tree that can incorporate various 
“real-life” features, yet it is actually a versatile and practical implementation of structural 
models whereas our model is of the reduced-form type. 

Consider a zero coupon bond which can default at maturity.11  Figure 3 describes a zero 
coupon risky bond that pays the promised face value 1 if it does not default and its recovery 
value δ if it defaults.  We assume here that the bond value upon default is a constant δ 
representing the recovery percentage.  What makes this model attractive and tractable is its 
simplicity.  It divides the world into two major states: the nodes above the dashed line and the 
nodes below it (in Figure 3).  The states above the dashed line are no-default states, and since 
they have identical payoffs their probabilities can be added when calculating expectations 
under the RN or real measure.  The same rationale applies to the default nodes below the line.  
Thus we do not need to know the probability of an individual node to calculate the expected 
payoff at bond maturity.  It suffices to know that the bond defaults at a probability πD and 
does not default at a probability 1- πD. 

[INSERT FIGURE 3] 

The same tree is relevant for the case where default might occur prior to T and the recovery is 
adjusted to the money market at T.12  We also assume that the (gross) risk-free interest rate 
for the period t=0 to t=T is RT. 

 

Theorem 2:  Consider a T-period zero-coupon bond.  Denote the probability of default at 
time T by πD, the bond price by p, the recovery rate by δ, and the current one-period gross 
(i.e., one plus) interest rate by R1.13   Then the following relations hold: 

                                                 
11 We briefly explain later when and how this assumption can be relaxed and adapted to allow default at any 
time.   
12 This is known as the “Recovery of Treasury” model, where bondholders recover a fraction of the present 
value of face.  For this definition and others including further references see for example Uhrig-Homburg, M., 
2002, “Valuation of defaultable claims: A survey,” Schmalenbach Business Review, 54, 24-57.  This discussion 
is beyond the scope of this paper.  To analyze such a case we need additional assumptions that we avoid in our 
present model and to be prudent about the probability measure (for applying this model to default before 
maturity T). 
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• The expected bond return is given by: 

(22) 
( )

1/
1 1

1

T

DEBR
p

π δ− −
= −
     
 

 

• The credit risk premium is given by: 

(23) 
( ) 1/

1/

1 1 1D

T

Tp
CRP ytm EBR

π δ− − −
= − =

  
 

• The certainty equivalent premium is given by: 

(24) 
( )

1/

1

1 1
T

DCEP R
p

π δ− −
= −
     
 

 

 

Proof:  Equation (22) follows directly from the definition of EBR and the setup of Figure 3: 

( ) ( )
1/ 1/

1 1 1 1
1 1

T T

D D DEBR
p p

π δ π π δ⋅ + − ⋅ − −
= − = −
                

 

To derive (23) we required an expression for ytm which by its definition is given by: 

(25) 

1/
1

1
T

ytm
p

= −
 
 
 

 

Using (22) and (25) and the definition of CRP results in equation (23): 

 
( )[ ] ( )[ ]1/1/ 1/

1/

1 1 1 1 11
TT

D D

T

T
CRP ytm EBR

p p p

π δ π δ− − − − −
= − = − =

  
      

 . 

Equation (24) then follows directly from the relation of EBR and the risk-free rate in a 
frictionless world: 

( )
1/

1 1

1 1
1

T

DCEP EBR r EBR R R
p

π δ− −
= − = + − = −

     
 

   

   ■    

The above and subsequent relations hold for the general case, where the term structures are 
not flat.  Each return and premium value is a function of the maturity T which is omitted in 
our expressions for ease of notation. 

 

                                                                                                                                                     
13 In the prior section we use R for the single period gross risk free rate for single period model.  Here we use R1 
in the multiperiod model to avoid confusion with RT.  Actually R1 = (RT)1/T.  Thus when the term structure is not 
flat R1 ≠ R = a one period ahead rate. 
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Discussion: 
We start with the bond price using risk-neutral pricing: 

(26) 
( )

( )

* *

*

1 1

1 1

D D T

D T

p

p

R

R

δ

δ

π π

π

= ⋅ + − ⋅

= − −

  
  

 

Hence p = PV{1 – E*[loss]} for a unit face value, where PV is the present value using the 
risk-free rate and E* denotes the expected value under the RN probabilities. 

The economic meaning of the nominator of (22) is simply {1 – E[loss]}, where E denotes the 
expected value under the “real” probabilities.  Hence the gross EBR ( = 1+ EBR) of a zero 
coupon bond has an intuitive meaning of a per-period expected gross return on the initial 
investment (the time 0 price of the risky bond) and it is linearly related to the gross risk-free 
rate: 

(27) ( ) { } ( )1 [ ] 1 [ ] 1 [ ]
1

1 [ ] 1 [ ]
1T TE loss E loss E loss

EBR
p PV E loss E loss

r
∗ ∗

− − −
+ = =

− −
= ⋅ +  

The single period credit risk premium (CRP) is the fraction of the gross promised yield 
(1+ytm) which is proportional to the expected loss of face value, see equation (13).  The 
multi-period expression in (23) is the "per period" equivalent of (13) and has similar 
interpretation.14 

Equation (24) for the certainty equivalence premium can be rewritten, translating its 
components to yields and expected loss: 

(28) ( )1/

11 [ ] (1 )TCEP E loss ytm R= − + − . 

Equation (28) shows that a risk averse investor requires a premium over the risk free rate 
which is linearly related to the product of the gross promised return and the “per period” 
expected payoff.  Again the expectations are with regards to the “real” probabilities and the 
payoffs are rates since they are normalized by the face value of the bond (which is 1 in our 
case).  This can be interpreted as if the investors expect that promised returns (1+ytm) will 
not be fully realized.  They expect that only a fraction will be actually gained.  This fraction 
is embodied in (1-E[loss]).  When T increases. this factor grows (for a constant E[loss]) and 
increases CEP for the same promised returns.15 

To conclude, it can be easily shown that the bond-spread decomposition of equation (20a, b), 
of the single period tree, which states that BS is the arithmetic sum of CRP and CEP, holds in 
our multiple period “black box” tree model for zero coupon bonds. That is, in a frictionless 
world: 

                                                 
14 Using the relation (25) between 1+ytm and 1/p.  The expression in the square brackets equals the expected 
payoffs at T, thus its Tth root can be viewed (intuitively) as the per-period expected payoff and its difference 
from 1 is the per period expected loss value. 
15 As T grows substantially, ceteris paribus, this fraction approaches 1.  This result is obviously extreme and 
irrelevant since E[loss] also increases with T and thus the above sensitivity analysis should serve our intuition 
only for relatively small changes in the parameters.  Furthermore, the model of (24) and (28) of zero coupon 
bond does not hold for unbounded maturity.  The default probability approaches 1 and the price of a very distant 
future, highly risky payment of $1 (that would materialize at a miniscule probability), approaches zero as T 
increases. 
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ytm = r + CRP + CEP 
 

Intuitive interpretation 
Additional insight can be gained by writing the multi-period expressions of Theorem 2 in a 
form that approximates the one-period expressions of Theorem 1.  The general binomial 
theorem (see Appendix C) gives the following approximation: 

 
(29) ( ) ( )1/ 1

1 1 1 1D D

T

T
π δ π δ− − ≈ − −    

The Tth root of a bond price (equation 26) can be approximated by the present value 
(discounting at one-plus the one-period risk free rate R1) the face value less "average single 
period" expected loss (expectations under risk-neutral probability). 

(30) 
1/1/ * *

1 1

1 1 1
1 (1 ) 1 (1 )

TT

D Dp
R R T

π δ π δ= − − ≈ − −        

Substituting the same binomial approximation in EBR and CRP results in: 

(31) 
1

1*1

1 (1 )
1

1 (1 )
DT

DT

EBR R
π δ

π δ

− −
≈ −

− −  

(32) 
1

1*1

(1 )
1 (1 )

T D

T D

CRP R
π δ
π δ

−
≈

− −  . 

When the second term, the risk-neutral expected per-period loss rate, in the denominator of 
(32) is sufficiently small, then CRP is approximately linear in the expected per-period loss 
rate.  In the general case, the relation is not linear and CRP grows monotonically with the 
expected per-period loss rate, as can be seen in (32b): 

(32b) 

1 1

1 1* *1 1 1

1
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(1 ) (1 )
1 (1 ) 1 (1 ) (1 )

(1 )
1 (1 ) (1 )

( )

/

T TD D

T T TD D D D

T D

T D

CRP R R

R
CEP ytm

π δ π δ
π δ π δ π π δ

π δ
π δ

− −
≈

− − − − − −

−
− − − +

= =
−

=
  

where the last term in the denominator follows from (34).  Another interesting expression 
results from rearranging (32): 

(33) ( )
1

1* 1/1

(1 ) [ ] / [ ] 1
1 (1 )

DT
T

DT

E loss T E lossCRP R ytm
p T

π δ
π δ

−
≈ = = +

− −  

Where the loss in this expression is actually a loss-rate since it is a fraction of $1 face value.  
Equation (33) is the T-period equivalent of the single period expression (13). 

Expression (31) shows that EBR is the risk-free rate when the physical measure equals the 
risk-neutral measure.  This agrees with our earlier discussion of risk neutral investors, 
requiring just a risk free rate in a frictionless world.  When the recovery is complete (δ=1) 
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there is no risk and again EBR = risk free rate.  Otherwise EBR+1 is R1 multiplied by the 
ratio of the per-period expected residual values where the physical expectation is divided by 
the risk neutral one. 

Using (31) to approximate EBR in (4), we find (34), which shows how the risk aversion 
expressed by the CEP is related to the difference between the risk-neutral and physical 
probabilities of default, the per-period average loss, and the gross required yield ( = 1+ ytm 
which equals Rf divided by the denominator of (34), as can be seen above). 

1

1 1*1

1 (1 )
1 1

1 (1 )
T D

T D

CEP EBR r EBR R R
π δ
π δ

− −
= − = + − ≈ −

− −

 
 
 

 

 
(34) 

( )1

1 1

(1 )

1 (1 )
T D D

T D

CEP R
δ π π

π δ

∗

∗

− −
≈

− −  

 

3.   Empirical results 
We present below practical estimation method and empirical results of Section 2 model and 
relations. 

 

3.1  Practical Implementation 
We discuss below three implementation matters: extracting the zero-coupon term structure of 
interest rates (TSIR), the “real” probability of default term structure, and selecting a proxy for 
the risk free rate. 

Zero coupon term structure of interest rates estimation 
Fitting a “best” term structure to the noisy numerical data of interest rate has been discussed 
by many researchers and practitioners.  Subramanian (2001) describes the main functional 
forms that have been used in the literature: polynomial, exponential and B-splines, 
exponential polynomial forms for the forward rate, and roughness penalty methods.  These 
and additional methods are discussed by Hagan and West (2006) who also offer additional 
insights and interpolation procedures for hedging applications. 

We use Nelson and Siegel (NS) (1987) model for the representation and interpolation of our 
results.  This method is often the procedure of choice by practitioners and was found superior 
to alternative methods by Subramanian (2001) and others.16  NS parameters can be linked to 
common factors affecting bond returns, namely level, steepness, and curvature of Litterman 
and Scheinkman (1991).  They found that these three factors explain on average more than 
98% of the variations in bond returns.  The percentages change with bond maturity and on 
average level, steepness, and curvature account for 89.5%, 8.5%, and 2% of the variations 
respectively.  Similar results are confirmed for later periods, Ramaswamy (2004) for 
example, shows similar results by principal components analysis on 1999-2002 data set (pp. 
58-59). 

                                                 
16 S&P proposal (dated 19 Feb 2004) to the Israeli government (tender 8/2003) for modelling and provision of 
term structures of interest rate for national mutual funds, provident funds, and insurance companies. 
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NS 1987 was also scrutinized for allowing arbitrage, e.g. Bjork and Christensen (1999).  
Coroneo et al (2008) investigated this matter statistically and concluded that the Nelson and 
Siegel yield curve model is compatible with arbitrage-freeness. 

For the sake of completeness we repeat NS model below: 

(35) ( ) ( ) ( )0 1 2 2

1 exp /
( ) exp /

/
m

r m m
m

τ
β β β β τ

τ
− −

= + + ⋅ − ⋅ −  

Where: 

m is the time variable 

β0 and (β0+β1) are the long-term and short-term rates respectively  

τ  is a parameter that specifies the position of the hump 

β2 is the medium term component which determines the magnitude and the direction (up 
or down) of the hump or trough in the yield curve. 

We need to estimate a term structure of interest rate (TSIR) for each rating category.  This 
poses two issues: 

a) An unconstrained NS curve fit often results in TSIR curve crossing, i.e. a higher 
rating might have a higher return than a lower rating at certain maturity ranges.  This 
obviously has no reasonable economic support and is regarded as an undesirable 
artifact of the NS curve fit and data noise.  A practical remedy to this issue is using a 
constrained NS curve fit as follows:17 

• Allow only monotonic non-decreasing term structure (monotonicity). 

• At any maturity the lower rating TSIR should be no lower than the next higher 
rating TSIR (no-crossing). 

• Start the curve fit with the highest rating (AAA in our case) adhering to the 
monotonicity requirement only.  Then, one at a time, move to the nearest lower 
rating requiring both monotonicity and no-crossing. 

b) Preferably, the curve fit is a daily one, based on a single day rich transaction data, for 
each day of our sample.  Our data however is scattered over a period of four months.  
We have thus chosen to use a TSIR representative of the four month period, a single 
curve for each rating category.  All curves are referenced to the same day (see details 
below).  We are not aware of others that have adopted the same mechanism, yet under 
the assumptions of time invariant TSIR for the data period of four months we believe 
our methodology is theoretically sound. 

For the curve fit we use the constrained optimization function of MatLab (fmincon).  The goal 
is to minimize the error function which is the sum of the absolute pricing errors of all the 
transaction quotes of the specific rating during the data period.  The pricing error of a bond is 
its market (quoted) dirty price less its calculated price based on the TISR given by the 
estimated NS curve.  For consistency the market and calculated prices are discounted to the 
reference date of the NS curve (1 Sep. 2004 in our case).  We tried minimizing sum of 
squared pricing errors and selected the sum of absolute errors to avoid emphasizing the effect 
of outliers in our noisy data. 
                                                 
17 This method is widely adopted by S&P and was implemented in “Shaarey Ribit” the national standard in 
Israel for the TSIR of government and corporate bonds (as of 2004). 
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Term structure of “real” default probability 
We use the commonly accepted (de facto) “standard” of rating transition matrices, published 
by the rating agencies, to estimate the physical default probability.  We generate a series of 
the time t state vector st: 

(36) 0
t

ts s′ ′= ⋅Π  

where the ith component of st is the probability that the bond is in state (rating), i  = 1,…N, 
and where s’ is the transpose of vector s.  The πi,j element of the transition matrix Π is the 
probability that a bond which has a rating i at the beginning of the period t would have the 
rating j at its end.  Hence:  

(36a) 1    1,...t ts s t T−′ ′= ⋅Π ∀ =                             

assuming a time invariant Π, where T is the maturity of the bond.  Since st is a vector of 
probabilities assigned to exclusive states (ratings) at time t, ι’· st = 1, where ι is the vector of 
ones.  We define the states 1,.., N-2 to be the solvent ratings (AAA,…, C for the case of S&P 
ratings), the N-1 state is a default state (for a default event at time τ = t) and the Nth state is a 
post default state (where default occurred in the past, at time τ < t). 
The above definitions and process lead to a simple calculation of the “real” probability of 
default (πD) at the end of any time period t: 

(37) πD,t  = st,N-1  + st,N                                                  

where N-1 and N subscripts denote the last two elements of the state vector st. 

 

Risk free rate 
The US government bond TSIR is often used as a benchmark risk free rate.  We do not 
propose a better benchmark.  However, we need to control for the effects of liquidity 
premium and taxes to improve our estimates of the risk-neutral default probability term 
structure.  Afik-Benninga (AB, 2010) demonstrate that the credit premium and real default 
probabilities are almost negligible for AAA rated bonds, yet they command a significant 
“other” premia above the treasury TSIR.  Thus, we adopt the AAA TSIR as our risk-free 
benchmark, assuming it nets out (at least partially) the liquidity and tax effects of the other 
ratings.   

We acknowledge that there are liquidity differences among the various ratings and that taxes 
may affect differently speculative bonds and investment grade ones, yet we ignore these 
secondary effects in our current research. 

 

3.2.   Sample results and discussion 
The following describes and discusses our results of estimating the above yields, premia, and 
default probability measures for a dataset of US corporate bonds transactions. 
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The data 
A complete and reliable corporate bond data remains one of the challenges in our research.  
For the current research we use The Fixed Income Securities Database (FISD) for academia 
on Wharton’s site.  It covers over 100,000 corporate, U.S. Agency, U.S. Treasury and 
supranational debt securities and includes more than 400 fields or data items.  FISD might be 
biased to bond portfolio activity of insurance companies including infrequent trading, biased 
to initial offer, large volumes, long term holding periods, and other specific sample and price 
biases.  The Wharton database is a subset of FISD database intended for academic research.  
Amongst its drawbacks is the absence of recent data.  We processed and analyzed the 
transactions of a four month period spanning September to December 2004.  At the time of 
our analysis the coupon payment frequency was not included in the Wharton database and we 
used a private database to complete our data set (identifying the individual bonds by their 
ISIN codes). 

We used only corporate bonds that pay fixed coupons semiannually.  All other were excluded 
from our data set.  We also excluded other data including: 

• Bonds not rated by S&P 

• Callable, putable, and convertible bonds 

• Bonds with less than 3 coupons remaining and longer than 40 years to maturity.  
(Thus including  1 < maturities ≤ 40 years in our data set.) 

• Transaction data without a price quotation (or non positive price) 

• Bonds for which we failed matching a complete set of inputs required for our 
calculations. 

Our initial raw data includes 115,507 transaction lines.  After filtering and fusion of data 
from other tables we have 11,209 transaction lines with complete data sets for our analysis.  
Filtering these transactions of US government agencies bonds results in a net of 6,445 
transactions that are usable for our calculations.18  The statistics of the net final set are 
presented in Appendix D. 

We looked at S&P500 as a proxy for the equity market behavior during our sampled period.  
We believe it shows that it has been typically a steady and relatively uneventful period 
compared to the two year preceding the sampled period and the two years that have followed 
it.  Since it is widely accepted that the corporate bond market is strongly linked with the 
equity market performance, empirically, and explained by various structural models, we 
cannot rule out that our bond data results are typical of a steady growing market without 
outstanding booms and without significant crashes. 

 

Results examples and discussion 

Zero-coupon bond term structure of returns 
First we estimate the TSIR of the S&P rating categories for our data set. 

                                                 
18 The 4,764 US government related bonds filtered in the last stage do not represent their relative size in the total 
transaction number.  These are just the residual that were not filtered earlier in the query of the FISD database.  
They were filtered out by their CUSIP (after noticing their outstanding results compared to the bulk of corporate 
bonds). 
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As explained above, for each rating we estimate the four NS parameters defining the rating 
TSIR.  To avoid undesirable crossing of fitted curves we impose certain constrains in our 
estimation process as explained above,.  Others, such as Diebold and Li (2006) have chosen 
to estimate a linear model of NS  β0÷β2 parameters  and imposed a constraint on the fourth 
(non-linear) parameter  τ = 1.3684.19  This value is not remote from our results, see Table 1 
and Figure 4, yet we do not see a reason to impose this constraint in our case. 

[INSERT FIGURE 4] 

[INSERT TABLE 1] 

Remembering that β0 and (β0+β1) are the long-term and short-term rates respectively, the 
results of Table 1 seem economically reasonable.  Figures 5a and 5b show the TSIR of our 
NS fit for zero coupon bonds extracted from our data for investment and speculative grade 
respectively.  Figure 5b shows that the C-CCC graded bonds actually form a separate class in 
our data set.  We therefore added Figure 5c that depicts more clearly the B-BBB TSIR’s.  
These figures show that in our dataset there is a distinct clustering of the TSIR’s to the three 
major rating categories A, B, and C, with pronounced spreads between them compared to the 
intra-group spreads. 

 [INSERT FIGURE 5a,b,c] 

 

Default probabilities term structure 
We compute πD “real” probabilities as explained in section 3.1 above using S&P transition 
matrix (see Appendix B).  For the calculations of risk-neutral (RN) default probabilities πD* 
we use equation (26).  It expresses the relation among the transaction price p, observed in the 
market, the risk free rate RT, which we assume is proxied by the AAA TSIR, the recovery 
rate δ, which we assume equals 40% for all ratings, and the estimated πD*.  More robust 
estimation is proposed for the RN expected loss: E*[loss] = πD*·(1- δ), which does not 
require an assumed recovery rate.   

Figures 6a-d show a sample of “real” and RN default probabilities of AA, A, BBB, and B 
bonds.  The results for BB bonds are intermediate between those of BBB and B bonds.  The 
results for C bonds are based on a small sample, 16 transactions only, and thus are unreliable 
(especially in comparison to the other rating samples). 

[INSERT FIGURE 6a,b,c,d] 

These results are in agreement with results obtained by Delianedis and Geseke (2003) who 
compute risk-neutral default probabilities using the option-pricing based models of Merton 
(1974) and Geske (1977). They show, not surprisingly, that their estimates for the risk-neutral 
default probabilities from both models exceed rating-migrations based physical default 
probabilities. 

 [INSERT FIGURE 7] 

[INSERT FIGURE 8a,b,c,d] 

Bond yield decomposition 
Using the above estimated zero-coupon returns and default probability term structures of each 
of the rating categories, we estimate the expected bond returns (EBR), the credit risk 
                                                 
19 Diebold and Li (2006) quote an inverse value on a monthly basis (p. 347), λ = 0.0609.  Since we use the 
original parameter τ of the NS model on annualized time periods this number is inverted and multiplied by 12.  
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premium (CRP) and the certainty equivalence premium (CEP) term structures using 
equations (22), (23), and (24) respectively. 

Figure 7 shows the term-structures of EBR, CEP, and CRP of zero coupon bonds rated BB.   
Figures 8a-d show similar charts for ratings AA, A, BBB, and B respectively.   

It is worthwhile recalling that   (1+EBR)T = (1 – E[loss])/p = (1+ytm)T -  E[loss])/p  where the 
expectations are under the “real” probability measure.  CRP is the difference between ytm 
and EBR and thus expresses a per-period related expected loss rate (of the promised gross 
yield 1+ytm), see the approximation in equation (33).  The CEP in a frictionless world is the 
difference between EBR and the risk-free rate.  In our estimation we assume that the market 
friction premia (mainly liquidity, transaction cost, bid-ask, and tax effects) are embodied in 
AAA rated zero coupon bond returns.  Thus we estimate CEP of rating j bonds by:   

CEPj(T) = EBRj(T) – ytmAAA(T)  for each maturity T. 

EBR increases monotonically with declining bond rating, and usually with maturity (except 
for BB bonds that exhibit a slowly decreasing term structure at long maturities).  While CRP 
monotonically increases with maturity and with decreasing bond rating, CEP generally 
decreases with maturity, exhibiting a humped shape for BBB rated bonds.  CEP increases 
with decreasing bond rating for investment grade bonds.  There is no clear order for CEP of 
speculative graded bonds.  Since the CEP expresses the risk aversion to the lottery, the 
additional discount investors demand of EBR above the risk-free rate, it seems that the 
perceived “lottery” risk is not significantly magnified by the decreasing rating.  We postulate 
that this happens because the investors are compensated by a significantly higher CRP for 
lower grade bonds. 

It is worth mentioning that CEP is related to the CAPM “systematic risk”.  This relation is 
presented in Appendix A.  The above finding that CEP does not vary materially among 
speculative graded bonds is maybe an evidence that their risk differences are not materially 
related by market participants to systematic risk differences. 

 

4.  Conclusions and Further Research Directions 
We developed a simple, intuitive, and practical framework for modeling and estimating the 
term structure of zero-coupon expected bond returns and the decomposition of bond yields.  

We estimated these yields and premia using US corporate straight-coupon-bond market data 
of the period September-December 2004.  As a by-product of this process we also estimated a 
term structure of default probabilities for each bond rating under the risk neutral and the 
“physical” measures. 

This paper extends a single period tree into a multiple period “black box” tree, avoiding the 
structural assumptions often required for “open box” trees.  This is possible since we focus 
mainly on zero coupon returns and spreads.  Despite its simplicity, this approach also enables 
better understanding of EBR and its components.  Our model avoids a specific structure and 
assumptions regarding the process dynamics (of state variables) and the relation among the 
parameters of the inner nodes of the tree.  Yet this is done “at the cost” of remaining more 
abstract - the interim periods prior to maturity remain a blackbox.  We also impose, similar to 
many other models, a fixed recovery rate upon default. 

Since we estimate the expected bond returns (EBR), the credit risk premium (CRP), and the 
certainty equivalence premium (CEP) from market prices and the information set available to 
the investor, EBR, CRP, and CEP are implied by the market information and may change as a 
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result of market prices for example.  We do not regard such dependence on prices as a 
weakness.  On the contrary, assuming market prices embody the collective expectations of 
future payoffs, our model “calibrates” the ex-ante term structures of EBR, CRP, CEP, and 
risk-neutral default probabilities to these expectations. 

Our model also bridges the gap between the literature of equities and bonds.  By defining the 
CRP and calculating EBR the two literatures are comparable in terms of expected returns.  
Additionally, CAPM systematic risk has been adopted mainly for equities.  The CEP term 
structure provides a forward looking, ex-ante implied systematic credit risk of bonds (for 
each rating category).  The clear breakdown of bond spread to CRP, CEP, and other premia 
(the sum of liquidity, tax, transaction cost, etc.) helps clarify and estimate the components of 
this important and useful spread. 

Jarrow, Lando, and Turnbull (JLT) (1997), and follow on works, estimate a risk-neutral set of 
transition matrices based on the "physical" measure transition matrix of a rating agency and 
bond market data.  Their estimation assumes certain structure and relations between the risk-
neutral and the "physical" matrices.  We avoid these assumptions and we estimate the risk-
neutral default probability term structure of various rating groups directly from the zero 
coupon term structure of interest rates of the relevant rating groups.  We estimate the required 
term structures from bond market data.  Though our method does not estimate a complete 
risk-neural set of transition matrices, we believe our model is more robust, less noisy, and 
requires lesser assumptions than JLT. 

Coupon bond EBR and CRP estimation follow the definition of equations (2) and (3).  The 
details of the estimation process and examples from the US corporate bond market are 
beyond the scope of this paper.20 

We have focused our work on developing the model and the empirical estimation process.  
Therefore our empirical results are limited to a relatively short period.  We plan on expanding 
our data set and explore the model results on additional periods.  We also believe that this 
paper model provide a basis for further research and applications such as implied recovery 
and implied rating, which will be presented in subsequent papers.   

We demonstrated the estimation using unconditional rating transition matrices.  A similar 
estimation seems feasible using conditional default probabilities that can be estimated using 
hazard models.  We believe that these open new opportunities for researchers and 
practitioners. 

                                                 
20 These are included in a separate, currently a working paper whose earlier draft Afik and Benninga (2010) is 
available on SSRN. 
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Figures and tables 
 

  
Figure 1a:  A risk free bond Figure 1b:  A risky bond 

R is the risk free rate, p is the bond price, δ the recovery rate,  
and π the default probability (physical measure) 

 

 

  
Figure 2a:  security paying $1 at “up” state Figure 2b:  security paying $1 at “down” state 

qu and qd are the state prices of up (no default) and down (default) state respectively 
 π* is the risk-neutral default probability 
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Figure 3:   Risky zero coupon bond 

p is t=0 bond price.  At t=T the nodes (states of the world) are divided to two sets, non-default and 
default states, above and below the dashed line respectively.  The bond pays its promised face value 
1 above the dashed line and its recovery value δ bellow it, at the respective risk-neutral (RN) and 
“real” probabilities.   

The default probabilities are the arithmetic sum of the respective individual nodes’ probabilities, i.e. 
πD = Σπi where the summation is over i = 0,..j and j is the top node below the dashed line. 
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Figure 4:  The time parameter τ of Nelson-Siegel term structure of interest rates for each rating 

category in our dataset 
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Figure 5 a:  Term structure of interest rates for zero coupon investment grade bonds 
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Figure 5 b:  Term structure of interest rates for zero coupon speculative grade bonds 
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Figure 5 c:  Term structure of interest rates for zero coupon B, BB, and BBB bonds 
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Figure 6 a: AA rated bonds Figure. 6 b:  AA rated bonds 

Term structure of physical and risk-neutral probabilities of default 

 

 

  
Figure 6 c:   BBB rated bonds Figure 6 d:  B rated bonds 

Term structure of physical and risk-neutral probabilities of default 
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Figure 7:  BB zero coupon bonds term structure of expected bond returns (EBR), certainty equivalence 

premium (CEP),  and credit risk premium (CRP), assuming 40% recovery rate 

 
 

  
Figure 8 a:  AA rated bonds Figure 8 b:  A rated bonds 

zero coupon bonds term structure of expected bond returns (EBR), certainty equivalence premium (CEP),   
and credit risk premium (CRP), assuming 40% recovery rate 
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Figure 8 c:  BBB rated bonds Figure 8 d:  B rated bonds 

zero coupon bonds term structure of expected bond returns (EBR), certainty equivalence premium (CEP),   
and credit risk premium (CRP), assuming 40% recovery rate 

 

 

 

 

Rating AAA AA A BBB BB B CC 

Obs. 914 404 2401 1471 441 739 16 

 Fvalu 0.00898 0.009974 0.016364 0.039001 0.045015 0.124448 0.081685 

 β0 0.057774 0.059909 0.062166 0.081719 0.087339 0.090829 0.311644 

 β1 -0.04477 -0.04192 -0.04134 -0.06079 -0.0339 -0.03729 -0.13022 

 β2 -0.05363 -0.04993 -0.04837 -0.06926 -0.0379 -0.04178 -0.10022 

 τ 0.986483 1.016865 1.111096 1.341392 1.518215 1.528836 1.553794 

ytm ≤ 20 8 20 11 11 19 40 

Table. 1:  The estimated NS parameters for each of the rating categories.  Obs. is the number of 
transactions (observations) included in the curve fit after filtering outliers that have ytm 
above the value listed in the last row.  Fvalue is the final value of the optimization goal 
function which is the average of the absolute error (sum of absolute values / Obs.). 
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Appendix A: CEP as a measure of market systematic risk 
 

Beta is an ingredient of a single period model - the CAPM.  The certainty equivalence 
permium (CEP), and generally most bond premia, are related to multiple period models, as 
the payments are spread over years, often many years.  To bridge this difference we restrict 
our “formal” discussion and comparison to a single period (zero coupon) bond. 

The time t value of an asset paying a cashflow of CF(t+1) the next period is: 

(A.1) 
[ ( 1)]( )
1
tE CF tV t

r rp
+

=
+ +  

Where Et is the expectation conditional on the information available at time t, r is the risk 
free rate, and rp is the risk premium demanded for bearing the risk of the uncertain cashflow 
at time t+1.  We further assume that CF(t+1) represents the entire value of the asset 
(including interest, sales proceeds, etc.).  All rates are on a per-period basis.  Under the 
CAPM assumptions, the risk premium is: 

(A.2) ( )[ ( 1)]mrp E r t rβ= ⋅ + −  

where we apply the usual notation of β and the return on the market portfolio rm. 

For a single period bond we use the following relations (by definition): 

(A.3) 
[ ( 1)] [ ( 1)]( )

1 1
promised CF t E CF tp t

y EBR
+ +

= =
+ +  

We explain (in the paper) that in a world without taxes, liquidity cost, and transaction cost 
EBR differs from the risk-free rate by a certainty equivalence premium (CEP): 

(A.4) EBR = r + CEP  

CEP is required by investors for accepting the risky lottery whose uncertain payoff CF(t+1) 
are not guaranteed at the expected level of E[CF(t+1)], they might be higher or lower.   In a 
risk-neutral world CEP = 0 whereas for risk averse investors CEP > 0. 

Comparing the general case CAPM valuation of equations (A.1) and (A.2) with the specific 
definitions for a single period bond of equations (A.3) and (A.4) it is obvious that the risk 
premium required under CAPM  is rp = CEP.  Hence, for a single period bond (zero coupon), 
under a frictionless market and the CAPM assumptions, (A.5) holds. 

(A.5) [ ( ) ]mCEP E r rβ= ⋅ −  
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Appendix B:  Transition Matrix Data 
 

We use US bond market data in our empirical work and therefore prefer using a US transition 
matrix for our Markov chain.  The US market matrix that S&P publishes is based on one year 
transition data.  We have several reasons for preferring matrices based on long period 
transition data: 

• A single year sample is small, especially for relative rare events of transitions of more 
than one rating step (more than one column away from the matrix diagonal).  Thus a 
matrix based on a single year data might be "too noisy."  The result is further distorted 
by the cohort estimation method adopted by the rating agencies.21 

• We have chosen the bond rating as our state variable.  Rating agencies assigned it 
"through the cycle" trying to smooth out economic cycles effect.  A single year data 
represents a short sample of a business cycle and doesn't conform to "through the cycle" 
rating, thus might cause mismatch of the state variable to the assumed Markov process. 

• The stationary Markov process we assume in our model is questionable for short 
maturity bonds.  We expect it to become more accurate, on average, for bond maturities 
with more than a single business cycle.  We therefore prefer transition matrices that 
represent an average of such periods. 

The alternative matrix published by S&P is indeed of a long period (longer than 10 years), 
yet it is based on global transition data.  This alternative, though desirable for the length of 
period it represents, might be distorted by its non-US content.  The non-US transition rate 
might introduce two effects.  The first is related to local markets' idiosyncratic business 
cycles, especially national and regional economic downturns and crisis.  The other is rather 
peculiar, a specific country rating scale might be different than the US standard.  Being close 
to the Israeli market we know well that AA rated bonds and firms in the Israeli S&P rating 
scale would probably be rated lower than A on the US scale.  We hope this distortion is 
accounted for in the global transition data of S&P used for estimating the global transition 
matrix. 

In light of the above considerations we used the US transition matrix (Table B.1) despite its 
drawbacks.  AB (2010) reviewed the effect of using the global transition matrix and 
compared the results to those of the short term US matrix on EBR and related results.  They 
find that the results generated from different matrices, though numerically vary in scale, are 
very similar in their overall and often detailed shape.  This matter is beyond the scope of this 
paper. 

Table B.2 below shows the annual, trailing four quarter, transition matrix for the US, 
generated from Table B.1., after normalization for N.R. state deletion and adding an E 
column and D, E rows.  The details of this simple process are listed in AB (2010)  

 

 

                                                 
21 See further details, for example, in Schuermann (2007) and Lando and Skødeberg (2002). 
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From/To AAA AA A BBB BB B CCC/C D N.R. 
AAA 92.21 2.6 0 0 0 0 0 0 5.19 
AA 0 90.66 3.85 0 0 0 0 0 5.49 
A 0 1.45 90.98 3.38 0.32 0 0 0 3.86 
BBB 0 0.13 1.31 89.3 3.66 0.13 0.13 0 5.35 
BB 0 0 0 4.09 77.4 8.36 0.18 0.36 9.61 
B 0 0 0 0 5.6 78.52 2.89 1.81 11.19 
CCC/C 0 0 0 0 1.16 12.79 52.33 18.6 15.12 

Table B.1: Annual transition data of 4 quarters US (%) 
Source: S&P Quarterly Default Update October 2004, Table 4, page 11 

 

 
From/To AAA AA A BBB BB B CCC/C D E 

AAA 0.9726 0.0274 0 0 0 0 0 0 0 
AA 0 0.9593 0.0407 0 0 0 0 0 0 
A 0 0.0151 0.9464 0.0352 0.0033 0 0 0 0 

BBB 0 0.0014 0.0138 0.9434 0.0387 0.0014 0.0014 0 0 
BB 0 0 0 0.0452 0.8563 0.0925 0.002 0.004 0 
B 0 0 0 0 0.063 0.884 0.0325 0.0204 0 

CCC/C 0 0 0 0 0.0137 0.1507 0.6165 0.2191 0 
D 0 0 0 0 0 0 0 0 1 
E 0 0 0 0 0 0 0 0 1 

Table B.2:  Annual transition matrix based on 4 quarters US data (S&P, Oct, 2004) 
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Appendix C:  Simplifying expressions including 1/T power 
Our aim in the following is to simplify the expressions that include the 1/T power using the 
general Binomial Theorem22: 

(C.1)  
0

(1 )v k

k

v
x x

k

∞

=

 
+ =  

 
∑   for v∈R ,                                                                     

the series converges when |x|<1 which holds in our case where x = - probability ·(1-δ) in any 
practical case since probability and (1-δ) each ∈[0,1] , and probability <1. 

The binomial coefficients (in the general case when v is not an integer) are defined by:23 

(C.2)  
!

!( )!
v v
k k v k
 

=  − 
   and  z! = Γ(z + 1)                                                            
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∑                           

Rational for the above approximation: 

v = 1/T thus the binomial coefficient diminishes from k = 2 term (see Figure C.1 below) and:   

|x| = probability of default times  (1-δ) < 0.2·(1-0.2) ≈  0.15 for a speculative-grade bond with 
two years to maturity and a low recovery rate of 0.2.24  Typical recovery rates are 0.4 and πD 
< 0.02 (for a B bond), hence typically |x| < 0.008.  Therefore typically k=2 series element is 
smaller than 10-5 and is below 0.003 for the above speculative-grade bond with two years to 
maturity and a very low recovery rate.  The k=3 series element is much smaller. 

We therefore use the following approximation: 

(C.4)  ( ) ( )
1/ 11 1 1 1

T

D DT
π δ π δ − − ≈ − −                                                        

An example for a “large error: (1- 0.2·0.8)0.5 = 0.9165  whereas the approximation 1 – 0.5· 
0.2·0.8 = 0.9200 differs only by 0.0035 from the accurate result.  Typically the error is much 
smaller (e.g. <1.5·10-5 for 10 years to maturity with recovery of 0.4). 

 

                                                 
22 See for example: http://mathworld.wolfram.com/BinomialTheorem.html where additional information and 
references are provided. 
23 See for example: http://mathworld.wolfram.com/BinomialCoefficient.html 
24 See Figure C.2 for default probabilities of various bonds. 
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Figure C.1: k=2 and k=3 binomial coefficients 
Compare these with 1 and 1/T which are the first 2 coefficients of the series 

 

 

  
Figure C.2a: default probability vs. time to maturity of 
investment grade bonds 

Figure C.2b: default probability vs. time to maturity of 
speculative bonds 
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 Appendix D:  Input Data Characteristics 
 

We use the same data set of AB (2010), we repeat below some of the data characteristics.  
For more detailed exposition see AB (2010). 

 

Table D.1: sample size and ‘SELL’ type proportion by rating group 
 

Rating group Sample size Relative size Sell [%](1) 
AAA 916 14.2% 30.3 
AA 406 6.3% 26.1 
A 2,406 37.3% 37.1 

BBB 1,493 23.2% 59.8 
BB 445 6.9% 67.6 
B 758 11.8% 74.0 

CCC/CC/C 19 0.29% 84.2 
D 2 0.03% 100.0 

All 6,445 100.0% 47.3 
(1)  Calculating sell percentage of transaction amount:  s/n = (1 – d/n)/2   where s = sell amount, n = total 
amount (in the specific sample), and d is the difference of buy – sell transaction lines in the sample 

 

 

Figure D.1:  transaction proportion pie-chart of rating group 
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Table D.2:  Time to Maturity [semiannual periods] Descriptive Statistics 
 

Rating group Transactions Mean Std-dev Median Min Max 
AAA 916 11.361 7.1559 9.5466 2.0164 44.423 
AA 406 11.919 7.2342 9.9561 2.5822 57.145 
A 2,406 17.5 10.794 19.251 2.0461 60.073 

BBB 1,493 18.709 17.239 13.571 2.0164 77.41 
BB 445 18.721 11.827 17.333 2.011 63.705 
B 758 24.119 14.027 19.989 4.3991 58.828 

CCC/CC/C 19 9.2916 6.4197 7.3388 2.0439 33.372 
D 2 2.3443 0.09304 2.3443 2.2785 2.4101 

All 6,445 17.39 12.996 16.232 2.011 77.41 

 

 

Table D.3:  bond annual coupon rate data summary by rating group 
 

Rating group Transactions Mean Std-dev Median Min Max 
AAA 916 3.84% 0.80% 3.75% 2.25% 6.22% 
AA 406 4.37% 0.83% 4.25% 2.50% 8.75% 
A 2,406 5.02% 0.96% 5.10% 2.63% 10.00% 

BBB 1,493 6.06% 1.49% 6.13% 2.50% 10.63% 
BB 445 8.03% 1.09% 7.70% 6.15% 10.88% 
B 758 7.59% 2.71% 7.75% 5.00% 14.50% 

CCC/CC/C 19 9.60% 1.28% 10.00% 7.70% 11.00% 
D 2 6.75% 0.00% 6.75% 6.75% 6.75% 

All 6,445 5.58% 1.89% 5.10% 2.25% 14.50% 
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Table D.4:  entire sample bond seniority data summary 
 

ID  
(seniority code) 

Number of 
transactions 

FISD code Description 

1 82 SS Senior Secured 
2 4,643 SEN Senior 
3 1,053 SENS Senior Subordinate 
4 0 JUN Junior 
5 0 JUNS Junior Subordinate 
6 0 SUB Subordinate 
0 667 NON None 

Total: 6,445  all types 

 
 

Table D.5: Yield to Maturity [%] Descriptive Statistics 
 

Rating group transactions mean std-dev median min max 

AAA          916 4.1455 5.7063 3.8254 2.4159 NA* 

AA          406 4.2456 0.79165 4.0764 1.9703 10.194 

A         2,406 5.0431 5.0071 4.9835 0.79403 NA* 

BBB         1,493 5.6252 4.893 5.3263 -34.422 NA* 

BB          445 7.1625 1.3927 7.337 3.0347 12.139 

B          758 7.7365 3.9972 6.9025 3.2158 45.073 

CCC/CC/C           19 28.529 11.48 26.317 16.069 59.37 

D            2 21.135 18.262 21.135 8.2218 34.049 

All        6,445 5.5375 4.9852 5.0336 -34.422 NA* 

* erroneous data (included to demonstrate the data issues of the research) 
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 Appendix E:  List of Abbreviations 
 

  

BS bond spread 

CDS credit default swap 

CEP certainty equivalence premium 

CRP credit risk premium 

CUSIP Committee on Uniform Securities Identification Procedures 

EBR expected bond return 

FISD Fixed Income Securities Database 

ISIN International Securities Identification Number 

JLT Jarrow, Lando, and Turnbull 

NASD The National Association of Securities Dealers 

NR not rated 

NS Nelson-Siegel 

RN risk-neutral 

S&P Standard and Poor's 

SIC Standard Industrial Classification 

TM transition matrix 

TRACE Trade Reporting and Compliance Engine 

TS term structure 

TSIR term structure of interest rates 

ytm yield to maturity 
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