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Abstract
Forecasting Value-at-Risk (VaR) for financial portfolios is a staggering task in finan-
cial risk management. The turmoil in financial markets as observed since September
2008 called for more complex VaR models, as ”standard” VaR approaches failed to
anticipate the collective market movements faced during the financial crisis. Hence,
recent research on portfolio management mainly focussed on modeling return in-
terdependencies via dynamic conditional correlations (DCC, Engle (2002)) volatil-
ity spillover (e.g. the BEKK model, named after Baba, Engle, Kraft and Kroner,
(1995)) or copulas (Embrechts et al. (2002)).
In this paper, we analyze VaR estimates based on extreme value theory (EVT) mod-
els combined with parametric copulas. Tails of the return distributions are modeled
via Generalized Pareto Distribution (GPD) approaches applied to GARCH filtered
residuals to capture excess returns. Copula models are used to account for tail
dependence. Drawing on this EVT-GARCH-Copula approach, we evaluate portfo-
lios consisting of German Stocks, market indices and FX-rates, with a data sample
covering both calm and turmoil market phases.
Moreover, models accounting for variable and invariant dependency schemes are
evaluated using statistical backtesting and Basel II criteria . The results strongly
support the EVT-GARCH-Copula approach, as 99% VaR forecasts clearly outper-
form estimates stemming from alternative models accounting for dynamic condi-
tional correlations and volatility spillover for all asset classes in turmoil market
times.
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1. Introduction

Even though financial portfolio research focussed on risk measurement and risk
management during the past decade, the recent financial crisis made evident that
there is still a lack of reliable indicators for financial risk. In this paper, we address
the accuracy of Value-at-Risk (VaR) predictions.

Drawing on daily return data of stocks, stock indices and foreign exchange rates,
in a period covering both the run-up and the outbreak of the actual financial crisis,
we base VaR models on the assumptions of normally, t and GPD distributed returns.
We explore the use of accounting for volatility spillover (BEKK, Engle and Kroner
(1995)), dynamic conditional correlations (DCC, Engle (2002), (2009)) and joint
probability functions (copulas, Sklar (1959) and Embrechts et al. (2002)) in the
prediction of daily VaR.

The DCC and BEKK model represent widely accepted approaches when it comes
to the modeling of conditional correlations and covariances respectively. According
to Caporin and McAleer (2010), DCC and BEKK do co-exist, whereas the question
of distinctions has not been clarified so far.

DCC models separate variance modeling from correlation modeling. In this two
step procedure, univariate methods can be used in the first step (variance modeling),
and estimation becomes feasible even for large portfolios. Hence, following the
seminal paper by Engle (2002), DCC models became rather popular in empirical
analyses of financial portfolios.

In contradiction to the two-step DCC approach, BEKK models represent a direct
generalization of the univariate ARCH models (Bollerslev (1986)), whereas the
estimated parameters become infeasible high when the portfolio size gets bigger.
Due to the fact, that all parameters are estimated in a one-step procedure, the
model allows for direct interaction between lagged volatilities of all assets. As a
consequence, known as the curse of dimensionality, this model is mainly applied in
either theoretical or bivariate empirical analyses regarding volatility spillover.

Anyhow, both approaches are able to capture dynamic properties of financial
interdependencies, especially in turmoil market times. Due to the fact that the
dependence modeled via DCC and BEKK is varies with nonlinear monotonic trans-
formations1, we classify both models as a ”variable” dependence structure.

On the other hand, however, the copula approach separates the dependence
structure from the choice of margins. Henceforth, it is classified as an ”invariant”
scheme of dependence. Albeit copula methodology is widely known(Sklar (1959)),
its usage for modeling dependence structure of financial assets has started no more
than a few years ago (e.g. Embrechts et al. (2002)).

So far, there is no explicit answer to the question of how to choose an optimal
copula for financial timeseries and its choice is still based on empirical analysis.
Concerning elliptical copulas, Malevergne and Sornette (2003) conclude for bivari-
ate portfolios that Gaussian copulas can not be rejected against t copulas for cur-
rencies and stocks. In contradiction, Kole et al. (2007) underline the quality of t
copula performance compared to Gaussian copula for stocks and bonds.

Up to now, however, only few applications of DCC, BEKK and copulas to VaR
estimation and VaR prediction are reported. Hakim et al. (2007), (2009) compare
DCC and BEKK for stocks, bonds and FX-rates2. Palaro and Hotta (2006) use a

1The linear correlation coefficient varies varies with the marginal distributions.
2Australia and New Zealand.
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copula approach to model VaR for a portfolio consisting of Nasdaq and S&P 500
indices. Ozun and Cifter (2007) investigate Latin American markets3 and Aloui et
al. (2011) investigate several bivariate portfolios consisting of emerging and the US
markets4.

Due to the fact that these studies, differ in terms of asset classes, do cover dif-
ferent time horizons and address either multivariate variable or bivariate invariant
dependency, the results are hardly comparable. Therefore, the contribution of this
paper lies in analyzing all approaches in turmoil market times for different asset
classes for higher order portfolios. Consequently, we provide a broad comparison
of DCC, BEKK and copulas.

Further, we also relax the classical comparison of Gaussian and t copula by
combining Gaussian copulas with t margins and vice versa. This allows for analysing
the isolated impact stemming from the individual copulas. Additionally, we make
use of the copula as an invariant dependence measure and analyse the application
of Extreme Value Theory (EVT) for the margins.

Hence, this investigation, expands the research on the estimation of VaR by
explicitly analysing variable and invariant dependency measurements for several
asset classes throughout calm and turmoil market times.

2. Methodology

Forecasting. The scope of this paper is twofold. On the one handside, in order
to scrutinize the variable modeling of dependency, this contribution investigates
conditional correlation and covariance forecasts based on DCC and BEKK models
with the assumption of normally and t(5) distributed returns.

On the other handside, however, invariant dependency structure, namely the
modeling of joint probability functions via copulas is also analysed. Owing to the
separation of dependency from the margins, copulas allow for applying EVT to the
univariate margins.

A rolling window approach is applied to forecast the one-day ahead VaR thresh-
olds. The window size is at 500 observations for all data sets and the portfolio
weights are assumed to be all equal and do not change over time. Due to the
relevance of the Basel II document the 99% VaR forecasts are presented5.

DCC. The DCC model of Engle (2002) belongs to the class of multivariate GARCH
models. The approach separates variance modeling from correlation modeling. Let
the Nx1 vector rt be a set of N asset log returns at time t. Volatilities are calculated
in order to construct volatility adjusted residuals εt. For our research, we assume
that each return follows a univariate GARCH(1,1) process. The correlations are
estimated based on the standardized residuals. Let Rt denote the correlation ma-
trix and Dt the diagonal matrix with conditional standard deviations at time t.

3Bovespa and IPC Mexico.
4Brazil, Russia, India, China and the US are investigated.
5The results regarding 95% VaR forecasts are available upon request.
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The full DCC setup is given by:

yt|=t−1 ∼ N(0, DtRtDt),

D2
t = diag {Ht} , Ht = Vt−1yt,

Hi,i,t = wi + αiy
2
i,t−1 + βiHi,i,t−1,

εt = D−1
t yt,

Rt = diag
{
Q

1/2
t

}
Qtdiag

{
Q

1/2
t

}
,

Qt = Ω + αεt−1ε
′
t−1 + βQt−1,

whereas Ω = (1−α− β)R̄ and α and β are always positive and their sum is less
than one.

In order to analyze a potential benefit of VaR estimation with incorporated
dynamic correlations, we also compared the model with the CCC model6. In con-
tradiction to the setup of the DCC model, which can be seen as a generalisation of
the CCC approach, the CCC model defines each pair of correlations between assets
to be time invariant:

Ht = DtRDt.

Furthermore, the log likelihood is defined:

L = −1
2

∑
t

(n log (2π) + 2 log |Dt|+ y′tD
2
t yt − ε′tεt + log |Rt|+ ε′tR

−1
t εt).

BEKK. Engle and Kroner (1995) introduced the BEKK approach which repre-
sents a parametrization of the multivariate GARCH process and allows for direct
interaction between lagged volatilities of all assets. The conditional covariance of
BEKK(1,1,K) model is given by :

Ht = C‘C +
K∑
k=1

Akεt−1ε‘t−1Ak +
K∑
k=1

G‘kHt−1Gk.

Where C,Ak and Gk are NxN matrices but C is upper triangular and the sum-
mation limit K determines the generality of the process. Due to the proposed
parametrization, the parameters to be estimated reduce to N(5N + 1)/2 for the
applied BEKK(1,1,1).

6Results are available upon request.
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Copula. The copula approach is based on Sklar‘s Theorem (1959):
Let X1, ....Xn be random variables, F1, ..., Fn the corresponding marginal distribu-
tions and H the joint distribution, then there exists a copula C: [0, 1]n → [0, 1] such
that:

H(x1, ...., xn) = C(F1(x1), ...Fn(xn)).

Conversely if C is a copula and F1, ..., Fn are distribution functions, then H (as
defined above) is a joint distribution with margins F1, ...Fn.

The Gaussian and t copula belong to the family of elliptical copulas and are
derived from the multivariate normal and t distribution respectively.

The setup of the Gaussian copula is given by:

CGa(x1, ..., xn) = Φρ(Φ−1(x1), ...,Φ−1(xn)),

=
∫ Φ−1(x1)

−∞
...

∫ Φ−1(xn)

−∞

1

2(π)
n
2 |ρ|

1
2
exp

(
−1

2
zT ρ−1z

)
dz1...dzn

whereas Φρ stands for the multivariate normal distribution with correlation matrix
ρ and Φ−1 symbolizes the inverse of univariate normal distribution.

Along the lines of the Gaussian copula, the t copula is given by:

Ct(x1, ..., xn) = tρ,v(t−1
v (x1), ..., , t−1

v (xn)),

=
∫ t−1(x1)

−∞
...

∫ t−1(xn)

−∞

Γ
(
v+n

2

)
Γ
(
v
2

)
(vπ)

n
2 |ρ|

1
2

(
1 +

1
v
zT ρ−1z

)− v+n2
dz1...dzn,

in this setup tρ,v stands for the multivariate t distribution with correlation matrix
ρ and v degrees of freedom (d.o.f.). t−1

v stands for the inverse of the univariate
t distribution and v influences tail dependency. For v → ∞ the t distribution
approximates a Gaussian.

Due to the fact that estimating parameters for higher order copulas might be
computationally cumbersome, all parameters are estimated in a two step maximum
likelihood method given by Joe and Xu (1996)7. The two steps divide the log
likelihood into one term incorporating all parameters concerning univariate margins
and into one term involving the parameters of the chosen copula.

VaR. VaR is defined as the quantile at level α of the distribution of portfolio
returns:

V aRα = F−1(α) =
∫ V aRα

−∞
f(r)dr = P (r ≤ V aRα).

Given the parametric approach, quantiles are direct functions of the variances
and we can directly translate the quantiles of the estimated portfolio variances into
VaR. Let α be the quantile, VaR at time t is given by: V aRt = −α

√
Ht for both

normal and t distributions.8

7This approach is also known as inference for the margins (IFM).
8E.g. the 99% VaR of PF return yt represents the empirical 1% quantile of the variance.
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In the context of copulas, the estimated VaR at time t + 1 is simply the empiri-
cal quantile of the vector of simulated portfolio returns based on the information
available at time t.

A rolling window approach is applied to forecast the one-day ahead VaR thresh-
olds based on the given dependence. The rolling window size is at 500 observations
for all data sets and 10.000 scenarios are simulated for each day.

Backtesting. In order to evaluate the different forecasting techniques we apply
regulatory Basel II criteria9 as well as statistical backtesting. More concrete, in
addition to the absolute amount of misspecifications, unconditional coverage (UC),
independence (IND) and conditional coverage (CC) are applied. The unconditional
coverage test, proposed by Kupiec (1995) checks if the expected failure rate of a
VaR model is statistically different from its realized failure rate. Therefore Kupiec
proposed the following setup:

LRUC = −2ln[(1− p)T−NpN ] + 2ln[(1− (N/T ))T −N(N/T )N ],

where p stands for the percent left tail level, T for the total days and N for the
number of misspecifications. LRUC follows a χ2(1) distribution. Due to the fact
that the UC method exclusively tests the equality between VaR violations and the
chosen confidence level, Christoffersen (1998) developed a likelihood ratio statistic
to test whether the VaR misspecifications are correlated in time. Let Tij be the
number of observed values i followed by j. Whereas 1 represents a misspecification
and 0 a correct estimation. π represents the probability of observing an excep-
tion and πi the probability of observing an exception conditional on state i. The
likelihood ratio is defined as:

LRIND = −2ln[(1− π)(T00+T01)π(T01+T11)] + 2ln[(1− π0)T00πT01
0 (1− π1)T10πT11

1 ].

Thus, this approach rejects a model that either creates too many or too few
clustered VaR violations.

The CC test combines both test statistics with the following likelihood ratio
statistic:

LRCC = LRUC + LRIND

Each statistic is χ2(1) distributed whereas their sum is distributed as χ2(2).
With 95 % confidence level, the critical value of χ2(1) for UC and IND is 3,84 and
of χ2(2) for CC 5,99 respectively.

3. Data

Four different portfolios are investigated: Two portfolios comprising national
stock indices, one currency portfolio and one portfolio of individual German stocks.

9For 99% VaR forecasts, the Basel II document allows for 4 misspecifications within 250 days.

If a model results in 5-9 misspecifications a penalty multiplicator is used to compensate the lack

of quality. Consequently, more than 10 misspecifications lead to a rejection of the model. The
numbers are simply extrapolated in order to backtest the investigated samples consisting of 1000

observations.
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The examined data of Portfolio I and II are the daily closing prices of five interna-
tional stock indices, that is to say, CAC, DAX, IBEX, MIB and PSI10 and AEX,
DAX, ISEQ, MIB and Nikkei11 respectively. Portfolio III contains five German
stocks listed in the DAX: BASF, Daimler, Deutsche Bank, EON and Lufthansa
(each asset represents another business sector). Portfolio IV includes foreign ex-
change rates and consists of CHF, CZK, GBP, NOK and USD12, whereas all cur-
rencies are denominated against the EURO.

Data on all portfolios cover the 1500 day period from the beginning of 2004 until
the end 2009. Using a rolling window of 500 observations leads to a set of 1000
successive daily (one step) VaR forecasts for every portfolio in the crisis period. For
illustration purposes, we also present Portfolio I in the pre-crisis period covering
2001 - 2005 (1000 observations)13.

4. Results

In times of financial crises, applying heavy-tailed return distributions for VaR-
estimation can be assumed to lead to more reliable results than, say, normally
distributed return models. We corroborate this assumption by a preliminary anal-
ysis of the portfolios in the ”previous” sample covering the calm period 2001 to
2005.

VaR Distribution Model Basel LRCC

VaR 99% Normal DCC 12 0,39
VaR 99% Normal BEKK 10 2,97
VaR 99% Normal G-Cop 13 0,83
VaR 99% Normal t-Cop 12 0,39

VaR 99% t dist DCC 2 9,65
VaR 99% t dist BEKK 1 13,40
VaR 99% t dist G-Cop 2 9,65
VaR 99% t dist t-Cop 2 9,65

VaR 99% EVT G-Cop 7 5,39
VaR 99% EVT t-Cop 6 6,89

Table 1. Backtesting: PF I 2001-2005 (1000 observations).

Table 1 reports the backtesting results of the 99% VaR estimates for PF I
in calm market times with the assumption of normally, t(5) and GPD distributed
returns. For sake of clarity, simply the absolute amount of misspecifications (Basel)
and the statistics of conditional coverage (LRCC)14 are presented.

10CAC = France, DAX = Germany, IBEX = Spain, MIB = Italy and PSI = Portugal.
11AEX = Netherlands, DAX = Germany, ISEQ = Ireland, MIB = Italy and Nikkei = Japan.
12CHF = Swiss franc, CZK = Czech koruna, GBP = Pound sterling, NOK = Norwegian krone

and USD = US dollar.
13Results for Porfolios II, III and IV covering 2001-2005 are available upon request
14The conditional coverage includes the unconditional coverage and independence teststatistic
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Given the forecasting range from 2001 to 2005, 99% VaR estimates with the
assumption of normally distributed returns outperform the VaR estimates with t(5)
distributed returns. GPD distributed returns do also lead to an adequate number
of absolute misspecification whereas the test statistics, caused by two clustered
misspecifications, are close to be rejected.

With focus on the dependence structure, we find that the differences between the
variable and invariant approaches are marginal regarding the total number of VaR
misspecifications and consequently do not differ in terms of Basel II backtesting.
Basically DCC, BEKK and copulas show similar results concerning CC statistics.
However, the assumption of normally distributed returns seems to be adequate for
the analyzed portfolio for the given calm period throughout all models.

The time from 2005-2009 represents the balance point of our investigation, since
it is characterized by a higher return volatility than the time from 2001-2005.

Figure 1. PF I: Estimated GARCH volatility (2005-2009).

Figure 1 plots the estimated GARCH variance for the five indices included in
the analysed portfolio I 15. The graphs show that the volatility of the portfolio
returns significantly increased after 15th September 2008.

VaR Distribution Model Basel LRCC

VaR 99% Normal DCC 25 16,24
VaR 99% Normal BEKK 25 16,24
VaR 99% Normal G-Cop 24 14,49
VaR 99% Normal t-Cop 24 14,49

VaR 99% t dist DCC 5 3,09
VaR 99% t dist BEKK 4 4,72
VaR 99% t dist G-Cop 5 3,09
VaR 99% t dist t-Cop 4 4,72

VaR 99% EVT G-Cop 14 1,44
VaR 99% EVT t-Cop 14 1,44

Table 2. Backtesting: PF I 2005-2009 (1000 observations).

15Graphs for PF II, III and IV can be found in the Appendix.
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Table 2 reports the backtesting results of the 99% VaR estimations for PF I
in the time from 2005-2009. Unlike the results for 2001-2005, the VaR estima-
tors for the subsample covering financial turmoil, based on the assumption of t(5)
distributed returns outperform the forecasts based on normal distribution. In the
period from 2005-2009, which is characterized by higher return volatility than in
the period from 2001-2005, all VaR estimators based on the normal distribution
fail the statistical backtesting criteria due to too many VaR violations.

On account of the fatter tails of the t distribution, the VaR estimations result
in less misspecifications. Moreover, total amounts of misspecifications are in line
with the Basel II backtesting criteria. In addition to the comparison of elliptical
distributions, copulas in combination with GPD distributed returns do also pass
the applied backtesting criteria. The different dependence structures, however, do
not contribute to better VaR forecasts.

The same result for the time of 2005-2009 is observed for portfolio II (See Table
3 ). The t and EVT distribution outperform the normal distribution. Due to its
fatter tails the t distribution results in less VaR misspecifications and hence in more
consistent backtesting results.

VaR Distribution Model Basel LRCC

VaR 99% Normal DCC 23 12,84
VaR 99% Normal BEKK 25 16,24
VaR 99% Normal G-Cop 27 20,03
VaR 99% Normal t-Cop 23 12,84

VaR 99% t dist DCC 4 4,71
VaR 99% t dist BEKK 3 6,83
VaR 99% t dist G-Cop 6 1,87
VaR 99% t dist t-Cop 5 8,93

VaR 99% EVT G-Cop 13 0,83
VaR 99% EVT t-Cop 11 0,09

Table 3. Backtesting: PF II 2005-2009 (1000 observations).

The total number of VaR misspecifications differs vaguely between variable and
invariant dependencies. All VaR estimates based on the normal distribution get
rejected by CC for all scrutinies. In contrast to Gaussian copula and DCC, the
BEKK and t-copula based on elliptical t distribution fail the CC backtesting for the
99% VaR forecasts. Anyhow, the absolute amount of misspecifications differs only
slightly and therefore seems to be of less importance regarding Basel II backtesting.

Table 4 gives the VaR backtesting results regarding stocks, namely PF III.
Simply comparing the absolute amount of VaR misspecifications, forecasts based
on the assumption of GPD show the smallest deviations from the expected amount
of misspecifications. This is also indicated by the applied teststatistics. The Gauss-
ian distribution delivers too many VaR misspecifications whereas, however, the t
distribution leads to too conservative estimators for all dependency models. De-
spite of the BEKK model, which results in slightly different misspecifications, all
other models are accepted by statistical backtesting. In contrast to the results re-
garding PF I and PF II, there is no distribution which categorically outperforms
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VaR Distribution Model Basel LRCC

VaR 99% Normal DCC 18 4,49
VaR 99% Normal BEKK 20 8,64
VaR 99% Normal G-Cop 18 5,22
VaR 99% Normal t-Cop 17 4,09

VaR 99% t dist DCC 4 4,71
VaR 99% t dist BEKK 3 6,83
VaR 99% t dist G-Cop 4 4,71
VaR 99% t dist t-Cop 4 4,71

VaR 99% EVT G-Cop 14 1,44
VaR 99% EVT t-Cop 12 0,38

Table 4. Backtesting: PF III 2005-2009 (1000 observations).

the other one in terms of statistical backtesting results. From a Basel II perspec-
tive, the normal distribution does not breach the maximum amount of allowed VaR
violations but results in a compensation via penalty multiplicator and is therefore
outperformed by the t distribution.

Table 5 shows the results of portfolio IV. In contradiction to the results of the
other portfolios, the normal distribution outperforms the t distribution in terms
of backtesting quality. As to the portfolio consisting of currencies, the assumption
of t distributed returns results in immoderately conservative VaR estimators and
therefore inadequately less misspecifications. The total amounts of misspecifica-
tions based on assumed normal distributed returns are more than twice as high as
the misspecifications based on t distributed returns and consequently the t distri-
bution gets rejected by CC. Unaffected by the characteristics of FX-rates, the GPD
distribution also passes the backtesting criteria for the 99% VaR. According to the
results of the other portfolios, the total amount of misspecifications based on the
DCC, BEKK and copula approach differs slightly.

VaR Distribution Model Basel LRCC

VaR 99% Normal DCC 12 2,67
VaR 99% Normal BEKK 12 2,67
VaR 99% Normal G-Cop 12 2,67
VaR 99% Normal t-Cop 10 2,97

VaR 99% t dist DCC 2 9,63
VaR 99% t dist BEKK 4 11,55
VaR 99% t dist G-Cop 3 6,83
VaR 99% t dist t-Cop 1 13,48

VaR 99% EVT G-Cop 11 0,09
VaR 99% EVT t-Cop 10 0,00

Table 5. Backtesting: PF IV 2005-2009 (1000 observations).
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To sum it up, our findings indicate that the incorporation of dynamic condi-
tional correlations and spillover might only be of little help for VaR estimations.
The dynamic correlation coefficients do not outperform the volatility spillover with
respect to the chosen regulatory and statistical VaR backtesting criteria.

Moreover, based on elliptical distributions and within the given VaR backtest-
ing setup, the variable and invariant approach appear to perform in the same way.
Within the investigated subsamples the total amount of VaR misspecifications stem-
ming from either BEKK or DCC are equal or faintly different than the number of
misspecifications stemming from elliptical copulas. However, the differences are
marginal and the bilateral rejection rate based on both the regulatory and statisti-
cal backtesting is similar.

Due to this result, it gives the impression that the adequate choice of univariate
margins is more crucial for estimating VaR than the incorporation of dynamic
conditional correlations or volatility spillover. This result is underlined by the
backtesting performance of GPD margins.

Even though, the invariant approach based on elliptical margins does not outper-
form dynamic conditional correlations and spillover, the facility for using elliptical
copulas with univariate extreme value distributions leads to a setup which outper-
forms DCC and BEKK models, since it results in an adequate 99% VaR performance
throughout all asset classes in turmoil market times .

5. Conclusion

We illustrate that both variable and invariant dependency structures lead to accept-
able VaR results for higher dimensional portfolios. Consequently, copulas represent
an interesting alternative to the explicit parametric modeling of the dynamics of
conditional correlations and volatility spillover in the context of financial risk mea-
surement.

As to the estimation of VaR in volatile market times, we come to the result that
assumptions concerning the distribution of returns prove to be crucial. VaR fore-
casts based on EVT distributions outperformed normal and t distributed returns
since only this approach exclusively leads to adequate VaR estimates throughout
all analysed asset classes (German stocks, market indices and FX-rates).

Regarding the modeling of invariant interdependencies, our results contradict
the findings of Huang et al. (2009), as the backtesting performance of conditional
Gaussian and t copulas based on t-GARCH tends to result in a similar amount
of VaR misspecifications. Whereas the results related to variable dependence of
Hakim et al. (2007) can be confirmed, the usage of DCC and also BEKK model
seems to be of limited use for VaR estimations.

The current findings add substantially to our understanding of modeling VaR
for multivariate portfolios. As a conclusion, the choice of the univariate margin has
stronger impact on the quality of VaR forecasts than the choice of dependence struc-
ture modeled by dynamic conditional correlations, volatility spillover or elliptical
copulas.
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Figure 2. PF II: Estimated GARCH volatility (2005-2009).

Figure 3. PF III: Estimated GARCH volatility (2005-2009).

Figure 4. PF IV: Estimated GARCH volatility (2005-2009).


