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1 Introduction

A number of recent papers have analyzed dynamic portfolio strategies taking into

account stochastic interest rates1 and time-varying bond risk premia.2 The consensus

is that both features are quantitatively important for investors. For an unconstrained

investor, Sangvinatsos and Wachter (2005) find large utility losses associated with portfolio

strategies that ignore time-variation in bond risk premia. For a life-cycle investor facing

borrowing, short-sales, and liquidity constraints, Koijen, Nijman, and Werker (2010) find

lower, but still significant, utility losses from ignoring time-variation in bond risk premia.

Other papers find significant utility losses from portfolio strategies that ignore the multi-

factor nature of term structure dynamics (see e.g. Larsen and Munk (2012)). Hence, it

appears that investors should base their bond portfolio strategies on advanced models of

the term structure of interest rates.

The studies cited above ignore estimation risk by assuming that the data generating

process is known with certainty, both in terms of model and model parameters. However,

model parameters are not known with certainty, and parameter uncertainty increases

with the number of term structure factors and with the complexity of the risk premium

specification as shown by Duffee (2002). Therefore, even if the investor has identified the

true data generating model he will suffer a utility loss if he applies the seemingly optimal

portfolio strategy using his parameter estimate instead of the true, unknown parameter

set. Moreover, it is possible that by basing his portfolio choice on a more parsimonious

– but misspecified – model with less parameter uncertainty, the investor suffer a smaller

utility loss. It is this trade-off between advanced models subject to a significant amount

of parameter uncertainty and more robust models subject to less parameter uncertainty

that we analyze in this paper.

More specifically, we assume that the true data generating model is well approximated

by a three-factor Gaussian term structure model where bond risk premia are affine in the

factors. This model has been shown by Dai and Singleton (2002) and Duffee (2002) to

outperform other models in terms of capturing the predictability in bond returns. The

same data generating model is assumed by Sangvinatsos and Wachter (2005), whereas

1See, e.g., Sørensen (1999), Brennan and Xia (2000), Campbell and Viceira (2001), Wachter (2003),

and Munk and Sørensen (2004).

2See, e.g., Sangvinatsos and Wachter (2005) and Koijen, Nijman, and Werker (2010).
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Koijen, Nijman, and Werker (2010) assume a two-factor version of the model. We then

consider reducing the complexity of the model along two dimensions: we reduce the number

of factors from three to one and we reduce the risk premium specification from being affine

in the factors to being constant. This leads to three increasingly parsimonious models: a

three-factor model with constant bond risk premia and two one-factor models in which

bond risk premia are affine and constant, respectively.

For concreteness and tractability, we follow the standard in the portfolio choice litera-

ture by assuming that the investor has CRRA utility over terminal wealth. In each of the

four term structure models we obtain semi-analytical expressions for the dynamic portfolio

strategy which is optimal in the absence of model and estimation risk. We assume that

the investor ignores parameter and model uncertainty and follows the portfolio strategy

associated with the model which the investors thinks is correct, and the investor does so

using his point estimates of the parameters of that model. We make this assumption for

two reasons. First, it is the typical assumption in the dynamic portfolio choice literature,

and we want to investigate the extent to which existing results hold up in the presence

of parameter uncertainty. Second, in a dynamic setting it is very complicated to incorpo-

rate parameter and model uncertainty into the decision making, except in very stylized

settings.3

All four models are estimated by Markov Chain Monte Carlo (MCMC) on a panel data

set of U.S. Treasury yields with daily observations over the period 1971-2006.4 MCMC is

convenient as it provides the posterior distribution of model parameters given the data.

This is used for evaluating the robustness of the portfolio strategies implied by the different

models and for quantifying the utility losses due to parameter uncertainty.

Consistent with virtually all empirical studies of dynamic term structure models (see,

e.g. Dai and Singleton (2002) and Duffee (2002)), we find that market price of risk param-

eters are imprecisely estimated; confidence intervals are wide and often parameters are not

statistically significant. As expected, we find the widest confidence intervals in case of the

3A few papers studies dynamic portfolio choice with parameter uncertainty (see, e.g., Brennan (1998),

Barberis (2000), and Xia (2001)) and model uncertainty (see, e.g., Maenhout (2004, 2006)) but the

tractability in those papers is predicated upon assuming very simple data-generating models.

4We are not the first to use MCMC to estimate term structure models, see e.g. Sarno, Schneider, and

Wagner (2011), Feldhütter (2008), Kaminska, Vayanos, and Zinna (2011), and Ang, Dong, and Piazzesi

(2007).
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most complex models. Since the portfolio allocations are sensitive to market price of risk

parameters, it follows that the allocations are associated with wide confidence intervals as

well. Often it is not even clear whether the investor should take a short or a long position

in a given bond. Again, allocations for the most complex models are associated with the

widest confidence intervals. This suggests that it may be profitable to follow the more

robust portfolio strategies implied by more parsimonious models.

To investigate this issue we take a Bayesian approach. For a suboptimal portfolio

strategy, we can compute the utility loss analytically, conditional on knowing the param-

eters of the data generating model (the three-factor model with affine bond risk premia).

However, the parameters of this model are uncertain. To obtain the expected utility loss

taking parameter uncertainty into account, we integrate the loss over the posterior dis-

tribution of the parameters. A similar approach is used in a very different setting by

Korteweg and Polson (2009) who analyze the effect of parameter uncertainty on corporate

credit spreads.

We find that parameter uncertainty leads to significant utility losses and that these

losses increase with the complexity of the model. In fact, long-term investors with mod-

erate to high risk aversion are often better off basing their portfolio decisions on more

parsimonious models, since utility losses for these models due to both parameter uncer-

tainty and model misspecification tend to be lower than utility losses for the true data

generating model solely due to parameter uncertainty. For instance, assuming a relative

risk aversion of 5 and an investment horizon of 5 years – rather typical values – and ab-

stracting from parameter uncertainty, an investor using a three-factor (one-factor) model

with constant risk premia will suffer a utility loss of 50 (49) percent – consistent with

findings in the papers cited above that suboptimal investment strategies carry large costs.

However, this conclusion no longer holds true once parameter uncertainty is taken into ac-

count. In this case an investor using the correct three-factor model with affine risk premia

will suffer an average utility loss of 61 percent, whereas an investor using a three-factor

(one-factor) model with constant risk premia will suffer an average utility loss of 59 (51)

percent. Hence, the suboptimal investment strategy based on the one-factor model with

constant risk premia in fact carries a 20% lower utility loss compared to the investment

strategy based on the true model. For a higher level of risk aversion or a longer investment

horizon the difference in the average utility loss becomes even bigger. For example, for
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a risk aversion of 10 and an investment horizon of 5 years an investor using the correct

model will suffer an average utility loss of 66%, whereas an investor basing his investment

strategy on the most parsimonious – and misspecified – model only suffers a loss of 34%,

a loss reduction of approximately 48%.

Our paper differs from other papers in the literature investigating the impact of model

and parameter uncertainty on portfolio strategies. To the best of our knowledge, our

paper is the first to analyze the quantitative effect of parameter uncertainty in portfolio

strategies, i.e. how much do the investor actually suffers due to estimation risk. Further-

more, this paper investigates the impact of parameter uncertainty in portfolios of bonds,

whereas earlier papers mainly focus on stock portfolios. Klein and Bawa (1976) is one of

the first papers to study the effect of estimation risk on optimal portfolio strategies. They

incorporate estimation risk directly into the decision process of the investor and determine

its effects on optimal portfolio choice under uncertainty. Barry and Brown (1985) pro-

pose a simple model of equilibrium asset pricing in a setting with parameter uncertainty.

Barberis (2000) incorporate parameter uncertainty in a setting with predictability in asset

returns. He shows, in line with other papers incorporating model and parameter uncer-

tainty, that investors should take less extreme positions in the risky assets if the model

parameters are associated with uncertainty.5 All of these papers take the estimation risk

into account in their portfolio decision, whereas our paper look at the consequences of

an investor who ignores parameter uncertainty and simply follows the optimal investment

strategy determined by theory.

The remainder of the paper is organized in the following way. Section 2 sets up the

modeling framework, and specifies the investment strategies. Section 3 discusses the data

and the estimation procedure. Section 4 contains the results. Section 5 summarizes and

concludes.

2 The general setup

We consider an arbitrage-free economy over the time interval [0, T ] where trading

takes place continuously in time. We assume that the true data generating process is well

5See also Brennan (1998), Xia (2001), Maenhout (2004, 2006), and Johannes, Korteweg, and Polson

(2011).
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approximated by a three-factor Gaussian term structure model where bond risk premia

are affine in the factors. This model has been shown by Dai and Singleton (2002) and

Duffee (2002) to outperform other models in terms of capturing the predictability in bond

returns.

We want to analyze the effect of reducing the complexity of the model along two

dimensions. That is, reducing the number of factors from three to one, and reducing the

risk premium specification from being affine in the factors to be being constant. This leads

to three increasingly parsimonious models that also need to be specified: a three-factor

model with constant bond risk premia, and two one-factor models where bond risk premia

are affine and constant, respectively. The true model as well as the three increasingly

parsimoniously models are all nested by the following m-factor Gaussian term structure

model where bond risk premia are affine in the factors. Let rt denote the instantaneous

real risk-free rate and assume that

rt = δ0 + δ′XXt, (1)

where δ0 is a constant, δX is an m× 1 vector, and Xt = (X1t, X2t, . . . , Xmt)
′ is an m× 1

vector of state variables that follows the process

dXt = κ (θ −Xt) dt+ σX dzt (2)

under the physical measure P, where z = (zt)t∈[0,T ] is a standard m-dimensional standard

Brownian motion. The m ×m constant matrix σX is assumed invertible and determines

the variance-covariance matrix of the state variables over the next instant, σXσ
′
X , κ is an

invertible m×m matrix, and θ is an m× 1 vector. Furthermore, the market price of risk

associated with the shock process z is assumed to be linear in X, i.e.

λt = λ0 + λXXt, (3)

where λ0 is an m× 1 vector and λX is an invertible m×m matrix. For the models with

a constant bond risk premia λX is set equal to zero. For later use, we need the dynamics

of the state variables under the risk-neutral probability measure Q

dXt = κ̃
(
θ̃ −Xt

)
dt+ σX dz

Q
t , (4)

where z = (zQt )t∈[0,T ] is a standard Brownian motion under Q with dzQt = dzt + λtdt.

Furthermore, κ̃ = κ+ σXλX and θ̃ = κ̃−1 (κθ − σXλ0).
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The investor can invest in an instantaneously risk-free asset, interpreted as short-term

cash deposits, which yields the continuously compounded rate of return rt. Besides the

risk-free asset the investor can invest in n <∞ zero-coupon bonds. As shown by Duffie and

Kan (1996) the price of a zero-coupon bond maturing at T takes the form P Tt = P T (t,Xt)

where

P T (t,X) = exp
{
−A(T − t)−B(T − t)′X

}
,

and A : [0, T ] → R, B : [0, T ] → Rm are solutions to the system of ordinary differential

equations:

∂B(τ)

∂τ
= δX − κ̃′B(τ) (5)

∂A(τ)

∂τ
= B(τ)′κ̃ θ̃ − 1

2
B(τ)′ σX σ

′
X B(τ)′ + δ0, (6)

These equations can easily be solved with the boundary conditions A(0) = B(0) = 0. The

dynamics of the zero-coupon bond price with maturity T follows from Ito’s lemma:

dP Tt
P Tt

=
(
rt −B(T − t)′σXλt

)
dt−B(T − t)′σXdzt. (7)

2.1 The investor

The investor chooses an investment strategy, which we represent by the n-dimensional

continuous-time process π = (πt), where πt = (π1t, π2t, . . . , πnt)
′ is the vector of fractions

of wealth (”portfolio weights”) invested in the different zero-coupon bonds at time t. The

remaining fraction of wealth 1− π′t1 is invested in the instantaneously risk-free asset. We

ignore intermediate consumption and income other than financial returns. Hence given a

positive initial wealth W and an investment strategy π the investor’s wealth will satisfy

the self-financing condition

dWt = Wt

[
rt − π′tB(τ̃)′σXλt

]
dt−Wtπ

′
tB(τ̃)′σX dzt, (8)

where B(τ̃) is an m× n matrix with the i’th column representing the B-vector associated

with the i’th zero-coupon bond, i.e.

B(τ̃) = (B(T1 − t), B(T2 − t), . . . , B(Tn − t)) .

We assume that the investor is concerned with maximizing expected utility of wealth at

some future date T and that the utility function is of the CRRA type. We further assume
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that the investor acts as if he knows model parameters and the state vector. Then, the

indirect utility is given as

J(W,X, t) = sup
(πs)s∈[t,T ]

 EW,X,t
[

1
1−γ W

1−γ
T

]
, γ > 1,

EW,X,t [lnWT ] , γ = 1,
(9)

where EW,X,t denotes the expectation operator given Wt = W and Xt = X under the

physical measure P, and γ is the constant relative risk aversion parameter.6 The optimal

investment strategy π∗ is the one satisfying (9). It is well known that the optimal invest-

ment strategy for a CRRA investor will be independent of his wealth level. Hence, we will

focus on strategies of the form πt = π(Xt, t).

2.2 The optimal investment strategy

Sangvinatsos and Wachter (2005) derive a semi-analytical expression for the optimal

portfolio strategy and the associated expected utility.7 This involves trading in n = m

bonds. For completeness, we state the result here:

Proposition 1 The expected utility generated by the optimal investment strategy π∗ is

J(W,X, t) =


1

1−γ

(
W eF (T−t)+H(T−t)′X+ 1

2
X′G(T−t)X

)1−γ
, γ > 1,

lnW + F (T − t) +H(T − t)′X + 1
2X
′G(T − t)X, γ = 1,

(10)

where F (τ), H(τ), and G(τ) solve a system of ordinary differential equations given in

Appendix A. The optimal strategy is

π∗(X, t) = −1

γ

(
σ′XB(τ̃)

)−1
(λ0 + λXX)

+
γ − 1

γ

(
σ′XB(τ̃)

)−1
σ′X

(
H(τ) +

1

2

(
G(τ) +G(τ)′

)
X

)
.

(11)

The optimal investment strategy is composed of two portfolios: a speculative portfolio

(the first term in (11)) and a hedge portfolio (the second term in (11)). The hedge portfolio

describes how the investor should optimally hedge against the changes in the investment

opportunity set as a result of stochastic variation in the short rate and the market prices

6We assume γ ≥ 1 to avoid problems with infinite expected utility that may arise for 0 < γ < 1, cf.

Kim and Omberg (1996) and Korn and Kraft (2004).

7Sangvinatsos and Wachter (2005) also consider inflation uncertainty, a dimension that we abstract

from here.
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of risk. The hedge portfolio consists of two components – the first is due to the stochastic

variation in the short rate, while the second is due to the stochastic variation in the market

price of risk vector. If market prices of risk are constant – that is, λX = 0 – then G = 0 and

the second term in the hedge portfolio disappear. A further discussion of the investment

strategy is given in Sangvinatsos and Wachter (2005).

2.3 Suboptimal investment strategies

The true data generating model is assumed to be well approximated by the three-factor

essentially affine model stated above with m = 3. However, the model parameters describ-

ing the model are not known with certainty. Hence, even if the investor has identified the

true data generating model he might follow a suboptimal investment strategy, due to the

fact that he bases his strategy on the wrong set of parameters. It might even be the case

that an investment strategy based on a more parsimonious – but misspecified – model

with less parameter uncertainty, outperforms the strategy based on the true model due to

parameter uncertainty.

It is this trade-off between basing the investment strategy on advanced models subject

to a significant amount of parameter uncertainty or more robust models subject to less

parameter uncertainty that we want to analyze. In particular, we will consider the follow-

ing four investment strategies: (i) an investment strategy based on the true three-factor

essentially affine model with affine bond risk premia, (ii) an investment strategy based on

a three-factor completely affine model with constant bond risk premia, (iii) an investment

strategy based on a one-factor essentially affine model with affine bond risk premia, and

(iv) an investment strategy based on a one-factor completely affine model with constant

bond risk premia. All four investment strategies can be nested by the investment strategy

stated in Proposition 1, that is

π(X, t) = −1

γ

(
σ̂′X B̂(τ̃)

)−1 (
λ̂0 + λ̂XX

)
− 1− γ

γ

(
σ̂′X B̂(τ̃)

)−1
σ̂′X

(
Ĥ(τ) +

1

2

(
Ĝ(τ) + Ĝ(τ)′

)
X

)
.

(12)

It is very important to clarify that each of the four investment strategies are based on a

given set of parameter estimates. In particular, the hat ( )̂ on the parameters indicates

that not the true set of parameters is used. Furthermore, the functions Ĝ and Ĥ which

solve the system of ODEs given in Proposition 1 is determined under the assumption of
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one of the four investment strategies and the given set of parameter estimates. We can

evaluate these strategies according to the following proposition. A sketch of the proof can

be found in Appendix A.

Proposition 2 Assuming model (1)-(3) the expected utility generated by the investment

strategy stated in (12) is given by

Ĵ(W,X, t) =


1

1−γ

(
W eC1(T−t)+C2(T−t)′X+ 1

2
X′C3(T−t)X

)1−γ
, γ > 1,

lnW + C1(T − t) + C2(T − t)′X + 1
2X
′C3(T − t)X, γ = 1,

(13)

where the deterministic functions C1(τ), C2(τ), and C3(τ) solve a system of ordinary

differential equations given in Appendix A.2.

By definition, with the same initial wealth, a suboptimal investment strategy will

generate a lower level of expected utility than the optimal investment strategy. We define

the loss from following the suboptimal strategy as the fraction of initial wealth that the

investor would be willing to give up to be able to invest according to the optimal strategy

instead of the suboptimal strategy. We refer to this loss as the utility loss associated with

the suboptimal investment strategy and denote it by L. By definition it solves

Ĵ(W,X, t) = J(W (1− L), X, t), (14)

and straightforward calculations using (10) and (28) show that

L ≡ L(X, τ) = 1− eC1(τ)−F (τ)+(C2(τ)−H(τ))′X+ 1
2
X′(C3(τ)−G(τ))X (15)

for γ > 1. The same formula holds for γ = 1, i.e. (15) holds for all values of γ ≥ 1.

3 Estimation

To compare the four different suboptimal investment strategies we need to estimate all

four models. First, we need to estimate the true data generating model, that is a three-

factor Gaussian term structure model in which bond risk premia are affine in the factors.

This model has been shown by Dai and Singleton (2002) and Duffee (2002) to outperform

other models in terms of capturing the predictability in bond returns. Second, we need

to estimate the three increasingly parsimonious models: the three-factor Gaussian model

with constant bond risk premia, and the two one-factor models in which bond risk premia
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are affine and constant, respectively. To make a fair comparison of the models we estimate

all four models by the same estimation method and on the same data set.

3.1 Estimation procedure

To avoid overidentification we apply the parametrization of Dai and Singleton (2000)

and assume that

θ̃ = κ̃−1 (κθ − σXλ0) = 0,

where σX equals the (m × m)-identity matrix, and κ̃ = κ + σXλX is a (m × m)-lower

triangular matrix. For the completely affine models we put λX = 0. We adopt a Bayesian

approach and estimate the models by Markov Chain Monte Carlo (MCMC) as proposed

by Eraker (2001)8. The use of MCMC is chosen for two reasons. First, we are able to

simultaneously estimate parameters and latent variables given the observed data. Second,

MCMC allows us to quantify the uncertainty present in estimating parameters or state

variables. An investor’s optimal portfolio choice can be very sensitive to the parameters

being used, and the use of MCMC enables us to quantify this risk.

At time t = 1, ..., T we observe k yields which are stacked in a k-vector

Yt = (Y (t, τ1), ..., Y (t, τk))
′.

The yields are all observed with a measurement error

Yt = A+BXt + εt

where A is a k-vector and B is a k ×m matrix. We assume that the measurement errors

are independent and normally distributed with zero mean and common variance such that

εt ∼ N(0, D), D = ϕ2Ik,

where Ik denote the k × k identity matrix. To simplify the notation in the following, we

denote

ΘQ = (κ̃, δ0, δX) , ΘP = (λ0, λX) ,

8For a general introduction to MCMC, see Robert and Casella (2004) and for a survey of MCMC

methods in financial econometrics see Johannes and Polson (2006).
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and Θ = (ΘQ,ΘP , D).

We are interested in samples from the target distribution p (Θ, X |Y ). The Hammersley-

Clifford Theorem (Hammersley and Clifford, 1970, and Besag, 1974) implies that samples

are obtained from the target distribution by sampling from a number of conditional distri-

butions. Effectively, MCMC solves the problem of simulating from a complicated target

distribution by simulating from simpler conditional distributions. If one samples directly

from a full conditional distribution, the resulting algorithm is the Gibbs sampler (Geman

and Geman, 1984). If it is not possible to sample directly from the full conditional distribu-

tion, one can sample by using the Metropolis-Hastings algorithm (Metropolis et al., 1953).

We use a hybrid MCMC algorithm that combines the Gibbs sampler and the Metropolis-

Hastings algorithm since not all the conditional distributions are known. Specifically, the

MCMC algorithm is given by9

p(ΘQ|ΘP , D,X, Y ) ∼ Metropolis-Hastings

p(λ0|Θ\λ0 , X, Y ) ∼ Normal

p(λX |Θ\λX , X, Y ) ∼ Normal

p(D|Θ\D, X, Y ) ∼ Inverse Wishart

p(X|Θ, Y ) ∼ Metropolis-Hastings

Details in the derivations of the conditionals and proposal distributions in the Metropolis-

Hastings steps are given in Appendix B.1. Both the parameters and the latent processes

are subject to constraints, and if a draw is violating a constraint it can simply be discarded

(Gelfand et al., 1992).

3.2 Data

We use daily (continuously compounded) 1, 2, 3, 5, 7, and 10-year zero-coupon yields

extracted from prices on off-the-run US Treasury securities for the period from August 16,

1971 to August 21, 2006.10 Figure 1 displays the data.

9Here Θ\a denotes the parameter vector excluding the parameter a.

10Off-the-run securities are defined as securities that are not among the two most recently issued securities

with maturities of two, three, four, five, seven, and ten years. The data set is discussed in detail in

Gürkaynak et al. (2006) and is posted on the website http://www.federalreserve.gov/pubs/feds/2006.
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[Figure 1 about here.]

3.3 Parameter estimates

In estimating each model we use an algorithm calibration period of 3 million draws, a

burn-in period of 5 million draws and an estimation period of 5 million draws. We keep

every 5,000’th draw in the estimation period, which leaves 1,000 draws. For each of the

four models we find our benchmark estimates among the 1,000 draws as follows. Following

Collin-Dufresne et al. (2008), let φi denote the ith parameter draw and let φ̃i denote the

same vector normalized by the posterior standard deviations. The benchmark estimate is

the draw i minimizing:

∑
j

∣∣∣φ̃j − φ̃i∣∣∣ .
This version of the multivariate posterior median ensures that parameter restrictions are

satisfied for our parameter estimates, which might not be the case if the point estimates

are based on univariate medians. For each parameter, we report the benchmark estimate

along with a univariate confidence band based on the 2.5% and the 97.5% percentile of

the 1,000 MCMC draws of the posterior distribution.

Tables 1, 2, and 3 display parameter estimates along with their confidence intervals for

the four models considered in the paper. It is interesting to note that the market price of

risk parameters are generally very imprecisely estimated; the confidence intervals are wide

and many of the parameters are not statistically significant. The next section explores the

implications for portfolio choice.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

4 Results

The MCMC estimation technique allows us to quantify the uncertainty inherent in

estimating parameters and state variables. This implies that we can also quantify the

12



uncertainty in the portfolio weights induced by the uncertainty in the parameter estimates.

Given the empirical evidence, the three-factor essentially affine model is the model we refer

to as our true model. Hence we assume that we know the true model, but we do not know

the true set of parameter estimates. Each draw from the posterior distribution of the

three-factor essentially affine model is a guess of the true parameters.

We consider four different types of investors. The first investor knows the true model

and hence bases his investment strategy on that. However, he does not know the true set of

parameter estimates but uses the best set of estimates he has – that is the posterior median

parameters given in Table 1. The second investor has the number of factors describing

the economy right, but misses the fact that the bond risk premia are linear in the state

variable. That is, he bases his investment strategy on the three-factor completely affine

model and uses the posterior median parameters given in Table 2. The third investor

knows that the bond risk premia are linear in the state variables, but misses the right

number of factors describing the economy. That is, he bases his investment strategy on

the one-factor essentially affine model and uses the posterior median parameters given

in Panel A in Table 3. Finally, the fourth investor both misses the number of factors

describing the economy as well as the linearity of bond risk premia. That is, he bases

his investment strategy on the one-factor completely affine model with the parameter

estimates given in Panel B in Table 3.

We assume that the investor at every point in time has access to trade in a 1-year,

5-year, and 10-year zero-coupon bond as well as the risk-free asset. The investors who

believe that one factor only is needed to describe the economy will trade in one of the three

bonds. If the economy truly was described by a single state variable, the expected utility

from following the investment strategy would be independent of the time-to-maturity of

the bond. However, in this setting the true model of the world is a three-factor model. In

a different setup Brennan and Xia (2002) show that if an investor is allowed to trade only

one bond, the optimal maturity of that bond depends on the investor’s investment horizon.

Hence the loss an investor suffers from following a one-factor strategy may depend on the

time-to-maturity of the bond. We will investigate this later on but for now, we assume

that the investors who follow a one-factor strategy invests in a 5-year-to-maturity bond

as well as the risk-free asset.
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4.1 Investment strategies

The investor who bases his investments on the true model, the essentially affine three-

factor model, follows the strategy given in (11) with m = 3, i.e.

π(X, t) = −1

γ

(
σ̂′X B̂(τ̃)

)−1 (
λ̂0 + λ̂XX

)
− 1− γ

γ

(
σ̂′X B̂(τ̃)

)−1
σ̂′X

(
Ĥ(τ) +

1

2

(
Ĝ(τ) + Ĝ(τ)′

)
X

)
.

(16)

The investor uses the benchmark estimates given in Table 1. Table 4 displays the portfolio

weights for four different investment horizons and the associated 95% confidence intervals

calculated by the use of each of the draws from the posterior distribution of the parameter

estimates. Panel A shows the portfolio weights for an investor with a risk aversion of

γ = 5, while Panel B shows the weight for an investor with a risk aversion of γ = 10.

The highly leveraged portfolio weights are due to the high correlations among the three

bonds. Similar results are shown in Sangvinatsos and Wachter (2005). In both panels we

see quite extreme confidence intervals. A big part of the weights are not even statistically

significant. In both panels we see that the longer the investment horizon is, the wider

the intervals will be. The size of the confidence interval can be seen as the sum of the

confidence interval for the speculative portfolio and the hedge portfolio. The confidence

interval for the speculative portfolio equals the interval we have for T = 0. For T > 0 the

investor also invests in the hedge portfolio, which implies that the size of the confidence

interval gets wider. The same story goes for the investor’s risk aversion. We see that

the confidence intervals are slightly narrower for the more risk averse investor. A more

risk averse investor takes a lower position in the speculative portfolio, which reduces the

size of the confidence interval. Even though the size of the confidence intervals is slightly

narrower for γ = 10, we still see intervals running from -11.4 to 1.4 in Panel B.

[Table 4 about here.]

The three-factor completely affine model is given in (1)-(3) with λX = 0 and m = 3.

An investor basing his investment strategy on this model will follow the strategy in (11)

with G(τ) = λX = 0, i.e.

π(X, t) = −1

γ

(
σ̂′X B̂(τ̃)

)−1
λ̂0 −

1− γ
γ

(
σ̂′X B̂(τ̃)

)−1
σ̂′XĤ(τ), (17)
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The investor uses the parameter estimates given in Table 2. Table 5 shows the optimal

portfolio weight for different horizons and the associated 95% confidence intervals calcu-

lated by the use of each of the draws from the posterior distribution of the parameter

estimates of the three-factor completely affine model. Panel A shows the portfolio weights

for an investor with a risk aversion of γ = 5, while Panel B shows the weights for an

investor with a risk aversion of γ = 10. Again we get highly leveraged portfolio weights

due to the high correlations among the three bonds. Comparing the portfolio weights

and confidence intervals with the corresponding optimal portfolio weights and confidence

intervals in Table 4 we see the following: The difference in the portfolio weights for a

myopic investor (similar to an investor with an investment horizon of T = 0) is quite

small, while the difference increases for longer investment horizons. This is in line with

the findings Sangvinatsos and Wachter (2005), who report that an investor in an essen-

tially affine world has larger hedging demands compared to an investor in a completely

affine world. We still see quite wide confidence intervals. However the width is reduced

compared to the corresponding confidence intervals in the optimal setup, in particular for

longer investment horizons. The reduction is due to the fact that in the completely affine

models we have λX = 0. Hence, the investment strategy depends on fewer parameters

compared to the essentially affine setup, which reduces the size of the confidence intervals.

Furthermore, an investor following the true essentially affine model has larger hedging

demands compared to an investor following the completely affine model. This reduces the

size of the confidence intervals in the completely affine model even further.

[Table 5 about here.]

The one-factor essentially affine model is given in (1)-(3) with m = 1. An investor

basing his investment strategy on this model will follow the investment strategy

π(r, t) = −1

γ

(
B̂(τ̃)σ̂X δ̂X

)−1
λ̂− 1− γ

γ

(
B̂(τ̃)

)−1 (
Ĥ(τ) + Ĝ(τ)r

)
, (18)
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where λ̂ =
(
λ̂0 − λ̂X

δ̂X
δ̂0

)
+ λ̂X

δ̂X
r.11 The investor bases his investment strategy on the

parameter estimates given in Panel A in Table 3. The investor who believes that the one-

factor essentially affine model gives a true picture of the economy will take the positions

given in Table 6. The table displays the optimal portfolio weight for different horizons and

the associated 95% confidence intervals calculated by the use of each of the draws from

the posterior distribution of the parameter estimates for the one-factor essentially affine

model. Panel A shows the portfolio weights for an investor with a risk aversion of γ = 5,

while Panel B shows the weights for an investor with a risk aversion of γ = 10. Due to

the fact that the investor believes that the state of the economy is fully described by a

single factor, he only invests in a single bond, here assumed to be a 5 year bond. From

Table 6 we see that with a single bond we no longer get these highly levered positions.

Furthermore, the confidence intervals are much narrower, which is due to the more precise

estimation of the parameter estimates as well as to the number of parameters used to

calculate the strategy. To determine the investment strategy in a three-factor essentially

affine model we use 25 different parameters. In the one-factor essentially affine model only

5 different parameters are used.

[Table 6 about here.]

Finally, an investor who bases his investment strategy on a one-factor completely affine

model (i.e. m = 1 and λX = 0 in (1)-(3)) will follow the investment strategy

π(X, t) = −1

γ

(
σ̂X B̂(τ̃)

)−1
λ̂0 −

1− γ
γ

(
σ̂X B̂(τ̃)

)−1
Ĥ(τ). (19)

The investor uses the parameter estimates in Panel B in Table 3. The investment strategy

is displayed in Table 7 for different investment horizons and the associated 95% confidence

intervals calculated by the use of each of the draws from the posterior distribution of

the parameter estimates for the one-factor completely affine model. Panel A shows the

portfolio weights for an investor with a risk aversion of γ = 5, while Panel B shows the

weights for an investor with a risk aversion of γ = 10. As in the one-factor essentially

11To make the investment strategy depend on the short rate instead of an artificial state variable we can

rewrite the one-factor model as follows:

drt = κ
(
θ̂ − rt

)
dt+ σXδX dzt,

where θ̂ = δXθ + δ0 and the market price of risk is given by λ =
(
λ0 − λX

δX
δ0
)

+ λX
δX

r.
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affine model the investor only invests in a single bond and the bank account. For now

we assume that the bond is a 5-year-to-maturity bond. From Table 7 we see, as for the

one-factor essentially affine model, that with a single bond we no longer get these highly

levered positions. Comparing the strategies for the two one-factor models in Tables 6 and

7, we see that initially they are more or less the same. However, the investor following the

one-factor essentially affine model takes slightly higher positions in the bond for longer

investment horizons. Even though the two strategies look more or less the same initially,

this is not necessarily the case as time passes. The reason is that the strategy based on

the one-factor essentially affine model is state dependent, which is not the case for the

strategy based on the completely affine model.

[Table 7 about here.]

4.2 Utility loss

We will now compare the performance of the four different investment strategies. All

four investment strategies will carry a utility loss. The loss is due to parameter uncertainty

and for three of the strategies also due to model misspecification. We have just seen

that the parameter uncertainty increases with the number of term structure factors and

with the complexity of the risk premium. Hence, even if the investor has identified the

true data generating model he will suffer a loss due to parameter uncertainty. We will

now investigate if an investment strategy based on one of the more parsimonious – but

misspecified – models with less parameter uncertainty will carry a lower utility loss.

MCMC is ideal to examine this tradeoff. To see this we note that in the estimation

we obtain N draws θ1, ..., θN from the distribution of model parameters given the data,

p(Θ|Y ). Now, let Mj [Θ] denote model j with associated parameters Θ. To calculate

the expected loss of following a portfolio strategy using model i with associated model

parameters Θ̃ when the true model is model j with associated parameters Θ. We write

the loss as L(Mi[Θ̃]|Y,Mj [Θ]).12 To calculate the average loss

E
(
L(Mi[Θ̃]|Y,Mj [Θ])

)
we note that E

(
L(Mi[Θ̃]|Y,Mj [Θ])

)
=
∫
L(Mi[Θ̃]|Y,Mj [x])p(x|Y )dx. The last expression

12Specifically, L(Mj [Θ]|Y,Mj [Θ]) = 0
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can be evaluated by averaging the losses across the MCMC draws∫
L(Mi[Θ̃]|Y,Mj [x])p(x|Y )dx =

N∑
i=1

L(Mi[Θ̃]|Y,Mj [θi]).

First we consider the investment strategy based on the true model. Hence, as ex-

plained above, to calculate the expected utility loss we use each draw from the posterior

distribution as the true parameters and calculate the loss from following the portfolio rule

based on the posterior median parameters given in Table 1. The expected utility loss

is then found by averaging the losses over all draws. The wide confidence intervals for

the investment strategies in Table 4 indicate that an investor using the true model might

suffer a considerable utility loss due to the high parameter uncertainty. Panel A in Figure

2 shows the expected utility loss as a function of the investor’s investment horizon for four

different levels of risk aversion. Intuitively, the wealth loss is increasing in the investor’s

investment horizon. However, the loss is high even for short horizons. For example, an

investor with an investment horizon of 5 years and a risk aversion of 5 will suffer a wealth

loss of 61% due to parameter uncertainty. For an investment horizon less than 1 year the

loss is decreasing in the investor’s risk aversion, i.e the investor with the highest risk aver-

sion suffers the lowest loss. In contrast, for longer horizons, T > 2, the investor with the

highest risk aversion will suffer the biggest loss, whereas the investor with γ = 2 will suffer

the lowest loss. The longer the investment horizon and the higher the risk aversion, the

higher the hedge demand. From Table 4 we see that the allocations in the hedge portfolio

are highly levered, and hence using a wrong set of parameter estimates may have a big

influence on the hedge strategy and lead to huge utility losses. On the other hand, an

investor with a low risk aversion has a high speculative demand and therefore experiences

a relatively high loss both for a short and a long investment horizon.

Panel B in Figure 2 display the distribution of the 1,000 MCMC draws for an investor

with an investment horizon of T = 5 years. Hence, the expected utility loss in Panel A

for T = 5 equals the mean of the 1,000 losses displayed in Panel B. The distribution is

illustrated for four different levels of the investor’s risk aversion. For all four levels of risk

aversion the investor suffers a loss between 90 and 100% for some of draws. The higher

the risk aversion, the higher the probability of suffering a loss in the 90-100% interval. In

particular, for an investor with a risk aversion of γ = 10 almost 60% of the draws imply

a loss between 90 and 100%. Hence, for some of the draws the investment strategy based
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on the true model may induce huge losses because of parameter uncertainty.

[Figure 2 about here.]

Figure 2 clearly shows that just because an investor bases his investments on the true

model, he can go very wrong if he does not use the true set of parameter estimates.

Remember that these losses are based on parameter estimates estimated by the use of

daily data on 6 different year-to-maturity bonds over a period of 35 years, and all sets of

parameter estimates satisfy the model-implied parameter restrictions.

Why do we see such big losses? From (11) we see that the market price of risk vector,

λ = λ0 + λXX, determines the speculative part of the investment. Furthermore, the H-

and G-functions, which determine the hedge allocation, are directly affected by λ0, λX ,

and also indirectly affected by λX through κ = κ̃ − λX .13 Consequently, it is important

to get a good estimate of λ0 as well as λX . However, according to Table 1, λ0 and λX

are the two parameters with the widest 95% confidence intervals. Another parameter we

would expect to have a big influence on the loss is the κ-matrix. κ = κ̃ − λX under P,

where κ̃ is the speed-of-mean-reversion matrix under the risk-neutral probability measure

Q. It is a well-known fact that the parameter estimates under Q are associated with small

confidence intervals, hence by assuming λ̂X = λX we get that κ̂ ≈ κ.14 Panel A in Figure

3 displays the loss an investor with a risk aversion of γ = 5 suffers if he knows the true

value of λX but not of any other parameters. For longer horizons we see that the investor

experiences a reduction in his wealth loss if he knows the true value of λX . For shorter

horizons the loss actually increases if the investor knows the true value of λX . Also there

is no reduction in the expected loss if the investor knows the true value of λ0 according

to Panel B in Figure 3. However, remembering the definition of the market price of risk,

λ = λ0 +λXX, λX determines the trend in the market price while λ0 determines the level.

It seems reasonable that the trend in the market price is more important than the level.

As a final exercise we put both λ̂X = λX and λ̂0 = λ0. This implies a huge reduction in

the expected loss as illustrated in Panel C in Figure 3. Here we illustrate the expected

loss for four different levels of the investor’s risk aversion, γ ∈ {1, 2, 5, 10}. Note that the

vertical axis only runs up to 1%. The log-investor, γ = 1, suffers the biggest loss, but even

13κ̃ is the speed of mean-reversion matrix under the risk-neutral probability measure defined in (4).

14See for example Dai and Singleton (2002) and Duffee (2002).
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with an investment horizon of 10 years the loss is only 0.30%. The fact that we see such

small losses makes sense given that, when λ̂X = λX and λ̂0 = λ0, the only parameters that

differ from our benchmark are δ0, δX and κ̃. These three parameters are all associated

with quite small confidence intervals compared to λ0 and λX .

[Figure 3 about here.]

The above discussion documents that an investor can go very wrong when not taking

parameter uncertainty into account. We will now investigate if an investment strategy

based on one of the more parsimonious – but misspecified – models actually induces a

lower utility loss because of the lower uncertainty in the parameters of the simpler models.

Table 8 displays the utility loss for an investor with γ = 5 and T = 5 under the assumption

of known and unknown estimates for the true model, respectively. That is, all the losses are

calculated under the assumption that the three-factor essentially affine model is the true

model. The losses in the column named “No parameter uncertainty” are calculated under

the assumption that the true set of parameter estimates are known and given by Table 1.

Obviously, an investor basing his investment on the true model under the assumption of

known parameters will suffer a loss of 0%. Consistent with the findings in e.g. Sangvinatsos

and Wachter (2005) we find huge utility losses for ignoring the affine risk premia in the

term structure under the assumption of known parameter estimates. An investor using the

three-factor completely affine with constant risk premia will suffer a loss of almost 49.51%.

If instead the investor bases his investment on the one-factor essentially (completely) affine

model he will suffer a slightly higher (lower) loss. Hence, under the assumption of known

parameters the suboptimal investment strategies induce large costs, so that it appears to

be crucial to base the investment strategy on the true model.15 However, this conclusion

is invalid once parameter uncertainty is taken into account. In this case, an investor using

the true model will suffer an average loss of 50.59%. On the other hand, an investor basing

his investment on the three-factor completely affine model will suffer a slightly lower loss

of 59.49%, whereas an investor basing his investment on the one-factor essentially affine

model will suffer a loss of 54.55%. However, the investor who will suffer the lowest loss

of all is the one basing his investment strategy on the most parsimonious model, the one-

15This is consistent with findings in e.g. Sangvinatsos and Wachter (2005), Koijen, Nijman, and Werker

(2010), and Larsen and Munk (2012).
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factor completely affine model. He will suffer a loss of 50.97%, which is a 20% lower cost

compared to the investment strategy based on the true model.

[Table 8 about here.]

Figure 4 displays the expected utility loss as a function of the investor’s investment

horizon for the four investment strategies. The four panels illustrate the losses for four

different levels of risk aversion, γ ∈ {1, 2, 5, 10}. The expected utility loss from basing the

investment on the true model is illustrated with a red line, the expected utility loss from

basing the investment on the three-factor completely affine model is illustrated with a

green line, whereas the expected utility loss from basing the investment on the one-factor

completely (essentially) affine model is illustrated with a cyan (blue) line. Intuitively, the

expected utility loss is increasing in the investor’s investment horizon for all four models.

From Panel A and Panel B it follows that for low levels of risk aversion the investor who

bases his investment on the correct model clearly suffers the lowest loss. No matter which

of the three more parsimonious models the investor bases his investment strategy on will

induce the investor with more less the same level of loss. For γ = 5 and higher this picture

changes. For investment horizons exceeding two years, it is now the strategy based on the

most parsimonious model that produces the lowest expected loss to the investor. With a

risk aversion of γ = 5, the strategies based on the two three-factor models imply more or

less the same cost for the investor and are the two strategies inducing the highest cost.

The one-factor essentially affine model induces a slightly smaller loss, whereas the one-

factor completely affine model induces the lowest loss of all four models. For γ = 10,

the one-factor completely affine model clearly outperforms the other three models. The

strategy based on the correct model gives the worst performance of all four models except

for investment horizons less than one year. In particular, under the assumption of a

risk aversion of γ = 10 and an investment horizon of 5 years, an investor basing his

investment strategy on the true model will suffer a loss of 66%, whereas an investor basing

his investment strategy on the most parsimonious – and misspecified – model only suffers

a loss of 34%, a loss reduction of approximately 48%.

[Figure 4 about here.]

The above discussions are based on the expected utility loss based on the 1,000 MCMC

draws. Remember that to calculate the expected utility loss, we use each draw from
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the posterior distribution as the true parameters and calculate the loss from following

the portfolio rule based on the posterior median parameters given for each of the four

models. The expected utility is then found by averaging the losses over all draws. Figure 5

displays the distribution of the 1,000 losses determined by the use of the 1,000 draws from

the posterior distribution. The four panels show the distribution for the four different

investment strategies. In each panel the investment horizon is 5 years and the loss is

displayed for four different levels of the investor’s risk aversion. From Panel A we see that

an investor using the correct model has a high probability of suffering a loss between 90

and 100% if his risk aversion is five or higher. This is not the case for any of the other three

model. On the other hand, for a log investor the probability of a loss between between 90

and 100% is quite low for the true model, but very high for the three misspecified models.

[Figure 5 about here.]

So far, the expected utility loss in the one-factor models has been determined under

the assumption that the investor invests in a 5-year bond. As a robustness check, Figure

6 depicts the expected utility loss for an investor having access to a 1-year, 5-year, and

10-year bond, respectively. The four panels illustrates the losses for four different levels of

risk aversion. The investor bases his investment on the one-factor completely affine model.

Obviously, the expected utility loss is little sensitive to the time-to-maturity of the bond.

This holds true for all levels of risk aversion.

[Figure 6 about here.]

5 Conclusion

TO COME!
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A Proofs

A.1 Proof of Proposition 1

To solve for the optimal investment strategy we use the Dynamic Programming Ap-

proach suggested by Merton (1969, 1971, 1973). The Hamilton-Jacobi-Bellman (HJB)

equation associated with the dynamic optimization problem is given by

0 = sup
π∈Rd

{
Jt + JW

[
r − π′B(τ̃)′σXλ

]
W +

1

2
JWWW

2π′B(τ̃)′σXσ
′
XB(τ̃)π

+ J ′Xκ (θ −X) +
1

2
tr
(
JXX σX σ

′
X

)
−Wπ′B(τ̃)′σXσ

′
XJWX

}
,

(20)

with the terminal condition J(W,X, T ) = W 1−γ

1−γ if γ 6= 1 and J(W,X, T ) = lnW if γ = 1.

The subscripts on J denote the partial derivatives.

The first order condition w.r.t. π implies that a candidate for the optimal investment

strategy is given by

π∗(W,X, t) =
JW

JWWW

(
σ′XB(τ̃)

)−1
λ+

1

JWWW

(
σ′XB(τ̃)

)−1
σ′XJWX . (21)

By substituting the candidate for the optimal investment strategy into the HJB-equation

we get that

0 = Jt + JW
[
r − (π∗)′ B(τ̃)′σXη

]
W +

1

2
JWWW

2 (π∗)′ B(τ̃)′σXσ
′
XB(τ̃)π∗

+ J ′Xκ (θ −X) +
1

2
tr
(
JXX σX σ

′
X

)
−W (π∗)′ B(τ̃)′σXσ

′
XJWX .

(22)

An educated guess of the solution is

J(W,X, t) =
1

1− γ

(
WeF (τ)+H(τ)′X+ 1

2
X′G(τ)X

)1−γ
. (23)

The terminal condition of the HJB-equation implies that F (0) = H(0) = G(0) = 0. Sub-

stituting the candidate for the optimal investment strategy (21) and the relevant deriva-

tives of our guess into the HJB-equation, simplifying, and finally matching coefficients on

X ′[ · ]X, X ′, and the constant terms lead to the following system of ordinary differential
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equations:

∂F (τ)

∂t
= H(τ)′

[
κθ +

1− γ
γ

σXλ0

]
+

1− γ
2γ

H(τ)′σXσ
′
XH(τ)

+
1

4
tr
((
G(τ) +G(τ)′

)
σXσ

′
X

)
+

1

2γ
λ′0λ0 + δ0

(24)

∂H(τ)

∂t
=

[
1− γ
γ

λ′Xσ
′
X − κ′ +

1− γ
2γ

(
G(τ) +G(τ)′

)
σXσ

′
X

]
H(τ)

+
1

2

(
G(τ) +G(τ)′

) [
κθ +

1− γ
γ

σXλ0

]
+

1

γ
λ′Xλ0 + δX

(25)

∂G(τ)

∂t
=

1

γ
λ′XλX +

1− γ
γ

λ′Xσ
′
X

(
G(τ) +G(τ)′

)
−
(
G(τ) +G(τ)′

)
κ

+
1− γ

4γ

(
G(τ) +G(τ)′

)
σXσ

′
X

(
G(τ) +G(τ)′

)
.

(26)

Hence, our guess (23) is the solution to the HJB-equation if F , H, and G solve the above

system of ODE’s. Finally, substituting the relevant derivatives of J into (21) gives the

optimal strategy (11).

A.2 Proof of Proposition 2

Any combination of an initial wealth and an investment strategy π will give rise to a

terminal wealth W π
T and the expected utility associated with that is thus given by

Ĵ(W,X, t) =

 EP
t

[
1

1−γ (W π
T )1−γ

]
, γ > 1,

EP
t [ln (W π

T )] , γ = 1.
(27)

From Theorem 2 in Larsen and Munk (2012) it follows that the expected utility generated

by the investment strategy, π, is given by

Ĵ(W,X, t) =

 1
1−γ

(
W eC(X,T−t))1−γ , γ > 1,

lnW + C(X,T − t), γ = 1,
(28)

where the function C(X,T − t) satisfies the PDE

∂C

∂t
+
(
κ (θ −X)− (γ − 1)σXσP (τ̃)′π(X, t)

)′ ∂C
∂X

+
1

2
tr

(
∂2C

∂X2
σXσ

′
X

)
− γ − 1

2

(
∂C

∂X

)′
σXσ

′
X

∂C

∂X
+ r(X) + π(X, t)′σP (τ̃)

[
λ(X)− γ

2
σP (τ̃)′π(X, t)

]
= 0

(29)

with the terminal condition C(X, 0) = 0. σP (τ̃) denotes the n×m volatility-matrix of the

traded zero-coupon bonds. For the specific suboptimal investment strategy given in (12)
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an educated guess on a solution to the PDE is given by16

C(X, t) = C1(τ) + C2(τ)′X +
1

2
X ′C3(τ)X.

Substituting in the relevant derivatives, the relevant investment strategy in (12), simpli-

fying, and finally matching coefficients on X ′[·]X, X ′, and the constant terms leads to the

following system of ordinary differential equations:

∂C1

∂t
= C2(τ)′

[
κθ +

γ − 1

γ
σXσP (τ)′

(
σ̂′XB̂(τ̃)

)−1 ˆ̂
λ0

]
− γ − 1

2
C2(τ)′σXσ

′
XC2(τ)

+
γ − 1

γ
ˆ̂
H(τ)′σ̂X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)

[
λ0 + σP (τ)′

(
σ̂′XB̂(τ̃)

)−1 ˆ̂
λ0 − (γ − 1)σ′XC2(τ)

]
− (γ − 1)2

2γ
ˆ̂
H(τ)′σ̂X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)σP (τ)′

(
σ̂′XB̂(τ̃)

)−1
σ̂′X

ˆ̂
H(τ) (30)

+
1

4
tr
((
C3(τ) + C3(τ)′

)
σXσ

′
X

)
− 1

γ
ˆ̂
λ′0

(
B̂(τ̃)′σ̂X

)−1
σP (τ)λ0

− 1

2γ
ˆ̂
λ′0

(
B̂(τ̃)′σ̂X

)−1
σP (τ)σP (τ)′

(
σ̂′XB̂(τ̃)

)−1 ˆ̂
λ0 + δ0

∂C2

∂t
=

[
γ − 1

γ
ˆ̂
λ′X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)σ′X − κ′ −

γ − 1

2

(
C3(τ) + C3(τ)′

)
σXσ

′
X

]
C2(τ)

+
1

2

(
C3(τ) + C3(τ)′

) [
κθ +

γ − 1

γ
σXσP (τ)′

(
σ̂′XB̂(τ̃)

)−1 (ˆ̂
λ0 − (γ − 1) σ̂′X

ˆ̂
H(τ)

)]
+
γ − 1

γ

[
λ′XσP (τ)′

(
σ̂′XB̂(τ̃)

)−1
σ̂′X +

ˆ̂
λ′X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)σP (τ)′

(
σ̂′XB̂(τ̃)

)−1
σ̂′X

]
ˆ̂
H(τ)

+
γ − 1

2γ

(
ˆ̂
G(τ) +

ˆ̂
G(τ)′

)
σ̂X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)

[
λ0 + σP (τ)′

(
σ̂′XB̂(τ̃)

)−1 ˆ̂
λ0

]
− (γ − 1)2

2γ

(
ˆ̂
G(τ) +

ˆ̂
G(τ)′

)
σ̂X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)

[
σP (τ)′

(
σ̂′XB̂(τ̃)

)−1
σ̂′X

ˆ̂
H(τ) + σ′XC2(τ)

]
− 1

γ
λ′XσP (τ)′

(
σ̂′XB̂(τ̃)

)−1 ˆ̂
λ0 −

1

γ
ˆ̂
λ′X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)λ0 (31)

− 1

γ
ˆ̂
λ′X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)σP (τ)′

(
σ̂′XB̂(τ̃)

)−1 ˆ̂
λ0 + δX

16For the completely affine models the matrix function C3(·) is put equal to zero.
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∂C3(τ)

∂t
= −1

γ
ˆ̂
λ′X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)

(
2λX + σP (τ)′

(
σ̂′XB̂(τ̃)

)−1 ˆ̂
λX

)
+
γ − 1

γ
λ′XσP (τ)′

(
σ̂′XB̂(τ̃)

)−1
σ̂X

(
ˆ̂
G(τ) +

ˆ̂
G(τ)′

)
+
γ − 1

γ
ˆ̂
λ′X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)σ′X

(
C3(τ) + C3(τ)′

)
+
γ − 1

γ
ˆ̂
λ′X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)σP (τ)′

(
σ̂′XB̂(τ̃)

)−1
σ̂′X

(
ˆ̂
G(τ) +

ˆ̂
G(τ)′

)
(32)

−
(
C3(τ) + C3(τ)′

)
κ− γ − 1

4

(
C3(τ) + C3(τ)′

)
σXσ

′
X

(
C3(τ) + C3(τ)′

)
− (γ − 1)2

4γ

(
ˆ̂
G(τ) +

ˆ̂
G(τ)′

)
σ̂X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)σP (τ)′

(
σ̂′XB̂(τ̃)

)−1
σ̂′X
(
G(τ) +G(τ)′

)
− (γ − 1)2

2γ

(
ˆ̂
G(τ) +

ˆ̂
G(τ)′

)
σ̂X

(
B̂(τ̃)′σ̂X

)−1
σP (τ)σ′X

(
C3(τ) + C3(τ)′

)
.

with boundary condition C1(0) = C2(0) = C3(0) = 0. The hats ( )̂ on the parameters

imply that the benchmark parameter estimates for the models should be used. For the

three-factor essentially affine model as well as for the two completely affine models
ˆ̂
λX =

λ̂X ,
ˆ̂
λ0 = λ̂0,

ˆ̂
H(·) = Ĥ(·), and

ˆ̂
G(·) = Ĝ(·), that is use the benchmark estimates for the

three investment strategies. For the one-factor essentially affine model

ˆ̂
λX =

λ̂X

δ̂X
δ′X ,

ˆ̂
λ0 = λ̂0 −

λ̂X

δ̂X

(
δ̂0 − δ0

)
,

ˆ̂
G(τ) =

Ĝ(τ)

δ̂X
δ′X ,

ˆ̂
H(τ) = Ĥ(τ)− Ĝ(τ)

δ̂X

(
δ̂0 − δ0

)
.

The functions Ĥ(τ) and Ĝ(τ) solve the system of ordinary differential equations (25)-

(26) from the optimal setup with the benchmark parameter estimates for each of the four

models. Hence, our guess is the solution to the PDE (29) if C1, C2, and C3 solve the above

system of ODE’s.17

B Details on the MCMC estimation

First the conditionals mentioned in the text are derived, and thereafter practical issues

regarding the MCMC sampler are discussed.

17Note for the completely affine models we have that G(·) = C3(·) = 0 and hence the system of ordinary

differential equations can be simplified a lot.
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B.1 Conditional Distributions

B.1.1 The Conditionals p(X|Θ) and p(Y |Θ, X)

The conditional p(X|Θ) is used in several steps of the MCMC procedure and is calcu-

lated as

p(X|Θ) =

(
T∏
t=1

p(Xt|Xt−1,Θ)

)
p(X0).

The continuous-time specification in (4) is approximated using an Euler scheme18

Xt+1 = Xt + µPXt∆t +
√

∆t ξt+1,

where ξt+1 ∼ N(0, IN ), ∆t is the time between two observations, and µPXt is the drift

under P. Therefore

p(X|Θ) ∝ exp

{
− 1

2∆t

T∑
t=1

3∑
i=1

[
Xt −Xt−1 − µPXt−1∆t

]2

i

}
p(X0).

If the difference between the actual yields and the model-implied yields at time t is denoted

by êt = Yt − (A(Θ) +B(Θ)Xt), the density p(y|Θ, X) can be written as

p(Y |Θ, X) ∝
k∏
i=1

(
D
−T

2
ii exp

{
− 1

2Dii

T∑
t=1

ê2
t,i

})
∝ ϕ−kT exp

{
− 1

2ϕ2

T∑
t=1

ê′têt

}
.

B.1.2 The Hybrid MCMC algorithm

According to Bayes’ theorem the conditional of the risk premium parameters is given

as

p(λ0, λX |Θ\λ0,λX , X, Y ) ∝ p(Y |Θ, X) p(λ0, λX |Θ\λ0,λX , X)

∝ p(X|Θ) p(λ0, λX |Θ\λ0,λX ),

where Θ\λ0,λX denotes the parameter vector without the parameters λ0 and λX . We

assume that the priors are a priori independent and in order to let the data dominate the

results a standard diffuse, noninformative prior is adopted so p(λ0, λX |Θ\λ0,λX , X, Y ) ∝

18The Euler scheme introduces some discretization error which may induce bias in the parameter es-

timates. This possible bias can be reduced using Tanner and Wong (1987)’s data augmentation scheme.

However, the discretization bias is likely to be small for daily data.
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p(X|Θ) and λ0, λX can be Gibbs sampled one column at a time from a multivariate normal

distribution. The conditionals of the other model parameters are given as

p(Θj |Θ\Θj , X, Y ) ∝ p(Y |Θ, X) p(Θj |Θ\Θj , X) ∝ p(Y |Θ, X) p(X|Θ). (33)

Equation (33) implies that the conditional of the variance of the measurement errors

is given as

p(D|Θ\D, X, Y ) ∝ p(Y |Θ, X) p(D|Θ\D).

The parameter ϕ2 can therefore be Gibbs sampled from the inverse Wishart distribution,

ϕ2 ∼ IW (
∑T

t=1 ê
′
têt, kT ).

To sample κ̃, δ0, and δX we use the Random Walk Metropolis-Hastings algorithm

(RW-MH). Equation (33) gives the general expression for the conditional distribution.

The latent processes are sampled by sampling Xt, t = 0, ..., T one at a time using the

RW-MH procedure. For t = 1, ..., T − 1 the conditional of Xt is given as

p(Xt|X\t,Θ, Y ) ∝ p(Xt|Xt−1, Xt+1,Θ, Yt)

∝ p(Yt|Xt,Θ) p(Xt|Xt−1, Xt+1,Θ)

∝ p(Yt|Xt,Θ) p(Xt|Xt−1,Θ) p(Xt+1|Xt,Θ).

For t = 0 the conditional is

p(X0|X1,Θ, Y ) ∝ p(X1|X0,Θ, Y ) p(X0) ∝ p(X1|X0,Θ) p(X0),

while for t = T the conditional is

p(XT |X\XT ,Θ, Y ) ∝ p(XT |XT−1,Θ, Y )

∝ p(YT |XT , XT−1,Θ, Y\YT ) p(XT |XT−1,Θ, Y\YT )

∝ p(YT |XT ,Θ) p(XT |XT−1,Θ).

The efficiency of the RW-MH algorithm depends crucially on the variance of the pro-

posal normal distribution. If the variance is too low, the Markov chain will accept nearly

every draw and converge very slowly, while it will reject a too high portion of the draws if

the variance is too high. We therefore do an algorithm calibration and adjust the variance

in the first eight million draws in the MCMC algorithm. Within each parameter block

the variance of the individual parameters is the same, while across parameter blocks the
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variance may be different. Roberts et al. (1997) recommend acceptance rates close to 1
4

for models of high dimension and therefore the standard deviation during the algorithm

calibration is chosen as follows: Every 100’th draw the acceptance ratio of the parameters

in a block is evaluated. If it is less than 5 % the standard deviation is doubled, while if it

is more than 40 % it is cut in half. This step is prior to the burn-in period since the con-

vergence results of RW-MH only apply if the variance is constant (otherwise the Markov

property of the chain is lost). In estimating each model we use an algorithm calibration

period of 3 million draws, where the variances of the normal proposal distributions are

set, a burn-in period of 5 million draws, and an estimation period of 5 million draws. We

keep every 5,000’th draw in the estimation period, which leaves 1,000 draws. For each

parameter, we report point estimates along with univariate confidence bands based on the

2.5% and the 97.5% percentiles of the MCMC draws of the posterior distribution. As in

Collin-Dufresne, Goldstein, and Jones (2008) we find point estimates as follows. Let φi

denote the ith parameter draw and φ̃i denote the same vector normalized by the posterior

standard deviations. The point estimate is the draw i minimizing:

∑
j

∣∣∣φ̃j − φ̃i∣∣∣ .
This version of the multivariate posterior median ensures that parameter restrictions are

satisfied for our parameter estimates, which might not be the case if the point estimates

are based on univariate medians.

All random numbers in the estimation are draws from Matlab 7.0’s generator which is

based on Marsaglia and Zaman (1991)’s algorithm. The generator has a period of almost

21430 and therefore the number of random draws in the estimation is not anywhere near

the period of the random number generator.
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Figure 1: Time-series of bond yields. The figure shows daily (continuously com-
pounded) 1, 2, 3, 5, 7, and 10-year zero-coupon yields from August 16, 1971 to August
21, 2006. Source: http://www.federalreserve.gov/pubs/feds/2006. ANDERS GIDER DU
LAVE EN NY FIGUR?
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Figure 2: The utility loss from basing the investment strategy on the three-
factor essentially affine model. Panel A display the expected utility loss as a function
of the investor’s investment horizon. The loss is displayed for four different levels of
the investor’s risk aversion, γ. Panel B shows the distribution of the utility loss for an
investor with an investment horizon of T = 5 years based on the 1,000 MCMC draws. The
distribution is illustrated for four different levels of the investor’s risk aversion, γ.
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Figure 3: The utility loss as a function of the investor’s investment horizon. In
all three panels the investor bases his investment strategy on the true model, the three-
factor essentially affine model. The solid line in Panel A displays the loss for an investor
who knows the true value of λX , i.e. λ̂X = λX . The solid line in Panel B displays the loss
for an investor who knows the true value of λ0, i.e. λ̂0 = λ0. In both panels the investor is
assumed to have a risk aversion of γ = 5, and the dashed line displays the loss when λX
and λ0 is unknown. Panel C displays the loss in the case where both λX and λ0 is known
for four different values of the investor’s risk aversion.
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Figure 4: The expected wealth loss as a function of the investment horizon. The
red line displays the expected utility loss due to parameter uncertainty in the true model,
the three-factor essentially affine model. The green line displays the expected loss from
basing the investment strategy on the three-factor completely affine model. The cyan line
displays the expected loss from basing the investment strategy on the one-factor essentially
affine model. The black line displays the expected loss from basing the investment strategy
on the one-factor completely affine model. The four panels show the losses for four different
levels of the investor’s risk aversion.
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Figure 5: The distribution of the losses based on the 1,000 MCMC draws. The
distribution of the 1,000 losses determined by the use of the draws from the posterior
distribution of the three-factor essentially affine model. The four panels show the distri-
bution for the investment strategies based on the four different term structure models:
the true model, the three-factor completely affine model, and the two one-factors models
with constant and affine risk premia, respectively. In each panel the loss is displayed for
four different levels of the investor’s risk aversion. The investor is assumed to have an
investment horizon of T = 5.
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Figure 6: The expected utility loss as a function of the investor’s investment
horizon. All three lines show the loss an investor suffers from basing his investment
strategy on the one-factor completely affine model. The red line displays the loss for an
investor investing in a 1-year-to-maturity bond. The blue line displays the loss for an
investor investing in a 5-year-to-maturity bond. The green line displays the loss for an
investor investing in a 10-year-to-maturity bond. The four panels show the losses for four
different levels of risk aversion.
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Panel A: Scalars

Parameter δ0

0.1589
(0.1582; 0.1629)

Panel B: Vectors and matrixes

Index number i
Parameter 1 2 3

δXi 0.0027 0.0101 0.0101
(0.0023; 0.0031) (0.0099; 0.0106) (0.0100; 0.0103)

κ1i 1.5482 0.1433 0.0271
(0.7776; 1.9290) (−0.1706; 0.3661) (−0.0760; 0.1824)

κ2i 1.5041 0.4016 0.0709
(0.5681; 1.7210) (0.2052; 0.7384) (−0.0693; 0.1990)

κ3i 0.6401 −0.0272 0.1171
(0.0553; 1.2182) (−0.3259; 0.2367) (0.0200; 0.2727)

λ0i 0.1644 −0.4501 −1.081
(−1.6999; 0.7431) (−2.0522; 0.4381) (−2.4085;−0.1181)

λX1i −1.1519 −0.1433 −0.0271
(−1.5380; 0.3850) (−0.3670; 0.1702) (−0.1829; 0.0760)

λX2i −0.3433 0.4220 −0.0709
(−0.5785; 0.5767) (0.0853; 0.6191) (−0.1995; 0.0692)

λX3i −0.1961 0.4645 −0.0979
(−0.7848; 0.3685) (0.1990; 0.7546) (−0.2558;−0.0011)

Table 1: Parameter estimates for the three-factor essentially affine model. The
model is estimated using daily data on zero-coupon yields from 1971 to 2006. 95%-
confidence intervals are given in parentheses. Parameter values are annual and in natural
units.
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Panel A: Scalars

Parameter δ0

0.1826
(0.1809; 0.1838)

Panel B: Vectors and matrixes

Index number i
Parameter 1 2 3

δXi 0.0027 0.0101 0.0104
(0.0023; 0.0031) (0.0098; 0.0104) (0.0101; 0.0105)

κ1i 0.3984 0 0
(0.3925; 0.4055) − −

κ2i 1.1272 0.8179 0
(1.0928; 1.1620) (0.8005; 0.8252) −

κ3i 0.4348 0.4367 0.0156
(0.4259; 0.4695) (0.4250; 0.4562) (0.0153; 0.0158)

λi −0.0711 −0.4697 −0.4490
(−0.2974; 0.3602) (−0.7459;−0.1164) (−0.8023;−0.1372)

Table 2: Parameter estimates for the three-factor completely affine model. The
model is estimated using daily data on zero-coupon yields from 1971 to 2006. 95%-
confidence intervals are given in parentheses. Parameter values are annual and in natural
units.
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Parameters Essentially affine model Completely affine model

δ0 −0.3869 −0.2011
(−0.3904;−0.3846) (−0.2026;−0.1999)

δX 0.0128 0.0055
(0.0127; 0.0128) (0.0054; 0.0055)

κ 0.1089 2.72e− 07
(0.0089; 0.2573) (1.13e− 08; 1.63e− 06)

λ0 3.9370 −0.0507
(−0.3345; 9.1777) (−0.3664; 0.2729)

λX −0.1150 N.A.
(−0.2643;−0.0158)

Table 3: Parameter estimates for the two one-factor models. The models are
estimated using daily data on zero-coupon yields from 1971 to 2006. 95%-confidence
intervals are given in parentheses. Parameter values are annual and in natural units.
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Panel A: Portfolio weights, γ = 5

Inv. horizon πB1 πB5 πB10 πrf
0 17.90 −2.54 0.44 −14.80

(5.87; 26.72) (−7.26; 2.63) (−1.70; 2.65) (−21.92;−5.37)
1 14.19 −2.25 0.92 −11.87

(3.06; 26.03) (−11.76; 3.88) (−1.72; 5.17) (−19.59;−4.02)
5 13.92 −4.85 3.04 −11.12

(2.56; 29.58) (−16.85; 3.12) (−0.67; 8.22) (−20.08,−3.76)
10 14.03 −5.85 4.23 −11.41

(2.40; 29.61) (−17.36; 2.67) (0.03; 9.11) (−20.50;−3.94)

Panel B: Portfolio weights, γ = 10

Inv. horizon πB1 πB5 πB10 πrf
0 8.95 −1.27 0.22 −6.90

(2.94; 13.36) (−3.63, 1.32) (−0.85, 1.32) (−10.46,−2.18)
1 7.36 −1.10 0.49 −5.73

(1.61; 13.77) (−6.52; 2.18) (−0.93; 2.86) (−9.62;−1.77)
5 7.21 −2.59 1.88 −5.51

(0.91; 16.40) (−10.16; 2.20) (−0.43; 5.33) (−10.46;−1.63)
10 7.44 −3.88 3.15 −5.71

(0.83; 16.48) (−11.37; 1.40) (0.42; 6.50) (−10.71;−1.80)

Table 4: Optimal portfolio weights. Panel A shows the optimal portfolios for different
horizons for an investor with a risk aversion of γ = 5. Panel B shows the optimal portfolios
for different horizons for an investor with a risk aversion of γ = 10. The investor is able
to invest in the 1-year bond, 5-year bond, 10-year bond, and the risk-free asset. 95%-
confidence intervals are given in parentheses. The portfolio weights are in natural units.
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Panel A: Portfolio weights, γ = 5

Inv. horizon πB1 πB5 πB10 πrf
0 18.01 −3.52 0.83 −14.33

(5.56; 25.68) (−6.91; 2.76) (−1.82; 2.48) (−21.01;−5.24)
1 18.81 −3.52 0.83 −15.13

(6.36; 24.48) (−6.91; 2.76) (−1.82; 2.48) (−21.81;−6.04)
5 18.01 −2.72 0.83 −15.13

(5.56; 25.68) (−6.11; 3.56) (−1.82; 2.48) (−21.81;−6.04)
10 18.01 −3.52 1.63 −15.13

(5.56; 25.68) (−6.91; 2.76) (−1.02; 3.28) (−21.81;−6.04)

Panel B: Portfolio weights, γ = 10

Inv. horizon πB1 πB5 πB10 πrf
0 9.01 −1.76 0.42 −6.66

(2.78; 12.84) (−3.45; 1.38) (−0.91; 1.24) (−10.01;−2.12)
1 9.91 −1.76 0.42 −7.56

(3.68; 13.74) (−3.45; 1.38) (−0.91; 1.24) (−10.91;−3.02)
5 9.01 −0.86 0.42 −7.56

(2.78; 12.84) (−2.55; 2.28) (−0.91; 1.24) (−10.91;−3.02)
10 9.01 −1.76 1.32 −7.56

(2.78; 12.84) (−3.45; 1.38) (−0.01; 2.14) (−10.91;−3.02)

Table 5: Suboptimal portfolio weights based on the three-factor completely
affine model. The table shows the suboptimal investment strategy for an investor who
bases his investments on a three-factor completely affine term structure model. Panel A
shows the suboptimal portfolio weights for different horizons for an investor with a risk
aversion of γ = 5. Panel B shows the suboptimal portfolios for different horizons for an
investor with a risk aversion of γ = 10. The investor is able to invest in the 1-year bond,
5-year bond, 10-year bond, and the risk-free asset. 95%-confidence intervals are given in
parentheses. The portfolio weights are in natural units.
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γ = 5 γ = 10

Inv. horizon πB5 πrf πB5 πrf
0 0.35 0.65 0.17 0.83

(−0.36; 1.67) (−0.68; 1.36) (−0.18; 0.84) (0.16; 1.18)
1 0.54 0.46 0.37 0.63

(−0.23; 1.98) (−0.98; 1.22) (−0.02; 1.10) (−0.10; 1.01)
5 1.31 −0.31 1.17 −0.17

(0.34; 3.30) (−2.31; 0.66) (0.66; 2.28) (−1.29; 0.34)
10 2.34 −1.24 2.17 −1.17

(1.06; 4.69) (−3.70;−0.07) (1.52; 3.65) (−2.67;−0.52)

Table 6: Suboptimal portfolio weights based on the one-factor essentially affine
model. The table shows the suboptimal investment strategy for an investor who bases
his investments on a one-factor essentially affine term structure model. The investment
strategies are shown for different combinations of the investor’s risk aversion, γ, and
investment horizon, T . The investor is able to invest in the 5-year bond and the risk-
free asset. 95%-confidence intervals are given in parentheses. The portfolio weights are in
natural units.
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γ = 5 γ = 10

Inv. horizon πB5 πrf πB5 πrf
0 0.37 0.63 0.19 0.81

(−2.01; 2.66) (−1.69; 3.00) (−1.00; 1.33) (−0.34; 2.00)
1 0.53 0.47 0.37 0.63

(−1.85; 2.82) (−1.85; 2.84) (−0.82; 1.51) (−0.52; 1.82)
5 1.17 −0.17 1.09 −0.09

(−1.21; 3.46) (−2.49; 2.20) (−0.10; 2.23) (−1.24; 1.10)
10 1.97 −0.97 1.99 −0.99

(−0.41; 4.26) (−3.29; 1.40) (0.80; 3.13) (−2.14; 0.20)

Table 7: Suboptimal portfolio weights based on the one-factor completely affine
model. The table shows the suboptimal investment strategy for an investor who bases
his investments on a one-factor completely affine term structure model. The investment
strategies are shown for different combinations of the investor’s risk aversion, γ, and
investment horizon, T . The investor is able to invest in the 5-year bond and the risk-
free asset. 95%-confidence intervals are given in parentheses. The portfolio weights are in
natural units.
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No parameter uncertainty Parameter uncertainty

3-factor ess. 0% 60.59%
3-factor com. 49.51% 59.49%
1-factor ess. 52.72% 54.55%
1-factor com. 48.88% 50.97%

Table 8: The expected utility loss in a setting with and without parameter
uncertainty, respectively. All the losses are calculated under the assumption that the
three-factor essentially affine model is the true model. The losses in the column named “No
parameter uncertainty” are furthermore calculated under the assumption that the true set
of parameter estimates are known and given by Table 1. All the losses are calculated for
an investor with a risk aversion of γ = 5 and an investment horizon of 5 years.
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